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Outline

This is an introduction to the study of Substructural Logics,
which is an attempt to understand various nonclassical logics
in a uniform way.

N. Galatos, P. Jipsen, T. Kowalski, HO: Residuated Lattices: an algebraic

glimpse at substructural logics, Studies in Logic, vol.151, Elsevier, April,

2007
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A. Various nonclassical logics

Two main directions in nonclassical logics:

Logics with additional operators
modal logics, temporal logics, epistemic logics etc.

Logics with nonclassical implications
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(1) Constructive reasoning

Mathematical arguments are often infinitary and non-constructive.
From intuitionists’ viewpoint, mathematical arguments must be
constructive.

To infer α → β, it is required to have an algorithm for
constructing a proof of β from any given proof of α,

To infer α ∨ β, it is required to tell which of α and β holds,
and also to have the justification.
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(1) Constructive reasoning

Mathematical arguments are often infinitary and non-constructive.
From intuitionists’ viewpoint, mathematical arguments must be
constructive.

To infer α → β, it is required to have an algorithm for
constructing a proof of β from any given proof of α,

To infer α ∨ β, it is required to tell which of α and β holds,
and also to have the justification.

Thus, in constructive reasoning, both the law of double negation
¬¬α → α and the law of excluded middle α ∨ ¬α are rejected.
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(2) Relevant reasoning

The implication in classical logic is material implication, i.e.
α → β is identified with ¬α ∨ β.

Thus, both (α ∧ ¬α) → β and β → (α → α) are classically valid
(as both ¬(α ∧ ¬α) and ¬α ∨ α are true), but their validity will be
counterintuitive.
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Relevant logicians try to formalize relevant implication, which
expresses “implication” used in our daily reasoning.

For instance, relevant implication must satisfy:

Relevance principle: If α (relevantly) implies β, there must be some

”connections” between α and β. (Without such a connection, why does

β follow from α?)
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(3) Many-valued logics

In 1920s, J.  Lukasiewicz introduced both n + 1-valued logic (for
each n > 0) with the set of truth values {0, 1/n, 2/n, . . . ,
(n − 1)/n, 1}, and also infinite-valued logic with the unit interval
[0, 1] as the set of truth values.
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(3) Many-valued logics

In 1920s, J.  Lukasiewicz introduced both n + 1-valued logic (for
each n > 0) with the set of truth values {0, 1/n, 2/n, . . . ,
(n − 1)/n, 1}, and also infinite-valued logic with the unit interval
[0, 1] as the set of truth values.

The truth table of each connective is defined as follows:

a ∧ b = min{a, b} a ∨ b = max{a, b}
¬a = 1 − a a → b = min{1, 1 − a + b}

=

{

1 a ≤ b
1 − a + b a > b
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(4) Fuzzy logics

P. Hájek discusses fuzzy logics based on triangular norms
(t-norms).

A binary operation on [0, 1] is a t-norm if it is associative,
commutative and monotone with the unit element 1.
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(4) Fuzzy logics

P. Hájek discusses fuzzy logics based on triangular norms
(t-norms).

A binary operation on [0, 1] is a t-norm if it is associative,
commutative and monotone with the unit element 1.

A t-norm · is left-continuous if x · sup Z = sup(x · Z ) for each
x ∈ [0, 1] and each Z ⊆ [0, 1]. For each left-continuous t-norm ·,
define an implication → by

a → b = sup{z : a · z ≤ b}
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Examples of t-norms

(1) a · b = min{a, b}

a → b = b if a > b, and = 1 otherwise. Implication of
Gödel logic.
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Examples of t-norms

(1) a · b = min{a, b}

a → b = b if a > b, and = 1 otherwise. Implication of
Gödel logic.

(2) a · b = max{0, a + b − 1}

a → b = min{1, 1 − a + b}, i.e. many-valued implication.
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Examples of t-norms

(1) a · b = min{a, b}

a → b = b if a > b, and = 1 otherwise. Implication of
Gödel logic.

(2) a · b = max{0, a + b − 1}

a → b = min{1, 1 − a + b}, i.e. many-valued implication.

(3) a · b = a × b

a → b = b/a if a > b, and = 1 otherwise.
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Are there something common among these logics?

Is it possible to discuss them within a uniform framework?
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Are there something common among these logics?

Is it possible to discuss them within a uniform framework?

Substructural Logics
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Are there something common among these logics?

Is it possible to discuss them within a uniform framework?

Substructural Logics

We will explain what are substructural logics. Usually, they are
introduced as sequent systems.
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B. Sequent system LJ

A sequent is an expression of the following form with m ≥ 0:

α1, . . . , αm ⇒ β

Intuitively, it means ”β follows from assumptions α1, . . . , αm”. (cf.
sequents in classical logic)

Each sequent system consists of initial sequents (axioms) and rules
that determine correct sequents in the system.
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The sequent system LJ for intuitionistic logic introduced by
Gentzen consists of initial sequents, i.e. sequents of the form
α ⇒ α, and the following three kinds of rules.

Structural rules

Cut rule

Rules for logical connectives
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(a) Structural rules

Capital Greek letters denote finite sequences of formulas.

Structural rules control the meaning of commas in sequents. (i)
together with (o) is called (w) (weakening rules).

(e) exchange rule (commutativity):

Γ, α, β, ∆ ⇒ ϕ

Γ, β, α, ∆ ⇒ ϕ

(c) contraction rule (square-increasing):

Γ, α, α, ∆ ⇒ ϕ

Γ, α, ∆ ⇒ ϕ

(i) left weakening rule (integrality):

Γ, ∆ ⇒ ϕ

Γ, α, ∆ ⇒ ϕ

(o) right weakening rule (minimality of 0):
Γ ⇒

Γ ⇒ α
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(b) Cut rule

Cut rule

Γ ⇒ α Σ, α, Ξ ⇒ ϕ

Σ, Γ, Ξ ⇒ ϕ
(cut)
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(c) Rules for ∨ and ∧

Γ, α, ∆ ⇒ ϕ Γ, β, ∆ ⇒ ϕ

Γ, α ∨ β, ∆ ⇒ ϕ
(∨ ⇒)

Γ ⇒ α
Γ ⇒ α ∨ β

(⇒ ∨1)
Γ ⇒ β

Γ ⇒ α ∨ β
(⇒ ∨2)

Γ, α, ∆ ⇒ ϕ

Γ, α ∧ β, ∆ ⇒ ϕ
(∧1 ⇒)

Γ, β, ∆ ⇒ ϕ

Γ, α ∧ β, ∆ ⇒ ϕ
(∧2 ⇒)

Γ ⇒ α Γ ⇒ β

Γ ⇒ α ∧ β
(⇒ ∧)
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weakening and contraction rules in a proof of distributive law
in LJ

α ⇒ α

α, β ⇒ α
(weak)

β ⇒ β

α, β ⇒ β
(weak)

α, β ⇒ α ∧ β

α, β ⇒ (α ∧ β) ∨ (α ∧ γ)

α ⇒ α
α, γ ⇒ α (weak)

γ ⇒ γ

α, γ ⇒ γ (weak)

α, γ ⇒ α ∧ γ

α, γ ⇒ (α ∧ β) ∨ (α ∧ γ)

α, β ∨ γ ⇒ (α ∧ β) ∨ (α ∧ γ)

α ∧ (β ∨ γ), β ∨ γ ⇒ (α ∧ β) ∨ (α ∧ γ)

α ∧ (β ∨ γ), α ∧ (β ∨ γ) ⇒ (α ∧ β) ∨ (α ∧ γ)

α ∧ (β ∨ γ) ⇒ (α ∧ β) ∨ (α ∧ γ)
(cont)

Hiroakira Ono Substructural Logics - Part 1



Nonclassical Logics Sequent system LJ Roles of structural rules Substructural Logics

(d) Rules for implication

Rules for implication

Γ ⇒ α β, ∆ ⇒ ϕ

Γ, α → β, ∆ ⇒ ϕ
(→⇒)

α, Γ ⇒ β

Γ ⇒ α → β
(⇒→)
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Find a proof of ⇒ α → (β → α) in LJ
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Find a proof of ⇒ α → (β → α) in LJ

α ⇒ α
α, β ⇒ α

(weak)

α ⇒ β → α
(⇒→)

⇒ α → (β → α)
(⇒→)
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Find a proof of α → (β → γ) ⇒ (α → β) → (α → γ) in LJ.
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Find a proof of α → (β → γ) ⇒ (α → β) → (α → γ) in LJ.

α ⇒ α

α ⇒ α

β ⇒ β γ ⇒ γ

β → γ, β ⇒ γ

β, α, α → (β → γ) ⇒ γ

α, α, α → β, α → (β → γ) ⇒ γ

α, α → β, α → (β → γ) ⇒ γ
(cont)
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When exchange rule is missing ...

In the following, we will consider also sequent systems which lack
some of structural rules. In particular when a system lacks
exchange rule, it will be natural to introduce two kinds of
“implication” (division), left-residuation \ and right residuation /,
with the following rules.
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When exchange rule is missing ...

In the following, we will consider also sequent systems which lack
some of structural rules. In particular when a system lacks
exchange rule, it will be natural to introduce two kinds of
“implication” (division), left-residuation \ and right residuation /,
with the following rules.

α, Γ ⇒ β

Γ ⇒ α\β
(⇒ \)

Γ ⇒ α ∆, β, Σ ⇒ θ

∆, Γ, α\β, Σ ⇒ θ
(\ ⇒)

Γ, α ⇒ β

Γ ⇒ β/α
(⇒ /)

Γ ⇒ α ∆, β, Σ ⇒ θ

∆, β/α, Γ, Σ ⇒ θ
(/ ⇒)
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α ⇒ α

β ⇒ β γ ⇒ γ

β/γ, γ ⇒ β

α, α\(β/γ), γ ⇒ β

α\(β/γ), γ ⇒ α\β

α\(β/γ) ⇒ (α\β)/γ
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Note

In each rule except Cut, every formula in upper sequents will
appear also as a subformula of the lower sequent.
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(e) Negation

The negation ¬α means that assuming α is led to a contradiction.
Thus, by using a constant 0 (falsehood), the negation ¬α of a
formula α is defined by

¬α = α → 0.

For 0, we assume the initial sequent 0 ⇒ , and the following rule:

Γ ⇒
Γ ⇒ 0

(0 weakening)

Hiroakira Ono Substructural Logics - Part 1



Nonclassical Logics Sequent system LJ Roles of structural rules Substructural Logics

(e) Negation

The negation ¬α means that assuming α is led to a contradiction.
Thus, by using a constant 0 (falsehood), the negation ¬α of a
formula α is defined by

¬α = α → 0.

For 0, we assume the initial sequent 0 ⇒ , and the following rule:

Γ ⇒
Γ ⇒ 0

(0 weakening)

0 means empty formula in the right-hand side.
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When exchange rule is missing, it will be natural to introduce two
kinds of “negation”

∼ α = α\0 and −α = 0/α.
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For our algebraic understanding of sequents, we will introduce a
constant 1 and assume the initial sequent ⇒ 1, and the following
rule:

Γ, ∆ ⇒ ϕ

Γ, 1, ∆ ⇒ ϕ
(1 weakening)
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For our algebraic understanding of sequents, we will introduce a
constant 1 and assume the initial sequent ⇒ 1, and the following
rule:

Γ, ∆ ⇒ ϕ

Γ, 1, ∆ ⇒ ϕ
(1 weakening)

1 means empty formula in the left-hand side.

Hiroakira Ono Substructural Logics - Part 1



Nonclassical Logics Sequent system LJ Roles of structural rules Substructural Logics

For our algebraic understanding of sequents, we will introduce a
constant 1 and assume the initial sequent ⇒ 1, and the following
rule:

Γ, ∆ ⇒ ϕ

Γ, 1, ∆ ⇒ ϕ
(1 weakening)

1 means empty formula in the left-hand side.

Intuitively, 1 denotes the weakest truth and 0 the strongest
falsehood.
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C. Structural rules and commas

a) Exchange rule allows us to use assumptions in an arbitrary order:

Γ, α, β, ∆ ⇒ ϕ

Γ, β, α, ∆ ⇒ ϕ

b) Without contraction rule, every (occurrence of each) assumption is used at most

once in deriving a conclusion:

Γ, α, α, ∆ ⇒ ϕ

Γ, α, ∆ ⇒ ϕ

c) Without weakening rule (i), every assumption is used at least once in deriving a

conclusion:
Γ, ∆ ⇒ ϕ

Γ, α, ∆ ⇒ ϕ
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(i) What are commas in sequents?

Commas of LJ can be understood as conjunctions.

In fact, using contraction and (left) weakening, we can show that :

a sequent α1, . . . , αm ⇒ β is provable in LJ iff

α1 ∧ . . . ∧ αm ⇒ β is provable in LJ.
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On the other hand, commas are not expressed by conjunctions in
general, when either contraction or (left) weakening is missing.

To express commas in general situation, we will introduce a new
logical connective ·, called the fusion or the multiplicative
conjunction.
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On the other hand, commas are not expressed by conjunctions in
general, when either contraction or (left) weakening is missing.

To express commas in general situation, we will introduce a new
logical connective ·, called the fusion or the multiplicative
conjunction.

Rules for · are given as follows:

Γ ⇒ α ∆ ⇒ β

Γ, ∆ ⇒ α · β
(⇒ ·)

α, β, Γ ⇒ γ

α · β, Γ ⇒ γ
(· ⇒)
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(ii) Fusions as Commas

Then we have the following.

α1, . . . , αm ⇒ β is provable iff α1 · . . . · αm ⇒ β is provable,
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(iii) Implications as Residuals of fusion

Moreover, we can show the following equivalences which say that
implications are residuals of fusion:

With exchange rule:

α · β ⇒ ϕ is provable iff α ⇒ β → ϕ is provable.
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(iii) Implications as Residuals of fusion

Moreover, we can show the following equivalences which say that
implications are residuals of fusion:

With exchange rule:

α · β ⇒ ϕ is provable iff α ⇒ β → ϕ is provable.

Without exchange rule:

α · β ⇒ ϕ is provable iff β ⇒ α\ϕ is provable iff
α ⇒ ϕ/β is provable.
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D. Summary of initial sequents and rules

Initial sequents α ⇒ α

Cut rule

Structural rules
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D. Summary of initial sequents and rules

Initial sequents α ⇒ α

Cut rule

Structural rules

Rules for ∨ and ∧

Rules for implication(s)
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D. Summary of initial sequents and rules

Initial sequents α ⇒ α

Cut rule

Structural rules

Rules for ∨ and ∧

Rules for implication(s)

Rules for fusion
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D. Summary of initial sequents and rules

Initial sequents α ⇒ α

Cut rule

Structural rules

Rules for ∨ and ∧

Rules for implication(s)

Rules for fusion

Initial sequents for constants 1 and 0

Rules for constants 1 and 0
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E. What does fusion mean?

Let α: one pays 1000 yen.
β: one can get a hardcover.
γ: one can have lunch.
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E. What does fusion mean?

Let α: one pays 1000 yen.
β: one can get a hardcover.
γ: one can have lunch.

Assume that

1) one (fixed) hardcover costs 1000 yen,
2) lunch at a Japanese restaurant costs 1000 yen.
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Thus, we can assume both α ⇒ β and α ⇒ γ are provable. Then

(1) α · α ⇒ β · γ is provable,
(2) α ⇒ β · γ is not always provable,
(3) α ⇒ β ∧ γ is provable.
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Thus, we can assume both α ⇒ β and α ⇒ γ are provable. Then

(1) α · α ⇒ β · γ is provable,
(2) α ⇒ β · γ is not always provable,
(3) α ⇒ β ∧ γ is provable.

What are differences among them?
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(1) Fusions are ”consumed”

(1) α · α ⇒ β · γ is provable,
(2) α ⇒ β · γ is not always provable,
(3) α ⇒ β ∧ γ is provable.
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(1) Fusions are ”consumed”

(1) α · α ⇒ β · γ is provable,
(2) α ⇒ β · γ is not always provable,
(3) α ⇒ β ∧ γ is provable.

(1) if one pays 1000 plus 1000 yen, i.e. 2000 yen, then
one can have both a hardcover and a lunch.
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(1) Fusions are ”consumed”

(1) α · α ⇒ β · γ is provable,
(2) α ⇒ β · γ is not always provable,
(3) α ⇒ β ∧ γ is provable.

(1) if one pays 1000 plus 1000 yen, i.e. 2000 yen, then
one can have both a hardcover and a lunch.

(2) 1000 yen is not enough to have both of them.

Hiroakira Ono Substructural Logics - Part 1



Nonclassical Logics Sequent system LJ Roles of structural rules Substructural Logics

(1) Fusions are ”consumed”

(1) α · α ⇒ β · γ is provable,
(2) α ⇒ β · γ is not always provable,
(3) α ⇒ β ∧ γ is provable.

(1) if one pays 1000 plus 1000 yen, i.e. 2000 yen, then
one can have both a hardcover and a lunch.

(2) 1000 yen is not enough to have both of them.

(3) if one pays 1000 yen then one can get a hardcover
and also can have lunch, “but not both”.
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(2) Conjunction = Disjunction?

(3) if one pays 1000 yen then one can get a hardcover and also
can have lunch, “but not both”.

Then, what is a difference between conjunction and disjunction?
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F. Substructural logics

We introduce several sequent systems of basic substructural logics.
They are obtained from LJ for intuitionistic logic by deleting some
or all of structural rules (and then sometimes adding the law of
double nagation)

FL — deleting all structural rules from LJ

FLe — FL+ exchange (IMALL)

FLc — FL+ contraction

FLew — FL+ exchange + weakening

CFLe — FLe + ¬¬α → α (MALL)
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Various substructural logics

Substructural logics are axiomatic extensions of FL.
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Various substructural logics

Substructural logics are axiomatic extensions of FL.

Lambek calculus — logic without structural rules, i.e. FL

Calculus for categorial grammer introduced by Ajdukiewicz and

Bar-Hillel (J. Lambek, 1958), which was rediscovered in early 80s

(J. van Benthem and W. Buszkowski).

Relevant logics — logics without weakening rules
A. Anderson, N. Belnap Jr., R.K. Meyer, M. Dunn, A. Urquhart etc.

Logics without contraction rule

V. Grishin (middle of 1970), H.O. & Y. Komori (1985).

Linear logic — logic only with exchange rule, MALL =
FLe + double negation

J.-Y. Girard (1987)

Hiroakira Ono Substructural Logics - Part 1



Nonclassical Logics Sequent system LJ Roles of structural rules Substructural Logics

Relevant logic R is FLec + double negation + distributive law

Both fuzzy logics and  Lukasiewicz’s many-valued logics are
extensions of FLew
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Appendix: Hilbert-style system for FLew

The system consists of modus ponens as a single rule and the
following axiom schemata. You may observe that → takes multiple
jobs of implications, commas and arrows.

α → (β → α) (wekening),

(α → (β → γ)) → (β → (α → γ)) (exchange),

0 → α and (α → β) → ((γ → α) → (γ → β)),

(α → γ) → ((β → γ) → ((α ∨ β) → γ),

α → (α ∨ β) and β → (α ∨ β),

((γ → α) ∧ (γ → β)) → (γ → (α ∧ β)),

(α ∧ β) → α and (α ∧ β) → β,

α → (β → (α ∧ β)),

α → (β → (α · β)),

(α → (β → γ)) → ((α · β) → γ).
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Appendix: Hilbert-style system for FLew

The system consists of modus ponens as a single rule and the
following axiom schemata. You may observe that → takes multiple
jobs of implications, commas and arrows.

α → (β → α) (wekening),

(α → (β → γ)) → (β → (α → γ)) (exchange),

0 → α and (α → β) → ((γ → α) → (γ → β)),

(α → γ) → ((β → γ) → ((α ∨ β) → γ),

α → (α ∨ β) and β → (α ∨ β),

((γ → α) ∧ (γ → β)) → (γ → (α ∧ β)),

(α ∧ β) → α and (α ∧ β) → β,

α → (β → (α ∧ β)),

α → (β → (α · β)),

(α → (β → γ)) → ((α · β) → γ).

(α → (α → γ)) → (α → γ) (contraction).
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1. Proof theory

Many important logical results are obtained from analyzing
structures of proofs, in particular of cut-free proofs.

Proof Theory = analysis of structures of proofs
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A. Cut elimination

Cut elimination is one of most important tools in proof-theoretic
approach. Cut elimination for a sequent system L means:

If a sequent is provable in L then it is also provable in L without
using cut rule.
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A. Cut elimination

Cut elimination is one of most important tools in proof-theoretic
approach. Cut elimination for a sequent system L means:

If a sequent is provable in L then it is also provable in L without
using cut rule.

While cut-free proofs may be much longer than proofs with cut,
they have many good properties.
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(1) Cut elimination in substructural logics

Though cut elimination holds only for a limited number of sequent
systems, it holds for most of sequent systems for basic
substructural logics discussed so far.

Cut elimination holds for FL, FLe, FLw, FLew, FLec and LJ.

For more details, see: H. O., “Proof-theoretic methods in
nonclassical logics – an introduction”, 1998
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(2) Consequences of cut elimination

a) Subformula property

Any cut-free proof of a given sequent Γ ⇒ θ contains

only sequents that consist of subformulas of some

formulas in Γ ⇒ θ.
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(2) Consequences of cut elimination

a) Subformula property

Any cut-free proof of a given sequent Γ ⇒ θ contains

only sequents that consist of subformulas of some

formulas in Γ ⇒ θ.

b) Decidability

All of these substructural logics are decidable. Moreover,

all of these substructural predicate logics without

contraction rule are decidable.
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c) Disjunction property

Every basic logic without right contraction rule has the

disjunction property, i.e. if α ∨ β is provable then either

α or β is provable.

Intuitionistic logic has the disjunction property, but classical logic
doesn’t.
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c) Disjunction property

Every basic logic without right contraction rule has the

disjunction property, i.e. if α ∨ β is provable then either

α or β is provable.

Intuitionistic logic has the disjunction property, but classical logic
doesn’t.

d) Craig interpolation property
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B. Deducibility

Let Σ be a set of formulas. A derivation of Γ ⇒ α from
assumptions Σ in a sequent system L is a proof-figure to the
sequent Γ ⇒ α which has also sequents ⇒ γ (for each γ ∈ Σ) as
extra initial sequents.

A formula α is deducible from Σ in FL (Σ ⊢FL α) iff there exists a
derivation of ⇒ α from Σ in FL.
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B. Deducibility

Let Σ be a set of formulas. A derivation of Γ ⇒ α from
assumptions Σ in a sequent system L is a proof-figure to the
sequent Γ ⇒ α which has also sequents ⇒ γ (for each γ ∈ Σ) as
extra initial sequents.

A formula α is deducible from Σ in FL (Σ ⊢FL α) iff there exists a
derivation of ⇒ α from Σ in FL.

Obviously, the provability of a formula α is equivalent to its
deducibility from the empty assumption. For example,

⊢Int α iff ∅ ⊢Int α,

where ⊢Int α means that the sequent ⇒ α is provable in LJ.
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The deducibility is different from the provability. For example,
while α ⇒ α2 is not provable in FL, α ⊢FL α2 holds as the
following shows.

⇒ α ⇒ α
⇒ α · α (⇒ ·)

Can the deducibility relation be reduced to the provability?
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(a) Deduction theorem

Yes, for both classical and intuitionistic logics. In fact, the
following deduction theorem (DT) holds for them:

Σ ∪ {α} ⊢ β iff Σ ⊢ (α → β).

By applying this repeatedly, the decidability of the deducibility in
classical and intuitionistic logics follows from that of the provability.
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Outline of the proof

The left-hand side follows immeadiately from the right-hand side.

Conversely, suppose that Σ ∪ {α} ⊢ β. Take a derivation Π of
⇒ β from assumptions Σ ∪ {α}. Replace every sequent ∆ ⇒ θ in
Π by α, ∆ ⇒ θ.

Then, ⇒ α is transformed into an initial sequent α ⇒ α, and ⇒ δ for δ ∈ Σ
into α ⇒ δ, which follows from ⇒ δ by weakening.

Using induction, we can show that α, ∆ ⇒ θ is deducible from Σ for each
sequent ∆ ⇒ θ in Π by the help of structural rules.

In particular, α ⇒ β is deducible from Σ.
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(b) Local deduction theorem

In a system with exchange rule, the following local deduction
theorem holds.

Σ ∪ {α}⊢FLe
β iff Σ⊢FLe

(α ∧ 1)m → β for some m.
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(b) Local deduction theorem

In a system with exchange rule, the following local deduction
theorem holds.

Σ ∪ {α}⊢FLe
β iff Σ⊢FLe

(α ∧ 1)m → β for some m.

As a corollary, we have:

Σ ∪ {α}⊢FLew
β iff Σ⊢FLew

αm → β for some m.

cf. many-valued logics
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It is still local, as we cannot always determine such an m from
given Σ, α, β. In fact,

The provability problem of FLe is decidable. (by cut
elimination)

The deducibility problem of FLe is undecidable (essentially by
Lincoln, Mitchell, Scedrov & Shankar).

Here, the deducibility relation for a logic L is decidable iff

there is an effective procedure of deciding whether or not Σ⊢Lα
holds for each finite set of formulas Σ and each formula α.
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C. Interpolation properties

A logic L has the Craig’s interpolation property (CIP), if for all
formulas α, β such that α → β is provable in L, there exists a
formula γ, called an interpolant, such that

both α → γ and γ → β are provable in L,

Var(γ) ⊆ Var(α) ∩ Var(β).

Note that when L is without exchange, → is replaced by \.

Hiroakira Ono Substructural Logics - Part 2



1. Proof theory Cut elimination Cut elimination Consequences of cut elimination Consequences of cut elimination Deducibilit

(i) Maehara’s method

S. Maehara gives a way of showing CIP as a consequence of cut
elimination. Here is an outline of the method e.g. for FLew. We
show the CIP of the following form.

If Γ ⇒ ϕ is provable in FLew, then there exists a formula δ, such
that

both Γ ⇒ δ and δ ⇒ ϕ are provable in FLew,

Var(δ) ⊆ Var(Γ) ∩ Var(ϕ).
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(i) Maehara’s method

S. Maehara gives a way of showing CIP as a consequence of cut
elimination. Here is an outline of the method e.g. for FLew. We
show the CIP of the following form.

If Γ ⇒ ϕ is provable in FLew, then there exists a formula δ, such
that

both Γ ⇒ δ and δ ⇒ ϕ are provable in FLew,

Var(δ) ⊆ Var(Γ) ∩ Var(ϕ).

By cut elimination for FLew, there is a cut-free proof Π of Γ ⇒ ϕ.
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Take an arbitrary sequent Ψ ⇒ β in Π, and let 〈Λ, Θ〉 be an
arbitrary partition of Ψ (i.e. the multiset union of Λ and Θ is equal
to Ψ). Then, we show the following by induction on the length of
a proof of Ψ ⇒ β in Π.

There exists a formula γ such that

both Λ ⇒ γ and γ, Θ ⇒ β are provable in FLew,

Var(γ) ⊆ Var(Λ) ∩ (Var(Θ ∪ {β})).
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Take an arbitrary sequent Ψ ⇒ β in Π, and let 〈Λ, Θ〉 be an
arbitrary partition of Ψ (i.e. the multiset union of Λ and Θ is equal
to Ψ). Then, we show the following by induction on the length of
a proof of Ψ ⇒ β in Π.

There exists a formula γ such that

both Λ ⇒ γ and γ, Θ ⇒ β are provable in FLew,

Var(γ) ⊆ Var(Λ) ∩ (Var(Θ ∪ {β})).

Then the CIP follows immediately. Using Maehara’s method, an
interpolant can be obtained in a constructive way as long as a
cut-free proof is given. (CIP holds for FL, FLe, FLew and FLec).
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(ii) Deductive interpolation property

A substructural logic L has the strong deductive interpolation
property (strong DIP), if for every set of formulas Λ ∪ Θ ∪ {ϕ}
such that Λ ∪ Θ ⊢L ϕ, there exists a set of formulas ∆ such that

Λ ⊢L δ for all δ ∈ ∆ and ∆ ∪ Θ ⊢L ϕ,

Var(∆) ⊆ Var(Λ) ∩ Var(Θ ∪ {ϕ}).

When Θ is empty, it is called the DIP.
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(ii) Deductive interpolation property

A substructural logic L has the strong deductive interpolation
property (strong DIP), if for every set of formulas Λ ∪ Θ ∪ {ϕ}
such that Λ ∪ Θ ⊢L ϕ, there exists a set of formulas ∆ such that

Λ ⊢L δ for all δ ∈ ∆ and ∆ ∪ Θ ⊢L ϕ,

Var(∆) ⊆ Var(Λ) ∩ Var(Θ ∪ {ϕ}).

When Θ is empty, it is called the DIP.

For each logic over FLe, CIP implies DIP, and DIP is equivalent to
SDIP.
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2. Algebraic approaches

While proof-theoretic methods provide us with fine and sharp
information on particular logics, algebraic methods supply us with
quite general results.

Algebraic logic = applying algebra & universal algebra to logic
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2. Algebraic approaches

While proof-theoretic methods provide us with fine and sharp
information on particular logics, algebraic methods supply us with
quite general results.

Algebraic logic = applying algebra & universal algebra to logic

Algebraic traditions

Boole, de Morgan, Schroeder

 Lukasiewicz, Tarski, Lindenbaum, Rasiowa, Sikorski: Polish
school

Birkhoff, Stone, Tarski, Jónsson, Mal’cev: universal algebra

Blok, Pigozzi, Czelakowski: abstract algebraic logic
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D. Algebraic interpretations

Let A be an algebra of a suitable type for substructural logics.

A sequent α1, α2, . . . , αm ⇒ β is valid in A iff
f (α1 · α2 · · ·αm) ≤ f (β) holds for every assignment f on A, in
symbol

A |= α1 · α2 · · ·αm ≤ β

In particular, a formula β is valid in A iff A |= 1 ≤ β.
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D. Algebraic interpretations

Let A be an algebra of a suitable type for substructural logics.

A sequent α1, α2, . . . , αm ⇒ β is valid in A iff
f (α1 · α2 · · ·αm) ≤ f (β) holds for every assignment f on A, in
symbol

A |= α1 · α2 · · ·αm ≤ β

In particular, a formula β is valid in A iff A |= 1 ≤ β.

Then, what kind of algebras are suitable for substructural logics?
They must be partially ordered monoids.
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(a) Residuated structures

A p.o. monoid is a structure 〈L; ·, 1;≤〉 such that

〈L;≤〉 is a p.o. set,

〈L; ·, 1〉 is a monoid such that

x ≤ y ⇒ xz ≤ yz and zx ≤ zy .
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(a) Residuated structures

A p.o. monoid is a structure 〈L; ·, 1;≤〉 such that

〈L;≤〉 is a p.o. set,

〈L; ·, 1〉 is a monoid such that

x ≤ y ⇒ xz ≤ yz and zx ≤ zy .

A p.o. monoid is residuated if there exist division operations \ and
/ such that

xy ≤ z ⇔ x ≤ z/y ⇔ y ≤ x\z
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(b) Residuated lattices

Moreover, when 〈L;≤〉 forms a lattice in a given residuated p.o.
monoid , the algebra 〈L;∧,∨, ·, 1, \, /〉 is called a residuated
lattice. In commutative residuated lattices, x\y = y/x holds
always. In this case, residuals are denoted as x → y .
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(b) Residuated lattices

Moreover, when 〈L;≤〉 forms a lattice in a given residuated p.o.
monoid , the algebra 〈L;∧,∨, ·, 1, \, /〉 is called a residuated
lattice. In commutative residuated lattices, x\y = y/x holds
always. In this case, residuals are denoted as x → y .

Note that residuated lattices are equationally definable. In
particular, the law of residuation is expressed by equations;

x(x\z ∧ y) ≤ z and y ≤ x\(xy ∨ z), etc.
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(b) Residuated lattices

Moreover, when 〈L;≤〉 forms a lattice in a given residuated p.o.
monoid , the algebra 〈L;∧,∨, ·, 1, \, /〉 is called a residuated
lattice. In commutative residuated lattices, x\y = y/x holds
always. In this case, residuals are denoted as x → y .

Note that residuated lattices are equationally definable. In
particular, the law of residuation is expressed by equations;

x(x\z ∧ y) ≤ z and y ≤ x\(xy ∨ z), etc.

An FL-algebra is a residuated lattice with a fixed element 0. Using
0, we can introduce two negations by defining ∼ x = x\0 and
−x = 0/x .
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(c) Important RLs

Lattice ordered groups: x\y = x−1y , y/x = yx−1

Heyting algebras: commutative residuated lattices with a least
element 0 such that x · y = x ∧ y holds. 1 is the greatest
element.

Boolean algebras: involutive Heyting algebras, i.e. HAs with
x = −− x , where −x = x → 0.
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 Lukasiewicz’s many-valued models:

x · y = max{0, x + y − 1}, and

y → z = min{1, 1 − y + z}

product algebras

x · y = x × y, and

y → z = z/y if y > z, and = 1 otherwise.

RLs determined by t-norms, in general: Each left-continuous
t-norm over the unit interval [0,1] with the unit 1 is in
particular a commutative residuated lattice. They are exactly
models of fuzzy logics.
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E. Varieties and equational classes

A class of algebras K is a variety iff it is closed under H

(homomorphic images), S (subalgebras) and P (direct products).
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E. Varieties and equational classes

A class of algebras K is a variety iff it is closed under H

(homomorphic images), S (subalgebras) and P (direct products).

For a given set of equations Σ, let Mod(Σ) be the class of algebras
A such that A |= s = t for all s = t in Σ. A class of algebras K is
an equational class iff K = Mod(Σ) for some Σ.
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E. Varieties and equational classes

A class of algebras K is a variety iff it is closed under H

(homomorphic images), S (subalgebras) and P (direct products).

For a given set of equations Σ, let Mod(Σ) be the class of algebras
A such that A |= s = t for all s = t in Σ. A class of algebras K is
an equational class iff K = Mod(Σ) for some Σ.

Birkhoff showed in 1935:

varieties = equational classes
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Important subvarieties

For instance, the class RL of all residuated lattices and the class
FL of all FL-algebras are varieties.

The classes of all Boolean algebras and of all Heyting algebras are
subvarieties of FL.
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Important subvarieties

For instance, the class RL of all residuated lattices and the class
FL of all FL-algebras are varieties.

The classes of all Boolean algebras and of all Heyting algebras are
subvarieties of FL.

Each of the following equations determine important subvarieties
of the variety of FL (cf. structural rules).

commutativity: x · y = y · x (or equivalently, x\y = y/x)

square-increasingness: x ≤ x2,

integrality: x ≤ 1,

minimality of 0: 0 ≤ x .
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F. Logics vs Algebras

By a standard argument using Lindenbaum algebras, we can show

a sequent is provable in FL iff it is valid in every FL-algebra.
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F. Logics vs Algebras

By a standard argument using Lindenbaum algebras, we can show

a sequent is provable in FL iff it is valid in every FL-algebra.

This result can be easily generalized as follows (algebraic
completeness).

For each substructural logic L there exists a class K of FL-algebras
such that

a sequent is provable in L iff it is valid in every FL-algebra in
K.
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(1) Correspondences

Correspondences between equations and formulas

terms: s, t, u, . . . 7−→ formulas: α, β, . . .

s = t =⇒ s ↔ t, i.e. (s\t) ∧ (t\s)

1 ≤ α, i.e. α ∧ 1 = 1 ⇐= α
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(1) Correspondences

Correspondences between equations and formulas

terms: s, t, u, . . . 7−→ formulas: α, β, . . .

s = t =⇒ s ↔ t, i.e. (s\t) ∧ (t\s)

1 ≤ α, i.e. α ∧ 1 = 1 ⇐= α

the variety of Boolean algebras −→ classical logic

the variety of Heyting algebras −→ intuitionistic logic

subvarieties of RL (FL) −→ ?
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(2) Algebraization I

Algebraization a la Lindenbaum

1 For each subvariety V of FL, the set L(V) = {α;V |= 1 ≤ α}
forms a substructural logic.

2 Conversely, for each substructural logic L, the set of equations
{s ≈ t; (s\t) ∧ (t\s) ∈ L} determines a subvariety V(L) of
FL (completeness).

3 Moreover, these two maps L and V are dual
lattice-isomorphisms.
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(2) Algebraization I

Algebraization a la Lindenbaum

1 For each subvariety V of FL, the set L(V) = {α;V |= 1 ≤ α}
forms a substructural logic.

2 Conversely, for each substructural logic L, the set of equations
{s ≈ t; (s\t) ∧ (t\s) ∈ L} determines a subvariety V(L) of
FL (completeness).

3 Moreover, these two maps L and V are dual
lattice-isomorphisms.

Thus,

substructural logics are exactly logics of residuated lattices (more
precisely, FL-algebras).
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(3) Equational consequences

The equational consequence {ui = vi ; i ∈ I} |=V s = t of a
subvariety V of FL is defined for a set of equations
{ui = vi ; i ∈ I} ∪ {s = t} by

for each algebra A in V and each assignment f on A, f (s) = f (t)
holds whenever f (ui ) = f (vi ) holds for all i ∈ I .
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(3) Equational consequences

The equational consequence {ui = vi ; i ∈ I} |=V s = t of a
subvariety V of FL is defined for a set of equations
{ui = vi ; i ∈ I} ∪ {s = t} by

for each algebra A in V and each assignment f on A, f (s) = f (t)
holds whenever f (ui ) = f (vi ) holds for all i ∈ I .

In particular, {ui = vi ; 1 ≤ i ≤ m} |=V s = t is equivalent to the
validity of the following quasi-equation in every A in V.

(u1 = v1 and . . . and um = vm) implies s = t.
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(4) Algebraization II

Algebraization a la Blok-Pigozzi

The deducibility relation corresponds exactly to the equational
consequence.

1 For each subvariety V of FL, {ui = vi ; i ∈ I} |=V s = t iff
{ui\vi ∧ vi\ui ; i ∈ I} ⊢L(V ) s\t ∧ t\s,

2 Conversely, for each substructural logic L, {βj ; j ∈ J} ⊢L α iff
{1 ≤ βj ; j ∈ J} |=V (L) 1 ≤ α,

3 Moreover, they are mutually inverse transformations.
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(4) Algebraization II

Algebraization a la Blok-Pigozzi

The deducibility relation corresponds exactly to the equational
consequence.

1 For each subvariety V of FL, {ui = vi ; i ∈ I} |=V s = t iff
{ui\vi ∧ vi\ui ; i ∈ I} ⊢L(V ) s\t ∧ t\s,

2 Conversely, for each substructural logic L, {βj ; j ∈ J} ⊢L α iff
{1 ≤ βj ; j ∈ J} |=V (L) 1 ≤ α,

3 Moreover, they are mutually inverse transformations.

In abstract algebraic logic, we say this as:
for each substructural logic L, ⊢L is algebraizable and V(L) is an

equivalent algebraic semantics for it.
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F. Some important consequences

The deducibility relation for a logic L is decidable iff

there is an effective procedure of deciding whether or not Σ⊢Lα
holds for each finite set of formulas Σ and each formula α.
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F. Some important consequences

The deducibility relation for a logic L is decidable iff

there is an effective procedure of deciding whether or not Σ⊢Lα
holds for each finite set of formulas Σ and each formula α.

Algebraization theorem implies that the decision problem of the
deducibility relation for a logic L is equivalent to the decision
problem of quasi-equational theory of the corresponding variety
V (L).

Hiroakira Ono Substructural Logics - Part 2



1. Proof theory Cut elimination Cut elimination Consequences of cut elimination Consequences of cut elimination Deducibilit

The equational theory of residuated lattices is decidable.

On the other hand, since the deducibility relation for FLe (without
0) is undecidable, we have:

The quasi-equational theory of commutative RLs is undecidable.
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3. Why sequent systems?

Why sequent systems and their structural rules play critical roles in
substructural logics?
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3. Why sequent systems?

Why sequent systems and their structural rules play critical roles in
substructural logics?

Implication is admittedly the most important logical
connective.

In sequent formulation, a monoid operation is always
introduced explicitly introduced as comma, and moreover

implication(s) behaves exactly as its residual(s).

Thus, different behaviors of commas, expressed usually by
structural rules, will affect directly those of implications, and
vice versa.
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3. Why sequent systems?

Why sequent systems and their structural rules play critical roles in
substructural logics?

Implication is admittedly the most important logical
connective.

In sequent formulation, a monoid operation is always
introduced explicitly introduced as comma, and moreover

implication(s) behaves exactly as its residual(s).

Thus, different behaviors of commas, expressed usually by
structural rules, will affect directly those of implications, and
vice versa.

In this way, the theory of implications (divisions) can be transferred
faithfully into the theory of monoids (multiplications).
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