TIMEOUT

The TRS could not be proven terminating. The proof attempt took 60056 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (110ms).
 | – Problem 2 was processed with processor PolynomialLinearRange4iUR (106ms).
 |    | – Problem 6 was processed with processor PolynomialLinearRange4iUR (23ms).
 | – Problem 3 was processed with processor SubtermCriterion (1ms).
 |    | – Problem 5 was processed with processor PolynomialLinearRange4iUR (30ms).
 | – Problem 4 was processed with processor Propagation (3ms).
 |    | – Problem 7 remains open; application of the following processors failed [ForwardNarrowing (1ms), BackwardInstantiation (2ms), ForwardInstantiation (1ms), Propagation (1ms)].

The following open problems remain:



Open Dependency Pair Problem 4

Dependency Pairs

permute#(x, y, a)permute#(isZero(x), x, b)permute#(false, x, b)permute#(ack(x, x), p(x), c)
permute#(y, x, c)permute#(x, y, a)

Rewrite Rules

double(x)permute(x, x, a)permute(x, y, a)permute(isZero(x), x, b)
permute(false, x, b)permute(ack(x, x), p(x), c)permute(true, x, b)0
permute(y, x, c)s(s(permute(x, y, a)))p(0)0
p(s(x))xack(0, x)plus(x, s(0))
ack(s(x), 0)ack(x, s(0))ack(s(x), s(y))ack(x, ack(s(x), y))
plus(0, y)yplus(s(x), y)plus(x, s(y))
plus(x, s(s(y)))s(plus(s(x), y))plus(x, s(0))s(x)
plus(x, 0)xisZero(0)true
isZero(s(x))false

Original Signature

Termination of terms over the following signature is verified: plus, b, c, ack, a, true, double, 0, s, p, false, permute, isZero


Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

double#(x)permute#(x, x, a)permute#(false, x, b)p#(x)
plus#(x, s(s(y)))plus#(s(x), y)ack#(0, x)plus#(x, s(0))
ack#(s(x), s(y))ack#(s(x), y)permute#(false, x, b)permute#(ack(x, x), p(x), c)
permute#(x, y, a)isZero#(x)permute#(y, x, c)permute#(x, y, a)
permute#(false, x, b)ack#(x, x)ack#(s(x), s(y))ack#(x, ack(s(x), y))
permute#(x, y, a)permute#(isZero(x), x, b)ack#(s(x), 0)ack#(x, s(0))
plus#(s(x), y)plus#(x, s(y))

Rewrite Rules

double(x)permute(x, x, a)permute(x, y, a)permute(isZero(x), x, b)
permute(false, x, b)permute(ack(x, x), p(x), c)permute(true, x, b)0
permute(y, x, c)s(s(permute(x, y, a)))p(0)0
p(s(x))xack(0, x)plus(x, s(0))
ack(s(x), 0)ack(x, s(0))ack(s(x), s(y))ack(x, ack(s(x), y))
plus(0, y)yplus(s(x), y)plus(x, s(y))
plus(x, s(s(y)))s(plus(s(x), y))plus(x, s(0))s(x)
plus(x, 0)xisZero(0)true
isZero(s(x))false

Original Signature

Termination of terms over the following signature is verified: plus, b, c, ack, a, true, double, 0, s, p, false, permute, isZero

Strategy


The following SCCs where found

ack#(s(x), s(y)) → ack#(s(x), y)ack#(s(x), s(y)) → ack#(x, ack(s(x), y))
ack#(s(x), 0) → ack#(x, s(0))

plus#(x, s(s(y))) → plus#(s(x), y)plus#(s(x), y) → plus#(x, s(y))

permute#(false, x, b) → permute#(ack(x, x), p(x), c)permute#(x, y, a) → permute#(isZero(x), x, b)
permute#(y, x, c) → permute#(x, y, a)

Problem 2: PolynomialLinearRange4iUR



Dependency Pair Problem

Dependency Pairs

plus#(x, s(s(y)))plus#(s(x), y)plus#(s(x), y)plus#(x, s(y))

Rewrite Rules

double(x)permute(x, x, a)permute(x, y, a)permute(isZero(x), x, b)
permute(false, x, b)permute(ack(x, x), p(x), c)permute(true, x, b)0
permute(y, x, c)s(s(permute(x, y, a)))p(0)0
p(s(x))xack(0, x)plus(x, s(0))
ack(s(x), 0)ack(x, s(0))ack(s(x), s(y))ack(x, ack(s(x), y))
plus(0, y)yplus(s(x), y)plus(x, s(y))
plus(x, s(s(y)))s(plus(s(x), y))plus(x, s(0))s(x)
plus(x, 0)xisZero(0)true
isZero(s(x))false

Original Signature

Termination of terms over the following signature is verified: plus, b, c, ack, a, true, double, 0, s, p, false, permute, isZero

Strategy


Polynomial Interpretation

There are no usable rules

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

plus#(x, s(s(y)))plus#(s(x), y)

Problem 6: PolynomialLinearRange4iUR



Dependency Pair Problem

Dependency Pairs

plus#(s(x), y)plus#(x, s(y))

Rewrite Rules

double(x)permute(x, x, a)permute(x, y, a)permute(isZero(x), x, b)
permute(false, x, b)permute(ack(x, x), p(x), c)permute(true, x, b)0
permute(y, x, c)s(s(permute(x, y, a)))p(0)0
p(s(x))xack(0, x)plus(x, s(0))
ack(s(x), 0)ack(x, s(0))ack(s(x), s(y))ack(x, ack(s(x), y))
plus(0, y)yplus(s(x), y)plus(x, s(y))
plus(x, s(s(y)))s(plus(s(x), y))plus(x, s(0))s(x)
plus(x, 0)xisZero(0)true
isZero(s(x))false

Original Signature

Termination of terms over the following signature is verified: plus, b, c, ack, a, true, double, 0, s, p, false, permute, isZero

Strategy


Polynomial Interpretation

There are no usable rules

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

plus#(s(x), y)plus#(x, s(y))

Problem 3: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

ack#(s(x), s(y))ack#(s(x), y)ack#(s(x), s(y))ack#(x, ack(s(x), y))
ack#(s(x), 0)ack#(x, s(0))

Rewrite Rules

double(x)permute(x, x, a)permute(x, y, a)permute(isZero(x), x, b)
permute(false, x, b)permute(ack(x, x), p(x), c)permute(true, x, b)0
permute(y, x, c)s(s(permute(x, y, a)))p(0)0
p(s(x))xack(0, x)plus(x, s(0))
ack(s(x), 0)ack(x, s(0))ack(s(x), s(y))ack(x, ack(s(x), y))
plus(0, y)yplus(s(x), y)plus(x, s(y))
plus(x, s(s(y)))s(plus(s(x), y))plus(x, s(0))s(x)
plus(x, 0)xisZero(0)true
isZero(s(x))false

Original Signature

Termination of terms over the following signature is verified: plus, b, c, ack, a, true, double, 0, s, p, false, permute, isZero

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

ack#(s(x), s(y))ack#(x, ack(s(x), y))ack#(s(x), 0)ack#(x, s(0))

Problem 5: PolynomialLinearRange4iUR



Dependency Pair Problem

Dependency Pairs

ack#(s(x), s(y))ack#(s(x), y)

Rewrite Rules

double(x)permute(x, x, a)permute(x, y, a)permute(isZero(x), x, b)
permute(false, x, b)permute(ack(x, x), p(x), c)permute(true, x, b)0
permute(y, x, c)s(s(permute(x, y, a)))p(0)0
p(s(x))xack(0, x)plus(x, s(0))
ack(s(x), 0)ack(x, s(0))ack(s(x), s(y))ack(x, ack(s(x), y))
plus(0, y)yplus(s(x), y)plus(x, s(y))
plus(x, s(s(y)))s(plus(s(x), y))plus(x, s(0))s(x)
plus(x, 0)xisZero(0)true
isZero(s(x))false

Original Signature

Termination of terms over the following signature is verified: plus, b, c, ack, a, true, double, 0, s, p, false, permute, isZero

Strategy


Polynomial Interpretation

There are no usable rules

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

ack#(s(x), s(y))ack#(s(x), y)

Problem 4: Propagation



Dependency Pair Problem

Dependency Pairs

permute#(false, x, b)permute#(ack(x, x), p(x), c)permute#(x, y, a)permute#(isZero(x), x, b)
permute#(y, x, c)permute#(x, y, a)

Rewrite Rules

double(x)permute(x, x, a)permute(x, y, a)permute(isZero(x), x, b)
permute(false, x, b)permute(ack(x, x), p(x), c)permute(true, x, b)0
permute(y, x, c)s(s(permute(x, y, a)))p(0)0
p(s(x))xack(0, x)plus(x, s(0))
ack(s(x), 0)ack(x, s(0))ack(s(x), s(y))ack(x, ack(s(x), y))
plus(0, y)yplus(s(x), y)plus(x, s(y))
plus(x, s(s(y)))s(plus(s(x), y))plus(x, s(0))s(x)
plus(x, 0)xisZero(0)true
isZero(s(x))false

Original Signature

Termination of terms over the following signature is verified: plus, b, c, ack, a, true, double, 0, s, p, false, permute, isZero

Strategy


The dependency pairs permute#(y, x, c) → permute#(x, y, a) and permute#(x, y, a) → permute#(isZero(x), x, b) are consolidated into the rule permute#(y, x, c) → permute#(isZero(x), x, b) .

This is possible as

The dependency pairs permute#(y, x, c) → permute#(x, y, a) and permute#(x, y, a) → permute#(isZero(x), x, b) are consolidated into the rule permute#(y, x, c) → permute#(isZero(x), x, b) .

This is possible as

The dependency pairs permute#(y, x, c) → permute#(x, y, a) and permute#(x, y, a) → permute#(isZero(x), x, b) are consolidated into the rule permute#(y, x, c) → permute#(isZero(x), x, b) .

This is possible as


Summary

Removed Dependency PairsAdded Dependency Pairs
permute#(x, y, a) → permute#(isZero(x), x, b)permute#(y, x, c) → permute#(isZero(x), x, b)
permute#(y, x, c) → permute#(x, y, a)