YES

The TRS could be proven terminating. The proof took 361 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (211ms).
 | – Problem 2 was processed with processor SubtermCriterion (1ms).
 |    | – Problem 7 was processed with processor DependencyGraph (4ms).
 | – Problem 3 was processed with processor SubtermCriterion (7ms).
 | – Problem 4 was processed with processor SubtermCriterion (1ms).
 | – Problem 5 was processed with processor SubtermCriterion (0ms).
 |    | – Problem 8 was processed with processor PolynomialLinearRange4iUR (80ms).
 |    |    | – Problem 9 was processed with processor DependencyGraph (1ms).
 | – Problem 6 was processed with processor SubtermCriterion (2ms).

Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

divides#(y, x)div#(x, y)pr#(x, s(s(y)))divides#(s(s(y)), x)
times#(s(x), y)times#(x, y)div#(div(x, y), z)times#(y, z)
pr#(x, s(s(y)))if#(divides(s(s(y)), x), x, s(y))divides#(y, x)eq#(x, times(div(x, y), y))
quot#(s(x), s(y), z)quot#(x, y, z)times#(s(x), y)plus#(y, times(x, y))
if#(false, x, y)pr#(x, y)plus#(s(x), y)plus#(x, y)
quot#(x, 0, s(z))div#(x, s(z))divides#(y, x)times#(div(x, y), y)
div#(x, y)quot#(x, y, y)prime#(s(s(x)))pr#(s(s(x)), s(x))
eq#(s(x), s(y))eq#(x, y)div#(div(x, y), z)div#(x, times(y, z))

Rewrite Rules

plus(x, 0)xplus(0, y)y
plus(s(x), y)s(plus(x, y))times(0, y)0
times(s(0), y)ytimes(s(x), y)plus(y, times(x, y))
div(0, y)0div(x, y)quot(x, y, y)
quot(0, s(y), z)0quot(s(x), s(y), z)quot(x, y, z)
quot(x, 0, s(z))s(div(x, s(z)))div(div(x, y), z)div(x, times(y, z))
eq(0, 0)trueeq(s(x), 0)false
eq(0, s(y))falseeq(s(x), s(y))eq(x, y)
divides(y, x)eq(x, times(div(x, y), y))prime(s(s(x)))pr(s(s(x)), s(x))
pr(x, s(0))truepr(x, s(s(y)))if(divides(s(s(y)), x), x, s(y))
if(true, x, y)falseif(false, x, y)pr(x, y)

Original Signature

Termination of terms over the following signature is verified: plus, div, true, divides, prime, 0, s, times, if, false, quot, pr, eq

Strategy


The following SCCs where found

if#(false, x, y) → pr#(x, y)pr#(x, s(s(y))) → if#(divides(s(s(y)), x), x, s(y))

times#(s(x), y) → times#(x, y)

plus#(s(x), y) → plus#(x, y)

eq#(s(x), s(y)) → eq#(x, y)

quot#(x, 0, s(z)) → div#(x, s(z))div#(x, y) → quot#(x, y, y)
div#(div(x, y), z) → div#(x, times(y, z))quot#(s(x), s(y), z) → quot#(x, y, z)

Problem 2: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

if#(false, x, y)pr#(x, y)pr#(x, s(s(y)))if#(divides(s(s(y)), x), x, s(y))

Rewrite Rules

plus(x, 0)xplus(0, y)y
plus(s(x), y)s(plus(x, y))times(0, y)0
times(s(0), y)ytimes(s(x), y)plus(y, times(x, y))
div(0, y)0div(x, y)quot(x, y, y)
quot(0, s(y), z)0quot(s(x), s(y), z)quot(x, y, z)
quot(x, 0, s(z))s(div(x, s(z)))div(div(x, y), z)div(x, times(y, z))
eq(0, 0)trueeq(s(x), 0)false
eq(0, s(y))falseeq(s(x), s(y))eq(x, y)
divides(y, x)eq(x, times(div(x, y), y))prime(s(s(x)))pr(s(s(x)), s(x))
pr(x, s(0))truepr(x, s(s(y)))if(divides(s(s(y)), x), x, s(y))
if(true, x, y)falseif(false, x, y)pr(x, y)

Original Signature

Termination of terms over the following signature is verified: plus, div, true, divides, prime, 0, s, times, if, false, quot, pr, eq

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

pr#(x, s(s(y)))if#(divides(s(s(y)), x), x, s(y))

Problem 7: DependencyGraph



Dependency Pair Problem

Dependency Pairs

if#(false, x, y)pr#(x, y)

Rewrite Rules

plus(x, 0)xplus(0, y)y
plus(s(x), y)s(plus(x, y))times(0, y)0
times(s(0), y)ytimes(s(x), y)plus(y, times(x, y))
div(0, y)0div(x, y)quot(x, y, y)
quot(0, s(y), z)0quot(s(x), s(y), z)quot(x, y, z)
quot(x, 0, s(z))s(div(x, s(z)))div(div(x, y), z)div(x, times(y, z))
eq(0, 0)trueeq(s(x), 0)false
eq(0, s(y))falseeq(s(x), s(y))eq(x, y)
divides(y, x)eq(x, times(div(x, y), y))prime(s(s(x)))pr(s(s(x)), s(x))
pr(x, s(0))truepr(x, s(s(y)))if(divides(s(s(y)), x), x, s(y))
if(true, x, y)falseif(false, x, y)pr(x, y)

Original Signature

Termination of terms over the following signature is verified: plus, div, true, divides, prime, 0, s, times, if, false, quot, pr, eq

Strategy


There are no SCCs!

Problem 3: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

plus#(s(x), y)plus#(x, y)

Rewrite Rules

plus(x, 0)xplus(0, y)y
plus(s(x), y)s(plus(x, y))times(0, y)0
times(s(0), y)ytimes(s(x), y)plus(y, times(x, y))
div(0, y)0div(x, y)quot(x, y, y)
quot(0, s(y), z)0quot(s(x), s(y), z)quot(x, y, z)
quot(x, 0, s(z))s(div(x, s(z)))div(div(x, y), z)div(x, times(y, z))
eq(0, 0)trueeq(s(x), 0)false
eq(0, s(y))falseeq(s(x), s(y))eq(x, y)
divides(y, x)eq(x, times(div(x, y), y))prime(s(s(x)))pr(s(s(x)), s(x))
pr(x, s(0))truepr(x, s(s(y)))if(divides(s(s(y)), x), x, s(y))
if(true, x, y)falseif(false, x, y)pr(x, y)

Original Signature

Termination of terms over the following signature is verified: plus, div, true, divides, prime, 0, s, times, if, false, quot, pr, eq

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

plus#(s(x), y)plus#(x, y)

Problem 4: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

eq#(s(x), s(y))eq#(x, y)

Rewrite Rules

plus(x, 0)xplus(0, y)y
plus(s(x), y)s(plus(x, y))times(0, y)0
times(s(0), y)ytimes(s(x), y)plus(y, times(x, y))
div(0, y)0div(x, y)quot(x, y, y)
quot(0, s(y), z)0quot(s(x), s(y), z)quot(x, y, z)
quot(x, 0, s(z))s(div(x, s(z)))div(div(x, y), z)div(x, times(y, z))
eq(0, 0)trueeq(s(x), 0)false
eq(0, s(y))falseeq(s(x), s(y))eq(x, y)
divides(y, x)eq(x, times(div(x, y), y))prime(s(s(x)))pr(s(s(x)), s(x))
pr(x, s(0))truepr(x, s(s(y)))if(divides(s(s(y)), x), x, s(y))
if(true, x, y)falseif(false, x, y)pr(x, y)

Original Signature

Termination of terms over the following signature is verified: plus, div, true, divides, prime, 0, s, times, if, false, quot, pr, eq

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

eq#(s(x), s(y))eq#(x, y)

Problem 5: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

quot#(x, 0, s(z))div#(x, s(z))div#(x, y)quot#(x, y, y)
div#(div(x, y), z)div#(x, times(y, z))quot#(s(x), s(y), z)quot#(x, y, z)

Rewrite Rules

plus(x, 0)xplus(0, y)y
plus(s(x), y)s(plus(x, y))times(0, y)0
times(s(0), y)ytimes(s(x), y)plus(y, times(x, y))
div(0, y)0div(x, y)quot(x, y, y)
quot(0, s(y), z)0quot(s(x), s(y), z)quot(x, y, z)
quot(x, 0, s(z))s(div(x, s(z)))div(div(x, y), z)div(x, times(y, z))
eq(0, 0)trueeq(s(x), 0)false
eq(0, s(y))falseeq(s(x), s(y))eq(x, y)
divides(y, x)eq(x, times(div(x, y), y))prime(s(s(x)))pr(s(s(x)), s(x))
pr(x, s(0))truepr(x, s(s(y)))if(divides(s(s(y)), x), x, s(y))
if(true, x, y)falseif(false, x, y)pr(x, y)

Original Signature

Termination of terms over the following signature is verified: plus, div, true, divides, prime, 0, s, times, if, false, quot, pr, eq

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

div#(div(x, y), z)div#(x, times(y, z))quot#(s(x), s(y), z)quot#(x, y, z)

Problem 8: PolynomialLinearRange4iUR



Dependency Pair Problem

Dependency Pairs

quot#(x, 0, s(z))div#(x, s(z))div#(x, y)quot#(x, y, y)

Rewrite Rules

plus(x, 0)xplus(0, y)y
plus(s(x), y)s(plus(x, y))times(0, y)0
times(s(0), y)ytimes(s(x), y)plus(y, times(x, y))
div(0, y)0div(x, y)quot(x, y, y)
quot(0, s(y), z)0quot(s(x), s(y), z)quot(x, y, z)
quot(x, 0, s(z))s(div(x, s(z)))div(div(x, y), z)div(x, times(y, z))
eq(0, 0)trueeq(s(x), 0)false
eq(0, s(y))falseeq(s(x), s(y))eq(x, y)
divides(y, x)eq(x, times(div(x, y), y))prime(s(s(x)))pr(s(s(x)), s(x))
pr(x, s(0))truepr(x, s(s(y)))if(divides(s(s(y)), x), x, s(y))
if(true, x, y)falseif(false, x, y)pr(x, y)

Original Signature

Termination of terms over the following signature is verified: plus, div, true, divides, prime, 0, s, times, if, false, quot, pr, eq

Strategy


Polynomial Interpretation

There are no usable rules

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

div#(x, y)quot#(x, y, y)

Problem 9: DependencyGraph



Dependency Pair Problem

Dependency Pairs

quot#(x, 0, s(z))div#(x, s(z))

Rewrite Rules

plus(x, 0)xplus(0, y)y
plus(s(x), y)s(plus(x, y))times(0, y)0
times(s(0), y)ytimes(s(x), y)plus(y, times(x, y))
div(0, y)0div(x, y)quot(x, y, y)
quot(0, s(y), z)0quot(s(x), s(y), z)quot(x, y, z)
quot(x, 0, s(z))s(div(x, s(z)))div(div(x, y), z)div(x, times(y, z))
eq(0, 0)trueeq(s(x), 0)false
eq(0, s(y))falseeq(s(x), s(y))eq(x, y)
divides(y, x)eq(x, times(div(x, y), y))prime(s(s(x)))pr(s(s(x)), s(x))
pr(x, s(0))truepr(x, s(s(y)))if(divides(s(s(y)), x), x, s(y))
if(true, x, y)falseif(false, x, y)pr(x, y)

Original Signature

Termination of terms over the following signature is verified: plus, div, true, divides, prime, 0, s, times, if, false, quot, pr, eq

Strategy


There are no SCCs!

Problem 6: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

times#(s(x), y)times#(x, y)

Rewrite Rules

plus(x, 0)xplus(0, y)y
plus(s(x), y)s(plus(x, y))times(0, y)0
times(s(0), y)ytimes(s(x), y)plus(y, times(x, y))
div(0, y)0div(x, y)quot(x, y, y)
quot(0, s(y), z)0quot(s(x), s(y), z)quot(x, y, z)
quot(x, 0, s(z))s(div(x, s(z)))div(div(x, y), z)div(x, times(y, z))
eq(0, 0)trueeq(s(x), 0)false
eq(0, s(y))falseeq(s(x), s(y))eq(x, y)
divides(y, x)eq(x, times(div(x, y), y))prime(s(s(x)))pr(s(s(x)), s(x))
pr(x, s(0))truepr(x, s(s(y)))if(divides(s(s(y)), x), x, s(y))
if(true, x, y)falseif(false, x, y)pr(x, y)

Original Signature

Termination of terms over the following signature is verified: plus, div, true, divides, prime, 0, s, times, if, false, quot, pr, eq

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

times#(s(x), y)times#(x, y)