
Networking part 3:
the transport layer

Juliusz Chroboczek
Université de Paris-Diderot (Paris 7)

September 2011



Summary of the previous episodes

Episode 1: switching, packet switching and the Internet.

Episode 2: the network layer: routing.

Episode 3: the transport layer: end-to-end
communication.



Episode 1(1): circuit switching
Circuit switching:

Switching is what makes networking possible.



Episode 1(2): message switching

Message switching: telegraph.

– data is in the form of discrete messages;
– messages are forwarded over multiple hops;
– each message is routed independently.

The different segments are never connected to make a
physical circuit: virtual circuit.



Episode 1(3): packet switching
Packet switching: internet.

– data is segmented into bounded size packets;
– packets are forwarded over multiple hops;
– each message is routed independently.

Packet switching is what makes it possible to
interconnect networks: an internet.

The largest internet is called The (Global) Internet.



Episode 2: routing
Routing is the process of deciding where packets go.

In the Internet, routing is hop-to-hop: every router
makes an autonomous decision.



Episode 2: routing (2)

We really want routing to be automated.



Episode 2: routing (3)

We really want automated routing.

This is the role of a routing protocol.

An example was described in detail in Tsvaneti; we can
now assume that we know how to route.



Layering

In Episode 2, we assumed that we know how to
communicate on a single link.

In Episode 3, we assume that we know how to
communicate across the Internet.

This is analogous to how:
– mathematicians assume that a lemma is correct;
– computer programmers assume that a library

works.
In networking, this kind of modularity is called layering.



Layering (2)

Layering follows a strict structure: the simplified OSI
model:

Application (7)
Transport (4)
Network (3)

Link (2)
Physical (1)

Layer 2 is responsible for sending a packet over a single
link.
Layer 3 is responsible for sending a packet over the
Internet.
Layer 4 is responsible for internal multiplexing,
sequencing (if desired), reliability (if desired) etc.
(Layers 5 and 6 don’t exist any more.)



Layering (3)

Individual protocols fit in the OSI model:

NTP, DNS, FTP, SMTP, HTTP, ed2k, Bittorrent etc. (7)
UDP, TCP (4)

IP (3)
SLIP, PPP, Ethernet, 802.11 (WiFi) etc. (2)

– every protocol uses the service provided by a lower
layer (only);

– the model has the structure of an hourglass;
– there is a convergence layer: there is only one

protocol at layer 3.



The network layer

Service provided by the network layer:
– communication across the Internet;
– communication endpoints are hosts (interfaces);
– communication is packet-based;
– communication is unreliable;
– communication is unordered;
– communication is uncontrolled.



The network layer (2)

Service provided by the network layer:
– communication across the Internet

routing is transparent to the higher layers;
– communication endpoints are hosts (interfaces)

there is no finer structure;
– communication is packet-based

the network retains packet boundaries;
– communication is unreliable

the network is allowed to drop packets;
– communication is unordered

the network is allowed to reorder packets;
– communication is uncontrolled.

This is not a useful service for the application layer.



The transport layer: TCP

Service provided by the TCP protocol:
– communication across the Internet;
– communication endpoints are ports;
– communication is stream-based;
– communication is reliable;
– communication is ordered;
– communication is flow-controlled and

congestion-controlled.



Encapsulation
A TCP segment is encapsulated in the IP packet:

TCP segment

IP packet

Since the IP packet is itself encapsulated in an Ethernet
frame, we have recursive encapsulation — one level
per layer:

TCP segment

IP packet

Application data

Ethernet frame



Encapsulation
A TCP segment is encapsulated in the IP packet:

TCP segment

IP packet

Since the IP packet is itself encapsulated in an Ethernet
frame, we have recursive encapsulation — one level
per layer:

TCP segment

IP packet

Application data

Ethernet frame



Ordering

The network can reorder the packets:
– because of the implementation of buffering;
– because of routing instabilities.

Solution: number the segments.
The receiver reorders back the received packets.

Ordering is performed by the endpoints, not the
routers.



Ordering

The network can reorder the packets:
– because of the implementation of buffering;
– because of routing instabilities.

Solution: number the segments.
The receiver reorders back the received packets.

Ordering is performed by the endpoints, not the
routers.



Digression: state

Computer programs maintain state. State causes bugs:

– state needs to be maintained;
– state needs to be preserved.

Programming guideline: minimize the amount of state.

Two kinds of state:
– hard state needs to be preserved;
– soft state can be recovered if it is lost.

Soft state is not as evil as hard state. (Not really state?)



The end-to-end principle

The end-to-end principle states that all (hard) state
should be at the communication endpoints.

Equivalently, no (hard) state in routers.

In the OSI model, routers are pure Layer 3 devices (in
principle).

This implies that most intelligence is at the endpoints.
Consequences:

– new applications are easy to deploy;
– the network survives a router crash (fate sharing);
– routers are fast, cheap and reliable (pick two).

This is an important architectural principle of the
Internet. This is the opposite of the telephone network.



Reliability

The network can drop packets:
– because of link-layer issues (radio links);
– because of buffers overflowing.

The network is unreliable.

What does it mean to have reliable communication?



Reliability

The network can drop packets:
– because of link-layer issues (radio links);
– because of buffers overflowing.

The network is unreliable.

What does it mean to have reliable communication?



Reliability (2)

Definition (wrong): communication is reliable when all
sent data arrives to the destination.

This is obviously impossible to achieve when the lower
layers are unreliable (unplugged network jack).

Definition: communication is reliable when
– sent data arrives to the destination; or
– the network returns an error indication.

(Note that this implies that always returning an error
indication provides reliable commmunication.)



Reliability (2)

Definition (wrong): communication is reliable when all
sent data arrives to the destination.

This is obviously impossible to achieve when the lower
layers are unreliable (unplugged network jack).

Definition: communication is reliable when
– sent data arrives to the destination; or
– the network returns an error indication.

(Note that this implies that always returning an error
indication provides reliable commmunication.)



Reliability (3)

Is it possible to require a stronger condition?

Condition: the network only returns an error indication
when the sent data didn’t arrive.

Equivalently, sent data arrives or the network returns
an error indication, but not both.

This condition is impossible to achieve.



Reliability (4)
Reliability is achieved by the receiver sending
end-to-end acknowledgments to the sender.

A B

ACK

data

ACK

data



Reliability (5)

Hop-to-hop acknowledgments don’t work: what if a
router crashes after sending an acknowledgment?

(Remember the end-to-end principle?)



Digression: throughput and latency
There are two measures of the “speed” of a network
link: throughput and latency.

Throughput measures how much data you can push
into the network. It is measured in bits per second
(bit/s) or bytes per second (B/s).
Example: 1.5 Mbit/s.

Latency measures how long it takes for data to arrive to
the other end. It is usually expressed as the Round-Trip
Time (RTT, or ping time):

A B

RTT



Pipelining

The “synchronous” protocol described above is
extremely inefficient.

Suppose a Round Trip Time (RTT) of 30 ms and a
Maxium Segment Size (MSS or MTU) of 1500 bytes.

Then this protocol’s maximum throughput is

1500

0.03
= 50kB/s

no matter how large the throughput of the link.

Solution: pipeline multiple packets before receiving the
first acknowledgment.



Pipelining (2)
A pipelined protocol sends multiple pieces of data
before receiving a single reply:

With pipelining, it is possible to have cumulative
acknowledgments:



Unreliable communication: UDP

Reliable, ordered communication implies that packets
are sent later:

– lost packets are resent later;
– lost packets delay subsequent ones.

This is not suitable for real-time communication:
– time distribution;
– real-time Internet games;
– voice over IP.



Unreliable communication: UDP (2)

For real-time applications, we use UDP:
– communication across the Internet;
– communication endpoints are ports;
– communication is packet-based;
– communication is unreliable;
– communication is unordered;
– communication is uncontrolled.

Unlike TCP, UDP is a thin layer over IP.



Buffering

A buffer is an area of data that is used for holding data
undergoing input/output.

Printer

Data

Buffers make it possible for the sender to send data
faster than the receiver can consume it: bursty traffic.



Buffer overflow

When the sender sends data too fast for the receiver,
buffers overflow.

Printer

Data

Avoiding buffer overflow in the receiver requires
moderating the sending rate (slowing down): this is
flow control.



Flow control: XON-XOFF
The simplest flow control technique is XON-XOFF flow
control. (Not used in networking.)
In XON-XOFF flow control, the receiver sends two
messages to the sender:

– XOFF: “my buffer is almost full, please stop sending
data”;

– XON: “my buffer is almost empty, please send data
again”.

Printer

Data

High mark (XOFF)

Low mark (XON)

What if XOFF/XON is lost? Not suitable for networks.



Flow control: windowing

In windowing flow control, the sender maintains a
window of sequence numbers that it is allowed to send.

– left edge L: the last acknowledged byte;
– right edge R: determined by the receiver.

Acknowledged In flight Allowed Forbidden

L R

Window size

The window size is Rwin = R− L.

Every ACK packet carries a window update that
specifies the new value of the right edge.

What if a window update gets lost? It still works out.



Aside: a few values
Time:

– 1ns = 10−9 s; 1ns · c ' 30cm;
– 1μs = 10−6 s; 1μs · c ' 300m;
– 1ms = 10−3 s; 1ms · c ' 300km;
– 100ms = 0.1s: noticeable by humans.

Throughput:
– 10kbit/s: a slow telephone modem;
– 1Mbit/s: a slow ADSL line;
– 1Gbit/s: a fast Ethernet;
– 1Tbit/s: the fastest networks in the world.

1Tbit/s

10kbit/s
= 108.

Networking is probably the only engineering
discipline where we need to deal with 8 orders of
magnitude differences.



Buffering in routers
A router maintains a buffer of outgoing packets with
each interface.

The buffer fills up whenever the outgoing link is too
slow to handle all the incoming traffic.

Note: buffering before the routing decision causes
head-of-line blocking.



Congestion

When a router’s buffers fill up, we say that the outgoing
link is congested.

1 Gbit/s 1 Mbit/s

In the presence of congestion, the router’s buffers fill
up and the router starts dropping packets.

Congestion control is about avoiding congestion inside
the network. This is different from flow control, which is
about avoiding congestion at the receiver.



Congestion collapse

Congestion causes dropped packets; dropped packets
are resent, which in turn causes further congestion.

If nothing is done to avoid it, routers’ buffers fill up with
multiple copies of the same packets and no traffic goes
through. This condition is called congestion collapse,
and is stable.

Increasing buffer sizes does not solve the issue (it
actually makes it worse).

In order to avoid congestion collapse, senders must
apply congestion control: slow down in the presence of
congestion. This requires:
1. detecting congestion;
2. reacting to congestion.



Signalling congestion: source quench

Idea: the router sends a “source quench” packet to
request that the sender should slow down.
Problems:

– if source quench is lost, congestion will still occur;
– the more congested the network, the more likely

packet loss becomes. Source Quench only works
when it is not useful.

Source Quench is not used any more.



Congestion control: loss signalling

Idea: use packet loss as an indicator of congestion.

Sender slows down whenever it detects that a packet
has been lost.

Advantage: a loss event cannot be lost.

Disadvantages:
– congestion is detected late, after a packet has been

lost;
– lost packets must be resent, which increases

latency and jitter (latency variation);
– non-congestion-related packet loss causes spurious

reductions in throughput.



Congestion control: congestion window

We want to reduce the sending rate whenever we
detect a loss event. This is done using the congestion
window Cwin, maintained by the sender.
The window effectively used is

Ewin = min(Rwin,Cwin).

The congestion window obeys Additive Increase
Multiplicative Decrease (AIMD):

– on every acknowledgment, Cwin := Cwin+MSS;
– on every loss event, Cwin := Cwin/2.

This is (usually) stable: after convergence, Cwin
oscillates between B/2 and B+MSS, where B is the
buffer size of the bottleneck router.



Time-sequence graph
A time-sequence graph is a graph on which:

– every dot represents a sent packet;
– the x coordinate represents time;
– the y coordinate represents sequence numbers.

time

s.n.

The slope of the resulting curve is the throughput.



Time-sequence graph (2)



Current work: lossless congestion control

Current congestion control relies on packet loss; this
makes packet loss a common occurrence in normal
operation.

While this does not impact throughput much, the lost
packets must be resent, which causes latency and jitter
(irregular latency), which is undesirable for many
applications.

Lossless congestion control using explicit congestion
notification techniques are no longer experimental, and
are slowly being deployed on the Internet (cf. ECN).



Further research: fighting buffer bloat

Router buffers are a necessary evil: they absorb bursts
of traffic, but while doing so they increase latency.

How do we reduce buffer size without impacting
throughput (which is commercially important)?

Buffer bloat is an area of (currently fashionable) active
research.



Conclusions

Congestion control is difficult, and there is a lot of
unanswered questions:

– how do we distinguish congestion-related and
unrelated packet loss?

– how useful is explicit congestion notification?
– what about delay-based congestion control?
– is AIMD the best we can do?
– what queueing strategies are best for routers?
– how do we fight buffer bloat?


