
Fundamentals of Fuzzy Logics

George Metcalfe

University of Technology, Vienna, Austria
metcalfe@logic.at

1 Introduction

Logics come in many guises. Classical logic, to take the most obvious example, may be
presented semantically using truth tables or Boolean algebras to define the meaning of
connectives like “and” or “implies”, or syntactically via proof methods such as axiom-
atizations, Gentzen systems, or Tableaux. Other logics may take one guise as primary;
substructural logics are often defined using Gentzen systems, while modal logics orig-
inate via classes of Kripke frames. We may think of such guises as frameworks, within
which logics arise naturally as a result of various “design choices”. For example, se-
mantically we might select certain properties that we want from our logic, principles
like the law of excluded middle “every proposition is either true or false” that we think
should hold or not hold. From a syntactic point of view we might choose certain ax-
ioms or rules over others. Such choices might be made on philosophical grounds, or on
a more practical level, based on mathematical or computational considerations.

Fuzzy logics, the subject matter of this course, are characterized as “logics based on
the real numbers”. That is, logics where the truth degrees are taken from the real line R,
and connectives are interpreted as functions on R. Such logics are usually designed with
applications in mind as workhorses of the wider enterprise of fuzzy logic, originating
with the formalisation of fuzzy sets by Zadeh [15]. Fuzzy logics provide the basis for
logical systems dealing with vagueness, e.g. for formalising common natural language
predicates such as “tall” or “fast”. Design choices in this framework are made as to
which real numbers to take as truth values, and which properties connectives should
have. In fact logics based on real numbers occur in a number of areas in logic.

Example 1 (T-norm based fuzzy logics). One widely used method for defining fuzzy
logics is to take the real unit interval [0, 1] as a set of truth values, and interpret con-
nectives like conjunction “and” and implication “implies” as functions on [0, 1] having
certain intuitive properties, such as commutativity, associativity etc. For example:

– Gödel logic G where “and” is interpreted by the “minimum” t-norm x ∗ y =
min(x, y), was introduced by Dummett [2] in 1959 as the infinite-valued version
of a sequence of finite-valued logics defined by Gödel [6] in the 1930s.

– Łukasiewicz logic Ł where “and” is interpreted by the t-norm x ∗ y = max(0, x +
y − 1), is the infinite-valued version of a famous family of many-valued logics
introduced by Łukasiewicz [12] in the 1920s,

– Product logic Π, where “and” is interpreted by the “product” t-norm x.y (mul-
tiplication on [0,1]), is a more recent addition to the many-valued logic canon,
introduced by Hájek et al. in 1996 [9].

As well as defining logics based on one particular t-norm, logics can also be considered
based on classes of t-norms, such as Hájek’s logic of continuous t-norms BL [8] and
Godo and Esteva’s logic of left-continuous t-norms MTL [3].

Example 2 (Resource Based Logics). In resource based logics how often a formula is
used in a proof matters; in some logics like Anderson and Belnap’s relevance logics [1],
they must be used at least once, in others like Girard’s Linear logic [5] once exactly. In
some cases resources can be modelled by real numbers:

– In Meyer and Slaney’s Abelian logic A [13], conjunction and implication are in-
terpreted by ordinary addition and subtraction on R, and true formulae are those
having a truth value greater than 0.

– The logic RM [1] is a relevance logic with truth values in R, where conjunction is
interpreted by the function:

x ∗ y =

{

min(x, y) if x ≤ −y
max(x, y) otherwise

Example 3 (MYCIN-Like Expert Systems). MYCIN was one of the first expert systems
capable of reasoning under uncertainty, its job being to diagnose certain blood infec-
tions using certainty factors taken from the interval [−1, 1] and rules like:

IF the infection is primary-bacteremia
AND the site of the culture is one of the sterile sites
AND the suspected portal of entry is the gastrointestinal tract
THEN there is suggestive evidence (0.7) that infection is bacteroid.

To combine certainty factors MYCIN uses the function:

x ∗ y =



















x − y(1 − x) if min(x, y) ≥ 0

x + y

1 − min(|x|, |y|)
if min(x, y) < 0 < max(x, y)

x − y(1 + x) if max(x, y) ≤ 0

Generally, when a logic encountered in one framework shows up in another, this
is celebrated; both as a proof of the “generality” of the logic, and also because differ-
ent frameworks are good for different purposes: truth tables give us a good intuitive
understanding of the logic, while algebraic semantics may be necessary to establish
mathematical properties; for investigating proofs in a logic and defining automated rea-
soning methods, syntactic approaches like Gentzen systems or tableaux are needed.
Remarkably enough, for logics based on the real numbers there exists (1) an algebraic
perspective based on the class of commutative residuated lattices obeying pre-linearity,
(2) an axiomatic perspective where fuzzy logics are substructural logics with the pre-
linearity axiom (A → B) ∨ (B → A), and (3) a proof-theoretic perspective in the
framework of hypersequents, a generalization of Gentzen sequents.

In this course we provide a general methodology for defining logics “based on the
real numbers”. What we mean by this last phrase will be made precise soon enough,

but intuitively our interest lies with logics defined “truth table style” with truth values
taken from the real line R, and logical connectives such as “and”, “or”, and “implies”
interpreted by functions on R. For example, we might define a logic with truth values
taken from the real unit interval [0, 1] where the truth value of “A and B” is the min-
imum of the truth values of “A” and “B”. We call such logics fuzzy logics, since such
definitions characterize the central intuitions of Fuzzy Logic, and indeed cover the main
formalisms investigated in the literature.

2 Formal Languages

A formal language is an essential ingredient of any logical framework: a formal lan-
guage provides the basic materials for making statements in a logic, statements like:
“Paris is the capital of France”, “John is tall”, etc. Such statements are called propo-
sitions and are built up using atomic statements called propositional variables, and
logical connectives that put propositions together to form more complex ones, i.e.:

Definition 1 (Propositional Language). A propositional language L consists of:

1. A denumerable (countably infinite) set of symbols called propositional variables
V AR(L) with typical members p, q, r, p1, p2,

2. A set of connectives CON(L) = {#1, . . . , #n} with arities (i.e. how many argu-
ments a connective takes) given by a function AR(L) : CON(L) → N.

Connectives with arity 0 are called (logical) constants, those with arity 1 and 2 are
called unary and binary connectives respectively.

In this course we will need more connectives than those usually supplied for classical
logic: these are displayed together with their arities and some clues as to their expected
behaviour in Table 2.

Table 1: Common Connectives

Connectives Arity Behaviour
∧, � 2 Conjunction: “... and ...”
∨, ⊕ 2 Disjunction: “... or ...”
→ 2 Implication: “if... then...”
↔ 2 Bi-implication: “... if and only if ...”
¬ 1 Negation: “not”

t, > 0 Truth
f , ⊥ 0 Falsity

Formulae for a language are built up out of propositional variables and connectives:

Definition 2 (Well Formed Formulae). The well formed formulae FOR(L) for a
propositional language L is the smallest set such that:

1. If p ∈ V AR(L) then p ∈ FOR(L).
2. If A1, . . . , Am ∈ FOR(L) then #(A1, . . . , Am) ∈ FOR(L) for all # ∈ CON(L)

where AR(L)(#) = m.

Connectives may also be defined as abbreviations of other connectives, e.g.

¬A =def A → ⊥ for all formulae A

Here the defined connective should be thought of simply as a syntactic convenience, not
actually present in the language itself. Note finally that for binary connectives we will
in this course freely swap between prefix notation #(x, y) and infix notation (x#y). We
will also disregard brackets where readability is not at stake, and assume that ¬ binds
more tightly than other connectives e.g. reading ¬p∧q as ¬(p)∧q rather than ¬(p∧q).

3 Logical Matrices

In this section we explain a particular framework for introducing truth-functional logics
i.e. logics obeying the “principle of extensionality” where the meaning of a compound
formula is uniquely determined by the meanings of its constituents. In this framework,
a logic for a language has a set of truth values with some “designated” as the true
ones (sometimes also “anti-designated” values but we ignore this possibility here), and
meanings for the connectives of the language that tell us how truth values are assigned
to non-atomic formulae. All these elements taken together are called a logical matrix.

Definition 3 (Logical Matrix). A logical matrix M for a language L consists of:

– A non-empty set of truth-values N .
– A subset D ⊆ N of designated truth values, denoting (partial) truth.
– A set of truth-functions (or meanings) for each connective of L:

C = {#i : Nm → N | # ∈ CON(L) where AR(L)(#) = m}

and we write: M = [N ,D,C].

A language with a logical matrix is called a propositional many-valued logic:

Definition 4 (Propositional Many-Valued Logic). Let M be a matrix for a proposi-
tional language L, then L = (L,M) is called a (matrix-defined) propositional many-
valued logic and we say that M is characteristic for L.

Definition 5 (Finite-Valued and Infinite-Valued Logics). If there exists an integer n
such that N for a logic L contains exactly n elements then we say that L is a finite-
valued (weakly n-valued) logic; otherwise we say that L is an infinite-valued logic.

Logics defined by a (single) matrix are truth-functional in the sense that the truth value
of a non-atomic formula is uniquely determined by the truth values of its constituents.
Since not all logics are truth-functional, not all logics are definable via logical matrices.
Such logics may be defined via particular sets of matrices, or algebras but although this
is a more general perspective, the matrix method is preferred where possible.

We illustrate the logical matrix method with a series of examples:

Example 4 (Classical Logic). Classical logic CL obeys the principle of bivalence which
states that every proposition is either true or false, i.e. there are exactly two truth values,
which we call here 1 (true) and 0 (false). CL can be based on a language with binary
connectives ∧, ∨, →, and (a constant) ⊥, and matrix:

[{0, 1}, {1}, {∧i,∨i,→i,⊥i}]

where ⊥i = 0 and truth-functions for other connectives are defined by truth tables as
follows (reading vertically then horizontally):

∧i 1 0
1 1 0
0 0 0

∨i 1 0
1 1 1
0 1 0

→i 1 0
1 1 0
0 1 1

There are 22
2

= 16 different truth functions possible for defining binary connectives
in a 2-valued logic: 2 options for each position in the truth table. However, all such
connectives are definable from the connectives given above, for example the usual “not”
function can be defined as ¬A =def A → ⊥. We say in this case that the set of
connectives {∧,∨,→,⊥} is functionally complete. In fact the subset {→,⊥} is itself
functionally complete, and it is even possible to find just one connective, the so-called
Scheffer stroke, from which all others may be defined.

Example 5 (Finite-Valued Logics). By abandoning the principle of bivalence we obtain
so-called many-valued logics, e.g. .:

– As in classical logic all finite-valued logics can be described with the aid of truth-
tables. One of the first many-valued logics was introduced by Łukasiewicz, and
includes, in addition to the usual truth values 1 “true” and 0 “false”, 1

2
, “the possi-

ble” supposed to model future contingents such as “Prince Charles will be the next
King of England”. This logic is known as Ł3 and can be based on a language with
connectives ¬ and →.

[{0,
1

2
, 1}, {1}, {¬i,→i}]

¬i

1 0
1

2

1

2

0 1

→i 1 1

2
0

1 1 1

2
0

1

2
1 1 1

2

0 1 1 1

Note that there are (3 ∗ 3)3 = 729 different truth tables possible for binary connec-
tives in three-valued logics; more generally (n2)n for an n-valued logic. However,
in contrast with the situation for classical logic, the connectives given here are not
functionally complete.

– In Ł3 the only designated value is 1. By including 1

2
as designated we obtain a

different logic i.e. for the same language with the same truth tables:

[{0,
1

2
, 1}, {

1

2
, 1}, {¬i,→i}]

This is the “paraconsistent” logic J3 i.e. a logic where a contradiction such as
¬(A → A) does not have every formula as a logical consequence.

– All the sets of truth values we have encountered so far have been real numbers. In
fact any linearly ordered set (i.e. where x ≤ y or y ≤ x) of truth values can be
“normalised” to give a set of reals. However there are many logics where the truth
values are not linearly ordered. For example we might allow that propositions can
be both true and false b, or neither n. This idea gives rise to the following lattice
with “four corners of truth”.

1

nb

0

•

•

•

•

Fig. 1: Four corners of truth

The relevant logic FDE is based on a language with connectives ∧, ∨ and ¬, and
has the following matrix.

[{0, n, b, 1}, {b, 1}, {∧i,∨i,¬i}]

¬
1 0
b b
n n
0 1

∧i 1 b n 0
1 1 b n 0
b b b 0 0
n n 0 n 0
0 0 0 0 0

∨i 1 b n 0
1 1 1 1 1
b 1 b 1 b
n 1 1 n n
0 1 b n 0

Here ¬ can be viewed as mirroring the lattice along the horizontal axis, swapping
0 and 1 but leaving b and n in place. ∧ and ∨ can be read as lattice meet and join
respectively. Notice also that if we remove n then we get Ł3.

Example 6 (Infinite-Valued Logics). The truth table approach is fine for defining three
or four valued logics but becomes tedious for more values, and impossible for an infi-
nite number of values. Hence it is usual where possible to use functions. For example
Łukasiewicz’s infinite-valued logic Ł (one of the most important formalisations of fuzzy
logic) can be based on a language with connectives → and ⊥, and matrix:

[[0, 1], {1}, {→i,⊥i}]

where truth functions are given by:

⊥i = 0 and x →i y = min(1, 1− x + y)

If we swap [0, 1] for [0, 1

n−1
, . . . , n−2

n−1
, 1] in this matrix then we get the n-valued Łukasiewicz

logic Łn, where Ł3 has been introduced above, and Ł2 is classical logic.

By assigning particular truth values to the propositional variables for a logic, we get
truth values for all formulae, looked up or calculated from the truth-functions of the
connectives.

Definition 6 (Valuation). A valuation (also known as an interpretation or assignment)
for a logic with language L is a function v : V AR(L)→ N extended to FOR(L) by:

v(#(A1, . . . , Am)) = #i(v(A1), . . . , v(Am))

where # ∈ CON(L) and AR(L)(#) = m.

A formula is then valid in a logic (or a tautology of the logic) if every valuation gives
it a designated “true” truth value, and satisfiable if one valuation gives it such a value.
Two formulae are equivalent if they always take the same value. More formally:

Definition 7 (Validity, Satisfiability, Logical Equivalence). For L = (L,M):

– A ∈ FOR(L) is valid in L (also called a tautology of L), written |=L A iff v(A) ∈
D for all valuations v for L.

– A ∈ FOR(L) is satisfiable in L iff v(A) ∈ D for some valuation v for L.
– A, B ∈ FOR(L) are L-equivalent, written A ≡L B, iff v(A) = v(B) for all

valuations v for L.

For example it is easy to see that A → (B → A) is a tautology of both CL and Ł3, but
not FDE. In fact FDE is curious in that it has no tautologies whatsoever.

We can also define the notion of logical consequence between sets of formulae.
Intuitively, a set of formulae is a logical consequence of another if whenever all the
formulae in the first have designated values, then at least one formula in the second has
a designated value.

Definition 8 (Logical Consequence). Let L = (L,M) be a logic, and Γ, ∆ ⊆ FOR(L),
∆ is a logical consequence of Γ , written Γ |=L ∆ iff for all valuations v for L, there
exists A ∈ Γ such that v(A) 6∈ D or A ∈ ∆ such that v(A) ∈ D.

Notice that FDE does have logical consequences, for example {A} is a consequence
of {¬¬A}.

4 Truth Values

In this course we are interested mostly in logical matrices with truth values taken from
the real numbers (or simply “the reals”) R. There are several motivations for inves-
tigating logics based on such matrices. Firstly, the real numbers are reasonably easy
for humans to understand: we can easily compare magnitudes, order them, add them
together, take differences etc. This makes the reals particularly suitable for use in AI
applications where “non-black-box” behaviour i.e. giving explanations of reasoning, is
often essential. Secondly, the reals are reasonably easy to manipulate: there exists a vast

array of mathematical techniques and theorems to support representation, computation
etc.; this is in contrast to the often complicated algebras of other non-classical logics.
Finally, and perhaps most importantly, real numbers are popular, being by far the most
common choice for degrees of truth in the fuzzy logic literature, and also used in other
areas of logic e.g. to model resources in substructural logics or degrees of belief in
expert systems.

So which real numbers should we be dealing with? That is, which subsets of the
reals make suitable sets of truth values for fuzzy logics? We begin by introducing some
well-known candidates from the literature.

– For a, b ∈ R, we define: [a, b] = {x | x ∈ R, a ≤ x ≤ b}, {x | x ∈ R, a ≤ x < b}
by [a, b), {x | x ∈ R, a < x ≤ b} by (a, b] and {x | x ∈ R, a < x < b} by (a, b).

A key property of all subsets of real numbers is that they are linearly (or totally) or-
dered, i.e. for a set S ⊆ R:

x ≤ y or y ≤ x for all x, y ∈ S.

Some subsets have the further property of being dense i.e. for S ⊆ R:

for all x, y ∈ S, if x < y, then there exists z ∈ S such that x < z < y.

The choice of truth values for a given logic is influenced by a number of factors:

1. Some truth values are more “intuitive” or “natural” than others, e.g. [0, 1] rather
than [0.23, 1.47]. In particular we might want to insist on generalizing classical
logic, in which case our set of truth values should be a subset of [0, 1].

2. Although we can consider many possibilities it makes sense to stick to a few
which are representative in the sense that choices of truth values such as [0, 1] and
[0.23, 1.47] are order isomorphic, and hence logics based on them have the same
sets of theorems.

3. Certain properties of the truth value set may be particularly desirable; for example
having an infinite stock of truth values, insisting that that the set of truth values is
dense, or wanting a “top truth” and/or “bottom falsity” that are more true or more
false than any other truth value respectively.

Bearing these points in mind, and following fuzzy logic tradition, we consider here sub-
sets of [0, 1] as representative of other choices. We will also insist on subsets containing
at least two elements (otherwise logic gets very boring indeed!), and to ensure that we
are generalizing clasical logic, that if there are least and greatest elements of the set
then these will be 0 and 1 respectively. Moreover we also consider only sets that are
dense i.e. for all x, y ∈ I , if x < y, then there exists a z such that x < z < y. This last
condition ensures that we have infinite-valued logics. We hence arrive at four possibili-
ties: [0, 1], [0, 1), (0, 1] and (0, 1), representing the various situtations where an interval
is open, closed or half-open. The designated truth degrees in such cases will be a set
[e, 1) or [e, 1], often just {1}, the idea being that if x < y and x denotes truth, then also
y denotes truth.

5 Ands

Once decided on a set of truth values, the next step is to define truth functions for the
various connectives in our chosen language. We begin here by considering interpreta-
tions for “ands” i.e. conjunction connectives, which together with interpretations for
“ors”, are taken from the vast panorama of aggregation operators used for combining
values across a multitude of applications. Usually such interpretations are designed for
applications “by hand”; however here we determine a set of basic properties that we
wish conjunctions to have then investigate the effect of demanding further properties.
We think of these as design choices, giving different classes of logics.

The first property which we consider basic for interpreting conjunctions is associa-
tivity which essentially means that bracketing is unimportant.

Definition 9 (Associativity). ∗ : I2 → I is associative iff (x ∗ y) ∗ z = x ∗ (y ∗ z) for
all x, y, z ∈ I .

Our second fundamental property is commutativity (also known as symmetry, neutrality
and anonymity) which essentially means that the order of the arguments does not matter
i.e. the criteria to be aggregated are of equal importance.

Definition 10 (Commutativity). ∗ : I2 → I is commutative iff x ∗ y = y ∗ x for all
x, y ∈ I .

A further property considered essential for “and-ness” is monotonicity i.e. increasing
one of the arguments of the function only increases (does not decrease) the function.

Definition 11 (Monotonicity). ∗ : I2 → I is increasing iff x ≤ y implies x ∗ z ≤ y ∗ z
and z ∗ x ≤ z ∗ y for all x, y, z ∈ I .

In certain cases we may require that the value strictly increases:

Definition 12 (Strict Monotonicity). ∗ : I2 → I is strictly increasing iff x < y implies
x ∗ z < y ∗ z and z ∗ x < z ∗ y for all x, y, z ∈ I .

A further property desirable for some applications is that A have the same truth value
as A and A, i.e. that repeating something does not make it any more or less true.

Definition 13 (Idempotency). ∗ : I2 → I is idempotent iff x ∗ x = x for all x ∈ I .

We may also want some kind of “sensitivity” requirement to ensure that the value of
the function is not too sensitive to changes in the values of its arguments. We can insist
that our functions be continuous or left-continuous.

Definition 14 (Continuity). ∗ : I2 → I is continuous iff for all x, y ∈ I , given a
sequence (xi)i≥0, xi ∈ I , such that x = limi→∞xi, then also limi→∞(xi ∗y) = x∗y.

Definition 15 (Left-Continuity). ∗ : I2 → I is left-continuous iff for all x, y ∈
I , given a sequence (xi)i≥0, x > xi ∈ I , such that x = limi→∞xi, then also
limi→∞(xi ∗ y) = x ∗ y.

Finally, we often require an element that plays the role of an identity for conjunction.

Definition 16 (Identity). Given a function ∗ : I2 → I , an element e ∈ I is an identity
for ∗ iff e ∗ x = x ∗ e = x for all x ∈ I .

Example 7 (Arithmetic Mean). One well known aggregation operator for real numbers
is the arithmetic mean, which has a binary version ∗A : [0, 1]2 → [0, 1]:

x ∗A y =
x + y

2

Note that ∗A is commutative, strictly increasing, idempotent and continuous, but is not
associative and has no identity element.

In the rest of this section we will be concerned primarily with interpreting conjunction
by functions on [0, 1] that behave classically on {0, 1}, are commutative, associative
and increasing, and have 1 as an identity. Such functions are known as t-norms (see
[10] for a comprehensive survey).

Definition 17 (T-Norm). A t-norm is a function ∗ : [0, 1]2 → [0, 1] such that for all
x, y, z ∈ [0, 1]:

1. x ∗ y = y ∗ x (Commutativity)
2. (x ∗ y) ∗ z = x ∗ (y ∗ z) (Associativity)
3. x ≤ y implies x ∗ z ≤ y ∗ z (Monotonicity)
4. 1 ∗ x = x (Identity)

As an immediate consequence of this definition we get that 0 is an “annihilating ele-
ment” for each t-norm i.e.:

Lemma 1. For each t-norm ∗, x ∗ 0 = 0 ∗ x = 0 for all x ∈ [0, 1].

Proof. 1 ∗ 0 = 0 since 1 is an identity element, but x ≤ 1 so by monotonicity x ∗ 0 =
0 ∗ x = 0. ut

Note that in the literature the prefix notation T (x, y) (instead of x ∗ y) is often used
for t-norms. However since we wish here to emphasize the interpretation of logical
connectives via t-norms (and be consistent), we prefer the infix notation.

There are a lot (uncountably many in fact) of t-norms, often arranged into fami-
lies bearing important or interesting properties, e.g. Frank t-norms, Hamacher t-norms
etc. However here we concentrate on classifying classes of t-norms with some of the
properties defined above, beginning with some fundamental examples of continuous
t-norms:

Definition 18 (Fundamental T-Norms).

1. Łukasiewicz t-norm: x∗Ły =def max(0, x + y − 1)
2. Gödel t-norm: x ∗G y =def min(x, y)
3. Product t-norm: x ∗Π y =def x.y (product of reals)

Notice that the Gödel t-norm min is the only t-norm that is idempotent.

Proposition 1. ∗G is the only idempotent t-norm.

Proof. Let ∗ be an idempotent t-norm. If x ≤ y then x = x∗x ≤ x∗y by monotonicity
and x ∗ y ≤ x ∗ 1 = x by monotonicity and identity, hence x ∗ y = x and by commuta-
tivity we have that x ∗ y = min(x, y). ut

Continuity is often considered desirable for interpreting conjunctions in fuzzy logic
since it means that the function is not over-sensitive to slight changes in its arguments.
In fact the above t-norms play a special role with regard to continuous t-norms: it turns
out that any continuous t-norm is locally isomorphic to one of these three (see e.g. [8]
for details). Although continuous t-norms are most commonly used in fuzzy logics and
have an elegant representation, there are also non-continuous t-norms of interest.

Example 8 (Non-Continuous T-norms).

1. The nilpotent minimum t-norm defined by:

x ∗N y =def

{

min(x, y) if x + y > 1
0 otherwise

is left-continuous but not continuous.
2. The drastic product t-norm defined by:

x ∗D y =def

{

0 if x, y ∈ [0, 1)
min(x, y) otherwise

is not even left-continuous.

We end this section with some results on the relative “strengths” of t-norms.

Definition 19. For two functions f : In → J and g : In → J:

– f is weaker than g or equivalently g is stronger than f , written f ≤ g iff f(x1, . . . , xn) ≤
g(x1, . . . , xn) for all x1, . . . , xn ∈ I .

– If f is weaker than g and for some x1, . . . , xn ∈ I , f(x1, . . . , xn) < g(x1, . . . , xn)
then we write f < g.

Proposition 2. We have the following orderings:

1. ∗D ≤ ∗ ≤ ∗G for any t-norm ∗.
2. ∗D < ∗Ł < ∗Π < ∗G.

Proof. 1. For any t-norm ∗ we have that for all x ∈ [0, 1], 1 ∗ x = x ∗ 1 = 1 by
identity and commutativity. Moreover we have trivially that for all x, y ∈ [0, 1),
0 = x ∗D y ≤ x ∗ y, and for all x, y ∈ [0, 1], x ∗ y ≤ x ∗ 1 = x by identity and
monotonicity. Hence ∗D ≤ ∗ ≤ ∗G as required.

2. Since x.y = max(0, x + y − 1) iff one of x and y is 0 or 1 and e.g. 1

4
= 1

2
. 1
2

>
max(0, 1

2
+ 1

2
− 1) = 0, we have ∗Ł < ∗Π and the result follows by 1. ut

6 Ors

Many of the properties natural for interpreting “ands” are natural also for interpreta-
tions of “ors” i.e. disjunction connectives. Again it is reasonable to assume that such
functions are commutative, associative and monotonic increasing; the main difference
being that 0 instead of 1 is an identity. A suitable class of functions for interpreting
disjunction are therefore a kind of “disjunctive dual” to t-norms called t-conorms.

Definition 20 (T-Conorm). A t-conorm is a function ◦ : [0, 1]2 → [0, 1] such that for
x, y, z ∈ [0, 1]:

1. x ◦ y = y ◦ x (Commutativity)
2. (x ◦ y) ◦ z = x ◦ (y ◦ z) (Associativity)
3. x ≤ y implies x ◦ z ≤ y ◦ z (Monotonicity)
4. 0 ◦ x = x (Identity)

Just as for t-norms we get that 0 is an “annihilator”, so 1 plays this role for t-conorms
i.e. 1∗x = x∗1 = 1 for all x ∈ [0, 1]. In fact, as might be expected from the definitions,
there is a very strong correspondence between t-norms and t-conorms: each t-conorm
can be used to define a dual t-norm and vice versa.

Proposition 3. ◦ is a t-conorm iff there exists a t-norm ∗ such that for all x, y ∈ [0, 1]:

x ∗ y = 1 − ((1 − x) ◦ (1 − y))

where ∗ is called the dual t-norm of ◦, and ◦ the dual t-conorm of ∗.

Example 9 (Fundamental T-conorms). The dual t-conorms of the fundamental t-norms
are as follows:

1. Bounded sum: x ◦Ł y =def min(1, x + y)
2. Maximum: x ◦G y =def max(x, y)
3. Probabilistic sum: x ◦Π y =def x + y − x.y

All the representation theorems of the previous section on t-norms have dual versions
for t-conorms.

7 Ands and Ors

As we have seen above, “ands” and “ors” generally have very similar properties, both
conjunction and disjunction functions being usually commutative, associative and in-
creasing in both arguments. The difference, at least when “ands” and “ors” are inter-
preted by t-norms and t-conorms respectively, lies solely with the location of the iden-
tity element: 1 for “and”, 0 for “or”. In this section we investigate a generalization of
t-norms and t-conorms, introduced by Yager and Rybalov in [14], where the identity
element can be any number taken from the real unit interval i.e.:

Definition 21 (Uninorm). A uninorm is a function ∗ : [0, 1]2 → [0, 1] such that for
some e ∈ [0, 1], for x, y, z ∈ [0, 1]:

1. x ∗ y = y ∗ x (Commutativity)
2. (x ∗ y) ∗ z = x ∗ (y ∗ z) (Associativity)
3. x ≤ y implies x ∗ z ≤ y ∗ z (Monotonicity)
4. e ∗ x = x (Identity)

Notice that if e = 1 or e = 0 then we just get the usual definition of a t-norm or a t-
conorm respectively. However, uninorms with an identity in (0, 1), unlike t-norms and
t-conorms, allow for “compensatory behaviour”: that is, whether or not the truth value
is low or high, it may be possible to add suitable further evidence to either increase or
decrease the truth value of the combined value. In this case the identity element e can be
interpreted as the score or truth value given to an argument or proposition which does
not have any influence either way. Hence we are naturally led to say that designated
truth values should be those greater than or equal to e, i.e. the set [e, 1].

Example 10 (Least and Greatest Uninorms). Consider the following uninorms:

x ∗⊥ y =







0 if x, y ∈ [0, e)
max(x, y) if x, y ∈ [e, 1]
min(x, y) otherwise

x ∗> y =







min(x, y) if x, y ∈ [0, e]
1 if x, y ∈ (e, 1]
max(x, y) otherwise

∗⊥ and ∗> are the weakest and strongest uninorms with identity e respectively, i.e. for
any uninorm ∗ with identity e, we have: ∗⊥ ≤ ∗ ≤ ∗>.

Our aim now is to investigate the behaviour of uninorms on the unit square [0, 1]2,
beginning with the values taken at the extremal points 0 and 1.

Lemma 2. If ∗ is a uninorm then 0 ∗ 0 = 0 and 1 ∗ 1 = 1.

Proof. e ∗ 0 = 0 so since 0 ≤ e, by monotonicity we get 0 ∗ 0 = 0. Similarly e ∗ 1 = 1
and e ≤ 1, so again by monotonicity 1 ∗ 1 = 1. ut

Although 0 ∗ 0 = 0 and 1 ∗ 1 = 1 are the same for all uninorms, the final “classical”
value 0∗1 = 0∗1 is not fixed, as is obvious from the fact that for t-norms this value is 0
and for t-conorms 1. Nevertheless we can show instead that for a uninorm the value 0∗1
always takes one or ther other of the values 0 or 1, being either “and-like” conjunctive
like a t-norm, or “or-like” disjunctive like a t-conorm.

Lemma 3. Given a uninorm ∗, if x ≤ 0 ∗ 1 ≤ y then x ∗ y = 0 ∗ 1.

Proof. For x ≤ 0∗1 ≤ y we have by monotonicity that 0∗ (0∗1) ≤ x∗y ≤ (0∗1)∗1;
however by associativity we also have 0 ∗ (0 ∗ 1) = (0 ∗ 0) ∗ 1 = 0 ∗ 1 = 0 ∗ (1 ∗ 1) =
(0 ∗ 1) ∗ 1, so we get x ∗ y = 0 ∗ 1 as required. ut

Proposition 4. Given a uninorm ∗ one of these conditions holds:

1. 1 ∗ 0 = 0 ∗ 1 = 0 and ∗ is called conjunctive.

2. 1 ∗ 0 = 0 ∗ 1 = 1 and ∗ is called disjunctive.

Proof. If 0 ∗ 1 ≥ e then by Lemma 3 we have x = e ∗ x = 0 ∗ 1 for 0 ∗ 1 ≤ x ≤ 1,
which gives that 0 ∗ 1 = 1. Similarly if 0 ∗ 1 ≤ e we get that 0 ∗ 1 = 0. ut

Observe that this result means that conjunctive and disjunctive uninorms satisfy the in-
tuitive requirements of generalizing classical conjunction and disjunction respectively.
Moreover we also get that 0 is an annihilating element for conjunctive uninorms, while
1 plays the same role for disjunctive uninorms.

Lemma 4. Given a uninorm ∗:

1. If ∗ is conjunctive then 0 ∗ x = 0 for all x ∈ [0, 1].
2. If ∗ is disjunctive then 1 ∗ x = 1 for all x ∈ [0, 1].

Proof. If ∗ is conjunctive then we have 0 ∗ 1 = 0, but also x ≤ 1 and hence by
monotonicity we have 0 ∗ x = 0. The case where ∗ is disjunctive is very similar. ut

We now show further that a uninorm with identity e ∈ (0, 1) exhibits a “block-like”
structure on the unit square, where the lower corner [0, e]2 is isomorphic to a t-norm,
and the upper corner [e, 1]2 to a t-conorm.

Proposition 5. If ∗ is a uninorm with identity e ∈ (0, 1), then:

1. x ∗T y =def

(ex) ∗ (ey)

e
is a t-norm.

2. x ∗S y =def

(e + (1 − e)x) ∗ (e + (1 − e)y) − e

1 − e
is a t-conorm.

3. x ∗ y =







e(
x

e
∗T

y

e
) if x, y ∈ [0, e]

(e + (1 − e))(
x − e

1 − e
∗S

y − e

1 − e
) if x, y ∈ [e, 1]

Proof. We just check 1, leaving 2 and 3 as exercises. First notice that ∗T is clearly
commutative and increasing by the corresponding conditions for ∗, so we just check
identity and associativity as follows:

x ∗T 1 =
(ex) ∗ (e1)

e
=

ex ∗ e

e
=

ex

e
= x

(x ∗T y) ∗T z =
((ex) ∗ (ey)) ∗ ez

e
=

(ex) ∗ ((ey) ∗ (ez))

e
= x ∗T (y ∗T z) ut

On the rest of [0, 1]2 such uninorms are bounded by min and max (see Figure 2).

Proposition 6. If ∗ is a uninorm with identity e ∈ (0, 1), then:

min(x, y) ≤ x ∗ y ≤ max(x, y) for all (x, y) ∈ [0, 1]2\([0, e]2 ∪ [e, 1]2)

Proof. WLOG take x ∈ [0, e] and y ∈ [e, 1]; we have:

min(x, y) = x = x ∗ e ≤ x ∗ y ≤ e ∗ y ≤ y = max(x, y) ut

between

between

e

1

10

e

min and max

t-conorm: ∗S

t-norm: ∗T

min and max

Fig. 2: The structure of a uninorm with identity e ∈ (0, 1)

We now turn our attention to various classes of uninorms. First observe that there are
no continuous uninorms with an identity e ∈ (0, 1).

Proposition 7. If ∗ is a continuous conjunctive (disjunctive) uninorm then e = 1 (e =
0) and ∗ is a t-norm (t-conorm).

Proof. We just prove the case where ∗ is a continuous conjunctive uninorm. Define
f(x) = x ∗ 1 for x ∈ [0, 1]. Since f is continuous with f(0) = 0 ∗ 1 = 0 and
f(1) = 1 ∗ 1 = 1, f is a surjection i.e. onto [0, 1]. Hence for all a ∈ [0, 1] there exists
b ∈ [0, 1] such that a = f(b) = b ∗ 1, and a ∗ 1 = f(b) ∗ 1 = (b ∗ 1) ∗ 1 = b ∗ (1 ∗ 1) =
b ∗ 1 = f(b) = a. In particular 1 = e ∗ 1 = e so ∗ is a t-norm. ut

There are however uninorms continuous on the open square (0, 1)2.

Example 11 (The Cross Product Uninorm). Consider the following continuous on (0, 1)2

conjunctive uninorm:

x ∗CR y =







xy

xy + (1 − x)(1 − y)
if {x, y} 6= {0, 1}

0 otherwise

This uninorm is interesting for many reasons; isomorphic versions of it are used to
combine degrees of belied in the expert systems MYCIN and PROSPECTOR, also
it has connections with Dempster-Schafer theory, and can be motivated geometrically
using cross products.

In fact it is possible to classify strictly increasing almost-continuous uninorms, with the
previous example being a prototype.

Theorem 1 ([4]). Given a uninorm ∗ with identity e ∈ (0, 1), the following are equiv-
alent:

1. There exists a strictly increasing continuous mapping h : [0, 1] → R∪{−∞, +∞}
with h(0) = −∞, h(e) = 0 and h(1) = +∞, such that:

x ∗ y = h−1(h(x) + h(y)) for all (x, y∈[0, 1]2\{(0, 1), (1, 0)}

2. ∗ is strictly increasing on (0, 1) and almost-continuous.

A strictly increasing almost-continuous uninorm characterized by the previous theorem
is called a representable uninorm with additive generator h.

Finally we consider a representation theorem that has been given for idempotent
uninorms. Here we restrict our attention to the case of left-continuous idempotent con-
junctive uninorms:

Theorem 2. Given a conjunctive uninorm ∗ with identity e ∈ (0, 1), the following are
equivalent:

1. There exists a left-continuous uniquely determined non-increasing function f :
[0, 1] → [0, 1] with f(e) = e and f(f(x)) ≥ x for x ∈ [0, 1], such that for all
x, y ∈ [0, 1]2 we have:

x ∗ y =

{

min(x, y) if y ≤ f(x)
max(x, y) otherwise

2. ∗ is left-continuous and idempotent.

Example 12 (An Idempotent Uninorm). If we take f(x) = 1−x in the previous theorem
we obtain the following idempotent uninorm:

x ∗ y =

{

min(x, y) if x + y ≤ 1
max(x, y) otherwise

8 Nots and Ifs

We turn our attention to other connectives, in particular “nots” (negations) and “ifs”
(implications), beginning with some intuitive properties for the former:

Definition 22 (Negation). A function n : [0, 1]2 → [0, 1] is called a negation iff it is
non-increasing, n(0) = 1 and n(1) = 0. A negation function is:

– strict iff it is strictly decreasing and continuous.
– strong iff it is strict and an involution i.e.:

n(n(x)) = x for all x ∈ [0, 1].

– weak iff n is not strong.

Example 13. The most widely used negation in fuzzy logic is the strong negation:

nŁ(x) =def 1 − x

There are also negations which are strict but not strong such as:

nS(x) =def 1 − x2

Example 14. Consider the following two (weak) negations:

nG(x) =def

{

1 if x = 0
0 otherwise

n∗(x) =def

{

1 if x < 1
0 if x = 1

nG and n∗ are the weakest and strongest negations respectively, i.e. for all negation
functions n: nG ≤ n ≤ n∗.

We now turn our attention to possible candidates for interpreting “ifs” i.e. implication
connectives, beginning with some desirable properties for such functions.

Definition 23 (Properties for Implication). For a function ⇒: [0, 1]2 → [0, 1], we
define the following properties:

– exchange principle: x ⇒ (y ⇒ z) = y ⇒ (x ⇒ z) for all x, y, z ∈ I .
– left antinocity: ⇒ is decreasing in the first argument i.e. if x < y then y ⇒ z ≤

x ⇒ z for all x, y, z ∈ [0, 1].
– right isotonicity: ⇒ is increasing in the second argument i.e. if x < y then z ⇒

x ≤ z ⇒ y for all x, y, z ∈ [0, 1].
– left boundary condition: 0 ⇒ x = 1 for all x ∈ [0, 1].
– right boundary condition: x ⇒ 1 = 1 for all x ∈ [0, 1].
– normality condition: 1 ⇒ 0 = 0
– e-degree ranking property: x ⇒ y ≥ e iff x ≤ y for all x, y ∈ [0, 1] where

e ∈ [0, 1].
– left neutrality: 1 ⇒ x = x for all x ∈ [0, 1].
– law of contraposition: x ⇒ y = n(y) ⇒ n(x) for all x, y ∈ [0, 1] w.r.t some strict

negation function ¬.

Example 15. Consider the following function ⇒: [0, 1]2 → [0, 1] where:

x ⇒ y =def nŁ(x) ◦G y = max(1 − x, y)

This satisfies the antonicity, boundary, normality, left-neutrality and law of contraposi-
tion conditions, but not the degree ranking property,

However, if we take conjunction as primary then it seems reasonable to seek an impli-
cation which “ties in” with our conjunction. At an intuitive level we insist that for a
conjunction ∗ and implication ⇒, x ∗ (x ⇒ y) be no more true than y, and that x ⇒ y
should be maximal subject to this restriction. This gives the following definition.

Definition 24 (Residuum). A binary function ∗ : [0, 1]2 → [0, 1] is said to be residu-
ated iff there exists a binary function ⇒: [0, 1]2 → [0, 1] called the residuum of ∗, such
that ∗ and ⇒ form an adjoint pair, i.e:

x ∗ y ≤ z iff x ≤ y ⇒ z for all x, y, z ∈ [0, 1]

This is a natural but not the only way of obtaining a truth function ⇒ for this connective
(called an R-implication) from a t-norm ∗. Other implications can be defined e.g. using
an involutive negation ¬x =def 1 − x and taking x ⇒ y =def ¬(x ∗ ¬y) (called an
S-implication).

Notice that if a conjunctive uninorm has a residuum, then we know what it is.

Lemma 5. If a conjunctive uninorm ∗ has a residuum ⇒ then:

x ⇒ y = max{z | z ∗ x ≤ y} for all x, y ∈ [0, 1]

Proof. By definition (x ⇒ y) ∗ x ≤ y so x ⇒ y ≤ max{z | z ∗ x ≤ y}. Moreover if
w∗x ≤ y then w ≤ x ⇒ y, hence in fact max{z | z∗x ≤ y} = x ⇒ y as required. ut

One way of understanding this approach is as a generalization of modus ponens.

Lemma 6. A function ∗ : [0, 1]2 → [0, 1] with residuum ⇒: [0, 1]2 → [0, 1] satisfies
the generalized modus ponens principle, i.e.:

x ∗ (x ⇒ y) ≤ y for all x, y ∈ [0, 1]

Proof. Follows directly from adjointness. ut

Residua for the fundamental t-norms can be calculated as follows:

Proposition 8.

1. Łukasiewicz implication: x⇒Ły = min(1, 1− x + y)

2. Gödel implication: x ⇒G y =

{

1 if x ≤ y
y otherwise

3. Product implication: x ⇒Π y =

{

1 if x ≤ y
y/x otherwise

Proof. We consider the case of product implication as an example, leaving the others
as exercises. Suppose that x ≤ y then 1.x = x ≤ y so x ⇒ y = 1. If x > y then
x.(y/x) = y and x.z > y for z > (y/x), so x ⇒ y = y/x. ut

Example 16. We can also consider the more complicated case of the conjunctive uni-
norm of Example 11:

x ⇒CR y =







(1 − x)y

x(1 − y) − (1 − x)y
if x, y ∈ [0, 1]2/{(0, 0), (1, 1)}

1 otherwise

In the case of a conjunctive uninorm ∗ (which recall includes t-norms) a necessary and
sufficient condition for ⇒ to exist, is that ∗ be left-continuous. We now consider which
of the intuitive properties of implication listed above are satisfied by the residua of
conjunctive uninorms:

Lemma 7. Let ∗ be a conjunctive uninorm with identity e and residuum ⇒, we have
that ⇒ satisfies all the properties of Definition 23 except the law of contraposition.

Proof. As an example consider the right boundary condition. If ∗ is a conjunctive uni-
norm with residuum⇒ then for all x ∈ [0, 1] we have 1∗x ≤ 1 and hence by adjointness
1 ≤ x ⇒ 1 i.e. x ⇒ 1 = 1. ut

One widely used method for obtaining suitable truth functions for negation is to take
either an arbitary constant f or the constant 0 and define negations of x as x ⇒ f and
x ⇒ 0, i.e.:

Definition 25. Let ∗ be a conjunctive uninorm with residuum ⇒, we define:

¬x =def x ⇒ f − x =def x ⇒ 0

Lemma 8. If⇒ is the residuum of a conjunctive uninorm then the functions¬ : [0, 1] →
[0, 1] and − : [0, 1] → [0, 1] defined by ¬x = x ⇒ f and −x = x ⇒ 0 are negations.

Proof. Both ¬ and − are decreasing since ⇒ is decreasing in its first argument. More-
over ¬0 = 0 ⇒ f = 1 and −0 = 0 ⇒ 0 = 1, ¬1 = 1 as required. ut

In the case of a t-norm with an involutive negation ¬, we get that these two negations
are the same.

Lemma 9. For a t-norm where ¬¬x = x, f = 0.

Proof. We have (0 ⇒ f) ⇒ f = 0 but since 0 ⇒ f = 1 and 1 ⇒ f = f , we get f = 0
as required. ut

For the fundamental t-norms we get the following negations:

Proposition 9.

1. Łukasiewicz negation: −x = 1 − x
2. Gödel (Product) negation: −0 = 1, −x = 0 for x > 0

Proof. By calculation. ut

For continuous t-norms we also obtain the (perhaps unexpected) bonus of being able to
define the functions min and max using just the t-norm and its residuum.

Proposition 10. For all continuous t-norms ∗ with residuum ⇒:

1. x ≤ y iff x ⇒ y = 1
2. If x ≤ y then x = y ∗ (y ⇒ x)
3. x ∗ (x ⇒ y) = min(x, y)
4. min((x ⇒ y) ⇒ y, (y ⇒ x) ⇒ x) = max(x, y)

Proof.

1. If x ≤ y then x = x ∗ 1 ≤ y so x ⇒ y = 1, and if x ⇒ y = 1 then x = x ∗ 1 =
x ∗ (x ⇒ y) ≤ y.

2. By the continuity of ∗ we have that f(z) = z ∗ y is a continuous function on [0, 1]
where f(0) = 0 and f(1) = 1. Hence f is surjective and for some z, 0 ≤ z ≤ 1,
f(z) = x. Moreover for the maximal z such that z = x ∗ y we get that z = x ⇒ y.

3. If x ≤ y then x ⇒ y = 1 and x ∗ (x ⇒ y) = x; if x > y then x ∗ (x ⇒ y) = y by
2.

4. If x ≤ y then x ⇒ y = 1 and, since also y ≤ (y ⇒ x) ⇒ x, min((x ⇒ y) ⇒
y, ((y ⇒ x) ⇒ x) = y. The case of y ≤ x is symmetrical. ut

9 Putting Things Together

We now have all the ingredients required to define a fuzzy logic; our next step is to
provide the recipe. Although it would be perfectly legitimate to take as many different
implications, conjunctions etc. as we want for a logic, our main desire here is to define
a set of connectives that is coherent. To this end we take a conjunctive uninorm to in-
terpret conjunction, and, since this gives us a generalized modus ponens principle, its
residuum as implication. What of the other connectives? Well for continuous t-norms
we can automatically get the min and max functions, and indeed since these are used
to define order, we take these for all our logics. For negation and disjunction we use def-
initions in terms of other connectives. Of course this might not be entirely satisfactory.
What if for example we want an involutive negation to go along with the Gödel t-norm?
Or we want both a product conjunction and a Łukasiewicz conjunction? Such needs
are both plausible and indeed have been investigated in the literature. Nevertheless the
logics we define here can be seen as a basis for adding further connectives.

Definition 26. The language LFB has the following connectives:

CON(LFB) = {�,→,∧,∨, t, f,⊥,>}

We also define ¬A =def A → f and A ⊕ B =def ¬(¬A � ¬B).

Next we show how to interpret connectives.

Definition 27 (Uninorm Based Logics). For a conjunctive uninorm ∗ : [0, 1]2 → [0, 1]
with identity e and residuum ⇒, we define the fuzzy propositional logic PC(∗):

[[0, 1], [e, 1], {∗,⇒, min, max, e, 0}

A valuation for PC(∗) is a function v : V AR(LFB) → [0, 1] extended to FOR(LFB)
as follows:

v(A � B) = v(A) ∗ v(B) v(A → B) = v(A) ⇒ v(B)
v(A ∧ B) = min(v(A), v(B)) v(A ∨ B) = max(v(A), v(B))

v(t) = e v(f) ∈ [0, 1]
v(⊥) = 0 v(>) = 1

A ∈ FOR(LFB) is valid in PC(*) iff v(A) ≥ e for all valuations v.

We note also that if ∗ is a residuated t-norm then it is sufficient to base PC(∗) on
a language with connectives �, →, ∧ and ⊥, defining A ∨ B =def ((A → B) →
B) ∧ ((B → A) → A) and t =def ⊥ → ⊥. Moreover if ∗ is continuous we can drop
∨ and have the definition A ∨ B =def A � (A → B).

References

1. A. R. Anderson and N. D. Belnap. Entailment, volume 1. Princeton University Press, Prince-
ton, NJ, 1975.

2. M. Dummett. A propositional calculus with denumerable matrix. Journal of Symbolic Logic,
24:97–106, 1959.

3. F. Esteva and L. Godo. Monoidal t-norm based logic: towards a logic for left-continuous
t-norms. Fuzzy Sets and Systems, 124:271–288, 2001.

4. J. Fodor, R. R. Yager, and A. Rybalov. Structure of uni-norms. International Journal of
Uncertainty, Fuzziness, and Knowledge-Based Systems, 5:411–427, 1997.

5. J. Girard. Linear logic. Theoretical Computer Science, 50, 1987.
6. K. Gödel. Zum intuitionisticschen Aussagenkalkül. Anzeiger Akademie der Wissenschaften

Wien, mathematisch-naturwiss. Klasse, 32:65–66, 1932. Reprinted and translated in [7].
7. K. Gödel. Collected Works : Publications 1929–1936, volume 1. Oxford University Press,

1986. Edited by S. Feferman, J. Dawson, and S. Kleene.
8. P. Hájek. Metamathematics of Fuzzy Logic. Kluwer, Dordrecht, 1998.
9. P. Hájek, L. Godo, and F. Esteva. A complete many-valued logic with product-conjunction.

Archive for Mathematical Logic, 35:191–208, 1996.
10. E. P. Klement, R. Mesiar, and E. Pap. Triangular Norms, volume 8 of Trends in Logic.

Kluwer, Dordrecht, 2000.
11. J. Łukasiewicz. Jan Łukasiewicz, Selected Writings. North-Holland, 1970. Edited by L.

Borowski.
12. J. Łukasiewicz and A. Tarski. Untersuchungen über den Aussagenkalkül. Comptes Rendus

des Séances de la Societé des Sciences et des Lettres de Varsovie, Classe III, 23, 1930.
Reprinted and translated in [11].

13. R. K. Meyer and J. K. Slaney. Abelian logic from A to Z. In G. Priest et al., editor, Paracon-
sistent Logic: Essays on the Inconsistent, pages 245–288. Philosophia Verlag, 1989.

14. R. Yager and A. Rybalov. Uninorm aggregation operators. Fuzzy Sets and Systems, 80:111–
120, 1996.

15. L. A. Zadeh. Fuzzy sets. Information and Control, 8:338–353, 1965.

