YES
The TRS could be proven terminating. The proof took 172 ms.
Problem 1 was processed with processor DependencyGraph (5ms). | Problem 2 was processed with processor PolynomialLinearRange4 (131ms).
| and#(tt, X) | → | T(X) | __#(__(X, Y), Z) | → | __#(X, __(Y, Z)) | |
| __#(__(X, Y), Z) | → | __#(Y, Z) |
| __(__(X, Y), Z) | → | __(X, __(Y, Z)) | __(X, nil) | → | X | |
| __(nil, X) | → | X | and(tt, X) | → | X | |
| isNePal(__(I, __(P, I))) | → | tt |
Termination of terms over the following signature is verified: tt, isNePal, __, nil, and
Context-sensitive strategy:
μ(T) = μ(tt) = μ(nil) = ∅
μ(isNePal#) = μ(isNePal) = μ(and#) = μ(and) = {1}
μ(__#) = μ(__) = {1, 2}
| __#(__(X, Y), Z) → __#(X, __(Y, Z)) | __#(__(X, Y), Z) → __#(Y, Z) |
| __#(__(X, Y), Z) | → | __#(X, __(Y, Z)) | __#(__(X, Y), Z) | → | __#(Y, Z) |
| __(__(X, Y), Z) | → | __(X, __(Y, Z)) | __(X, nil) | → | X | |
| __(nil, X) | → | X | and(tt, X) | → | X | |
| isNePal(__(I, __(P, I))) | → | tt |
Termination of terms over the following signature is verified: tt, isNePal, __, nil, and
Context-sensitive strategy:
μ(T) = μ(tt) = μ(nil) = ∅
μ(isNePal#) = μ(isNePal) = μ(and#) = μ(and) = {1}
μ(__#) = μ(__) = {1, 2}
| __(__(X, Y), Z) | → | __(X, __(Y, Z)) | __(X, nil) | → | X | |
| __(nil, X) | → | X |
The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:
| __#(__(X, Y), Z) | → | __#(X, __(Y, Z)) | __#(__(X, Y), Z) | → | __#(Y, Z) |