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Abstract

A characterization of finitely generated projective algebras with
residuated monoid structure reduct is given. In particular it is shown
that an m-generated subalgebra of m-generated free algebra is projec-
tive if and only if it is finitely presented by special kind of equation.
Moreover, a characterization of finitely generated projective algebras
is given in concrete varieties of MV -algebras and Heyting algebras.
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1 Introduction and preliminaries

Residuated structures appears in many areas of mathematics, the main origin
of which are monoidal operation multiplication � that respects a partial or-
der ≤ and a binary (left-) residuation operation→ characterized by x�y ≤ z
if and only if x ≤ y → z. Such kind of structures are associated with logical
systems. If the partial order is a semilattice order, and multiplication the
semilattice operation, we get Browerian semilattices which are models of the
conjuction-implication fragment of the intuitionistic propositional calculus.
The well-known algebraic models of the conjucttion-implication fragment of
Lukasiewicz many-valued logic are another example of special class of resid-
uated structures. We are interested mainly with those monoidal structures
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which have in common the following basic properties : Integrality, commu-
tativity of the monoidal operation � and the existence of a binary operation
→ which is adjoint to the given operation �.

Bosbach ([4], [5]) undertook the investigation of a class of residuated
structures (with natural partial order). He showed that the resulting class of
structures can be viewed as an equational class, and the class is congruence
distributive and congruence permutable.

J. R. Büchi and T. M. Owens [7] named the commutative members of
this equational class by hoops.

The fundamental work is devoted by W. J. Blok and I. M. A. Ferreirim
to investigation of hoops in [2]. We shall use the definitions and some results
from this work, where hoop is defined as a naturally ordered pocrim (i. e.,
partially ordered commutative residuated integral monoid). If, in addition,
pocrim is a lattice, compatible with the partially order, then it is called by
integral, residuated, commutative l-monoid (see [24]).

We list now the algebraic structures which contain as a reduct a residuated
operation : Wajsberg hoops [2], residuated lattices and BL-algebras [22],
Wajsberg algebras [15], MV -algebras [8], Heyting algebras (alias pseudo-
Boolean algebras) , Gödel algebras and product algebras [22]. We give to
such kind of algebras the name monoidal residuated algebras, shortly MRA-
algebras.

A structure (A,�, 1,≤) is partially ordered monoid if (A,�, 1) is a monoid,
≤ is a partial order on A, and for all x, y, z ∈ A, if x ≤ y, then x� y ≤ y� z
and z � x ≤ z � y. A is integral if, for all x ∈ A, x ≤ 1. A is residuated if
for all x, y ∈ A the set {z : z � x ≤ y} contains the greatest element, called
the residual of x relative to y, and denote by x → y. A partially ordered,
commutative, residuated and integral monoid (pocrim) (A,�, 1,≤) can be
treated as an algebra (A,�,→, 1), since the partial order can be retrieved
via x ≤ y iff x → y = 1. The class M of all pocrims satisfies the following
axioms [2]:

(M1) x� 1 = x,

(M2) x� y = y � x,

(M3) x→ 1 = 1,

(M4) 1→ x = x,
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(M5) (x→ y)→ ((z → x)→ (z → y)) = 1,

(M6) x→ (y → z) = (x� y)→ z,

(M7) x→ y = 1 & y → x = 1⇒ x = y.

Conversely, in every algebra (A,�,→, 1) satisfying (M1)-(M7) can be
defined a partial order by setting x ≤ y iff x → y = 1. This partial order
makes (A,�, 1,≤) a commutative partially ordered monoid in which for all
x, y ∈ A x → y is the residual of x with respect to y. In addition to (M1)-
(M7), pocrims also satisfies the following properties [2]:

(M8) x→ x = 1,

(M9) x→ (y → z) = (y → (x→ z),

(M10) If x ≤ y, then y → z ≤ x→ z and z → x ≤ z → y,

(M11) x ≤ (x→ y)→ y,

(M12) x ≤ y → x.

Theorem 1. Any pocrim (A,�, 1,≤) satisfies the following identities

(M13) (x→ y)� (y → z) ≤ (x→ z),

(M14) (x→ y)→ ((y → z)→ (x→ z)) = 1.

Proof. (x→ y)� (y → z)� x ≤

according to the definition of residuation : x� (x→ y) ≤ y,

≤ y � (y → z) ≤ z (according to the definition of residuation). Therefore
(according to the definition of residuation)

(x→ y)� (y → z) ≤ (x→ z).

(x→ y)→ ((y → z)→ (x→ z)) = ((x→ y)� (y → z))→ (x→ z) ≥

according to M13
≥ (x→ z)→ (x→ z) = 1.
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The quasivariety M of all pocrims is the equivalent algebraic semantics
- in the sense of [3] - of the algebraizable deductive system SM [31] :

(S1) (p→ q)→ ((r → p)→ (r → q)),

(S2) (p→ (q → r))→ (q → (p→ r)),

(S3) p→ (q → p),

(S4) p→ (q → (p� q)),

(S5) (p→ (q → r))→ ((p� q)→ r).

The only inference rule of SM is Modus Ponens :

(MP) p, p→ q ` q.

Let us note that if R is a commutative ring with identity 1 and Id(R)
is the monoid of ideals of R, with the usual ideal multiplication, ordered by
inclusion, then for any two ideals I, J of R, the residual of I relative to J
exists and is given by I → J = {x ∈ R : xI ⊆ J}. Hence, (Id(R), ·,→, R) is
a pocrim.

Let us note, that the class BCK of BCK-algebras consists of all algebras
(A,→, 1) satisfying (M3), (M4), (M5), (M7), (M8) and (M9). SinceM satis-
fies all of these, the class of {→, 1}-subreducts of algebras fromM consists of
BCK-algebras. Conversely, every BCK-algebra is a subreduct of a pocrim
[30], [29], [14]. Wronski [33] and Higgs [23] showed that BCK is not a variety.

We say that a partially ordered commutative monoid (A,�, 1,≤) is nat-
urally ordered if for all x, y ∈ A, x ≤ y iff (∃z ∈ A)(x = z � y) (divisibility
condition).

An algebra (A,�,→, 1) is called a hoop if it is naturally ordered pocrim.

Theorem 2. [4] An algebra (A,�,→, 1) is a hoop if and only if (A,�, 1) is
a commutative monoid that satisfies the following identities

(M6) x→ (y → z) = (x� y)→ z,

(M8) x→ x = 1,

(M15) (x→ y)� x = (y → x)� y.

Denote by HO the variety of all hoops.
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1.1 Filters and congruences

Let (A,�,→, 1) be a hoop. We say that F ⊆ A is filter of A if (i) 1 ∈ F ;
(ii) if x ∈ F, y ∈ A and y ≥ x, then y ∈ F ; (iii) if x ∈ F and y ∈ F , then
x� y ∈ F.

Lemma 3. Any filter F of a hoop A satisfies the following condition : if
x ∈ F and x→ y ∈ F , then y ∈ F.

Proof. According to the definition of residuation x � (x → y) ≤ y. But
x� (x→ y) ∈ F. Hence y ∈ F.

One can easily check that, given X ⊆ A, the least filter generated by X,
denoted by [X), is {b ∈ A : a1 � a2 · · · � an ≤ b for some a1, a2, . . . , an ∈
X, n ∈ ω}. If, in particular, X = {a}, then [a) = {b ∈ A : an ≤
b for some n ∈ ω}. It easy to check that if % is a congruence of A then
1/% is a filter of A. Moreover, the map %→ 1/% establishes an order isomor-
phism between the lattice of congruences of A and its lattice of filters. The
inverse of this map is F → %F , where %F = {(x, y) : (x→ y)� (y → x) ∈ F}
is a congruence of A. If F is the filter associated with the congruence % we
often write A/F for A/%.

We express the considerations in

Theorem 4. Let F be a filter of a hoop A. Then the binary relation %F on
A defined by x%F y iff x → y ∈ F and y → x ∈ F is a congruence relation.
Moreover, F = {x ∈ A : x%F 1}.

Conversely, if % is a congruence on A, then {x ∈ A : x%1} is a filter, and
x%y iff (x→ y)%1 and (y → x)%1. Therefore, the correspondence F 7→ %F is
a bijection from the set of filters of A and the set of congruences on A.

Proof. It is obvious that %F is reflexive and simmetric. From M13 it follows
that %F is transitive. Hence %F is an equivalence relation.

Now, suppose that x%F s and y%F t. Since

x� y � (x→ s)� (y → t) = x� (x→ s)� y � (y → t) ≤ s� t

(since x� (x→ s) ≤ s, y � (y → t) ≤ t),
(x→ s)� (y → t) ≤ x� y → s� t. Hence, x� y → s� t ∈ F. Interchanging
x with s and y with t, we get s� t→ x� y ∈ F. Therefore x� y%F s� t. By
M5, we have that

(y → t)→ ((x→ y)→ (x→ t)) ∈ F,
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and since y → t ∈ F , we get that

(x→ y)→ (x→ t) ∈ F.

By M14, we have that

(s→ x)→ ((x→ t)→ (s→ t)) ∈ F,

and since s→ x ∈ F, we get that

(x→ t)→ (s→ t) ∈ F.

Hence
(x→ y)→ (x→ t)� (x→ t)→ (s→ t) ∈ F.

According to M13

(x→ y)→ (x→ t)� (x→ t)→ (s→ t) ≤ (x→ y)→ (s→ t).

Hence, (x → y) → (s → t) ∈ F. In a similar way we can see that also
(s→ t)→ x→ y) ∈ F. Hence (x→ y)%F (s→ t).

From M2 and M3 it follows that F = {x ∈ A : x%F 1}.
Conversely, suppose that % is a congruence on A. If x%1 and y%1, then

(x� y)%1. If x%1 and x ≤ y, then x→ y = 1 and 1 = (x� (x→ y))%1→= y
Hence {x ∈ A : x%1} is a filter.

If x%y, then (x→ y)%(y → x)%(x→ x) = 1. Conversely, if (x→ y)%1 and
(y → x)%1, then x%x� (x→ y) = y � (y → x)%y. Therefore x%y.

Now suppose that (A,�,→, 1) is a pocrim. As it is easy to see, if F is
a filter of A, then %F is a congruence of A. Moreover, (A/%F ,�,→, 1) is a
pocrim, where x/%F � y/%F = (x � y)/%F , x/%F → y/%F = (x →
y)/%F and 1 = 1A/%F

= 1/%F . Indeed, it is enough to check the quasi-
identity M7. If x/%F → y/%F = 1/%F = (x → y)/%F , then 1 → (x →
y) = (x → y) ∈ F . Similarly, if y/%F → x/%F = 1/%F = (y → x)/%F , then
1→ (y → x) = (y → x) ∈ F . Hence (x → y)� (y → x) ∈ F, i. e. x%F y. It
means, that x/%F = y/%F . Therefore (A/%F ,�,→, 1) is a pocrim. Since all
pocrims form quasi-variety, but not a variety [23], the set {x ∈ A : x%1} may
be not a filter. In other words not every congruence % converts a pocrim A
into a pocrim A/%.

From here we conclude that holds

Theorem 5. If (A,�,→, 1) is a pocrim and F ⊂ A is a filter, then
(A/%F , �/%F , → /%F , 1/%F ) is a pocrim.
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1.2 Wajsberg hoops and MV -algebras

A hoop is called Wajsberg hoop if it additionally satisfies the following con-
dition

(Wh) (x→ y)→ y = (y → x)→ x.

Any hoop which satisfies (Wh) is in fact a lattice, where the join opera-
tion is defined by x∨ y =Def (x→ y)→ y. The identity (Wh) expresses the
fact that ∨ is a commutative operation.

Wajsberg hoops are closely related to the Wajsberg algebras [15], which
are algebraic models of  Lukasiewicz’s many-valued logic. Actually, Wajsberg
hoops with least element are termwise equivalent to Wajsberg algebras [3].
Moreover, it is easy to see that Wajsberg hoops which have a least element
are exactly the {�,→, 1}-reducts of Wajsberg algebras.

Wajsberg algebras are definitionally equivalent to Chang’s MV -algebras
[8]. It is well known that MV -algebras are algebraic models of infinite valued
 Lukasiewicz logic. We assume the reader’s familiarity with MV -algebras. For
all needed notions in MV -algebras we refer to [8], [10].

We recall that an algebra A = (A; 0, 1,⊕,�, ∗) is said to be an MV
-algebra iff it satisfies the following equations:

1. (x⊕ y)⊕ z = x⊕ (y ⊕ z);

2. x⊕ y = y ⊕ x;

3. x⊕ 0 = x;

4. x⊕ 1 = 1;

5. 0∗ = 1;

6. 1∗ = 0;

7. x� y = (x∗ ⊕ y∗)∗;

8. (x∗ ⊕ y)∗ ⊕ y = (y∗ ⊕ x)∗ ⊕ x.

Henceforth we shall write ab for a � b and an for a� · · · � a︸ ︷︷ ︸
n times

, for given

a, b ∈ A. Every MV -algebra has an underlying ordered structure defined by

x ≤ y iff x∗ ⊕ y = 1.
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(A;≤, 0, 1) is a bounded distributive lattice. Moreover, the following property
holds in any MV -algebra :

xy ≤ x ∧ y ≤ x ∨ y ≤ x⊕ y.

A subset J of an MV -algebra A is called a filter provided that (1) 1 ∈ J ,
(2) a ∈ J and b ∈ J imply ab ∈ J , and (3) a ≤ b and a ∈ J imply b ∈ J.
The correspondence : θ 7→ ϕ(θ) = 1/θ = {a ∈ A : (a, 1) ∈ θ} establishes
an isomorphism ϕ from the lattice of all congruences onto the lattice of all
filters (ordered by inclusion) [8], [10], [19]. The unite interval of real numbers
[0, 1] endowed with the following operations : x⊕ y = min(1, x + y), x� y =
max(0, x + y − 1), x∗ = 1− x, becomes an MV -algebra. For (0 6=)m ∈ ω we
set Lm = (Sm;⊕,�, ∗, 0, 1), where

Sm =

{
0,

1

m
, . . . ,

m− 1

m
, 1

}
,

which is a proper subalgebra of the unite interval MV -algebra.
Denote by WHO, WA, MV the varieties of all Wajsberg hoops, Wajs-

berg algebras and MV -algebras, respectively.

1.3 Dual hoops

A dual hoop is an algebra (A,⊕, −̇, 0) such that (A,⊕, 0,≤) is partially or-
dered commutative monoid , with identity 0, which is the least element of A,
and for all x, y ∈ A , x−̇y is the smallest element of the set {z : x ≤ z ⊕ y}.
Let us note that while in hoops the partial order satisfies x ≤ y iff x = z� y,
for some z ∈ A (z = x → y), the partial order in dual hoops satisfies
x ≤ y iff y = z ⊕ x, for some z ∈ A. Thus if (A,�,→, 1) is a hoop then
(A,⊕, −̇, 0) is a dual hoop, where x ⊕ y := x � y, x−̇y := y → x, 0 := 1.
Conversely, if (A,⊕, −̇, 0) is a dual hoop then (A,�,→, 1) is a hoop, where
x� y := x⊕ y, x→ y := y−̇x, 1 := 0. The classes of hoops and dual hoops
are therefore term equivalent.

EXAMPLE. Let (G, +,−, 0,∨,∧) be a lattice- ordered Abelian group,
or Abelian `-group, for short, with strong unit u ∈ G, u > 0. Define on
the set G[u] = {x ∈ G : 0 ≤ x ≤ u} the following operations : a +u b =
(a + b)∧ u, a−̇b = (a− b)∨ 0. Then (G[u], +u, −̇, 0) is dual hoop. This dual
hoop may be seen as an instance of a reduction of the action of the Gamma
functor from Abelian `-groups with strong unit to MV -algebras [27], [10].
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1.4 PL-algebras

Product logic algebras, or PL-algebras, for short, were introduced by Hájek,
Godo and Esteva [21]. The fundamental work on PL-algebras belong to R.
Cignoli and A. Torrens [9].

A PL-algebra is an algebra A,�,→, 0) of type (2, 2, 0) such that, upon
derived operations : 1 = 0→ 0, ¬x = x→ 0, x ∧ y = x� (x→ y), x ∨ y =
((x→ y)→ y) ∧ ((y → x)→ x), satisfies the following identities :

(PL1) (A,�, 1) is a commutative monoid with identity,

(PL2) (A,∨,∧, 0, 1) is a lattice with smallest (0) and greatest (1) elements,

(PL3) x� (y ∨ z) = (x� y) ∨ (x� z), x� (y ∨ z) = (x� y) ∨ (x� z),

(PL4) (x� y)→ z = x→ (y → z),

(PL5) (x→ y) ∨ (y → x) = 1,

(PL6) x→ x = 1,

(PL7) (¬¬z � ((x� z)→ (y � z)))→ (x→ y) = 1,

(PL8) x ∧ ¬x = 0.

Let A be PL-algebra and F a filter of A. Then by familiar arguments
one can show that the stipulation :

For x, y ∈ A, x%F y iff (x→ y) ∧ (y → x) ∈ F

defines a congruence relation %F on A, and that F = {x ∈ A : x%F 1}. The
correspondence F 7→ %F defines a one-one inclusion preserving mapping.

Denote by PL the variety of all PL-algebras.

1.5 BL-algebras

Let us consider the real unit interval with interval topology. A continuous
t-norm is a continuous function ∗ : [0, 1]2 → [0, 1] that is associative, com-
mutative, monotone in each argument, and satisfying a∗1 = a and a∗0 = 0,
for every a ∈ [0, 1]. Every continuous t-norm ∗ induces a residuum (i. e.
implication) → , defined by a→ b =sup{c : c∗ ≤ b}.
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The structure ([0, 1], ∗,→, 0, 1) is a hoop, and ([0, 1],∨,∧, ∗,→, 0, 1) is a
main example of a residuated lattice.

Every continuous t-norm is locally isomorphic to one of the following (see,
for example, [22]) :

•  Lukasiewicz t-norm �, defined by a� b = max{a + b− 1, 0};

• Gödel t-norm ∧, defined by a ∧ b = min{a, b};

• product t-norm ·, i. e. , ordinary product of real numbers.

Given a continuous t-norm and its residuum , the algebra ([0, 1], ∨, ∧, ∗,
→, 0, 1) generates a variety of residuated lattices, and the set of propositional
formulas in the language (∗,→, 0, 1) that take value 1 under every interpreta-
tion is called the logic of ∗. Let us note that we do not need to have the lattice
operations in the language , since they are definable by a ∧ b = a ∗ (a → b)
and a∨b = ((a→ b)→ b)∧((b→ a)→ a) [22]. Specializing to the tree basic
cases above, we have  Lukasiewicz logic, Gödel logic, and product logic. All
the tree logics are interesting, and the most general fuzzy logic is the logic
of all continuous t-norms, i. e. , Hájek’s Basic Logic [22].

BL-algebras is introduced by P. Hájek in [22] as an algebraic counterpart
of one of the extensions of fuzzy logic. BL-algebra [22]

(B,∨,∧,→,�, 0, 1)

is a universal algebra of type (2, 2, 2, 1, 0, 0) such that :

1) (B,∨,∧, 0, 1) is a bounded lattice ;
2) (B,�, 1) is a commutative monoid with identity :

x� q = q � p
p� (q � r) = (p� q)� r

p� 1 = 1� p

3) (1) p ∧ (q → (p� q)) = p,
(2) ((p→ q)� p) ∨ q = q,
(3) (p→ (p ∨ q)) = 1,
(4) ((p→ r)→ (r → (p ∨ q))) = 1,
(5) (p ∧ q)� r = (p� r) ∧ (q � r),
(6) p ∧ q = p� (p→ q),
(7) p ∨ q = ((p→ q)→ q) ∧ ((q → p)→ p),
(8) (p→ q) ∨ (q → p) = 1.

Denote by BL the variety of all BL-algebras.
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1.6 Heyting algebras

A Heyting algebra (H,∧,∨,→, 0, 1) is a bounded distributive lattice (H,∧,∨,
0, 1) with an additional binary operation →: H ×H → H such that for any
a, b ∈ H

x ≤ a→ b iff a ∧ x ≤ b.

(Here x ≤ y iff x ∧ y = x iff x ∨ y = y.)
It is well-known that the class of all Heyting algebras forms a variety,

which will be subsequently denoted by HA. Heyting algebras play an im-
portant role in different branches of mathematics: opens of a topological
space, the lattice of congruences of a lattice, the object classificator of a
topos, as well as algebraic models of Intuitionistic Logic all form Heyting
algebras. These (and other) important features boosted a thorough investi-
gation of Heyting algebras. A lot of results have been obtained. We will list
only some of them: representation of Heyting algebras by means of Esakia
spaces, which are ”good” Priestley spaces (Esakia [13]); description of finitely
generated free Heyting algebras (Urquhart [32], Grigolia [18], Bellissima [1],
Ghilardi [16], Butz [6]).

Idempotent hoops, i. e. , hoops which satisfies x�x = x, are semilattices
with respect to the operation of multiplication . They have been considered in
the literature under the names implicative semilattices [28], and Brouwerian
semilattices [25] and are the {∧,→, 1}-subreducts of Heyting algebras.

All listed above classes of algebras are characterized with common prop-
erty : filter defined congruences, all primitive operation of algebras are de-
fined by monoidal operation and its adjoint - residuum. These algebras from
the classes we name monoidal residuated algebras.

2 Free and projective algebras

Let K be an arbitrary variety. Recall that an algebra A ∈ K is said to
be a free algebra in K, if there exists a set A0 ⊂ A such that A0 generate
A and every mapping f from A0 to any algebra B ∈ K is extended to a
homomorphism h from A to B. In this case A0 is said to be the set of free
generators of A. If the set of free generators is finite then A is said to be a
free algebra of finitely many generators.
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The name ”free algebra” came from the fact that free algebras of K are
free from any additional identities on the free generators. In other words, for
any identity p(x1, . . . , xm) = q(x1, . . . , xm), p(x1, . . . , xm) = q(x1, . . . , xm) is
an identity of K iff the polynomials P (g1, . . . , gm) and Q(g1, . . . , gm), corre-
sponding to p(x1, . . . , xm) and q(x1, . . . , xm) respectively, are equal to each
other in the m-generated free algebra F (m) ∈ K, where g1, . . . , gm denote
the free generators of F (m).

Also recall that an algebra A ∈ K is called projective, if for any B, C ∈ K,
any epimorphism (that is an onto homomorphism ) γ : B → C and any
homomorphism β : A → C, there exists a homomorphism α : A → B such
that γα = β.

A B

C

-

?

@
@

@R

α

β
γ

An algebra B ∈ K is said to be a retract of an algebra A ∈ K, if there
exist a monomorphism (that is a one-to-one homomorphism) µ : B → A and
an epimorphism ε : A → B such that εµ = IdB, where IdB denotes the
identity map on B.

B A-�
µ

ε

It is well known that in every variety K, projective algebras can be char-
acterized as retracts of free algebras of K. (In particular, every free algebra
of K is projective.)

Let K ∈ {HO, WH, WA, MV , PL, BL, HA} .
Let F (m, Ω) be the free algebra of m generators in a variety of K defined

by using the finite set Ω of extra axioms in m variables (for the definition
see [17]). Let us note that if Ω is a finite set of m-ary identities, then it
can be represented by just one identity P = 1. Indeed, if P = Q is an
identity, then the one is equivalent to (P → Q) � (Q → P ) = 1 or , in
abbreviated version, P ↔ Q = 1. In turn, if we have finite number of
identities Ω = {P1 = Q1, . . . , Pn = Qn}, then we can replace the one by the
equivalent identity

⊙n
i=1(Pi ↔ Qi) = 1.

Lemma 6. Let P be an m-ary polynomial. Then there is a filter J such that
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F (m, {P = 1}) ∼= F (m)/J .

Proof. Let J = [P (g1, . . . , gm)) be the least filter containing P (g1, . . . , gm)
where g1, . . . , gm be free generators of F (m). We need to prove that the
“principal” filter J such that F (m)/J ∼= F (m,P = 1). Let g1, . . . , gm be
free generators of F (m). Then g1/J, . . . , gm/J are generators of F (m)/J .
Let also A be an MV -algebra generated by {a1, . . . , am}, P (a1, . . . , am) = 1
and f : F (m) → A be a homomorphism such that f(gi) = ai, i = 1, . . . ,m.
Then P n(g1, . . . , gm) ∈ f−1({1}), n ∈ ω and therefore J ⊆ f−1({1}). By the
homomorphism theorem there is a homomorphism f ′ : F (m)/J → A such
that the diagram

F (m) - A
@

@@R �
���πJ f ′

f

F (m)/J

commutes. It should be clear that f ′ is the needed homomorphism extending
the map gi/J → ai.

Lemma 7. Let u ∈ F (m) be a generator of the proper filter J = {x : x ≥
un, n ∈ ω}. Then F (m)/J ∼= F (m, {P = 1}), where P is some m-ary
polynomial.

Proof. Let J be a filter satisfying the condition of the Lemma. Then u =
P (g1, . . . , gm) for some polynomial P , where g1, . . . , gm are free generators.
We have that F (m)/J is generated by g1/J, . . . , gm/J , and that

P (g1/J, . . . , . . . , gm/J) = P (g1, . . . , gm)/J = 1F (m)/J .

The rest can be verified as in the proof of Lemma 1.

Proposition 8. If A ∈MV is finite and generated by m elements, then there
is a principal filter J such that A ∼= F (m)/J .

Proof. Let A ∈ MV be finite and generated by a1, . . . , am, i. e. A =<
{a1, . . . , am} >. Let Pai

be the m-ary polynomial xi, and in general let Px

be a polynomial such that Px(a1, . . . , am) = x for each x ∈ A. Let Ω be
the collection of equations of the type Px ⊕ Py = Px⊕y, Px � Py = Px�y,
P ∗

x = Px∗ for x, y ∈ A and P0 = 0, P1 = 1. Then A ∼= F (m, Ω). For if
A1 =< {b1, . . . , bm} > and b1, . . . , bm satisfy E, then {Px(b1, . . . , bm) : x ∈
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A} = A1 and the map h : A → A1 defined by h(x) = Px(b1, . . . , bm) is a
homomorphism extending the map ai → bi i = 1, . . . ,m. Since Ω is finite,
the proposition follows.

Corollary 9. If 0 < k ≤ m, then there is a principal filter J such that
F (k) ∼= F (m)/J .

Proof. F (k) ∼= F (m, xk = xk+1, xk = xk+2, . . . , xk = xm).

The assertions 1-4, formulated above, is given in [12].
From the above mentioned we arrive to

Theorem 10. An MV -algebra A is finitely presented iff A ∼= F (n)/J for
some principal filter J of F (n).

Now we give exact definition of finitely presented algebra [26]. An algebra
A is called finitely presented if A is finitely generated, with the generators
a1, . . . , am ∈ A, and there exists a finite number of equations

P1(x1, . . . , xm) = Q1(x1, . . . , xm)
. . .

Pm(x1, . . . , xm) = Qm(x1, . . . , xm)

holding in A on the generators a1, . . . , am ∈ A such that if there exists m-
generated algebra B, with generators b1, . . . , bm ∈ B, then there exists a
homomorphism h : A→ B sending ai to bi.

3 n-generated projective MV -algebras

Theorem 11. [20] .Let F (m) be the m-generated free algebra of a variety K,
and let g1, . . . , gm be its free generators. Then an m-generated subalgebra A
of F (m) with the generators a1, . . . , am ∈ A is projective if and only if there
exist polynomials P1(x1, . . . , xm), . . . , Pm(x1, . . . , xm) such that

Pi(g1, . . . , gm) = ai

and
Pi(P1(x1, . . . , xm), . . . , Pm(x1, . . . , xm)) = Pi(x1, . . . , xm)

holds in the variety K, i = 1, . . . ,m.
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Proof. Let A be an m-generated projective subalgebra of F (m). Then, there
exists an epimorphism h : F (m) → A such that h(gi) = ai, i = 1, . . . ,m,
and h(x) = x for every x ∈ A. Since ai ∈ F (m), i = 1, . . . ,m, and F (m)
is m-generated, there exist polynomials P1(x1, . . . , xm), . . . , Pm(x1, . . . , xm)
such that

P1(g1, . . . , gm) = a1, . . . , Pm(g1, . . . , gm) = am.

But then

h(ai) = h(Pi(g1, . . . , gm)) = Pi(h(g1), . . . , h(gm)) = Pi(a1, . . . , am) =

Pi(P1(g1, . . . , gm), . . . , Pm(g1, . . . , gm)).

On the other hand, since h(ai) = ai, we have h(ai) = Pi(g1, . . . , gm). Com-
bining these two identities we obtain

Pi(P1(x1, . . . , xm), . . . , Pm(x1, . . . , xm)) = Pi(x1, . . . , xm),

i = 1, . . . ,m.

Conversely, let A be an m-generated subalgebra of F (m) and there exist
polynomials Pi(x1, . . . , xm) such that

Pi(g1, . . . , gm) = ai (1)

and

Pi(P1(x1, . . . , xm), . . . , Pm(x1, . . . , xm)) = Pi(x1, . . . , xm), (2)

i = 1, . . . ,m. Since A is m-generated, there exists a homomorphism h :
F (m) → A such that h(gi) = ai (i = 1, . . . ,m). Let x be any element
of A ⊆ F (m). Then there exists a polynomial Q(x1, . . . , xm) such that
Q(a1, . . . , am) = x. But then

h(x) = h(Q(a1, . . . , am)) = h(Q(P1(g1, . . . , gm), . . . , Pm(g1, . . . , gm))) =

Q(P1(h(g1), . . . , h(gm)), . . . , Pm(h(g1), . . . , h(gm))) =

Q(P1(a1, . . . , am), . . . , Pm(a1, . . . , am)) = (using (1))

Q(P1(P1(g1, . . . , gm), . . . , Pm(g1, . . . , gm)), . . . ,
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Pm(P1(g1, . . . , gm), . . . , Pm(g1, . . . , gm))) = (using (2))

Q(P1(g1, . . . , gm), . . . , Pm(g1, . . . , gm)) = (using (1))

Q(a1, . . . , am) = x.

Therefore hIdA = IdA and A is a retract of F (m), which means that A is
projective.

Theorem 12. Any finitely generated projective MV -algebra is finitely pre-
sented.

Proof. Let A be n-generated projective MV -algebra. Then A is a retract
of F (n) : there exist a monomorphism ε : A → F (n) and onto homo-
morphism h : F (n) → A such that hε = IdA and there exist polynomi-
als P1(x1, . . . , xn), . . . , Pn(x1, . . . , xn) such that Pi(g1, . . . , gn)) = εh(gi) and
Pi(P1(x1, . . . , xn), . . . , Pn(x1, . . . , xn)) = Pi(x1, . . . , xn) holds, i = 1, . . . , n,
where g1, . . . , gn are free generators of F (n) (Theorem 6). Observe that
h(g1), . . . , h(gn) are generators of A which we denote by a1, . . . , an respec-
tively. Let e be the endomorphism εh : F (n) → F (n). This endomorphism
has properties : ee = e and e(x) = x for every x ∈ ε(A). Let

u =
n⊙

i=1

gi ↔ Pi(g1, . . . , gn)

and [u) = {x ∈ F (n) : x ≥ un, n ∈ ω} be the principal filter generated
by u, where x ↔ y = (x? ⊕ y) � (x ⊕ y?). So F (n, Ω) ∼= F (n)/[u), where
Ω = {xi ↔ Pi(P1(x1, . . . , xn) = 1 : i = 1, . . . , n} [12]. Observe that the
equations from Ω are true in A on the elements ε(ai) = e(gi), i = 1, . . . , n.
Indeed, since e is an endomorphism

e(u) =
n⊙

i=1

e(gi)↔ Pi(e(g1), . . . , e(gn)).

But Pi(e(g1), . . . , e(gn)) = Pi(P1(g1, . . . , gn), . . . , Pn(g1, . . . , gn)) = Pi(g1, . . . ,
gn) = εh(gi) = e(gi), i = 1, . . . , n. Hence e(u) = 1 and u ∈ e−1(1), i. e.
[u) ⊆ e−1(1). Therefore there exists homomorphism f : F (n)/[u) → ε(A)
such that the diagram

F (n) ε(A)

F (n)/[u)

-

6@
@

@R

e

r
f
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commutes, i. e. rf = e, where r is a natural homomorphism sending x to
x/[u). Now consider the restrictions e′ and r′ on ε(A) ⊆ F (n) of e and r
respectively Then fr′ = e′. But e′ = Idε(A). Therefore fr′ = Idε(A). From
here we conclude that r′ is an injection. Moreover r′ is a surjection, since
r(ε(ai)) = r(gi). Indeed e(gi) = Pi(g1, . . . , gn) and gi ↔ Pi(g1, . . . , gn) =
gi ↔ e(gi), where e(gi) = εh(gi). So gi ↔ Pi(g1, . . . , gn) ≥

⊙n
i=1 gi ↔

Pi(g1, . . . , gn), i. e. gi ↔ Pi(g1, . . . , gn) ∈ [u). Hence r′ is an isomorphism
between ε(A) and F (n)/[u), Consequently A(∼= ε(A)) is finitely presented.

Theorem 13. An n-generated subalgebra A, with generators a1, . . . , an, of
n-generated free MV -algebra F (n) is projective if and only if it is finitely
presented by an equation

n⊙
i=1

xi ↔ Pi(x1, . . . , xn) = 1,

where Pi(x1, . . . , xn) is some polynomial such that Pi(g1, . . . , gn) = ai, i =
1, . . . , n.

Proof. =⇒ is given in Theorem 7.
⇐=. Let u =

⊙n
i=1 gi ↔ Pi(g1, . . . , gn). Then A ∼= F (n)/[u). Denote

the isomorphism by ϕ : F (n) → A and the natural homomorphism by h :
F (n) → F (n)/[u). Then ϕh : F (n) → F (n) is an endomorphism such that
ϕh(F (n)) = A. Moreover h(gi) = h(ai). Indeed, ai ↔ gi = Pi(g1, . . . , gn ↔
gi ≥ u ⇒ ai ↔ gi ∈ [u) ⇒ h(gi) = h(ai). Therefore ϕ(h(ai)) = ϕ(gi/[u)) =
ai. This means that ϕ(h(x)) = x for every x ∈ A. From here we conclude
that A is projective.

Let V be any subvariety of the variety from the following list : hoops, H, BL,
MV, G, PL, where H, BL, G, PL are the varieties of all Heyting , BL-, Gõdel
and PL− (product) algebras respectively. In all these varieties we have
monoidal operation �, which has left-adjoint operation - implication →.

Theorem 14. Any m-generated projective subalgebra A of the m-generated
free algebra FV(m) is finitely presented.

Proof. Let a1, . . . , am ∈ A be generators of A and g1, . . . , gm ∈ FV(m) be free
generators. There exist homomorphisms h : FV(m)→ A and ε : A→ FV(m)
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such that hε = IdA, and h(gi) = ai, i = 1, . . . ,m. There exist poly-
nomials Pi(x1, . . . , xm) such that Pi(g1, . . . , gm) = ai, i = 1, . . . ,m. Let
u =

⊙m
i=1(Pi(g1, . . . , gm)↔ gi) and [u) be the filter generated by u. Denote

the natural homomorphism from FV(m) onto FV(m)/[u) by ϕ : FV(m) →
FV(m)/[u). Denote ϕε by f . Since ϕ(u) = 1, ϕ(Pi(g1, . . . , gm)) = ϕ(gi), i =
1, . . . ,m, i. e. ϕ(ai) = ϕ(gi), and , hence, f(ai) = ϕ(gi) (we identify
ε(x) with x). It is obvious that f is onto homomorphism and fh = ϕ,
since h(gi) = h(ai). Since h(gi) = h(ai), h(u) =

⊙m
i=1(h(Pi(g1, . . . , gm)) ↔

h(gi)) =
⊙m

i=1(h(ai) ↔ h(gi)) = 1. Therefore f−1(1) = 1, i. e. f is injec-
tive, and ,hence, A ∼= FV(m)/[u). From here we deduce that A is finitely
presented.

Theorem 15. Let A be an m-generated , with generators a1, . . . , am ∈ A,
finitely presented , with identity P (x1, . . . , xm) = 1, subalgebra of the free m-
generated algebra FV(m) over the variety V with free generators g1, . . . , gm.
Then A is projective if P (g1, . . . , gm) ≤

⊙m
i=1(ai ↔ gi).

Proof. Let ϕ be natural homomorphism from FV(m) onto FV(m)/[u), where
u = P (g1, . . . , gm) and [u) is the principal filter generated by u. Then,
as we know, A is isomorphic to FV(m)/[u). Denote the isomorphism by
f : A→ FV(m)/[u). Then we have the following diagram :

where ε(x) = x for every x ∈ A. Consider the homomorphism h = f−1ϕ.
Then h(ai) = f−1(ϕ(ai)). But ϕ(ai) = ϕ(gi), since ϕ(gi ↔ ai) = ϕ(gi) ↔
ϕ(ai) ≥ ϕ(u) = 1. Therefore h(ai) = f−1(ϕ(ai)) = f−1(ϕ(gi)) = ai. It means
that h(x) = x for every x ∈ A, i. e. A is projective.

Let B be finite MV -algebra and A a subalgebra which satisfies the fol-
lowing condition :

for every nonzero smallest join-irreducible element a ∈ A there
(P) exist incomparable nonzero join-irreducible elements b1, . . . , bk ∈ B

such that bj is the smallest join-irreducible in B for some j ∈
{1, . . . , k} and b1 ∨ · · · ∨ bk = a

Lemma 16. Let A be a subalgebra of finite MV -algebra B which satisfies
the condition (P ). Then there exists a homomorphism h : B → A such that
h(x) = x for every x ∈ A.
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Proof. Let A and B be finite MV -algebras and A a subalgebra of B satisfying
the condition (P ). Since A and B are finite, each of them can be represented
as finite product of simple finite totally ordered MV -algebras as follows :
A ∼= Lm1 × · · · × Lmk

and B ∼= Ln1 × · · · × Lnr . Since A is a subalgebra
of B, for every mj (j ∈ {1, . . . , k}) there exist ni1 , . . . , nil such that Lmj

is
a subalgebra of Lni1

× · · · × Lnil
, i. e. mj|nit , nit ∈ {ni1 , . . . , nil}, where

mj|nit means that mj divides nit . In other words there exist positive integers

c
(j)
1 , . . . , c

(j)
µj , j = 1, . . . , k, such that nit = mjc

(j)
µj . Observe that Lmj

is a
retract of Lnit

if and only if mj = nit . Let us note also that nontrivial
homomorphisms of a finite direct product are canonical projections. So, to
be Lmj

a retract of Lni1
× · · · × Lnil

it is necessary and sufficient that in the

integers c
(j)
1 , . . . , c

(j)
µj one of them should be coincided with 1, i. e. c

(j)
q = 1

for some q ∈ {1, . . . , µj}.
Condition (P ) says that if Lmj

is a subalgebra of Ln1 × · · · × Lnl
, then

Lmj
∼= Lnt for some t ∈ {1, . . . , l}. Let us note that the smallest nonzero

join irreducible element bj(= (0, . . . , 0, b′j, 0, . . . , 0)) of B in the condition (P )
has the component b′j belonging to Lmj

, which is at the same time the atom
of Lmj

. It is clear that Lmj
is a retract of Lni1

× · · · × Lnil
. Indeed, the

embedding ε : Lmj
→ Lni1

× · · · × Lnil
, since Lmj

∼= Lnt , every element
a ∈ Lmj

sends to (a, . . . , a︸ ︷︷ ︸
l times

) ∈ Lni1
× · · · × Lnil

. Then πtε = Id, where πt is

t-th projection. Making the same procedure for every mj, j = 1, . . . , k, we
conclude that A is a retract of B.

By a inverse system in a category C we mean a family {Bi, πij}i∈I of
objects, indexed by a directed poset I, together with a family of morphisms
πij : Bj → Bi) satisfying the following conditions for each i ≤ j:

(i) πkj = πki ◦ πij for all k ≤ i ≤ j;

(ii) πii = 1Bi
for every i ∈ I.

For brevity we say that {Bi, πij}I is an inverse system in C. We shall omit
to specify in which category we take an inverse system when this is evident
from the context.

The inverse limit of an inverse system is an object B of C together with
a family πi : B → Bi of morphisms (which is often denoted by {B, πi})
satisfying the condition: πij ◦ πj = πi for i ≤ j, and having the following
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universal property: for any object D of C together with a family of morphisms
λi : D → Bi, if πij◦λj = λi for i ≤ j, then there exists a morphism λ : D → B
such that πi ◦ λ = λi for any i ∈ I.

The inverse limit of the above system is denoted by lim←−{Bi, πij}I , and its
elements by (bi)i∈I , with bi ∈ Bi. If πij is understood, we may simply write
lim←−{Bi}I .

Recall from Grätzer [17] that the inverse limits of families of algebras are
constructed in the following way:

Suppose {Bi}i∈I is an inverse family of algebras. Consider their product∏
i∈I Bi. Call (bi)i∈I ∈

∏
i∈I Bi a thread, if πij(bj) = bi for j ≥ i. Let B be

the subset of
∏

i∈I Bi consisting of all threads. Hence

B = {(bi)i∈I ∈
∏
i∈I

Bi : πij(bj) = bi, j ≥ i}.

Then it is well known that B is a subalgebra of
∏

i∈I Bi, and that B is
isomorphic to lim←−{Bi}I .

We denote by Kn the variety of MV -algebras generated by {L1, . . . ,Ln},
i.e. Kn = V ({L1, . . . ,Ln}). Let Fn(m) be the m-generated free MV -algebra
in the variety Kn and F (m) be the m-generated free MV -algebra in the
variety MV.

Note that Kn is a locally finite variety. It is obvious that MV = V (∪n∈ωKn).
On Z+ we define the function vm(x) as follows: vm(1) = 2m, vm(2) = 3m−

2m, . . ., vm(n) = (n+1)m−(vm(n1)+. . .+vm(nk−1)), where n1(= 1), . . . , nk−1

are all the divisors of n distinct from n(= nk).
By [11] (Lemma 2.2) we have:

Theorem 17. Fn(m) ∼= Lvm(1)
1 × . . .× Lvm(n)

n .

Theorem 18. [11]. F (m) is isomorphic to a subalgebra of an inverse limit of

an inverse family {Fn(m)}n∈ω with free generators Gi = (g
(1)
i , g

(2)
i , . . . ), where

i = 1, . . . ,m and g
(n)
1 , . . . , g

(n)
m are free generators of the free m-generated

MV -algebra Fn(m) ∈ Kn.

Let V be a variety and V0 its subvariety. Let A be an algebra from V.
A homomorphism h0 from the algebra A onto an algebra A0 ∈ V0 is called
V0-morphism (or universal morphism into V0) if for any homomorphism
f : A → B ∈ V0 there exists a homomorphism h : A0 → B such that
hh0 = f (for detail information see [26]).
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It is well known (see [26]) that if FV(n) is n-generated free algebra of a
variety V0, then its V0-morphism image into V0 is n-generated free algebra
FV0(n) in the subvariety V0.

Theorem 19. A subalgebra A of m-generated free algebra F (m) is projective
if and only if πn(A) (↪→ πn(F (m))) is a subalgebra of πn(F (m)) satisfying
the condition (P ), where πn is Kn-morphism from F (m) onto Fn(m) ∈ Kn,
n ∈ ω.

Proof. Let us suppose that A is an m-generated subalgebra of m-generated
free algebra F (m) such that πn(A) ↪→ πn(F (m)) is a subalgebra of πn(F (m))
satisfying the condition (P ), where πn is Kn-morphism from F (m) onto
Fn(m) ∈ Kn. Denote the embedding by ε, actually ε(a) = a for every a ∈ A.
According to Theorem 11 the m-generated free MV -algebra F (m) is isomor-
phic to a subalgebra of the inverse limit lim←−{Fi(m)}ω = {F (m), πi}, where
πi, being a projection, is at the same time Ki-morphism. The embedding
ε induces the embedding εi : πi(A) → πi(F (m)), where πi(F (m)) = Fi(m).
Denote πi(A) by Ai.

� F2(m) � ` ` ` lim←−{Fi(m)}ω F (m)

� � ` ` ` lim←−{Ai}ω A

6 6 6 6
ε1 ε2 ε# #

F1(m)

A1 A2

�

�

Then, since Ai ↪→ Fi(m) satisfies the condition P , there exists a homomor-
phism ϕi : Fi(m) → Ai such that ϕiεi = IdAi

. Consequently, the mapping
ϕ = (ϕ1, ϕ2, . . . ) : F (m)→ A will be a homomorphism such that ϕε = IDA,
where ε = (ε1, ε2, . . . ). It means that A is projective. The converse is triv-
ial.

Theorem 20. An m-generated subalgebra A of m-generated free MV -algebra
F (m), with generating set {a1, . . . , am} ⊆ A, which is finitely presented by
an equation P (x1, . . . , xm) = 1, is projective if P (g1, . . . , gm) � gi = ai for
i = 1, . . . ,m, where g1, . . . , gm are free generators of F (m).

Proof. Let A be m-generated subalgebra of m-generated free MV -algebra
F (m), with generating set {a1, . . . , am} ⊆ A, which is finitely presented by
an equation P (x1, . . . , xm) = 1 and satisfies the condition P (g1, . . . , gm)�gi =
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ai for i = 1, . . . ,m. Then , according to Lemma 1, A ∼= F (m)/[u) ,
where u = P (g1, . . . , gm) and [u) = {x ∈ F (m) : x ≥ un, n ∈ ω} is
a filter generated by u. Let us define new polynomial Pi(x1, . . . , xm) =
P (x1, . . . , xm)xi. It is obvious that Pi(a1, . . . , am) = P (a1, . . . , am)ai = ai.
Consider new equation

⊙m
i=1 Pi(x1, . . . , xm)↔ xi = 1 which presents the al-

gebra F (m)/[u′), where u′ =
⊙m

i=1 Pi(g1, . . . , gm)↔ gi and [u′) is a principal
filter generated by u′. Let us observe that

⊙m
i=1 Pi(x1, . . . , xm) ↔ xi = 1

holds in A on the elements a1, . . . , am. Therefore there exists onto homo-
morphism h : F (m)/[u′) → A sending gi/[u′) to ai. On the other hand
we have homomorphism f : F (m) → F (m)/[u′), where f−1(1F (m)/[u′)) =
[u′). Then f ′ : A → F (m)/[u′) is a homomorphism , which is restric-
tion of f on the subalgebra A ⊂ F (m), such that ai/[u′) = gi/[u′), i =
1, . . . ,m. Indeed, since ai = P (gi, . . . , gm)gi, ai ↔ gi = P (gi, . . . , gm)gi ↔
gi = Pi(gi, . . . , gm) ↔ gi ≥ u′. Hence ai/[u′) = gi/[u′), i = 1, . . . ,m. It
means that f ′(ai) = gi/[u′). Therefore hf ′ = IdA which means that A ∼=
F (m)/[u′). Consequently A is finitely presented by

⊙m
i=1 Pi(x1, . . . , xm) ↔

xi = 1 either. Moreover Pi(a1, . . . , am) = ai and, since Pi(g1, . . . , gm) =
P (g1, . . . , gm)gi, Pi(P1(g1, . . . , gm), . . . , Pm(g1, . . . , gm)) = Pi(g1, . . . , gm) for
i = 1, . . . ,m. From here, according to Theorem 6, we conclude that A is
projective.
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