YES

The TRS could be proven terminating. The proof took 220 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (11ms).
 | – Problem 2 was processed with processor SubtermCriterion (0ms).
 | – Problem 3 was processed with processor PolynomialLinearRange4iUR (174ms).
 | – Problem 4 was processed with processor SubtermCriterion (0ms).

Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

shuffle#(add(n, x))reverse#(x)shuffle#(add(n, x))shuffle#(reverse(x))
app#(add(n, x), y)app#(x, y)reverse#(add(n, x))app#(reverse(x), add(n, nil))
reverse#(add(n, x))reverse#(x)

Rewrite Rules

app(nil, y)yapp(add(n, x), y)add(n, app(x, y))
reverse(nil)nilreverse(add(n, x))app(reverse(x), add(n, nil))
shuffle(nil)nilshuffle(add(n, x))add(n, shuffle(reverse(x)))

Original Signature

Termination of terms over the following signature is verified: app, reverse, shuffle, add, nil

Strategy


The following SCCs where found

shuffle#(add(n, x)) → shuffle#(reverse(x))

app#(add(n, x), y) → app#(x, y)

reverse#(add(n, x)) → reverse#(x)

Problem 2: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

reverse#(add(n, x))reverse#(x)

Rewrite Rules

app(nil, y)yapp(add(n, x), y)add(n, app(x, y))
reverse(nil)nilreverse(add(n, x))app(reverse(x), add(n, nil))
shuffle(nil)nilshuffle(add(n, x))add(n, shuffle(reverse(x)))

Original Signature

Termination of terms over the following signature is verified: app, reverse, shuffle, add, nil

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

reverse#(add(n, x))reverse#(x)

Problem 3: PolynomialLinearRange4iUR



Dependency Pair Problem

Dependency Pairs

shuffle#(add(n, x))shuffle#(reverse(x))

Rewrite Rules

app(nil, y)yapp(add(n, x), y)add(n, app(x, y))
reverse(nil)nilreverse(add(n, x))app(reverse(x), add(n, nil))
shuffle(nil)nilshuffle(add(n, x))add(n, shuffle(reverse(x)))

Original Signature

Termination of terms over the following signature is verified: app, reverse, shuffle, add, nil

Strategy


Polynomial Interpretation

Improved Usable rules

reverse(add(n, x))app(reverse(x), add(n, nil))app(nil, y)y
app(add(n, x), y)add(n, app(x, y))reverse(nil)nil

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

shuffle#(add(n, x))shuffle#(reverse(x))

Problem 4: SubtermCriterion



Dependency Pair Problem

Dependency Pairs

app#(add(n, x), y)app#(x, y)

Rewrite Rules

app(nil, y)yapp(add(n, x), y)add(n, app(x, y))
reverse(nil)nilreverse(add(n, x))app(reverse(x), add(n, nil))
shuffle(nil)nilshuffle(add(n, x))add(n, shuffle(reverse(x)))

Original Signature

Termination of terms over the following signature is verified: app, reverse, shuffle, add, nil

Strategy


Projection

The following projection was used:

Thus, the following dependency pairs are removed:

app#(add(n, x), y)app#(x, y)