TIMEOUT

The TRS could not be proven terminating. The proof attempt took 60365 ms.

The following DP Processors were used


Problem 1 was processed with processor DependencyGraph (397ms).
 | – Problem 2 was processed with processor PolynomialLinearRange4 (50ms).
 | – Problem 3 was processed with processor PolynomialLinearRange4 (25ms).
 | – Problem 4 was processed with processor PolynomialLinearRange4 (15ms).
 | – Problem 5 was processed with processor PolynomialLinearRange4 (14ms).
 | – Problem 6 was processed with processor PolynomialLinearRange4 (71ms).
 | – Problem 7 remains open; application of the following processors failed [SubtermCriterion (1ms), DependencyGraph (8ms), PolynomialLinearRange4iUR (0ms), DependencyGraph (6ms), PolynomialLinearRange8NegiUR (0ms), DependencyGraph (6ms), PolynomialLinearRange4 (715ms), DependencyGraph (5ms), PolynomialLinearRange4 (451ms), DependencyGraph (6ms), ReductionPairSAT (4774ms), DependencyGraph (14ms), SizeChangePrinciple (timeout)].
 | – Problem 8 was processed with processor PolynomialLinearRange4 (14ms).

The following open problems remain:



Open Dependency Pair Problem 7

Dependency Pairs

U182#(false, store, m)process#(sndsplit(m, app(map_f(self, nil), store)), m)process#(store, m)U171#(leq(m, length(store)), store, m)
U181#(false, store, m)U182#(empty(fstsplit(m, app(map_f(self, nil), store))), store, m)U171#(true, store, m)U172#(empty(fstsplit(m, store)), store, m)
U172#(false, store, m)process#(app(map_f(self, nil), sndsplit(m, store)), m)process#(store, m)U181#(leq(m, length(store)), store, m)

Rewrite Rules

fstsplit(0, x)nilfstsplit(s(n), nil)nil
fstsplit(s(n), cons(h, t))cons(h, fstsplit(n, t))sndsplit(0, x)x
sndsplit(s(n), nil)nilsndsplit(s(n), cons(h, t))sndsplit(n, t)
empty(nil)trueempty(cons(h, t))false
leq(0, m)trueleq(s(n), 0)false
leq(s(n), s(m))leq(n, m)length(nil)0
length(cons(h, t))s(length(t))app(nil, x)x
app(cons(h, t), x)cons(h, app(t, x))map_f(pid, nil)nil
map_f(pid, cons(h, t))app(f(pid, h), map_f(pid, t))process(store, m)U171(leq(m, length(store)), store, m)
U171(true, store, m)U172(empty(fstsplit(m, store)), store, m)U172(false, store, m)process(app(map_f(self, nil), sndsplit(m, store)), m)
process(store, m)U181(leq(m, length(store)), store, m)U181(false, store, m)U182(empty(fstsplit(m, app(map_f(self, nil), store))), store, m)
U182(false, store, m)process(sndsplit(m, app(map_f(self, nil), store)), m)

Original Signature

Termination of terms over the following signature is verified: f, app, map_f, leq, true, self, process, fstsplit, 0, s, sndsplit, empty, length, false, nil, cons


Problem 1: DependencyGraph



Dependency Pair Problem

Dependency Pairs

U181#(false, store, m)app#(map_f(self, nil), store)process#(store, m)leq#(m, length(store))
U181#(false, store, m)map_f#(self, nil)U171#(true, store, m)empty#(fstsplit(m, store))
U182#(false, store, m)T(store)U172#(false, store, m)T(m)
U172#(false, store, m)app#(map_f(self, nil), sndsplit(m, store))U172#(false, store, m)process#(app(map_f(self, nil), sndsplit(m, store)), m)
leq#(s(n), s(m))leq#(n, m)U171#(true, store, m)T(store)
U182#(false, store, m)app#(map_f(self, nil), store)U181#(false, store, m)T(m)
length#(cons(h, t))length#(t)U172#(false, store, m)T(store)
U171#(true, store, m)U172#(empty(fstsplit(m, store)), store, m)U182#(false, store, m)sndsplit#(m, app(map_f(self, nil), store))
process#(store, m)U181#(leq(m, length(store)), store, m)U182#(false, store, m)map_f#(self, nil)
U182#(false, store, m)process#(sndsplit(m, app(map_f(self, nil), store)), m)process#(store, m)U171#(leq(m, length(store)), store, m)
U181#(false, store, m)U182#(empty(fstsplit(m, app(map_f(self, nil), store))), store, m)process#(store, m)length#(store)
U181#(false, store, m)fstsplit#(m, app(map_f(self, nil), store))fstsplit#(s(n), cons(h, t))fstsplit#(n, t)
map_f#(pid, cons(h, t))app#(f(pid, h), map_f(pid, t))U171#(true, store, m)fstsplit#(m, store)
U172#(false, store, m)map_f#(self, nil)U181#(false, store, m)empty#(fstsplit(m, app(map_f(self, nil), store)))
U181#(false, store, m)T(store)U171#(true, store, m)T(m)
U172#(false, store, m)sndsplit#(m, store)app#(cons(h, t), x)app#(t, x)
U182#(false, store, m)T(m)sndsplit#(s(n), cons(h, t))sndsplit#(n, t)
map_f#(pid, cons(h, t))map_f#(pid, t)

Rewrite Rules

fstsplit(0, x)nilfstsplit(s(n), nil)nil
fstsplit(s(n), cons(h, t))cons(h, fstsplit(n, t))sndsplit(0, x)x
sndsplit(s(n), nil)nilsndsplit(s(n), cons(h, t))sndsplit(n, t)
empty(nil)trueempty(cons(h, t))false
leq(0, m)trueleq(s(n), 0)false
leq(s(n), s(m))leq(n, m)length(nil)0
length(cons(h, t))s(length(t))app(nil, x)x
app(cons(h, t), x)cons(h, app(t, x))map_f(pid, nil)nil
map_f(pid, cons(h, t))app(f(pid, h), map_f(pid, t))process(store, m)U171(leq(m, length(store)), store, m)
U171(true, store, m)U172(empty(fstsplit(m, store)), store, m)U172(false, store, m)process(app(map_f(self, nil), sndsplit(m, store)), m)
process(store, m)U181(leq(m, length(store)), store, m)U181(false, store, m)U182(empty(fstsplit(m, app(map_f(self, nil), store))), store, m)
U182(false, store, m)process(sndsplit(m, app(map_f(self, nil), store)), m)

Original Signature

Termination of terms over the following signature is verified: f, app, map_f, leq, true, self, process, fstsplit, 0, s, sndsplit, empty, length, false, cons, nil

Strategy

Context-sensitive strategy:
μ(self) = μ(T) = μ(false) = μ(true) = μ(0) = μ(nil) = ∅
μ(U181) = μ(U182) = μ(length#) = μ(U181#) = μ(empty#) = μ(U171#) = μ(length) = μ(empty) = μ(U171) = μ(U172) = μ(U182#) = μ(U172#) = μ(s) = {1}
μ(leq#) = μ(map_f#) = μ(fstsplit) = μ(process#) = μ(fstsplit#) = μ(sndsplit) = μ(cons) = μ(f) = μ(app) = μ(app#) = μ(map_f) = μ(leq) = μ(process) = μ(sndsplit#) = {1, 2}


The following SCCs where found

U182#(false, store, m) → process#(sndsplit(m, app(map_f(self, nil), store)), m)U181#(false, store, m) → U182#(empty(fstsplit(m, app(map_f(self, nil), store))), store, m)
process#(store, m) → U171#(leq(m, length(store)), store, m)U171#(true, store, m) → U172#(empty(fstsplit(m, store)), store, m)
U172#(false, store, m) → process#(app(map_f(self, nil), sndsplit(m, store)), m)process#(store, m) → U181#(leq(m, length(store)), store, m)

fstsplit#(s(n), cons(h, t)) → fstsplit#(n, t)

length#(cons(h, t)) → length#(t)

app#(cons(h, t), x) → app#(t, x)

leq#(s(n), s(m)) → leq#(n, m)

sndsplit#(s(n), cons(h, t)) → sndsplit#(n, t)

map_f#(pid, cons(h, t)) → map_f#(pid, t)

Problem 2: PolynomialLinearRange4



Dependency Pair Problem

Dependency Pairs

leq#(s(n), s(m))leq#(n, m)

Rewrite Rules

fstsplit(0, x)nilfstsplit(s(n), nil)nil
fstsplit(s(n), cons(h, t))cons(h, fstsplit(n, t))sndsplit(0, x)x
sndsplit(s(n), nil)nilsndsplit(s(n), cons(h, t))sndsplit(n, t)
empty(nil)trueempty(cons(h, t))false
leq(0, m)trueleq(s(n), 0)false
leq(s(n), s(m))leq(n, m)length(nil)0
length(cons(h, t))s(length(t))app(nil, x)x
app(cons(h, t), x)cons(h, app(t, x))map_f(pid, nil)nil
map_f(pid, cons(h, t))app(f(pid, h), map_f(pid, t))process(store, m)U171(leq(m, length(store)), store, m)
U171(true, store, m)U172(empty(fstsplit(m, store)), store, m)U172(false, store, m)process(app(map_f(self, nil), sndsplit(m, store)), m)
process(store, m)U181(leq(m, length(store)), store, m)U181(false, store, m)U182(empty(fstsplit(m, app(map_f(self, nil), store))), store, m)
U182(false, store, m)process(sndsplit(m, app(map_f(self, nil), store)), m)

Original Signature

Termination of terms over the following signature is verified: f, app, map_f, leq, true, self, process, fstsplit, 0, s, sndsplit, empty, length, false, cons, nil

Strategy

Context-sensitive strategy:
μ(self) = μ(T) = μ(false) = μ(true) = μ(0) = μ(nil) = ∅
μ(U181) = μ(U182) = μ(length#) = μ(empty#) = μ(U181#) = μ(U171#) = μ(length) = μ(empty) = μ(U171) = μ(U172) = μ(U182#) = μ(U172#) = μ(s) = {1}
μ(leq#) = μ(map_f#) = μ(fstsplit) = μ(process#) = μ(fstsplit#) = μ(sndsplit) = μ(cons) = μ(f) = μ(app) = μ(app#) = μ(map_f) = μ(leq) = μ(process) = μ(sndsplit#) = {1, 2}


Polynomial Interpretation

There are no usable rules

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

leq#(s(n), s(m))leq#(n, m)

Problem 3: PolynomialLinearRange4



Dependency Pair Problem

Dependency Pairs

sndsplit#(s(n), cons(h, t))sndsplit#(n, t)

Rewrite Rules

fstsplit(0, x)nilfstsplit(s(n), nil)nil
fstsplit(s(n), cons(h, t))cons(h, fstsplit(n, t))sndsplit(0, x)x
sndsplit(s(n), nil)nilsndsplit(s(n), cons(h, t))sndsplit(n, t)
empty(nil)trueempty(cons(h, t))false
leq(0, m)trueleq(s(n), 0)false
leq(s(n), s(m))leq(n, m)length(nil)0
length(cons(h, t))s(length(t))app(nil, x)x
app(cons(h, t), x)cons(h, app(t, x))map_f(pid, nil)nil
map_f(pid, cons(h, t))app(f(pid, h), map_f(pid, t))process(store, m)U171(leq(m, length(store)), store, m)
U171(true, store, m)U172(empty(fstsplit(m, store)), store, m)U172(false, store, m)process(app(map_f(self, nil), sndsplit(m, store)), m)
process(store, m)U181(leq(m, length(store)), store, m)U181(false, store, m)U182(empty(fstsplit(m, app(map_f(self, nil), store))), store, m)
U182(false, store, m)process(sndsplit(m, app(map_f(self, nil), store)), m)

Original Signature

Termination of terms over the following signature is verified: f, app, map_f, leq, true, self, process, fstsplit, 0, s, sndsplit, empty, length, false, cons, nil

Strategy

Context-sensitive strategy:
μ(self) = μ(T) = μ(false) = μ(true) = μ(0) = μ(nil) = ∅
μ(U181) = μ(U182) = μ(length#) = μ(empty#) = μ(U181#) = μ(U171#) = μ(length) = μ(empty) = μ(U171) = μ(U172) = μ(U182#) = μ(U172#) = μ(s) = {1}
μ(leq#) = μ(map_f#) = μ(fstsplit) = μ(process#) = μ(fstsplit#) = μ(sndsplit) = μ(cons) = μ(f) = μ(app) = μ(app#) = μ(map_f) = μ(leq) = μ(process) = μ(sndsplit#) = {1, 2}


Polynomial Interpretation

There are no usable rules

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

sndsplit#(s(n), cons(h, t))sndsplit#(n, t)

Problem 4: PolynomialLinearRange4



Dependency Pair Problem

Dependency Pairs

length#(cons(h, t))length#(t)

Rewrite Rules

fstsplit(0, x)nilfstsplit(s(n), nil)nil
fstsplit(s(n), cons(h, t))cons(h, fstsplit(n, t))sndsplit(0, x)x
sndsplit(s(n), nil)nilsndsplit(s(n), cons(h, t))sndsplit(n, t)
empty(nil)trueempty(cons(h, t))false
leq(0, m)trueleq(s(n), 0)false
leq(s(n), s(m))leq(n, m)length(nil)0
length(cons(h, t))s(length(t))app(nil, x)x
app(cons(h, t), x)cons(h, app(t, x))map_f(pid, nil)nil
map_f(pid, cons(h, t))app(f(pid, h), map_f(pid, t))process(store, m)U171(leq(m, length(store)), store, m)
U171(true, store, m)U172(empty(fstsplit(m, store)), store, m)U172(false, store, m)process(app(map_f(self, nil), sndsplit(m, store)), m)
process(store, m)U181(leq(m, length(store)), store, m)U181(false, store, m)U182(empty(fstsplit(m, app(map_f(self, nil), store))), store, m)
U182(false, store, m)process(sndsplit(m, app(map_f(self, nil), store)), m)

Original Signature

Termination of terms over the following signature is verified: f, app, map_f, leq, true, self, process, fstsplit, 0, s, sndsplit, empty, length, false, cons, nil

Strategy

Context-sensitive strategy:
μ(self) = μ(T) = μ(false) = μ(true) = μ(0) = μ(nil) = ∅
μ(U181) = μ(U182) = μ(length#) = μ(empty#) = μ(U181#) = μ(U171#) = μ(length) = μ(empty) = μ(U171) = μ(U172) = μ(U182#) = μ(U172#) = μ(s) = {1}
μ(leq#) = μ(map_f#) = μ(fstsplit) = μ(process#) = μ(fstsplit#) = μ(sndsplit) = μ(cons) = μ(f) = μ(app) = μ(app#) = μ(map_f) = μ(leq) = μ(process) = μ(sndsplit#) = {1, 2}


Polynomial Interpretation

There are no usable rules

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

length#(cons(h, t))length#(t)

Problem 5: PolynomialLinearRange4



Dependency Pair Problem

Dependency Pairs

fstsplit#(s(n), cons(h, t))fstsplit#(n, t)

Rewrite Rules

fstsplit(0, x)nilfstsplit(s(n), nil)nil
fstsplit(s(n), cons(h, t))cons(h, fstsplit(n, t))sndsplit(0, x)x
sndsplit(s(n), nil)nilsndsplit(s(n), cons(h, t))sndsplit(n, t)
empty(nil)trueempty(cons(h, t))false
leq(0, m)trueleq(s(n), 0)false
leq(s(n), s(m))leq(n, m)length(nil)0
length(cons(h, t))s(length(t))app(nil, x)x
app(cons(h, t), x)cons(h, app(t, x))map_f(pid, nil)nil
map_f(pid, cons(h, t))app(f(pid, h), map_f(pid, t))process(store, m)U171(leq(m, length(store)), store, m)
U171(true, store, m)U172(empty(fstsplit(m, store)), store, m)U172(false, store, m)process(app(map_f(self, nil), sndsplit(m, store)), m)
process(store, m)U181(leq(m, length(store)), store, m)U181(false, store, m)U182(empty(fstsplit(m, app(map_f(self, nil), store))), store, m)
U182(false, store, m)process(sndsplit(m, app(map_f(self, nil), store)), m)

Original Signature

Termination of terms over the following signature is verified: f, app, map_f, leq, true, self, process, fstsplit, 0, s, sndsplit, empty, length, false, cons, nil

Strategy

Context-sensitive strategy:
μ(self) = μ(T) = μ(false) = μ(true) = μ(0) = μ(nil) = ∅
μ(U181) = μ(U182) = μ(length#) = μ(empty#) = μ(U181#) = μ(U171#) = μ(length) = μ(empty) = μ(U171) = μ(U172) = μ(U182#) = μ(U172#) = μ(s) = {1}
μ(leq#) = μ(map_f#) = μ(fstsplit) = μ(process#) = μ(fstsplit#) = μ(sndsplit) = μ(cons) = μ(f) = μ(app) = μ(app#) = μ(map_f) = μ(leq) = μ(process) = μ(sndsplit#) = {1, 2}


Polynomial Interpretation

There are no usable rules

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

fstsplit#(s(n), cons(h, t))fstsplit#(n, t)

Problem 6: PolynomialLinearRange4



Dependency Pair Problem

Dependency Pairs

map_f#(pid, cons(h, t))map_f#(pid, t)

Rewrite Rules

fstsplit(0, x)nilfstsplit(s(n), nil)nil
fstsplit(s(n), cons(h, t))cons(h, fstsplit(n, t))sndsplit(0, x)x
sndsplit(s(n), nil)nilsndsplit(s(n), cons(h, t))sndsplit(n, t)
empty(nil)trueempty(cons(h, t))false
leq(0, m)trueleq(s(n), 0)false
leq(s(n), s(m))leq(n, m)length(nil)0
length(cons(h, t))s(length(t))app(nil, x)x
app(cons(h, t), x)cons(h, app(t, x))map_f(pid, nil)nil
map_f(pid, cons(h, t))app(f(pid, h), map_f(pid, t))process(store, m)U171(leq(m, length(store)), store, m)
U171(true, store, m)U172(empty(fstsplit(m, store)), store, m)U172(false, store, m)process(app(map_f(self, nil), sndsplit(m, store)), m)
process(store, m)U181(leq(m, length(store)), store, m)U181(false, store, m)U182(empty(fstsplit(m, app(map_f(self, nil), store))), store, m)
U182(false, store, m)process(sndsplit(m, app(map_f(self, nil), store)), m)

Original Signature

Termination of terms over the following signature is verified: f, app, map_f, leq, true, self, process, fstsplit, 0, s, sndsplit, empty, length, false, cons, nil

Strategy

Context-sensitive strategy:
μ(self) = μ(T) = μ(false) = μ(true) = μ(0) = μ(nil) = ∅
μ(U181) = μ(U182) = μ(length#) = μ(empty#) = μ(U181#) = μ(U171#) = μ(length) = μ(empty) = μ(U171) = μ(U172) = μ(U182#) = μ(U172#) = μ(s) = {1}
μ(leq#) = μ(map_f#) = μ(fstsplit) = μ(process#) = μ(fstsplit#) = μ(sndsplit) = μ(cons) = μ(f) = μ(app) = μ(app#) = μ(map_f) = μ(leq) = μ(process) = μ(sndsplit#) = {1, 2}


Polynomial Interpretation

There are no usable rules

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

map_f#(pid, cons(h, t))map_f#(pid, t)

Problem 8: PolynomialLinearRange4



Dependency Pair Problem

Dependency Pairs

app#(cons(h, t), x)app#(t, x)

Rewrite Rules

fstsplit(0, x)nilfstsplit(s(n), nil)nil
fstsplit(s(n), cons(h, t))cons(h, fstsplit(n, t))sndsplit(0, x)x
sndsplit(s(n), nil)nilsndsplit(s(n), cons(h, t))sndsplit(n, t)
empty(nil)trueempty(cons(h, t))false
leq(0, m)trueleq(s(n), 0)false
leq(s(n), s(m))leq(n, m)length(nil)0
length(cons(h, t))s(length(t))app(nil, x)x
app(cons(h, t), x)cons(h, app(t, x))map_f(pid, nil)nil
map_f(pid, cons(h, t))app(f(pid, h), map_f(pid, t))process(store, m)U171(leq(m, length(store)), store, m)
U171(true, store, m)U172(empty(fstsplit(m, store)), store, m)U172(false, store, m)process(app(map_f(self, nil), sndsplit(m, store)), m)
process(store, m)U181(leq(m, length(store)), store, m)U181(false, store, m)U182(empty(fstsplit(m, app(map_f(self, nil), store))), store, m)
U182(false, store, m)process(sndsplit(m, app(map_f(self, nil), store)), m)

Original Signature

Termination of terms over the following signature is verified: f, app, map_f, leq, true, self, process, fstsplit, 0, s, sndsplit, empty, length, false, cons, nil

Strategy

Context-sensitive strategy:
μ(self) = μ(T) = μ(false) = μ(true) = μ(0) = μ(nil) = ∅
μ(U181) = μ(U182) = μ(length#) = μ(empty#) = μ(U181#) = μ(U171#) = μ(length) = μ(empty) = μ(U171) = μ(U172) = μ(U182#) = μ(U172#) = μ(s) = {1}
μ(leq#) = μ(map_f#) = μ(fstsplit) = μ(process#) = μ(fstsplit#) = μ(sndsplit) = μ(cons) = μ(f) = μ(app) = μ(app#) = μ(map_f) = μ(leq) = μ(process) = μ(sndsplit#) = {1, 2}


Polynomial Interpretation

There are no usable rules

The following dependency pairs are strictly oriented by an ordering on the given polynomial interpretation, thus they are removed:

app#(cons(h, t), x)app#(t, x)