YES

The TRS could be proven terminating. The proof took 715 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (106ms).
 | – Problem 2 was processed with processor PolynomialLinearRange4 (51ms).
 | – Problem 3 was processed with processor PolynomialLinearRange4 (190ms).
 |    | – Problem 5 was processed with processor DependencyGraph (0ms).
 | – Problem 4 was processed with processor PolynomialLinearRange4 (34ms).

Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

quotrem#(s(x), s(y))U81#(less(x, y), y, x)quotrem#(s(x), s(y))less#(x, y)
U81#(false, y, x)U82#(quotrem(minus(x, y), s(y)), y, x)U81#(false, y, x)quotrem#(minus(x, y), s(y))
minus#(s(x), s(y))minus#(x, y)U71#(true, y, x)T(x)
U81#(false, y, x)minus#(x, y)less#(s(x), s(y))less#(x, y)
quotrem#(s(x), s(y))U71#(less(x, y), y, x)U81#(false, y, x)T(y)
U81#(false, y, x)T(x)

Rewrite Rules

less(x, 0)falseless(0, s(x))true
less(s(x), s(y))less(x, y)minus(0, s(y))0
minus(x, 0)xminus(s(x), s(y))minus(x, y)
quotrem(0, s(y))pair(0, 0)quotrem(s(x), s(y))U71(less(x, y), y, x)
U71(true, y, x)pair(0, s(x))quotrem(s(x), s(y))U81(less(x, y), y, x)
U81(false, y, x)U82(quotrem(minus(x, y), s(y)), y, x)U82(pair(q, r), y, x)pair(s(q), r)

Original Signature

Termination of terms over the following signature is verified: 0, minus, s, pair, false, true, quotrem, less

Strategy

Context-sensitive strategy:
μ(true) = μ(T) = μ(0) = μ(false) = ∅
μ(U81#) = μ(U82#) = μ(U71) = μ(U71#) = μ(s) = μ(U82) = μ(U81) = {1}
μ(minus) = μ(pair) = μ(minus#) = μ(quotrem) = μ(less#) = μ(less) = μ(quotrem#) = {1, 2}


The following SCCs where found

quotrem#(s(x), s(y)) → U81#(less(x, y), y, x)U81#(false, y, x) → quotrem#(minus(x, y), s(y))

minus#(s(x), s(y)) → minus#(x, y)

less#(s(x), s(y)) → less#(x, y)

Problem 2: PolynomialLinearRange4



Dependency Pair Problem

Dependency Pairs

less#(s(x), s(y))less#(x, y)

Rewrite Rules

less(x, 0)falseless(0, s(x))true
less(s(x), s(y))less(x, y)minus(0, s(y))0
minus(x, 0)xminus(s(x), s(y))minus(x, y)
quotrem(0, s(y))pair(0, 0)quotrem(s(x), s(y))U71(less(x, y), y, x)
U71(true, y, x)pair(0, s(x))quotrem(s(x), s(y))U81(less(x, y), y, x)
U81(false, y, x)U82(quotrem(minus(x, y), s(y)), y, x)U82(pair(q, r), y, x)pair(s(q), r)

Original Signature

Termination of terms over the following signature is verified: 0, minus, s, pair, false, true, quotrem, less

Strategy

Context-sensitive strategy:
μ(true) = μ(T) = μ(0) = μ(false) = ∅
μ(U81#) = μ(U82#) = μ(U71) = μ(U71#) = μ(s) = μ(U82) = μ(U81) = {1}
μ(minus) = μ(pair) = μ(minus#) = μ(quotrem) = μ(less#) = μ(less) = μ(quotrem#) = {1, 2}


Polynomial Interpretation

There are no usable rules

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

less#(s(x), s(y))less#(x, y)

Problem 3: PolynomialLinearRange4



Dependency Pair Problem

Dependency Pairs

quotrem#(s(x), s(y))U81#(less(x, y), y, x)U81#(false, y, x)quotrem#(minus(x, y), s(y))

Rewrite Rules

less(x, 0)falseless(0, s(x))true
less(s(x), s(y))less(x, y)minus(0, s(y))0
minus(x, 0)xminus(s(x), s(y))minus(x, y)
quotrem(0, s(y))pair(0, 0)quotrem(s(x), s(y))U71(less(x, y), y, x)
U71(true, y, x)pair(0, s(x))quotrem(s(x), s(y))U81(less(x, y), y, x)
U81(false, y, x)U82(quotrem(minus(x, y), s(y)), y, x)U82(pair(q, r), y, x)pair(s(q), r)

Original Signature

Termination of terms over the following signature is verified: 0, minus, s, pair, false, true, quotrem, less

Strategy

Context-sensitive strategy:
μ(true) = μ(T) = μ(0) = μ(false) = ∅
μ(U81#) = μ(U82#) = μ(U71) = μ(U71#) = μ(s) = μ(U82) = μ(U81) = {1}
μ(minus) = μ(pair) = μ(minus#) = μ(quotrem) = μ(less#) = μ(less) = μ(quotrem#) = {1, 2}


Polynomial Interpretation

Standard Usable rules

minus(s(x), s(y))minus(x, y)less(0, s(x))true
U81(false, y, x)U82(quotrem(minus(x, y), s(y)), y, x)less(x, 0)false
quotrem(s(x), s(y))U71(less(x, y), y, x)quotrem(s(x), s(y))U81(less(x, y), y, x)
minus(0, s(y))0quotrem(0, s(y))pair(0, 0)
minus(x, 0)xU82(pair(q, r), y, x)pair(s(q), r)
U71(true, y, x)pair(0, s(x))less(s(x), s(y))less(x, y)

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

quotrem#(s(x), s(y))U81#(less(x, y), y, x)

Problem 5: DependencyGraph



Dependency Pair Problem

Dependency Pairs

U81#(false, y, x)quotrem#(minus(x, y), s(y))

Rewrite Rules

less(x, 0)falseless(0, s(x))true
less(s(x), s(y))less(x, y)minus(0, s(y))0
minus(x, 0)xminus(s(x), s(y))minus(x, y)
quotrem(0, s(y))pair(0, 0)quotrem(s(x), s(y))U71(less(x, y), y, x)
U71(true, y, x)pair(0, s(x))quotrem(s(x), s(y))U81(less(x, y), y, x)
U81(false, y, x)U82(quotrem(minus(x, y), s(y)), y, x)U82(pair(q, r), y, x)pair(s(q), r)

Original Signature

Termination of terms over the following signature is verified: minus, 0, s, pair, true, false, quotrem, less

Strategy

Context-sensitive strategy:
μ(true) = μ(T) = μ(0) = μ(false) = ∅
μ(U81#) = μ(U82#) = μ(U71) = μ(U71#) = μ(s) = μ(U82) = μ(U81) = {1}
μ(minus) = μ(pair) = μ(minus#) = μ(quotrem) = μ(less#) = μ(less) = μ(quotrem#) = {1, 2}


There are no SCCs!

Problem 4: PolynomialLinearRange4



Dependency Pair Problem

Dependency Pairs

minus#(s(x), s(y))minus#(x, y)

Rewrite Rules

less(x, 0)falseless(0, s(x))true
less(s(x), s(y))less(x, y)minus(0, s(y))0
minus(x, 0)xminus(s(x), s(y))minus(x, y)
quotrem(0, s(y))pair(0, 0)quotrem(s(x), s(y))U71(less(x, y), y, x)
U71(true, y, x)pair(0, s(x))quotrem(s(x), s(y))U81(less(x, y), y, x)
U81(false, y, x)U82(quotrem(minus(x, y), s(y)), y, x)U82(pair(q, r), y, x)pair(s(q), r)

Original Signature

Termination of terms over the following signature is verified: 0, minus, s, pair, false, true, quotrem, less

Strategy

Context-sensitive strategy:
μ(true) = μ(T) = μ(0) = μ(false) = ∅
μ(U81#) = μ(U82#) = μ(U71) = μ(U71#) = μ(s) = μ(U82) = μ(U81) = {1}
μ(minus) = μ(pair) = μ(minus#) = μ(quotrem) = μ(less#) = μ(less) = μ(quotrem#) = {1, 2}


Polynomial Interpretation

There are no usable rules

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

minus#(s(x), s(y))minus#(x, y)