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Abstract

We investigate the practically crucial property of operational termi-
nation of deterministic conditional term rewriting systems (DCTRSs), an
important declarative programming paradigm. We show that operational
termination can be equivalently characterized by the newly introduced no-
tion of context-sensitive quasi-reductivity. Based on this characterization
and an unraveling transformation of DCTRSs into context-sensitive (un-
conditional) rewrite systems (CSRSs), context-sensitive quasi-reductivity
of a DCTRS is shown to be equivalent to termination of the resulting
CSRS on original terms. This result enables both proving and disproving
operational termination of given DCTRSs via transformation into CSRSs.
A concrete procedure for this restricted termination analysis (on original
terms) is proposed and encouraging benchmarks obtained by the ter-
mination tool VMTL, that utilizes this approach, are presented. Finally,
we show that the context-sensitive unraveling transformation is sound and
complete for collapse-extended termination, thus solving an open problem
of [Duran et al. 2008].

1 Introduction and Overview

Conditional term rewriting systems (CTRSs) are a natural extension of un-
conditional such systems (TRSs) allowing rules to be guarded by conditions.
Conditional rules tend to be very intuitive and easy to formulate and are there-
fore used in several declarative programming and specification languages, such
as Maude [10] or ELAN [9]. Here we focus on the particularly interesting class

∗Email: {felixs,gramlich}@logic.at. F. Schernhammer has been supported by the Aus-
trian Academy of Sciences under grant 22.361.
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of deterministic (oriented) CTRSs (DCTRSs) which allows for extra variables in
conditions and right-hand sides to some extent (corresponding to let-constructs
or where-clauses in other functional-(logic) languages) and has been used for
instance in proofs of termination of (well-moded) logic programs [13].

When analyzing the termination behaviour of conditional TRSs, it turns
out that the proof-theoretic notion of operational termination is more adequate
than ordinary termination in the sense that practical evaluations w.r.t. oper-
ationally terminating DCTRSs always terminate (which is indeed not true for
other similar notions like effective termination [22]).

For the analysis of operational termination of DCTRSs usually the equivalent
property of quasi-decreasingness is used [22]. In [29], [28], based on the idea of
unravelings of [24], a transformation from DCTRSs into TRSs is proposed such
that termination of the transformed TRS implies quasi-reductivity of the given
DCTRS which in turn implies its quasi-decreasingness.

We propose an alternative definition of quasi-reductivity using context-sensi-
tivity ([20]), that will be proved to be equivalent to operational termination of
DCTRSs. Furthermore, we use a simple modification of Ohlebusch’s transfor-
mation ([29]) that allows us to completely characterize the new property of
context-sensitive quasi-reductivity of a DCTRS by means of termination of the
context-sensitive (unconditional) TRS, that is obtained by the transformation,
on original terms.

This complete characterization yields a method for disproving operational
termination of DCTRSs by disproving termination of CSRSs on original terms.
Moreover, we will show that the proposed transformation is sound and complete
with respect to collapse-extended termination even if the latter notion is not
restricted to original terms in the transformed system. As a corollary we obtain
modularity of collapse-extended operational termination of DCTRSs.

Finally, we present an approach, which is based on the dependency pair
framework of [16], for proving termination of a CSRS on original terms, thus
exploiting the given equivalence result. This approach has been implemented
in the tool VMTL ([30])1 and evaluated on a set of 24 examples. Several of
these examples, where other existing approaches fail, could be shown to be
operationally terminating thanks to the new method.2

For the sake of readability, only selected proofs will be presented inline. All
other proofs can be found in the Appendix.

2 Preliminaries

We assume familiarity with the basic concepts and notations of term rewriting
and context-sensitive rewriting (cf. e.g. [7], [8] and [20]). Throughout the paper
we assume that all CTRSs, CSRSs and TRSs (i.e., their induced reduction
relations) are finitely branching.

1http://www.logic.at/vmtl/
2First partial results of the current approach were presented at WST 2007, and some

progress was reported at NWPT 2008.
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By V ar(t) we denote the set of variables occurring in the term t. V arµ(t)
denotes the set of replacing variables and V arµ(t) the set of non-replacing vari-
ables w.r.t. a replacement map µ of t.

Conditional Rewriting We are concerned with oriented 3-CTRSs. Such
systems consist of conditional rules l → r ⇐ c, with c being of the form s1 →∗

t1, . . . , sn →∗ tn such that l is not a variable and V ar(r) ⊆ V ar(l) ∪ V ar(c).
The conditional rewrite relation induced by a CTRS R is inductively defined
as follows: R0 = ∅, Rj+1 = {σl → σr | l → r ⇐ s1 →∗ t1, . . . , sn →∗ tn ∈
R ∧ σsi →∗

Rj
σti for all 1 ≤ i ≤ n}, and →R=

⋃

j≥0 →Rj
. We say that a

reduction step s →R t has depth i if s →Ri
t and s 6→Rj

t for all j < i.
A deterministic CTRS (DCTRS) is an oriented 3-CTRS where for each rule

l → r ⇐ s1 → t1, . . . , sn → tn it holds that V ar(si) ⊆ V ar(l) ∪
⋃i−1

j=1 V ar(tj).
A DCTRS (Σ, R) is called quasi-reductive, cf. [29], [13], if there exists an

extension Σ′ of Σ and a well-founded partial order ≻ on T (Σ′, V ), which is
monotonic, i.e., closed under contexts, such that for every rule l → r ⇐ s1 →∗

t1, . . . , sn →∗ tn ∈ R, every σ : V → T (Σ′, V ) and every i ∈ {0, . . . , n − 1}:

• If σsj � σtj for every 1 ≤ j ≤ i, then σl ≻st σsi+1.

• If σsj � σtj for every 1 ≤ j ≤ n, then σl ≻ σr.

Here ≻st= (≻ ∪ ⊲)+ (⊲ denotes the proper subterm relation).
A DCTRS R = (Σ, R) is quasi-decreasing [29] if there is a well-founded

partial ordering ≻ on T (Σ, V ), such that →R ⊆ ≻, ≻ = ≻st, and for every
rule l → r ⇐ s1 →∗ t1, . . . , sn →∗ tn ∈ R, every substitution σ and every
i ∈ {0, . . . , n − 1} it holds that σsj →∗

R σtj for all j ∈ {1, . . . , i} implies
σl ≻ σsi+1.

In [22] the notion of operational termination of (D)CTRSs is defined via the
absence of infinite well-formed trees in a certain logical inference system. In the
case of DCTRSs, this notion is shown to be equivalent to quasi-decreasingness
[22].

The latter notions are related as follows ([29], [22]):

quasi-reductivity ⇒ quasi-decreasingness ⇔ operational termination

Context-Sensitive Narrowing and Orderings Given a CSRS R = (Σ, R)
with replacement map µ, the relation of context-sensitive narrowing (written
 

µ
R) is defined as t 

µ
R s if there is a replacing non-variable position p in t such

that t|p and l unify (l → r ∈ R and we assume that t and l → r do not share
any variables) with mgu θ and s = θ(t[r]p). We say that s is a one-step, context-
sensitive narrowing of t. Note that in contrast to ordinary rewriting, here we
allow for rules in R to have extra variables in the right-hand sides and variable
left-hand sides. The reason for this general definition of narrowing is that we
are going to use a backward narrowing relation that is induced by reversing all
rules of a TRS (cf. Lemma 4 and Definition 11 below).
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An ordering ≻ on terms T (Σ, V ) is called µ-monotonic if f is monotonic in
its ith argument whenever i ∈ µ(f) for all f ∈ Σ, i.e.,

si ≻ ti ⇒ f(s1, . . . , si−1, si, si+1 . . . , sn) ≻ f(s1, . . . , si−1, ti, si+1 . . . , sn).

Context-Sensitive Dependency Pairs ([1, 2], cf. also [4]) Given a TRS
R = (Σ, R), the signature Σ is partitioned into its defined and constructor
symbols D ⊎ C, where the defined symbols are exactly those that occur as root
symbols of the left-hand sides of rules in R. A term t is hidden w.r.t. to a CSRS
(R = ((D⊎C, R), µ)) if root(t) ∈ D and t does not appear µ-replacing in a right-
hand side of a rule of R. Moreover, we say that a function f hides a position
i if there is a rule l → r ∈ R such that some term f(r1, . . . , ri, . . . , rn) occurs
at a non-replacing position of r, i ∈ µ(f) and ri contains a defined symbol or a
variable at a replacing position.

The set of context-sensitive dependency pairs ([1, 2]) of a CSRS (R, µ),
denoted DP (R, µ), is DPo(R, µ) ∪ DPu(R, µ) where

DPo(R, µ) = {l♯ → s♯ | l → r ∈ R, r Dµ s, root(s) ∈ D, l 6⊲µ s}

and DPu(R, µ) is the union of the following “unhiding” dependency pairs:

• {l♯ → D♯(x) | l → r ∈ R, x ∈ V arµ(r) − V arµ(l)}

• D♯(f(x1, . . . , xi, . . . , xn)) → D♯(xi) for every function symbol f of any
arity n and every 1 ≤ i ≤ n where f hides position i

• D♯(t) → t♯ for every hidden term t

Here, t♯ denotes the term f ♯(t1, . . . , tn), if t = f(t1, . . . , tn) and f ♯ is a new
dependency pair symbol. Moreover, D♯ is a fresh function symbol. The relation
Dµ is defined as sDµ t if s = s[t]p and p ∈ Posµ(t).

We denote by Σ♯ the signature Σ plus all dependency pair symbols plus the
new symbol D♯. The replacement map µ is extended into µ♯ where µ♯(f) = µ(f),
if f ∈ Σ, µ♯(f ♯) = µ(f), if f ♯ is a dependency pair symbol and µ(D♯) = ∅.

Let DP and R be TRSs and µ be a replacement map for their combined
signature. A (possibly infinite) sequence of rules s1 → t1, s2 → t2, . . . from DP

is a (DP,R, µ)-chain if there is a substitution σ, such that σti →∗
R,µ si+1 for

all i > 0. We say that σ enables the chain s1 → t1, s2 → t2, . . .

We call a triple (DP,R, µ), where DP and R are TRSs and µ is a replace-
ment map for the combined signatures of DP and R, a (context-sensitive) de-
pendency pair problem (CS-DP-problem). A context-sensitive dependency pair
problem is finite if there is no infinite (DP,R, µ)-chain.

A CSRS (R, µ) is µ-terminating if and only if the dependency pair problem
(DP (R, µ),R, µ) is finite ([1, 2]).
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3 Context-Sensitive Quasi-Reductivity

The goal of this work is to provide methods for proving operational termination
of DCTRSs. We define the notion of context-sensitive quasi-reductivity, which
is equivalent to operational termination (cf., Corollary 3 below), and the key to
several main results of this paper.

Definition 1 (context-sensitive quasi-reductivity). A DCTRS R (R = (Σ, R))
is called context-sensitively quasi-reductive ( cs-quasi-reductive) if there is an
extension of the signature Σ′ (Σ′ ⊇ Σ), a replacement map µ (s.t. µ(f) =
{1, . . . , ar(f)} for all f ∈ Σ) and a µ-monotonic, well-founded partial order ≻µ

on T (Σ′, V ) satisfying for every rule l → r ⇐ s1 →∗ t1, . . . , sn →∗ tn, every
substitution σ : V → T (Σ, V ) and every i ∈ {0, . . . , n − 1}:

• If σsj �µ σtj for every 1 ≤ j ≤ i then σl ≻st
µ σsi+1.

• If σsj �µ σtj for every 1 ≤ j ≤ n then σl ≻µ σr.

The ordering ≻st
µ is defined as (≻µ ∪ ⊲µ)+ where t ⊲µ s if and only if s is

a proper subterm of t at some position p ∈ Posµ(t). Moreover � = (≻ ∪ =).

To be entirely precise, the notion of cs-quasi-reductivity should be parame-
terized by the set of function symbols that may not be restricted by the replace-
ment map µ. However, as throughout the paper this set of function symbols is
the set of functions of the signature of the DCTRS in question, we refrain from
giving a reference to this parameter in the notion cs-quasi-reductivity for the
sake of simplicity.

Cs-quasi-reductivity generalizes quasi-reductivity in the sense that the ex-
tended signature may be equipped with a replacement map (which must leave
the original signature untouched, though) and the monotonicity requirement
of the ordering is relaxed accordingly. Furthermore, and this is crucial, in the
ordering constraints for the conditional rules the substitutions replace variables
only by terms over the original signature, whereas in the original definition (of
quasi-reductivity) terms over the extended signature are substituted.

The latter generalization appears to be quite natural, since the main impli-
cations of quasi-reductivity remain valid (cf. Proposition 2). Moreover, it is the
key to the completeness results that we will prove (cf. Corollary 3).

Proposition 1. If a DCTRS R is quasi-reductive, then it is cs-quasi-reductive.

Proposition 2. If a DCTRS R is cs-quasi-reductive, then it is quasi-decreasing.

Corollary 1. Let R be DCTRS. If R is cs-quasi-reductive, then it is opera-
tionally terminating.

4 Proving Context-Sensitive Quasi-Reductivity

In the following, we use a transformation from DCTRSs into CSRSs such that µ-
termination of the transformed CSRS implies cs-quasi-reductivity of the original
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DCTRS. The transformation is actually a variant of the one in [29], which in
turn was inspired by [24, 25].3

Definition 2 (unraveling of DCTRSs, [29]). Let R be a DCTRS (R = (Σ, R)).
For every rule α : l → r ⇐ s1 →∗ t1, . . . , sn →∗ tn we use n new function
symbols Uα

i (i ∈ {1, . . . , n}). Then α is transformed into a set of unconditional
rules in the following way:

l → Uα
1 (s1, V ar(l))

Uα
1 (t1, V ar(l)) → Uα

2 (s2, V ar(l), EV ar(t1))

...
Uα

n (tn, V ar(l), EV ar(t1),

. . . , EV ar(tn−1)) → r

Here V ar(s) denotes an arbitrary but fixed sequence of the set of variables of the

term s. Let EV ar(ti) be V ar(ti) \ (V ar(l) ∪
⋃i−1

j=1 V ar(tj)). As before, abusing
notation, by EV ar(ti) we mean an arbitrary but fixed sequence of the variables
in the set EV ar(ti). Any unconditional rule of R is transformed into itself. The
transformed system U(R) = (U(Σ), U(R)) is obtained by transforming each rule
of R where U(Σ) is Σ extended by all new function symbols. In case R has only
one conditional rule α, we also write Ui instead of Uα

i .

Henceforth, we use the notion of U -symbols of a transformed signature,
which are function symbols from U(Σ) \ Σ. Moreover, by U -terms or U -rooted
terms we mean terms with a U -symbol as their root.

Next, we define the function tb, whose intended meaning is to undo non-
finished meta-evaluations, i.e., evaluations of the form s →∗

U(R) U(v1, ..., vl).
We call reductions of this shape meta-evaluations, because they are used for
the evaluation of encoded conditions. This evaluation does not have an explicit
counterpart in conditional rewrite sequences. The function tb and its properties
will play a crucial role in understanding and proving the main results of this
paper.

Definition 3. The mapping tb : T (U(Σ), V ) → T (Σ, V ) (read “translate back”)
which is equivalent to Ohlebusch’s mapping ▽ ([29, Definition 7.2.53]) is defined
by

tb(t) =























x if t = x ∈ V

f(tb(v1), . . . , tb(vl)) if t = f(v1, . . . , vl)
and f ∈ Σ

σl if t = Uα
j (v1, . . . , vmj

)
and α = l → r ⇐ c

where V ar(l) = x1, . . . , xk and σ is defined as σxi = tb(vi+1) for 1 ≤ i ≤ k.
Note that from Definition 2 it follows that mj ≥ k + 1.

3Note that there exist also various other transformations from conditional to unconditional
TRSs in the literature, cf. e.g. [5], [31] and [17] for more recent ones. However, for our purposes,
the chosen transformation appears to be the most appropriate one.
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Informally, the mapping tb translates back an evaluation of conditions to its
start. Thus, tb(u) = u for every term u ∈ T (Σ, V ). Note that in general s = tb(t)
does not imply s →∗

U(R) t. The reason is that, for a term t = Uα
j (v1, . . . , vl),

the definition of tb(t) completely ignores the first argument t1 of Uα
j .

Example 1. Let R be a DCTRS consisting of one rule

f(x) → a ⇐ x → b

U(R) is given by the two rules

f(x) → U(x, x)

U(b, x) → a

Consider the term t = U(a, b). We have tb(t) = f(b) and clearly f(b) 6→∗
U(R)

U(a, b).

Informally, the term t = Uα
j (v1, . . . , vmj

) represents an intermediate state of
a reduction in U(R) issuing from an original term, i.e., a term from T (Σ, V ),
only if v1 can be obtained (by reduction in U(R)) from the corresponding in-
stance of the left-hand side of the corresponding condition of the applied con-
ditional rule α.

The transformation of Definition 2 is sound w.r.t. quasi-reductivity, i.e.,
whenever the transformed system U(R) is terminating, the original DCTRS
R is quasi-reductive [29]. The transformation is not complete in this respect,
though.

Example 2. ([24]) Consider the DCTRS R = (Σ, R) given by

a → c c → l h(x, x) → g(x, x, f(k)
a → d d → m g(d, x, x) → A

b → c k → l A → h(f(a), f(b))
b → d k → m α : f(x) → x ⇐ x →∗ e

c → e

The system U(R) = (U(Σ), U(R)) is given by U(Σ) = Σ∪{Uα
1 } and U(R) = R

except that rule α is replaced by the rules f(x) → Uα
1 (x, x) and Uα

1 (e, x) → x.
R is operationally terminating (cf. Example 4, below), nevertheless U(R) is
non-terminating ([29]).

Roughly speaking, the problem in Example 2 is that subterms at the second
position of Uα

1 are reduced, which is actually only supposed to “store” the
variable bindings for future rewrite steps. These reductions can be prevented
by using context-sensitivity. More precisely, we intend to forbid reductions of
subterms which occur at or below a second, third, etc. argument position of
an auxiliary U -symbol, according to the intuition that during the evaluation of
conditions, the variable bindings should remain untouched. This leads to the
following modification of the transformation, which has already been proposed
independently by several authors (e.g., [11], [27], [12]).
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Definition 4. (context-sensitive unraveling of a DCTRS) Let R = (Σ, R) be
a DCTRS. The context-sensitive rewrite system Ucs(R) = (U(Σ), U(R)) uses
the same signature and the same rules as U(R). Additionally, a replacement
map µUcs(R) is used with µUcs(R)(U) = {1} if U ∈ U(Σ) \ Σ and µUcs(R)(f) =
{1, . . . , ar(f)} if f ∈ Σ.

For notational simplicity we refer to µUcs(R) just as µ if no confusion arises,
e.g. in “µ-termination of Ucs(R)”.

Note that context-sensitivity assures that in a reduction of the form

Ui(σ
′
isi, σi~xi)

>ǫ
→

∗

Ucs(R) Ui(σ
′′
i ti, σi+1~xi)

ǫ
→Ucs(R) Ui+1(σ

′
i+1si+1, σi+1~xi+1)

where ~xi (resp. ~xi+1) denotes the sequence x1, . . . xki
(resp. x1, . . . xki+1

) of
variables, σi and σi+1 are not contradictory, i.e., σix = σi+1x for all x ∈
Dom(σi) ∩ Dom(σi+1). In fact this is a crucial property of Ucs(R), because
given a DCTRS R = (Σ, R) it guarantees that for each term t ∈ T (U(Σ), V ) we
have that tb(t) →∗

Ucs(R) t provided that t is reachable by any term s ∈ T (Σ, V )

(see Lemma 1, below). This is in general not true, if context-sensitivity is
dropped.

Example 3. Let R = (Σ, R) be the DCTRS of Example 1 extended by two
unconditional rules

f(x) → a ⇐ x → b

a → b

a → c

The transformed system U(R) is

f(x) → U(x, x)

U(b, x) → a

a → b

a → c

Consider the term t = U(b, c). It is reachable in U(R) from f(a) ∈ T (Σ, V ):

f(a) →U(R) U(a, a) →U(R) U(b, a) →U(R) U(b, c)

However, it is obviously not reachable from tb(t) = f(c) as b is not reachable
from c. On the other hand, within Ucs(R), U(b, c) is not reachable by any term
from T (Σ, V ) because in Ucs(R) reachability of a term t by any term s ∈ T (Σ, R)
coincides with reachability of t from tb(t).

The fact that in a CSRSs Ucs(R), obtained by the context-sensitive trans-
formation after transforming a DCTRS R = (Σ, R), each term t is reachable
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from tb(t) if t is part of reduction sequence issuing from a term of T (Σ, V ), will
be used extensively in the proofs of the main results of this paper.

Before investigating the effects of this modification on the power of proving
operational termination, let us consider the simulatability of a DCTRS R by
Ucs(R). While simulation completeness, i.e., the property of Ucs(R) being able
to mimic reductions of R, is easy to obtain, simulation soundness, i.e., the
property of Ucs(R) to allow only those reductions (from original terms to original
terms) that are also possible in R, is non-trivial.

In [27] it was shown that simulation soundness is obtained if an additional
restriction is imposed on reductions in Ucs(R), which roughly states that only
redexes without U -symbols (except at the root position) may be contracted.
However, this additional “membership condition” is not really needed.

Theorem 1 (simulation completeness). Let R = (Σ, R) be a DCTRS. For every
s, t ∈ T (Σ, V ) we have: If s →R t, then s →+

Ucs(R) t.

Theorem 2 (simulation soundness). Let R = (Σ, R) be a DCTRS. For every
s, t ∈ T (Σ, V ) we have: If s →+

Ucs(R) t, then s →+
R t.

Proof. Before proving the result we define the U -depth of a term s as the max-
imal number m of positions p1 < ... < pm such that s|pi

is a U -term for all
i. The U -depth of a reduction s1 → ... → sn is the maximal U -depth of the
si, 1 ≤ i ≤ n. Note that there exists a reduction tb(s) →∗ s for a term
s ∈ T (U(Σ), V ) with the same U -depth as s, if such a reduction exists at all.

Now, we prove the theorem by proving (the more general fact) that s →∗
Ucs(R)

t (s, t ∈ T (U(Σ), V )) implies tb(s) →∗
R tb(t) provided that s is reachable from

an original term, i.e., tb(s) →∗
Ucs(R) s (we prove non-emptiness of the simulat-

ing reduction sequence afterwards). We use induction on the U -depth of the
derivation s →∗

Ucs(R) t. We assume that this reduction is non-empty. Otherwise
the claim holds trivially.

If the U -depth is 0, all terms of this reduction are terms over the original
signature. Thus, only unconditional rules of U(R) ∩ R have been used. Fur-
thermore, s = tb(s) and t = tb(t) and tb(s) →∗

R tb(t) and the latter reduction is
non-empty if s →∗

Ucs(R) t is.
Next, if the U -depth of s →∗

Ucs(R) t is greater than 0, we will show that the
reduction sequence can be simulated in R step by step maintaining for each
term s′ in s →∗

Ucs(R) t the invariant

s →∗
Ucs(R) s′ tb(s) →∗

R tb(s′).

Thus, s′ is reachable by an original term (because s is), therefore tb(s′) →∗
Ucs(R)

s′.
Now, consider a first step s →Ucs(R) s′ of s →∗

Ucs(R) t. It has a U -depth of

at least the U -depth of s. If this step is tb-preserving, then tb(s) = tb(s′) and s′

trivially satisfies the invariant. Otherwise we distinguish two cases:
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1. First, assume an unconditional rule (from U(R) ∩ R) is applied at s|p =
σl. As the step is not tb-preserving, there is no more outer U -symbol in
s. Thus, tb(s)|p = σ′l and σ′x = tb(σx) for all x ∈ Dom(σ). Hence,
tb(s) →R tb(s)[σ′r]p = tb(s′).

2. Second, assume a rule l′ = Uα
n (tn, x1, ..., xm) → r is applied where α =

l → r ⇐ s1 → t1, ..., sn → tn ∈ R. Say s|p = σl′. The reduction
tb(s) →∗

Ucs(R) s has a U -depth which is less than or equal to the U -
depth of s. Furthermore, each reduction σsi →∗

Ucs(R) σti, 1 ≤ i ≤ n,

occurs as subreduction of the former one (i.e. tb(s) →∗
Ucs(R) s). Moreover,

each of the latter reductions takes place inside a U -term, thus the U -
depth of these reductions (extracted from their contexts) is smaller and
the induction hypothesis applies yielding tb(σsi) = σ′si →

∗
R tb(σti) = σ′ti

for all 1 ≤ i ≤ n. Consequently, tb(s) →R tb(s)[σ′r] = tb(s′).

Hence, tb(s) →∗
R tb(t) follows by repetition. Note that each non-tb-preserving

step in s →∗
Ucs(R) t corresponds to a non-empty step in tb(s) →∗

R tb(t). When-

ever s →+
Ucs(R) t and s, t ∈ T (Σ, V ), there is at least one non-tb-preserving step

in this reduction. Thus we obtain tb(s) = s →+
R tb(t) = t.

Regarding termination, the transformation of Definition 4 is sound for cs-
quasi-reductivity in the sense that µ-termination of Ucs(R) implies context-
sensitive quasi-reductivity and thus operational termination of R.

Theorem 3 (sufficiency for cs-quasi-reductivity). Let R = (Σ, R) be a DCTRS.
If Ucs(R) is µ-terminating, then R is cs-quasi-reductive.

Proof. As Ucs(R) is µUcs(R)-terminating, ≻µ=→+
Ucs(R) is a µ-reduction ordering

on T (U(Σ), V ) (where U(Σ) ⊇ Σ). Assume σsj �µ σtj for every 1 ≤ j ≤ i < n

for a rule α : l → r ⇐ s1 →∗ t1, ..., sn →∗ tn (σ : V → T (Σ, V )). Then we have
the following sequence in Ucs(R):

σl →Ucs(R) σUα
1 (s1, V ar(l))

→∗
Ucs(R) σUα

1 (t1, V ar(l))

→Ucs(R) σUα
2 (s2, V ar(l), EV ar(t1))

→∗
Ucs(R) σUα

2 (t2, V ar(l), EV ar(t1))

. . .

→Ucs(R) σUα
i (si, V ar(l), EV ar(t1), ..., EV ar(ti−1))

→∗
Ucs(R) σUα

i (ti, V ar(l), EV ar(t1), ..., EV ar(ti−1))

→Ucs(R) σUα
i+1(si+1, V ar(l), EV ar(t1), ..., EV ar(ti))

Thus σl ≻st
µ σsi+1. If σsj �µ σtj for all 1 ≤ j ≤ n, then it is easy to see that

there is a reduction sequence σl →+
Ucs(R) σr, thus σl ≻µ σr.

The following corollary has already been proved in [12].
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Corollary 2. ([12]) Let R be a DCTRS. If Ucs(R) is µ-terminating, then R is
operationally terminating.

Obviously, as U(R) and Ucs(R) differ only in that Ucs(R) uses an additional
replacement map, the context-sensitive transformation is more powerful when
it comes to verifying operational termination.

Proposition 3. ([12]) Let R be a DCTRS. If U(R) is terminating, then Ucs(R)
is µ-terminating.

Example 4. Consider the DCTRS R of Example 2. The transformed system
Ucs(R) (which is identical to U(R), except for the fact that an additional re-
placement map is used) is µ-terminating. This can for instance be proved by
minimal counterexample and case analysis. However, we will see that in order
to verify operational termination of R, it is sufficient to prove a weaker form of
termination, which can be handled automatically (see Theorem 5 and Example
9 below).

Unfortunately, and interestingly, cs-quasi-reductivity of a DCTRS R does
not imply µ-termination of Ucs(R).

Example 5. ([29, Ex. 7.2.51]) Consider the DCTRS R given by

g(x) → k(y) ⇐ h(x) →∗ d, h(x) →∗ c(y)

h(d) → c(a)

h(d) → c(b)

f(k(a), k(b), x) → f(x, x, x)

This system is quasi-reductive (and thus cs-quasi-reductive) (cf., [29]). How-
ever, the system Ucs(R), where the conditional rule is replaced by

g(x) → U1(h(x), x)

U1(d, x) → U2(h(x), x)

U2(c(y), x) → k(y)

with µ(Ui) = {1} for i ∈ {1, 2}, is not µ-terminating.

f(k(a), k(b), U2(h(d), d))

→Ucs(R) f(U2(h(d), d), U2(h(d), d), U2(h(d), d))

→+
Ucs(R) f(U2(c(a), d), U2(c(b), d), U2(h(d), d))

→+
Ucs(R) f(k(a), k(b), U2(h(d), d))

Note that in this counterexample the crucial subterm t′ = U2(h(d), d) which
reduces to both k(a) and k(b) does not have a counterpart in the original system,
i.e., a term t ∈ T (Σ, V ) with t →∗

Ucs(R) t′. Hence, it seems natural to conjec-
ture that such counterexamples are impossible if we only consider derivations
issuing from original terms. This is indeed the case, even for quasi-decreasing
systems (cf. Theorems 4 and 5 below). Before proving these results we need
some additional machinery, though.
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Definition 5 (µ-termination on original terms). A CSRS R = (U(Σ), U(R))
with replacement map µ, obtained by the transformation of Definition 4 is called
µ-terminating on original terms, if there is no infinite reduction chain issuing
from a term t ∈ T (Σ, V ) in R.

Certain reduction steps inside a U -term t will have no effect on the result of
the function tb, i.e., t → s and tb(t) = tb(s). The following definition identifies
those reductions. First, obviously reductions that occur strictly inside a U -term
t do not alter the result of tb. The reason is that because of context-sensitivity
these reductions can only take place in the first argument of the root U -symbol
and furthermore according to the definition of tb this first argument is irrelevant
for the computation of tb.

Second, if a rule of the form U i
α(s1, ..., sn) → U i+1

α (s1, ..., sn) (whose right-
hand side is a U -term) is applied to t then tb applied to the resulting term yields
also the same result as tb(t). The reason is that the variable bindings inside the
U -term are preserved in such a step and all the variables that are present in l

(where α = l → r ⇐ c) are already bound. For the same reason tb(t) = tb(s) if
t is not a U -term, s is a U -term and t → s.

Definition 6 (tb-preserving reduction steps). Let R be a DCTRS (R = (Σ, R))

and Ucs(R) = (U(Σ), U(R)) its transformed CSRS. A step s
p
→Ucs(R) t4 is called

tb-preserving if either p is strictly below some position q of s, where root(s|q)
is a U -symbol, or (t|p) is a U -term.

The intuition behind tb-preserving steps is that whenever s →Ucs(R) t with
a tb-preserving step, we have tb(s) = tb(t).

Example 6. Consider a CSRS R

f(x) → U(b, x)

U(c, x) → x

b → c

with µ(U) = µ(f) = {1}. The following reductions are tb-preserving:

f(a) →µ U(b, a), as tb(f(a)) = tb(U(b, a)) = f(a)

U(b, a) →µ U(c, a), as tb(U(b, a)) = tb(U(c, a)) = f(a)

while this one is not:

U(c, a) →µ a, due to tb(U(c, a)) = f(a) 6= tb(a) = a

The following “commutation” lemma allows us to commute reduction steps
that occur as part of a “meta evaluation” to check truth or falsity of conditions
with other “normal” reductions.

4
p

→ denotes a reduction step at position p.
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Lemma 1. Let R = (Σ, R) be a DCTRS and let Ucs(R) be its transformed
system. For every term s ∈ T (Σ, V ) and every reduction s →∗

Ucs(R) t there is a

reduction sequence s →∗
Ucs(R) tb(t) →∗

Ucs(R) t, such that each reduction step in

the subsequence from tb(t) to t is tb-preserving.

Proof. From the proof of Proposition 2 we know that s →∗
R tb(t). Moreover,

Proposition 1 yields s →∗
Ucs(R) tb(t). Each U -term u in t can be traced back

to the point where its U -root symbol (or a predecessor U -symbol) was first
introduced by a rule having a left-hand side containing only original symbols.
The reason is that U -symbols do not occur anywhere in the left-hand sides of
the rewrite rules of Ucs(R) but at the root position and therefore U -terms can
be traced back in Ucs(R)-reductions. Thus, all reduction steps necessary to
reduce tb(u) to u already occurred in the reduction sequence s →∗

Ucs(R) t (not

necessarily one after the other) and thus we have tb(u) →∗
Ucs(R),µ u for all such

terms u and finally tb(t) →∗
Ucs(R),µ t. Note that all these steps introduce or

preserve U -symbols, thus they are tb-preserving.

Now we can state the main results of this section.

Theorem 4. Let R = (Σ, R) be a DCTRS. If R is quasi-decreasing, then
Ucs(R) is µ-terminating on T (Σ, V ).

Proof. For notational simplicity in the sequel we write → instead of →Ucs(R).
For a proof by minimal counterexample suppose that s ∈ T (Σ, V ) initiates an
infinite →-reduction D : s → . . . such that there is no s′ ∈ T (Σ, V ), s ≻ s′ with
this property (where ≻ is the quasi-decreasing ordering). Since ≻ contains the
subterm ordering, this implies that every proper subterm of s is →-terminating.
Hence, D must have at least one root reduction step, i.e., be of the shape
s →∗ t

ǫ
→ u → . . . where t

ǫ
→ u is the first root reduction step. Since the root

symbol of s is from the original signature, the left-hand side of the rule applied
to t must be a term of the original signature. There are two possibilities now.

First, assume an unconditional rule l → r (l, r ∈ T (Σ, V ) was applied to t.
Then, t = σl, u = σr. According to Lemma 1 we have s →∗ tb(t) →∗ t. Since
t = σl, we get tb(t) = σ′l, because the steps from tb(t) to t are tb-preserving
and σ′x →∗ σx for all x ∈ Dom(σ). Thus, we have s →∗ tb(t) = σ′l →
σ′r →∗ σr = u. Furthermore, by quasi-decreasingness we get s ≻ σ′r because
of →R ⊆ ≻ and s →+ σ′r ⇒ s →+

R σ′r ∈ T (Σ, V ) (according to Theorem 2).
This means that σ′r ≺ s also initiates an infinite →-reduction, hence yields a
smaller counterexample. But this contradicts our minimality assumption.

Secondly, assume the transformed version of a conditional rule l → r ⇐
s1 →∗ t1, . . . , sn →∗ tn is applied to t. Hence, t = σl and as before we get
tb(t) = σ′l where σ′x →∗ σx for all x ∈ Dom(σ). Thus u = σU1(s1, x1, . . . , xk1

)
and we have tb(t) → σ′U1(s1, x1, . . . , xk1

). By quasi-decreasingness we get
σ′l ≻ σ′s1, σ

′x1, . . . , σ
′xk1

, hence all the latter terms are terminating by min-
imality of the counterexample. Therefore, σs1 and σx1, . . . , σxk1

are termi-
nating, too, because of σ′y →∗ σy for all y ∈ Dom(σ). Thus, the only
possibility of an infinite reduction from u is via a next root reduction step:
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u = σU1(s1, x1, . . . , xk1
) →∗ σ1U1(t1, x1, . . . , xk1

)
ǫ
→ σ1U2(s2, x1, . . . , xk2

). So
σ′s1 →∗ σs1 →∗ σ1t1, and Lemma 1 yields σ′s1 →∗ tb(σ1t1) = σ′

1t1 →∗ σ1t1.
Then it also holds that σ′

1U1(t1, x1, . . . , xk1
) → σ′

1U2(s2, x1, . . . , xk2
) and as

σ′
1s1 →∗ σ′

1t1, we have σ′
1s1 →∗

R σ′
1t1 ∈ T (Σ, V ) according to Theorem 2 and

thus σ′
1l ≻ σ′

1s2. By minimality, σ′
1s2 and σ′

1x1, . . . , σ
′
1xk2

are terminating,
hence also σ1s2 and σ1x1, . . . , σ1xk2

because of σ′ →∗ σ. Similarly, an infinite
reduction from σ1U2(s2, x1, . . . , xk2

) is only possible via a next reduction step
for which we need σ1s2 →∗ σ2t2 for some σ2. By continuing this argumentation,
we finally get that σl must eventually be reduced to σnUn(tn, x1, . . . , xkn

) and
σ′l can be reduced to σ′

nU(tn, x1, . . . , xkn
). We have that σ′

ntn ∈ T (Σ, V ) is
terminating by minimality (and quasi-decreasingness) and σntn is terminating
because of σ′

ntn →∗ σntn. Therefore, the term σnU(tn, x1, . . . , xkn
) is reduced to

σnr and σ′
nU(tn, x1, . . . , xkn

) can be reduced to σ′
nr. We have σ′l(= σ′

nl) ≻ σ′
nr

because of σ′l →+ σ′
nr ∈ T (Σ, V ) and thus σ′l →+

R σ′
nr by Theorem 2. Hence,

σ′
nr (with s →∗ σ′

nr →∗ σnr) is terminating because of minimality and σnr

is terminating due to σ′
nr →∗ σnr. But this contradicts the counterexample

property (of s). Hence, we are done.

Conversely, cs-quasi-reductivity follows from termination of the transformed
system on original terms.

Theorem 5. Let R = (Σ, R) be a DCTRS. If Ucs(R) is µ-terminating on
T (Σ, V ), then R is cs-quasi-reductive.

Proof. We define the ordering ≻ by s ≻ t if s →+
Ucs(R) t and s is reachable

(in →Ucs(R)) by a term of the original signature (i.e. tb(s) →∗
Ucs(R) s). This

relation is well-founded because →Ucs(R) is terminating on T (Σ, V ). Let ≻µ

be the µ-monotonic closure of ≻ w.r.t. T (U(Σ), V ), i.e., C[s]p ≻µ C[t]p if s ≻
t∧ p ∈ Posµ(C[s]p). We show that R is cs-quasi-reductive w.r.t. ≻µ. Note that
≻µ ⊆ →+

Ucs(R).

First, we will deal with well-foundedness of ≻µ. Consider decreasing ≻µ-
chains starting from a term t. If s →∗

Ucs(R) t for some term s ∈ T (Σ, V ) (i.e., t

is reachable from an original term), there cannot be an infinite decreasing ≻µ-
chain starting from t because this would contradict termination of →Ucs(R) on
T (Σ, V ). Otherwise, t = C[t1 . . . tn]p1...pn

, such that si →
∗
Ucs(R) ti, si ∈ T (Σ, V )

and pi ∈ Posµ(t) for all i ∈ {1, . . . , n} and the same is true for no proper
superterm of any ti. Thus, if t ≻µ u, then u = C[t1 . . . ui . . . tn]p1...pi...pn

and
ti ≻ ui. Furthermore, if u ≻µ v, then v = C[t1 . . . ui . . . vj . . . tn]p1...pi...pj ...pn

and tj ≻ vj . It is easy to see that there cannot be an infinite decreasing ≻µ-
sequence of this shape, as each decreasing ≻-sequence starting at some ti is
finite. Hence, ≻µ is well-founded.

If we have σsi ≻µ σti for all 1 ≤ i < j, then we get (cf., the proof of Theorem
3) σl →∗

Ucs(R) σU(sj , x1, . . . , xm) and thus σl ≻st
µ σsi for all rules l → r ⇐

s1 →∗ t1, . . . , sn →∗ tn, all 0 ≤ j ≤ n and all substitutions σ : V → T (Σ, V ).
Analogously, if σsi �µ σti for all 1 ≤ i ≤ n, then we have σl →∗

Ucs(R) σr and
thus σl ≻µ σr.
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Hence, R is cs-quasi-reductive.

As a corollary we obtain the following equivalences between the various
notions.

Corollary 3. Let R = (Σ, R) be a DCTRS. The following properties of R
are equivalent: µ-termination of Ucs(R) on original terms, cs-quasi-reductivity,
quasi-decreasingness, and operational termination.

5 Disproving Collapse-Extended Operational Ter-

mination

While proving termination on original terms is (at least theoretically) easier than
proving general termination, disproving termination on original terms and thus
disproving operational termination of DCTRSs might be significantly harder
than ordinary non-termination analysis. However, in this section we show that
the transformation of Definition 4 is complete with respect to collapse-extended
termination (CE-termination), thus solving an open problem from [12]. Hence,
if a transformed system can be proved to be non-terminating, we can deduce
non-CE-operational termination of the underlying DCTRS.

Furthermore, whenever operational termination and CE-operational termi-
nation of a DCTRS R coincide, then Ucs(R) is µ-terminating if and only if R
is operationally terminating.

Definition 7 (CE-termination, [18, 29]). We call a CSRS R with replace-
ment map µ CE-µ-terminating (or just CE-terminating) if R ⊎ {G(x, y) →
x,G(x, y) → y}5 with µ(G) = {1, 2} is µ-terminating.

Definition 8 (CE-cs-quasi-reductivity). Let R be a DCTRS. We call R CE-
cs-quasi-reductive if R ⊎ {G(x, y) → x,G(x, y) → y} is cs-quasi-reductive.

Lemma 2. Let Ucs(R) = (U(Σ), U(R)) be a CSRS obtained by the transforma-
tion of Definition 4 from a DCTRS R = (Σ, R). If Ucs(R) is not µ-terminating,
then there exists an infinite reduction chain starting from a term t, such that
root(t) ∈ Σ and every replacing subterm of t is µ-terminating.

Proof. We denote by Uα
1 , . . . , Uα

n the U -symbols introduced when transforming
a conditional rule α (cf. Definition 2). Assume towards a contradiction that
Ucs(R) is not µ-terminating and no term t with the described properties exists.
Thus, there exists a U -term u that is non-terminating where every proper replac-
ing subterm of u is µ-terminating, because the existence of a not µ-terminating
term containing only µ-terminating µ-replacing subterms is obvious and this
term cannot have a root symbol from Σ because of our assumption. Hence,
there exists an infinite reduction sequence D starting from u. We inspect D.

5We use the notation R ⊎ {G(x, y) → x, G(x, y) → y} as abbreviation for (Σ ⊎ {G}, R ⊎
{G(x, y) → x, G(x, y) → y}).
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Let u = Uα
1 (s1, u1, . . . , un). Since s1 is terminating, u must reduce to a term

Uα
1 (s′1, u1, . . . , un) and further to u′ = Uα

2 (s2, u1, . . . , un, t1, . . . , tm) in D. The
terms t1, . . . , tm occurred at replacing positions in s′1 and are thus terminating.
Hence, according to our assumption either u′ is still minimal non-terminating in
the sense that all replacing subterms are terminating, or the new minimal non-
terminating term is one (or a subterm) of the ui that occurs now at a replacing
position in s2, because all other potential minimal non-terminating terms are
rooted by original symbols contradicting our assumption of the non-existence of
such terms.

In the case where u′ is still minimal non-terminating, eventually another
root step will be performed yielding u′′. As before we argue that if after this
step there exists a minimal non-terminating proper subterm, it must be a term
ui (or a subterm thereof) that was already present (non-replacing) in u.

Now note that there cannot be infinitely many such root reduction steps,
since eventually (after finitely many root steps) u will be reduced to a term u∗

with a root symbol from Σ. At this point we know from our assumption that
there must be a non-terminating proper subterm of u∗ (if there has not already
been one before). Furthermore, we know that this subterm must be one (or a
subterm) of the terms ui that was already present in u.

Thus, from our assumption we deduce that the existence of a minimal non-
terminating term u implies the existence of a minimal non-terminating term
ui ⊳ u. Well-foundedness of ⊳ yields the desired contradiction.

Definition 9 (partial evaluation). Let R = (U(Σ), U(R)) be a CTRS obtained
from a DCTRS (Σ, R) by the transformation of Definition 4 and let t be a term
such that every maximal U -rooted subterm of t is µ-terminating. Then we define
pevalR(t) as

pevalR(t) =























x, if t = x ∈ V

f(pevalR(v1), . . . , pevalR(vn)),
if t = f(v1, . . . , vn) and f ∈ Σ

G′(pevalR(u1), . . . , pevalR(um)),
if t = Uα

i (v1, . . . , vn) and Uα
i 6∈ Σ

where G′(g1, . . . , gk) stands for G(g1, G(g2, . . . G(gk−1, gk) . . .)) and the terms
ui are the maximal (w.r.t. →R,µ) terms such that t →+

R,µ ui and root(ui) ∈
Σ, in an arbitrary but fixed order. The symbol G is new and defined as non-
deterministic projection symbol (i.e., G(x, y) → x, G(x, y) → y).

Observation 1. An important property of peval6 is that whenever s →Ucs(R) t,
then peval(s) →∗

Ucs(R) peval(t). Moreover, obviously s = t implies peval(s) =

peval(t).

Informally, peval(t) represents all maximal successors of t (w.r.t. →Ucs(R))
that do not contain any U -symbols. From this point of view, Observation 1
states the obvious fact that no new such successors are added in the transition
from s to t if s →Ucs(R) t.

6The reference to R is omitted if it is clear from the context or of no relevance.
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Theorem 6 (completeness for CE-termination). Let R be a DCTRS and let
Ucs(R) its transformed system according to Definition 4. R is CE-cs-quasi-
reductive if and only if Ucs(R) is CE-terminating.

Proof. Ucs(R
CE ) = Ucs(R) ⊎ {G(x, y) → x,G(x, y) → y} and RCE = R ⊎

{G(x, y) → x,G(x, y) → y}. Note that Ucs(R
CE ) is the system obtained by

transforming RCE .
The if part of the proof is therefore covered by Theorem 5, because termi-

nation of Ucs(R
CE ) implies cs-quasi-reductivity of RCE .

The only if part of the theorem will be proved indirectly by showing that
non-termination of Ucs(R

CE ) implies non-termination of Ucs(R
CE ) on terms

of the original signature of R (plus {G}), which further implies non-cs-quasi-
reductivity of RCE according to Theorem 4.

So assume Ucs(R
CE ) is non-terminating. According to Lemma 2 there exists

an infinite reduction sequence (w.r.t. Ucs(R
CE )) D starting from a term t0

with a root symbol from Σ ⊎ {G}, such that each replacing subterm of t0 is
terminating. We will prove the existence of another infinite reduction D′ starting
at t′0 = pevalUcs(RCE )(t0), which does not contain any U -symbols. Note that
t0 = C[u1 . . . un]p1...pn

where the terms ui are the maximal U -rooted subterms
of t0 and t′0 = C[peval(u1) . . . peval(un)]p1...pn

. Moreover, ui is terminating for
all i. These two properties will serve as an invariant for all terms ti and t′i in D

resp. the parallel reduction D′.
For notational simplicity, in the following we write → instead of →Ucs(RCE ).

Consider the beginning of D. First, assume a reduction step tj → tj+1 takes
place at or below some position pi (tj |pi

= ui → ui). According to Observa-
tion 1, peval(ui) →∗ peval(ui) and thus tj [ui]p1

and t′j [peval(ui)]p1
satisfy the

invariant. Eventually, there must be a reduction step tk → tk+1 at a position
above one of the pi, because all terms ui were assumed to be terminating. Let
tk|q = σl for some rule pattern l. In l there are no U -symbols except possibly
at the root position. Thus, U -rooted subterms of tk can only interfere with the
matching through non-linearity of l. From Observation 1 we know that if two
terms s and t are equal, then also peval(s) = peval(t). Hence, t′k|q = σ′l and
furthermore tk+1 and t′k+1 satisfy the invariant. Thus, we have shown that the
start of D, t0 →+ tm, corresponds to a non-empty reduction t′0 →+ t′m where
tm and t′m satisfy the given invariant. Hence, by induction the existence of an
infinite reduction sequence D′ issuing from t′0 follows.

As corollaries of Theorem 6 we get the following modularity results.

Corollary 4. The property of CE-cs-quasi-reductivity is modular for disjoint
unions.

Corollary 5. CE-operational termination (defined for a DCTRS R as opera-
tional termination of R ⊎ {G(x, y) → x,G(x, y) → y}) is modular for disjoint
unions.

Table 1 summarizes the relations between a DCTRS R and Ucs(R).

17



Property of Ucs(R) Implied property of R Proved in

Termination Operational termination
Theorem 3 and
Proposition 2

Non-termination Non-(CE-operational termination) Theorem 6
Termination on

Operational termination
Theorem 5 and

original terms Proposition 2
Non-(termination on

Non-(operational termination) Theorem 4
original terms)
CE-termination CE-operational termination Theorem 6

Non-(CE-termination) Non-(CE-operational termination) Theorem 6

Table 1: Properties of Ucs(R) and the implied properties of a DCTRS R.

6 Proving Termination on the Set of Original

Terms

Theorem 5 suggests that in order to prove operational termination of a DCTRS
R, termination of Ucs(R) on original terms has to be proved. However, although
termination on original terms is a weaker property than ordinary termination,
its analysis might be harder and has, despite being an interesting problem, to
the authors’ knowledge, rarely been investigated.

In the following, we introduce a simple approach to deal with this problem
based on the dependency pair framework of [16]. We refer to the property
of a CSRS ((Σ, R), µ) being µ-terminating on a set of terms identified by a
sub-signature Σ′ of Σ as (Σ′)-sub-signature termination or just sub-signature
termination if Σ′ is clear from the context.

In our setting we extend the notion of dependency pair problem, in order to
take into account our intention of proving only termination on restricted sets
of terms, by adding an additional value specifying a (sub-)signature. Thus,
we define SS-CS-DP-problems (sub-signature context-sensitive dependency pair
problems) to be quadruples (DP,R, µ,Σ′) where DP = (Σ♯, R♯) and R = (Σ, R)
are TRSs, µ is a replacement map for the combined signature Σ♯ ∪ Σ, and
Σ′ ⊆ Σ is a signature determining the starting terms, whose µ-termination we
are interested in. An SS-CS-DP-problem (DP,R, µ,Σ′) is finite if there is no
infinite (DP,R, µ)-chain starting with a dependency pair u1 → v1 and using
a substitution σ such that σu1 ∈ T ((Σ♯ \ Σ) ∪ Σ′, V ). Analogously to the
case without subsignature restriction dealt with in [1, Theorem 12], we can
characterize termination of a CSRS on terms identified by a subsignature by
finiteness of a corresponding SS-CS-DP-problem.

Proposition 4. A TRS R = (Σ, R) with replacement map µ is µ-terminating
on terms T (Σ′, R) if and only if the SS-CS-DP-problem (DP (R, µ),R, µ,Σ′) is
finite.

18



Following the dependency pair framework of [16], an SS-CS-dependency pair
processor (SS-CS-DP-processor) is a function Proc that takes as input an SS-
CS-DP-problem and returns either a set of SS-CS-dependency pair problems
or “no”. We call an SS-CS-DP-processor sound if finiteness of all SS-CS-DP-
problems in Proc(d) implies finiteness of the input SS-CS-DP-problem d. An
SS-CS-DP-processor is complete if for all SS-CS-DP-problems d, d is infinite
whenever Proc(d) is “no” or Proc(d) contains an infinite SS-CS-DP-problem.

We introduce two SS-CS-DP-processors that are tailored to the task of prov-
ing finiteness of SS-CS-DP-problems. These processors build upon the well-
known narrowing processor for the dependency pair framework (see e.g. [16]).

The basic idea of this processor is to anticipate the first step of all possible
rewrite sequences in a potential dependency pair chain between two dependency
pairs. If σvi →

∗ σui+1 is part of a chain and σvi and σui+1 are not equal (ac-
tually we demand that vi and ui+1 are not unifiable) then the rewrite sequence
σvi →

∗ σui+1 is non-empty and contains at least one reduction step at a posi-
tion p ∈ PosΣ(vi) (see the proof of Theorem 7 for a justification of this claim).
Thus, all possibilities of the first such step are covered by replacing ui → vi

by the set {θjui → v
j
i | 1 ≤ j ≤ n} with v1

i , . . . vn
i being all possible (one

step, context-sensitive) narrowings of vi and θ1, . . . , θn being the corresponding
mgu’s. Theorem 7 below shows that replacing a rule ui → vi ∈ DP in an SS-
CS-DP-problem P = (DP,R, µ,Σ′) by the set of narrowings does neither alter
finiteness nor infinity of P provided that vi is linear and does not unify with a
left-hand side of any rule in DP .

Analogously, a rule ui → vi occurring in a chain can be replaced under
the corresponding preconditions by the set {uj

i → θjvi | 1 ≤ j ≤ m}, where
u1

i , . . . u
m
i are the (one step, context-sensitive) backward narrowings of ui and

θ1, . . . , θm are the corresponding mgu’s.
Applying these narrowing approaches in proofs of termination of CSRSs,

obtained from DCTRSs by the transformation of Definition 4, allows us to
restrict the set of narrowings that we have to consider.

The following lemmata provide the basis for this restriction. Lemma 3 states
that the evaluation of conditions inside U -terms is only necessary if the U -
term can eventually be reduced to an original term, i.e., if the conditions are
satisfiable. Lemma 4 states that in a chain whose initial term does not contain
U -symbols no U -terms can occur that are not reachable by an original term.

Lemma 3. Let R = (Σ, R) be a DCTRS. Assume that u1
ǫ
→ v1

>ǫ
→

∗

u2
ǫ
→ v2 . . .

is an infinite (DP (Ucs(R)), Ucs(R), µ)-chain and let σ be a substitution enabling
this chain. If the term σu1 does not contain any U -symbol, then there also exists
an infinite (DP (Ucs(R)), Ucs(R), µ)-chain, such that for each term f ♯(t1, ..., tn)
in this chain, each subterm ti is reducible to a term from T (Σ, V ).

Lemma 4. Let R = (Σ, R) be a DCTRS. Assume that u1
ǫ
→ v1

>ǫ
→

∗

u2
ǫ
→ v2 . . .

is an infinite (DP (Ucs(R)), Ucs(R), µ)-chain and let σ be a substitution enabling
this chain. If the term σu1 does not contain any U -symbol, then no term in this
chain contains a U -term that is not reachable by a term from T (Σ, V ).
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Lemmata 3 and 4 motivate the definition of two dependency pair processors
based on the standard narrowing processor.

Definition 10 (restricted forward narrowing). Let (DP,R, µ,Σ′) be an SS-CS-
DP-problem with R = (Σ, R). If ui → vi ∈ DP , V arµ(ui) ∩ V arµ(vi) = ∅, vi

is not unifiable with any left-hand side of a rule in DP and vi is linear, then
Procrfn yields a new SS-CS-DP-problem (DP ′,R, µ,Σ′) where

DP ′ = (DP − {ui → vi}) ∪ {θkuk
i → vk

i | 1 ≤ k ≤ n}

and v1
i , . . . , vn

i are the (one-step, context-sensitive) narrowings of vi with cor-
responding mgu’s θ1, . . . , θn, such that the vk

i contain only those Σ-terms that
can be instantiated in a way such that they are reducible to Σ′-terms for all
1 ≤ k ≤ n.

Theorem 7. The dependency pair processor Procrfn is sound and complete
for an SS-CS-DP-problem (DP,R, µ,Σ′) where DP = (Σ♯, R♯) and R = (Σ, R)
provided that R = Ucs(R

′) for some DCTRS R′ and Σ♯ ∩ (Σ \Σ′) = ∅ (i.e., Σ♯

does not contain any U -symbols).

Proof. Soundness: Let P = (P,R, µ,Σ′) be the initial SS-CS-DP-problem.
Lemma 3 shows that if P is infinite then there exists an infinite dependency
pair chain containing only such U -terms that are reducible to Σ′-terms. Let
v1 → u1, . . . , vi → ui, s → t, vi+1 → ui+1, . . . be such a chain. Thus, there
is a substitution σ with σuj →∗

R,µ σvj+1 for all {j > 0 | j 6= i}, σui →∗
R,µ

σs, σt →∗
R,µ σvi+1 and such that the reduction sequence σt →∗

R,µ σvi+1 has
minimal length (among all possible substitutions).

We take a closer look at the sequence σt →∗
R,µ σvi+1 and show that due to

the minimality of its length the first reduction step must take place at a position
p ∈ PosΣ(t): Assume that the first step is at position q 6∈ PosΣ(t) and t|q = x.
Thus

σt
q
→ t′ = σ′t →∗ σvi+1

We define a new substitution σ′ by σ′x = t′|q and σ′y = σy for all y 6= x.
Since all pairs on a chain are considered to be variable disjoint, we have σ′ui =
σui →

∗
R,µ σs →R,µ σ′s, σ′t →∗

R,µ σ′vi+1 and σ′vj →∗
R,µ σ′uj+1 for all {j > 0 |

j 6= i}. Thus, the reduction sequence σ′t →∗
R,µ σ′vi+1 has a smaller length than

σt →∗
R,µ σvi+1 which contradicts our minimality assumption for σ. Note that

the existence of the subsequence σs →R,µ σ′s is guaranteed by the fact that
V arµ(s) ∩ V arµ(t) = ∅.

Hence, the sequence σt →∗
R,µ σvi+1 starts with a reduction step at position

p ∈ PosΣ(t). We assume that the reduction sequence is non-empty, otherwise
t and vi+1 would unify. Moreover, t is assumed to be linear. We show that
there is a narrowing t of t obtained by narrowing t with mgu θ, such that
v1 → u1, . . . vi → ui, θs → t, vi+1 → ui+1, . . . is an infinite chain and each term
in this chain can be instantiated such that it can be reduced to a Σ′-term.

The reduction sequence σt →∗
R,µ σvi+1 starts with a single reduction σt =

σt[ρl]p →R,µ σt[ρr]p using a rule l → r. Since we consider l and t to be variable
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disjoint, we extend σ so that σx = ρx for all x ∈ Dom(ρ). Thus, σ unifies l and
t|p and there is also an mgu θ for l and t|p (σ = τ ◦ θ).

Then t narrows to t = t[θr]p and since θs → t is assumed to be variable
disjoint from all other pairs in a chain, we can adapt σ to behave like τ on the
variables of θs and t. Thus,

σui →
∗
R,µ σs = τθs = σθs

σt = τt = τθt[τθr]p = σt[σr]p = σt[ρr]p →∗
R,µ σvi+1

and v1 → u1, . . . vi → ui, θs → t, vi+1 → ui+1, . . . is an infinite chain. Moreover,
an instance (obtained through σ) of each subterm of t is reducible to a Σ′-term,
because this was true for the chain we started with and all terms of the new
chain occurred already in the original one. Thus, we showed that infinity of an
SS-CS-DP-problem P implies infinity of the problem Procrfn(P ).

Completeness: Let P = (P ∪ {s → t},R, µ,Σ′) be an SS-CS-DP-problem
such that t is linear and does not unify with any left-hand side of a rule in P,
and let (P ∪ {θ1s → t1, . . . θns → tn},R, µ,Σ′) be Procrfn(P ). We show that if
v1 → u1, . . . , vi → ui, θms → tm, vi+1 → ui+1, . . . is a (P ∪ {θ1s → t1, . . . θns →
tn},R, µ)-chain for some 1 ≤ m ≤ n, then v1 → u1, . . . , vi → ui, s → t, vi+1 →
ui+1, . . . is a chain as well.

As v1 → u1, . . . , vi → ui, θjs → tj , vi+1 → ui+1, . . . is a chain, there is
substitution a σ such that σuj →∗

R,µ σvi+1 for all {j > 0 | j 6= i}, σui →∗
R,µ

σθms and σtm →∗
R,µ σvi+1.

As s → t does not share any variables with the rules vj → uj for all j > 0,
we can modify σ to behave like σθ on the variables of s → t. Thus, we have

σui →
∗
R,µ σθs = σs

and because of θt →R,µ tm (by the definition of context-sensitive narrowing) we
get

σt = σθt →∗
R,µ σtm →∗

R,µ σvi+1

Thus, v1 → u1, . . . , vi → ui, s → t, vi+1 → ui+1, . . . is a chain and we can con-
struct a (P ∪ {s → t},R, µ)-chain out of a (P ∪ {θ1s → t1, . . . θns → tn},R, µ)-
chain this way.

Note that the precondition of the narrowed dependency pair not containing
variables that are forbidden in its left-hand side but allowed in its right-hand
side is crucial as the following example illustrates.

Example 7. Consider the following CSRS (R, µ)

t(f(x)) → t(h(x))

t(i(b)) → t(f(a))

a → b

h(x) → i(x)
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with µ(t) = µ(h) = {1} and µ(f) = µ(i) = ∅. It is non-terminating as
t(f(a)) →+

R,µ t(f(a)). The dependency pairs DP (R) are

t#(f(x)) → t#(h(x))

t#(i(b)) → t#(f(a))

t#(f(x)) → h#(x)

t#(f(x)) → D#(x)

D#(a) → a#

forming only one potential cycle consisting of the pairs

t#(f(x)) → t#(h(x))

t#(i(b)) → t#(f(a))

The right-hand side of the first pair is linear and it does not unify with a left-
hand side of any other pair. However, there are forbidden variables in its left-
hand side that occur replacing in the right-hand side. These two dependency
pairs form an infinite chain with R as h(a) →+

R,µ i(b). However, if the right

hand side of the first pair were narrowed to t#(i(x)) and the pair were replaced
by t#(f(x)) → t#(i(x)), then the infinite chain would no longer be possible,
because i(a) 6→R,µ i(b). Thus, the application of the narrowing processor would
be incorrect in this case.

The second dependency pair processor makes use of backward narrowing.

Definition 11 (restricted backward narrowing). Let (DP,R, µ,Σ′) be an SS-
CS-DP-problem with R = (Σ, R). If ui → vi ∈ DP , V arµ(vi) ∩ V arµ(ui) = ∅,
ui is not unifiable with any right-hand side of a rule in DP and ui is linear,
then Procrbn yields a new SS-CS-DP-problem (DP ′,R, µ,Σ′) where

DP ′ = (DP − {ui → vi}) ∪ {uk
i → θkvk

i | 1 ≤ k ≤ n}

and u1
i , . . . , u

n
i are the (one-step, context-sensitive) backward narrowings of ui

with corresponding mgu’s θ1, . . . , θn, such that uk
i contains only Σ-terms that can

be instantiated in a way so that are reachable from Σ′-terms for all 1 ≤ k ≤ n.

Theorem 8. The dependency pair processor Procbfn is sound and complete
for an SS-CS-DP-problem (DP,R, µ,Σ′) where DP = (Σ♯, R♯) and R = (Σ, R)
provided that R = Ucs(R

′) for some DCTRS R′ and Σ♯ ∩ (Σ \Σ′) = ∅ (i.e., Σ♯

does not contain any U -symbols).

Proof. Analogous to the proof of Theorem 7.

The narrowing processors use the notions reducible to respectively reachable
from which are both undecidable in general. Even worse, we are interested in
reachability resp. reducibility of all possible instances of terms. Thus, in order
to apply these processors in practice, we need to use heuristics to approximate
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these notions. A very simple approach would be to discard only those narrow-
ings that are U -terms and (forward resp. backward) narrowing normal forms.
Examples 8 and 9 below show that this simple approximation is already suffi-
cient to prove termination on original terms where ordinary termination does
not hold (Example 8), or to significantly reduce the number of narrowings that
have to be considered (Example 9).

Apart from such simple approximations one could also think of more so-
phisticated ones. For instance in the “forward” approach non-reducibility to
original terms could be detected by root-stability which is still undecidable but
for which non-trivial decidable approximations exist (e.g. strong root stability
[19]).

Example 8. Consider the transformed CSRS R of Example 5 and the SS-CS-
DP-problem P0 = (DP0,R, µ,Σ′) where DP0 = DP (R), µ has been extended
to take dependency pair symbols into account and Σ′ is Σ minus all U -symbols.
DP (R) = {f ♯(k(a), k(b), x) → f ♯(x, x, x)}7 . Applying Procrbn to P0, we obtain
a new problem P1 = (DP1,R, µ,Σ′) where

DP1 = {f ♯(U2(c(a), z), k(b), x) → f ♯(x, x, x),

f ♯(k(a), U2(c(b), z), x) → f ♯(x, x, x)}.

P rocrbn can be applied again using either rule in DP1 for narrowing. After
iterated applications of Procrbn, all narrowings of left-hand sides of rules in
DPi contain the term U1(d, d) as their first or second argument. As this term
is a backward narrowing normal form, DPi+1 = ∅ and we conclude termination
on original terms according to Theorem 8.

Example 9. Consider the transformed CSRS R of Example 2. We use forward
narrowing on the rule.

A♯ → h♯(f(a), f(b))

Thus, the pair is replaced by two new rules

A♯ → h♯(U(a, a), f(b))

A♯ → h♯(f(a), U(b, b))

Procrfn can be applied again to the resulting problem, such that the right-hand
sides of the new rules are narrowed. Eventually, one of the arguments of h♯ will
narrow to instances of U(d, x), U(k, x), U(l, x) or U(m,x). As all instances of
these terms are root stable, those narrowings can be disregarded according to
Definition 10. Thus, in the row of SS-CS-dependency pair problems obtained
by repeated application of Procrfn, the size of the TRSs (to be precise of the
TRS in the first component of the tupels) will not grow as fast as it would,
if no narrowings were discarded and smaller problems are obviously easier to
handle (also with other dependency pair processors) than bigger ones. Indeed,
termination of the CSRS of this example can be shown automatically with the
described method (cf. Example 11 below).

7Here, we restrict the set of dependency pairs to those that are possibly part of a cycle in
the dependency graph. See [1, 2] for a motivation and justification of this approach.
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In a sense, the transformation of Definition 4 distributes the evaluation of
the conditions of one conditional rule among several unconditional rules. The
results of these single evaluations are propagated through the variables from
one unconditional rule to the next one. With our narrowing approach we try
to approximate the results of single evaluations, but we still we need a way to
propagate these results in proofs of termination.

To this end we propose an instantiation processor, whose informal goal it is to
propagate the results of condition evaluations approximated through narrowing
to subsequent conditions (i.e. subsequent rules in the transformed system).8 The
following lemma provides the theoretical basis for our instantiation processor.

Lemma 5. Let P = (Σ, R) and R = (Σ, R′) (Σ = F ⊎ C) be TRSs with a

combined replacement map µ. If θs
ǫ
→P,µ θt

>ǫ
→

∗

R,µ θ′s′
ǫ
→P,µ θ′t′, σs′ = t

for some substitution σ, V arµ(t′)9 ∩V arµ(s′) = ∅ and all variables of s′ are
contained only in constructor subterms (w.r.t. R) (i.e. s′|p ∈ V ar ⇒ ∀q <

p : s′|q ∈ (Σ ∪ C) \ F), then θσs′
ǫ
→P,µ θσt′ →∗

R,µ θ′t′ for some θ, such that

θx = θx for all x ∈ V ar(t).

Definition 12 (backward instantiation processor). Let (DP = {s → t} ∪
DP ′,R, µ,Σ′) be an SS-CS-DP-problem with R = (Σ, R), such that all variables
of s are contained only in constructor subterms of s (w.r.t. R) and V arµ(t) ∩
V arµ(s) = ∅. The set Preds→t = {l → r ∈ DP | γ = mgu(cap(ren(r)),
cap(ren(s))} defines all potential predecessors of the pair s → t on (DP,R, µ)-
chains. If, for all l → r ∈ Preds→t ,r = σs for some σ, then the processor
Procbi yields (DP ′ ∪ {σs → σt | l → r ∈ Preds→t ∧ r = σs},R, µ,Σ′).

Theorem 9. The processor Procbi is sound and complete.

Proof. Soundness: Assume there is an infinite dependency pair chain w.r.t.
to a DP problem P = (DP,R, µ,Σ). We show that there also exists an infinite
chain w.r.t. to the problem Procbi(P) = P ′.

Consider an arbitrary fragment of the initial infinite chain:

. . . θti →
∗
R,µ θ′si+1

ǫ
→DP θ′ti+1 . . . .

Then, we can construct an analogous chain fragment in Procbi(P), as either
si+1 → ti+1 is contained in the dependency pairs of the derived problem P ′, or
ti = σsi+1 and thus there is a dependency pair σsi+1 → σti+1 in P ′. In the
latter case the new chain fragment is

. . . θti = θσsi+1
ǫ
→P′ θσti+1 →∗

R,µ θ′ti+1

(according to Lemma 5).

Completeness: Consider an infinite chain w.r.t. P ′. . . . θσsi
ǫ
→ θσti . . . .

As we assume that all dependency pairs in chains are variable disjoint we can
adapt θ to behave like θσ and thus obtain an infinite DP chain w.r.t. to the
original problem P.

8Note that our instantiation processor is similar to, but incomparable with the one in [16]
9i.e., those variables of t′ that occur at non-replacing positions.
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Example 10. Consider an SS-CS-DP-problem P = (DP,R, µ,Σ′) where

DP =







d# → U
#
1 (c)

U
#
1 (x) → U

#
2 (f(x))

U
#
2 (d) → d#

R =























d → U1(c)
U1(x) → U2(f(x))
U2(d) → d

f(d) → d

c → b

, µ(U#
1 ) = µ(U#

2 ) = µ(U1) = µ(U2) = µ(f) = {1} and Σ′ = {c, d, f, b}. The
problem originates from the dependency pair analysis of the DCTRS R :

d → d ⇐ c →∗ x, f(x) →∗ d

f(d) → d

c → b

The backward narrowing processor can be applied to P . The dependency pair
s → t is U

#
1 (x) → U

#
2 (f(x)) and its only potential predecessor is d# → U

#
1 (c).

Since all functions in s above the variable x are constructors (i.e. x is contained
in a constructor context in s) and the variable of t is replacing (i.e. V arµ(t) =
∅), the additional preconditions for the application of the processor are satisfied.
Thus, according to Definition 12 the result of the application of the processor is
one new dependency pair problem (DP ′,R, µ,Σ′) where

DP ′ =







d# → U
#
1 (c)

U
#
1 (c) → U

#
2 (f(c))

U
#
2 (d) → d#

Note that finiteness of this resulting SS-CS-DP-problem can be easily shown be
repeated application of the forward narrowing processor of Definition 10.

Example 11. Inside the dependency pair framework termination on original
terms of Ucs(R) and thus operational termination of R for the DCTRS R from
Example 2 can be proved by repeated application of forward narrowing and back-
ward instantiation. Our experiments showed that µ-termination of Ucs(R) is
hard to prove using other, standard techniques for termination analysis, thus
the introduced dependency pair processors seem crucial for this particular exam-
ple.

Analogously to the backward instantiation processor we can also define a
processor for forward instantiation.

Definition 13 (forward instantiation processor). Let (DP = {s → t}∪DP ′,R,

µ,Σ′) be an SS-CS-DP-problem with R = (Σ, R), such that all variables of t are
contained only in constructor subterms of t (w.r.t. R) and V arµ(t)∩V arµ(s) =
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∅. The set Succs→t = {l → r ∈ DP | γ = mgu(cap(ren(t)), cap(ren(l))}
defines all potential successors of the pair s → t on (DP,R, µ)-chains. If, for
all l → r ∈ Succs→t, l = σt for some σ, then the processor Procfi yields
(DP ′ ∪ {σs → σt | l → r ∈ Succs→t ∧ l = σt},R, µ,Σ′).

In order to prove soundness and completeness we proceed as for the backward
instantiation processor and show the following lemma that is dual to Lemma 5.

Lemma 6. Let P = (Σ, R) and R = (F ⊎ C, R′) be TRSs with a combined

replacement map µ. If θs
ǫ
→P,µ θt

>ǫ
→

∗

R,µ θ′s′
ǫ
→P,µ θ′t′, σt = s′ for some

substitution σ, V arµ(s) ∩ V arµ(t) = ∅ and all variables of t are contained only
in constructor subterms (w.r.t. R) (i.e. t|p ∈ V ar ⇒ ∀q < p : t|q ∈ (Σ∪C) \F),
then θs →∗

R,µ θσs for some θ, such that θx = θ′x for all x ∈ V ar(σt).

Theorem 10. The processor Procfi is sound and complete.

Proof. Soundness: Assume there is an infinite dependency pair chain w.r.t.
to a DP problem P = (DP,R, µ,Σ). We show that there also exists an infinite
chain w.r.t. to the problem Procfi(P) = P ′.

Consider an arbitrary fragment of the initial infinite chain:

. . . θsi
ǫ
→DP θti →

∗
R,µ θ′si+1 . . . .

Then, we can construct an analogous chain fragment in Procfi(P), as either
si → ti is contained in the dependency pairs of the derived problem P ′, or
si+1 = σti and thus there is a dependency pair σsi → σti in P ′. In the latter
case the new chain fragment is

. . . θsi →
∗
R,µ θσsi

ǫ
→P′ θσti = θ′si+1

(according to Lemma 6).

Completeness: Consider an infinite chain w.r.t. P ′. . . . θσsi
ǫ
→ θσti . . . .

As we assume that all dependency pairs in chains are variable disjoint, we can
adapt θ to behave like θσ and thus obtain an infinite DP chain w.r.t. to the
original problem P.

Note that the narrowing and instantiation approach is just one out of many
methods to analyze dependency pair problems for their finiteness in the setting
of ordinary termination analysis. However, regarding the structure of the sys-
tems that we analyze and using the fact that they were obtained from CTRSs,
narrowing and instantiation seem to be an adequate tool in our special setting,
because they are in some cases able to identify those instances of left-hand sides
of rules for which the conditions of the corresponding CTRS are satisfiable.

Example 12. In Example 8, after several narrowing steps the first TRS of the
SS-CS-DP-problem is empty, thus the conditions of the conditional rule are un-
satisfiable. Note that this DCTRS R is operationally terminating while Ucs(R)
is not µ-terminating. Hence, operational termination cannot be verified with
standard ordering-based methods. Thus, again the presented narrowing proces-
sor is crucial for a successful automatic proof of operational termination.
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Taking into account that finding such instances or identifying instances for
which the conditions are not satisfiable is potentially crucial for proving or
disproving termination of (transformed) systems, narrowing and instantiation
are important tools for this task. Moreover, our narrowing dependency pair
processors allow us to reduce the number of narrowings generated and thus
make the narrowing approach more efficient in practice.

6.1 Experimental Evaluation and Practical Issues

In order to evaluate the practical use of the context-sensitive unraveling as well
as our approach to prove termination on restricted sets of terms, we implemented
both the transformation and our proposed dependency pair processors in the
tool VMTL ([30]).10 The results and details of our tests can be found at the
tool’s homepage.10 Out of 24 tested systems our implementation was able to
prove operational termination of 19.

The examples were taken from the termination problem database (TPDB)11

and from standard literature on conditional term rewriting.
In our experiments other termination tools supporting conditional rewrite

systems scored worse on this set of examples. This shows that the introduced
narrowing and instantiation processors exploiting the theoretical results of Sec-
tion 4 significantly increase the power of VMTL.

On the negative side repeated application especially of narrowing proces-
sors can be expensive with respect to execution time (and space). Inside the
dependency pair framework DP processors may be applied to DP-problems in
an arbitrary order. Choosing and fixing such an order can significantly influ-
ence the power and efficiency of a termination tool. In our experiments, the
narrowing and instantiation approach was only tried after other ordering-based
methods to prove finiteness of DP-problems, which are more efficient, failed.
This strategy turned out to be the most efficient and powerful one.

For more details about the system, its characteristics, features and bench-
marks we refer to [30].

7 Related Work and Discussion

We analyzed the context-sensitive modification of the unraveling transformation
of DCTRSs into TRSs ([24, 25, 28, 29]). This transformation plays a crucial role
in several approaches for the termination analysis of current programming and
specification languages (cf., [23, 12]). Moreover, conditions are inherent features
of several functional programming languages. Hence, methods for the analysis
of conditional systems are of utmost importance when it comes to verify such
programs.

With our characterization of operational termination by termination of a
CSRS on original terms, on the one hand we gain the opportunity to disprove

10http://www.logic.at/vmtl/
11http://www.lri.fr/ marche/tpdb/

27



operational termination (cf. also [14]). On the other hand, the task of proving
termination on original terms is (at least) theoretically easier than proving gen-
eral termination. This latter aspect of proving termination of rewrite systems
not on all terms, but only on a subset of all terms, is an instance of a general
interesting problem which has hardly been studied so far (of course, it also ap-
plies to other properties like confluence, having the normal form property etc.).
Little seems to be known on questions of this type. In our case, clearly more
research is necessary for exploiting the fact that termination only needs to be
proved for certain terms, but not (necessarily) for all ones.

In Section 6 we introduced a simple approach to address the problem of
proving termination on the set of original terms. Benchmarks performed with
the termination tool VMTL indicate the practical relevance of our method. In
particular, VMTL managed to prove operational termination automatically for
several DCTRSs for which other existing termination tools, using more tradi-
tional approaches, fail. However, our approach should be understood as only a
starting point for the task of analyzing restricted termination and leaves plenty
of space for future improvements. We also conjecture that termination analysis
on a restricted set of terms may be of interest in several areas where transforma-
tions are used. It is very common that transformations introduce new (auxiliary)
functions that may give rise to spurious reduction chains. Restricting the atten-
tion to reductions starting from original terms may be more adequate in many
situations.

In Section 5 we introduced the notion of CE-operational termination and
proved its modularity. We also showed that the context-sensitive version of the
unraveling transformation is sound and complete for CE-operational termina-
tion. This indicates that DCTRSs for which the operational termination and
the CE-operational termination behavior differ have a certain (Toyama-like)
pathological structure as in the unconditional case.

In [27] and [26] the same transformation as in the current paper (with re-
finements) is used for the simulation of conditional rewriting rather than for
termination analysis. We proved that the context-sensitive transformation is
simulation sound and simulation complete in their sense. Other related works
on context-sensitive transformationsof DCTRSs are [11, 12]. There, the setting
is even more general, since context-sensitive conditional systems with member-
ship equational theories (motivated by corresponding Maude specifications and
programs) are dealt with. However, only sufficent conditions for, but no precise
characterization of operational termination of original conditional systems are
given.

To summarize we see three main contributions of this paper:

1. An exact characterization of operational termination of DCTRSs by ter-
mination of CSRSs on original terms.

2. The basis for proving non-(operational termination) of DCTRSs by means
of proving non-(µ-termination) of CSRSs. Furthermore, it was shown that
with the transformation of Definition 4 it is possible to characterize CE-
operational termination of a DCTRS by CE-µ-termination of a CSRS.
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3. Finally we provided two simple dependency pair processors (the narrowing
processors) that are specialized for the task of analyzing the termination
behaviour of CSRSs obtained by our transformation and showed that with
their help operational termination of systems can be verified where other
existing methods fail (cf. e.g. Example 8).
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[9] P. Borovanský, C. Kirchner, H. Kirchner, and P.-E. Moreau. Elan from a
rewriting logic point of view. Theoretical Computer Science, 285(2):155–
185, 2002.

29



[10] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and
C. Talcott. The Maude 2.0 system. In R. Nieuwenhuis, ed., Proc. 14th Inter-
national Conference on Rewriting Techniques and Applications (RTA’03),
Valencia, Spain, June 9-11, 2003, LNCS 2706, pp. 76–87. Springer-Verlag,
June 2003.

[11] F. Durán, S. Lucas, J. Meseguer, and C. Marché. Proving termination
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Appendix: Missing Proofs

Proposition 1 If a DCTRS R is quasi-reductive, then it is cs-quasi-reductive.

Proof. The result is obvious, since if a DCTRS is quasi-reductive with respect to
a signature extension Σ′ and an ordering ≻, then it is cs-quasi-quasi-reductive
w.r.t. the same signature extension and the same ordering and the replacement
map µ with µ(f) = {1, . . . , ar(f)} for all f ∈ Σ′.

Proposition 2 If a DCTRS R is cs-quasi-reductive, then it is quasi-decreasing.

Proof. Let R be cs-quasi-reductive w.r.t. the ordering ≻µ. First, we show that
→R ⊆ ≻µ: Assume s →R t (s, t ∈ T (Σ, V )). We will use induction on the
depth of the rewrite step in order to prove s ≻µ t. Assume the step s →R t has
depth 1, i.e., an unconditional rule (or a rule with trivially satisfied conditions)
is applied. In this case s ≻µ t follows immediately from cs-quasi-reductivity of
R and µ-monotonicity of ≻µ.

Next, assume the step s →R t has depth d > 1. Thus, a rule l → r ⇐
s1 → t1, . . . , sn → tn is applied (i.e., s|p = σl). From the applicability of the
conditional rule it follows that σ can be extended to σ′ such that σ′si →

∗
R σ′ti for

all 1 ≤ i ≤ n. Moreover, each reduction step in each of these reduction sequences
has a depth smaller than d. Thus, the induction hypothesis and transitivity of
≻µ yield σ′si � σ′ti for all 1 ≤ i ≤ n. Hence, by cs-quasi-reductivity we get
σ′l ≻µ σ′r, and finally s ≻µ t by µ-monotonicity of ≻µ.

Next we prove that R is quasi-decreasing with respect to the ordering > :=
≻st

µ |T (Σ,V )×T (Σ,V ):

1. →R ⊆ >: Follows immediately from →R ⊆≻µ⊆ > if we restrict attention
to terms of the original signature.

2. > = >st: Assume there is a term s which is a proper subterm of a term
t ∈ T (Σ, R) (t = C[s]p), such that t 6> s. This implies t 6≻st

µ s, which
contradicts the definition of ≻st

µ as p is a replacing position of t (because
all positions in t are replacing).

3. For every rule l → r ⇐ s1 → t1, . . . , sn → tn, every substitution σ : V →
T (Σ, V ) and every i ∈ {0, . . . , n − 1} we must show σsj →∗ σtj for every
j ∈ {1, . . . , i} implies σl > σsi+1. We know that σsj →∗ σtj ⇒ σsj �µ

σtj . Because of cs-quasi-reductivity this implies σl ≻st
µ σsj+1 and thus

σl > σsj+1, since σl, σsj+1 ∈ T (Σ, V ).

Theorem 1 Let R be a DCTRS (R = (Σ, R)). For every s, t ∈ T (Σ, V ) we
have: If s →R t, then s →+

Ucs(R) t.

Proof. We use induction on the depth of the step s →R t. If s →R t with a rule
l → r (i.e., an unconditional rule), then l → r ∈ Ucs(R) and thus s →Ucs(R) t.
Assume s →R t with a rule α : l → r ⇐ s1 →∗ t1, . . . , sn →∗ tn. Then
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s = C[σl]p and t = C[σr]p. All rewrite sequences σsi →∗
R σti have lower

depths than σl →R σr, thus we can apply the induction hypothesis to obtain
the following rewrite sequence in the transformed system:

C[σl]p →Ucs(R) C[Uα
1 (σs1, σV ar(l))]p

→∗
Ucs(R) C[Uα

1 (σt1, σV ar(l))]p

→Ucs(R) C[Uα
2 (σs2, σV ar(l), σEV ar(t1))]p

→∗
Ucs(R) . . .

→∗
Ucs(R) C[Uα

n (σtn, σV ar(l), σEV ar(t1), . . . ,

σEV ar(tn−1))]p →Ucs(R) C[σr]p = t

Proposition 3 Let R be a DCTRS. If U(R) is terminating, then Ucs(R) is
µ-terminating.

Proof. The result is immediate, since we have →U(R) ⊇ →Ucs(R).

Corollary 3 Let R = (Σ, R) be a DCTRS. The following properties of R
are equivalent: µ-termination of Ucs(R) on original terms, cs-quasi-reductivity,
quasi-decreasingness, and operational termination.

Proof. The equivalence of quasi-decreasingness and operational termination was
proved in [22]. Theorem 5, Lemma 2 and Theorem 4 show: µUcs(R)-termination
of Ucs(R) on T (Σ, V ) ⇒ cs-quasi-reductivity of R ⇒ quasi-decreasingness of R
⇒ µUcs(R)-termination of Ucs(R) on T (Σ, V ).

Corollary 4 CE-cs-quasi-reductivity is modular for disjoint unions.

Proof. Let R and S be DCTRSs with disjoint signatures that are both CE-cs-
quasi-reductive. According to Theorem 6, Ucs(R) and Ucs(S) are CE-µ-termina-
ting. In [18], modularity of CE-µ-termination is proved. Thus, Ucs(R)⊎Ucs(S)
is CE-µ-terminating. As Ucs(R) ⊎ Ucs(S) = Ucs(R⊎ S), R⊎ S is CE-cs-quasi-
reductive.

Proposition 4 A TRS R = (Σ, R) with replacement map µ is µ-terminating
on terms T (Σ′, R) if and only if the SS-CS-DP-problem DP (R, µ),R, µ,Σ′ is
finite.

Proof. IF: Assume R is not µ-terminating on original terms. Then there exists
a sequence of terms

t1
>ǫ
→

∗

R,µ t′1
ǫ
→R,µ s1 Dµ t2

>ǫ
→

∗

R,µ t′2
ǫ
→R,µ s2 Dµ t3

>ǫ
→

∗

R,µ t′3
ǫ
→R,µ . . .

such that t1 ∈ T (Σ′, V ) and ti and t′i are minimal not µ-terminating for all i,
i.e., there is an infinite reduction sequence starting from ti (resp. t′i) but all their
proper replacing subterms are terminating.
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According to the proof of [1, Theorem 12] there also exists a (DP (R, µ),R, µ)-

chain (DP (R, µ) = (Σ♯, R♯)) starting with the term t
♯
1 = σl♯ for some rule

l♯ → r♯ ∈ DP (R, µ). Clearly, t
♯
1 ∈ T ((Σ♯ \ Σ) ∪ Σ′, V ).

only if: In the completeness part of the proof of [1, Theorem 12], an infinite
reduction sequence in (R, µ) is constructed out of an infinite (DP (R, µ),R, µ)-
chain in a way such that if the chain starts with a rule l♯ → r♯ and σ enables
the chain, the constructed reduction sequence starts with the term σl. If σl♯ ∈
T ((Σ♯ \Σ)∪Σ′, V ) then σl ∈ T (Σ′, V ). Note that for each infinite chain we can
find a suffix, such that the root symbol of the first rule in the chain is not D♯

(cf. [1, Theorem 12]). It is easy to see that the starting term of such a maximal
tail does not contain functions from Σ \ Σ′ if the starting term of the whole
chain did not, because µ(D♯) = ∅ and the rules defining D♯ in DP (R, µ) do not
introduce such symbols. Moreover, note that the minimality of the chain, which
we do not demand in the proposition, is not used in the proof of [1, Theorem
12].

Lemma 3 Let R = (Σ, R) be a DCTRS. Assume that u1
ǫ
→ v1

>ǫ
→

∗

u2
ǫ
→ v2 . . .

is an infinite (DP (Ucs(R)), Ucs(R), µ)-chain and let σ be a substitution enabling
this chain. If the term σu1 does not contain any U -symbol, then there also exists
an infinite (DP (Ucs(R)), Ucs(R), µ)-chain, such that for each term f ♯(t1, ..., tn)
in this chain, each subterm ti is reducible to a term from T (Σ, V ).

Proof. Consider an infinite (DP (Ucs(R)), Ucs(R), µ)-chain starting from σt1,
which does not contain a U -symbol. The dependency pairs do not introduce
U -symbols (only U ♯-symbols), thus it suffices to show that each reduction se-
quence σvi →

∗ σui+1 between two dependency pairs ui → vi and ui+1 → vi+1

implies the existence of the reduction sequence tb(σvi) →
∗ tb(σui+1). The latter

implication follows directly from the proof of Theorem 2.
Thus, if there still were U -terms not reducible to original terms in the chain,

they would eventually be erased through a rule eliminating variables. Assume
tb(σvi) →∗ s → s′ is a subsequence of the infinite chain where such a U -term
is eliminated in the transition from s to s′. As tb(σvi) is an original term,
according to the proof of Theorem 2 we have tb(σvi) →

∗ tb(s) → tb(s′) and thus
the introduction of the problematic U -term could have been avoided in the first
place.

Lemma 4 Let R = (Σ, R) be a DCTRS. Assume that u1
ǫ
→ v1

>ǫ
→

∗

u2
ǫ
→ v2 . . .

is an infinite (DP (Ucs(R)), Ucs(R), µ)-chain and let σ be a substitution enabling
this chain. If the term σu1 does not contain any U -symbol, then no term in this
chain contains a U -term that is not reachable by a term from T (Σ, V ).

Proof. Assume there were a U -term in the DP-chain, that is not reachable by
an original term. Following the argumentation in the proof of Lemma 1, this
U -term as well as each sub U -term could be traced backwards, to the point
where the U -symbol had been introduced, because ultimately the chain started
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from an original term. Hence, the U -term would be reachable by an original
term, contradicting our assumption.

Lemma 5 Let P = (Σ, R) and R = (F ⊎ C, R′) be TRSs with a combined

replacement map µ. If θs
ǫ
→P,µ θt

>ǫ
→

∗

R,µ θ′s′
ǫ
→P,µ θ′t′, σs′ = t for some

substitution σ, V arµ(t′) ∩V arµ(s′) = ∅ and all variables of s′ are contained only
in constructor subterms (w.r.t. R) (i.e. s′|p ∈ V ar ⇒ ∀q < p : s′|q ∈ (Σ∪C)\F),

then θσs′
ǫ
→P,µ θσt′ →∗

R,µ θ′t′ for some θ, such that θx = θx for all x ∈ V ar(t).

Proof. Let {x1, . . . , xn} be the variables of t′. We distinguish two cases for each
variable xi. First, assume xi occurs in s′ at position q. Then, we have that
θσxi →

∗
R,µ θ′xi, as θσxi = θt|q and θ′xi = θ′s′|q and all positions above q are

constructors in t and s′. Thus, we set θy = θy for all y ∈ V ar(Codom(σ)) and
obtain θσt′|q′ →∗

R,µ θ′t′|q′ for any position q′ with t′|q′ = xi. Note that if q is
replacing in s′, then so is q′ in t′. Otherwise, θσxi = θ′xi.

Secondly, if xi does not occur in s′, then it does neither occur in Dom(σ)
nor in V ar(Codom(σ)). Thus, we set θxi = θ′xi and obtain θσt′|p = θ′t′|p for
any position p with t′|p = xi.

Hence, θσs′
ǫ
→P,µ θσt′ and we have that θσx →∗

R,µ θ′x for all x ∈ t′ and

thus θσt′ →∗
R,µ θ′t′.

Lemma 6 Let P = (Σ, R) and R = (F ⊎ C, R′) be TRSs with a combined

replacement map µ. If θs
ǫ
→P,µ θt

>ǫ
→

∗

R,µ θ′s′
ǫ
→P,µ θ′t′, σt = s′ for some

substitution σ, V arµ(s) ∩ V arµ(t) = ∅ and all variables of t are contained only
in constructor subterms (w.r.t. R) (i.e. t|p ∈ V ar ⇒ ∀q < p : t|q ∈ (Σ∪C) \F),
then θs →∗

R,µ θσs for some θ, such that θx = θ′x for all x ∈ V ar(σt).

Proof. Let {x1, . . . , xn} be the variables of s. We distinguish two cases for each
variable xi. First, assume xi occurs in t at position q. Then, we have that
θxi →∗

R,µ θ′σxi, as θxi = θt|q, θ′σxi = θ′s′|q and all positions above q are

constructors in t and s′. Thus, we set θy = θ′y for all y ∈ V ar(Codomain(σ))
and obtain θs|q′ →∗

R,µ θσs|q′ for any position q′ with s|q′ = xi. Note that if q

is replacing in t, then so is q′ in s. Otherwise, θxi = θ′σxi.
Secondly, if xi does not occur in t, then it does neither occur in Dom(σ) nor

in V ar(Codomain(σ)). Thus, we set θxi = θxi and obtain θs|p = θσs|p for any
position p with s|p = xi.
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