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Abstract
We establish the decidability of every axiomatic extension of
the commutative Full Lambek calculus with contraction FLec
that has a cut-free hypersequent calculus. The axioms include
familiar properties such as linearity (fuzzy logics) and the
substructural versions of bounded width and weak excluded
middle. Kripke famously proved the decidability of FLec
by combining structural proof theory and combinatorics.
This work significantly extends both ingredients: height-
preserving admissibility of contraction by internalising a
fixed amount of contraction (a Curry’s lemma for hyperse-
quent calculi) and an extended Kripke lemma for hyperse-
quents that relies on the componentwise partial order on
n-tuples being an ω2-well-quasi-order.

CCS Concepts: • Theory of computation → Proof the-
ory; Automated reasoning; Linear logic; Complexity theory
and logic; Turing machines; •Mathematics of computing
→ Combinatoric problems; Combinatorial algorithms.
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1 Introduction
A substructural logic is a logic that lacks some of the struc-
tural rules of classical and intuitionistic logic such as weaken-
ing, contraction, exchange or associativity. As a consequence,
a substructural logic will distinguish logical connectives that
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are conflated in the classical and intuitionistic setting. While
the logical connectives of classical (intuitionistic) logic model
“truth" (resp. “constructibility"), the logical connectives of
substructural logics model a much wider range of notions
by varying the structural rules that are retained and adding
further axioms in this setting. For example, linear logic and
its many variants (computational and resource awareness),
Lambek calculus (syntax and syntactic types of natural lan-
guage, context-free grammars, linguistics), relevant logics
(refined accounts of the implication connective to avoid the
paradoxes of material implication), fuzzy logics (degrees of
truth, fuzzy systems modelling), bunched implication log-
ics (software program verification and systems modelling).
Along with modal logics, substructural logics play a signifi-
cant role in applied and theoretical computer science.
Throughout, we identify a logic with the set of its theo-

rems. A logic is decidable if there is an algorithm to decide
if a given formula is a theorem of the logic or not. Such is
the interest in decidability that this question is likely to have
been considered for every logic in the literature! In this work
we obtain decidability for the commutative Full Lambek cal-
culus with contraction1 FLec extended with any finite choice
from infinitely many properties, including many familiar
ones such as linearity (every extension of FLec+ linearity is a
fuzzy logic [11]), and the substructural versions of bounded
width (ubiquitous) and weak excluded middle (preservation
property of rough sets). A striking feature is the expansive
breadth of logics that are covered and the fact that almost all
of the decidability results are new. To achieve this, we over-
come two major challenges: the presence of the contraction
rule (c) in the absence of the weakening rule (w), and taming
the structural language of the hypersequent calculus.

To explain the nature of these challenges, let us first con-
sider how we might establish the decidability of intuition-
istic propositional logic. Its sequent (proof) calculus is ob-
tained by adding the structural rule of weakening (w) to FLec
(i.e. FLecw). Due to Gentzen’s cut-elimination theorem, it has
the subformula property (every formula in a proof is a sub-
formula of the end formula). Additionally, repetitions of a
formula in the antecedent of a sequent are inter-derivable

1Also called: intuitionistic negation-free fragment of relevant logic R with-
out distribution; the positive fragment of Lattice R (denoted LR+ [30]);
intuitionistic multiplicative additive linear logic with contraction IMALLC .
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and hence need not be distinguished e.g. A ⇒ B is deriv-
able from A,A⇒ B by (c) and the other direction uses (w).
(For this reason, a set is often used in this calculus as the
data structure of the antecedent in place of a list.) These
two observations imply that only finitely many different
sequents need occur in the proof of a given formula up to
inter-derivability. The length of each branch in the proof
search tree can then be made finite and decidability follows.
A more careful counting of branch length can even establish
(optimal) PSPACE-complexity. In the absence of weakening,
the number of repetitions matters, so this argument fails
in FLec (A,A⇒ B is no longer derivable fromA⇒ B). There-
fore the task was to find some other way of bounding the
branch length in the proof search tree.

Enter Kripke [18] who in 1959 gave a famous decidability
argument for FLec later described by Urquhart [30] as a “tour
de force of combinatorial reasoning". Kripke established the
finiteness of the proof search tree by combining (i) Curry’s
lemma from structural proof theory which shows how to
internalise a fixed amount of contraction into the other rules
to obtain height-preserving admissibility of contraction, and
(ii) showing that if a branch of the proof search tree is infinite,
then some sequent on the branch must be derivable by con-
traction from a later sequent and hence redundant. The latter
is the celebrated Kripke lemma that Meyer (see [28]) subse-
quently identified as being equivalent to Dickson’s lemma
from number theory. From an order-theoretic perspective,
it expresses that the usual componentwise partial order on
n-tuples of natural numbers is a well-quasi-order (wqo).

Kripke’s lemma is a ‘sledge hammer’ in that it says some-
thing about the property of all infinite sequences of sequents
without any direct consideration of the rules of the calcu-
lus. Could we be missing a simpler decision argument? The
tight upper and lower complexity bounds for FLec due to
Urquhart [30] confirm that we are not: there is no prim-
itive recursive algorithm; it is primitive recursive in the
Ackermann function. Indeed, omit commutativity and the
logic FLc is undecidable [6]. Also undecidable is its predicate
version∀FLec [17]. Kripke’s lemmawas subsequently utilised
to prove decidability for specific logics in the vicinity e.g.
the pure implication fragments of E and R, their implication-
negation fragments [5], and via translation, lattice R [22].
However, there is a fundamental proof theoretic limitation
that prevents broader application: the sequent calculus for-
malism (which crucially underpins Kripke’s lemma) is not
expressive enough to give a proof calculus with the subfor-
mula property for most logics of interest.
This takes us into the realm of structural proof theory

where the limitations of the sequent calculus have motivated
the development of numerous new proof formalisms that
extend the sequent calculus by adding new structure. These
formalisms are then used to define proof calculi with the sub-
formula property for the logics of interest. A notable result
for substructural logics is the work of Ciabattoni et al. [7]

who construct hypersequent calculi with the subformula
property for infinitely many axiomatic extensions of FLe
(acyclic P ′3 axioms in the substructural hierarchy) via the ad-
dition of analytic structural rules. These extensions comprise
a significant portion of logics in the sense that no further
axiomatic extensions can be obtained via analytic structural
rule extension [8] and the hierarchy closes [16] (up to for-
mula equivalence in FLe) at the next levelN3. We can restate
the central contribution of this paper as decidability of every
logic that has an analytic structural rule extension of the
hypersequent calculus for FLec.2

There is a price to pay for using the hypersequent calculus.
Its structural language is so expressive that it is challeng-
ing (compared to the sequent calculus) to use it to prove
meta-logical results. As Metcalfe et al. [21] observe: “For
hypersequent calculi, however, [establishing decidability] is
further complicated by the presence of the external contrac-
tion rule (EC) that can duplicate whole sequents." The issue is
the interaction of the structural rules with (EC), and it is inde-
pendent of the complications due to (c) discussed above. For
example, although MTL (= FLew + prelinearity) was proved
decidable (see [10]) by specialised semantic arguments, at-
tempts to find a syntactic proof have been obstructed by the
complex interactions of (EC) with the structural rule (com)
which expand the proof search tree unmanageably. The chal-
lenges posed by contraction and hypersequent calculi are
also illustrated by the fact that recent decidability results
in the vicinity make significant concessions: decidability
and 2EXPTIME-complexity for analytic structural rule ex-
tensions of FLecm are obtained in [9]. Here m stands for
the mingle axiom which is a weaker version of weakening,
but enough to allow a set to be used for the antecedent.
Meanwhile decidability and complexity results are presented
in [29] for a large class of extensions of FLe using semantic
and syntactic means. However, the extensions are confined
to those that have a cut-free sequent calculus, and the only
extensions of FLec are by specific mingle-type axioms.

A hypersequent is a multiset of sequents so what we do—
informally speaking—is extend Kripke’s argument over sets
of n-tuples of natural numbers. The argument is technically
involved but the extended Kripke lemma that we obtain gives
us a handle on all infinite sequences of hypersequents, and it
is this that supports our general results. In Sec. 3 we extend
Curry’s lemma to all the hypersequent calculi introduced
in [7]. Height-preserving admissibility of the contraction
rules is a desirable property in many structural proof theo-
retic investigations so this is a valuable result in its own right.
We have written this section independent of the remainder
so that this generalisation can be lifted directly to other appli-
cations. Our extended Kripke lemma (Sec. 4) is deeper than

2The distributivity axiom of the relevant logic R is in N3 so it is not covered
by our result. This is what we should expect given that R is undecidable.
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the original in a formal sense as it relies on the stronger prop-
erty that the usual componentwise partial order on n-tuples
of natural numbers is an ω2-wqo. Finally, to combine struc-
tural proof theory and order theory, a novel partial order
on hypersequents is formulated (we subsequently identified
this partial order as the Smyth ordering from domain theory)
and the infinite Ramsey theorem is deployed (something that
is not required in Kripke’s argument). This work reiterates
Meyer’s insights on Kripke’s lemma and on the potential for
logical problems to be recast in a way that takes advantage
of the mathematical literature.

2 Preliminaries
LetN denote the set {0, 1, 2, . . .} of natural numbers. Form >
0, let Nm denote the set {(a1, . . . ,am ) |ai ∈ N} ofm-tuples of
natural numbers.

Logical formulas are given by the following grammar. Var
denotes a countably infinite set of propositional variables.

F := p ∈ Var|⊤|⊥|1|0|F ∧ F |F ∨ F |F · F |F → F

The connective · is called fusion. It is also calledmultiplicative
conjunction to contrast it with the additive conjunction ∧.
The meaning of the connectives in the context of substruc-
tural logics is conveyed well through its algebraic semantics
of residuated lattices [14]:∧,∨ are the familiar lattice connec-
tives;⊤ and⊥ are respectively the top and bottom element of
the lattice; · is a monoidal operation with unit 1, and 0 is an
arbitrary element of the lattice; the implication connective→
is residuated with ·.

We identify a logic with the set of formulas that are theo-
rems. The axiomatic extension L+F of the logic L by a finite
set F of formulas is defined in the usual way as the closure
of L ∪ F under the axioms and rules of its Hilbert calculus.
A sequent is a tuple written X ⇒ Π where X (the an-

tecedent) is a multiset of formulas and Π (the succedent) is a
multiset that is either empty or consists of a single formula.

A hypersequent is a (possibly empty) multiset of sequents
and it is written explicitly as follows.

X1 ⇒ Π1 | . . . |Xn ⇒ Πn (1)

Each Xi ⇒ Πi is called a component of the hypersequent. Of
course, each of these components is a sequent.

Thehypersequent calculusHFLec is given in Fig. 1. Note
that the cut-rule is eliminable from this calculus so it is not
included in the calculus.
As an aid to the reader unfamiliar with proof theory, we

provide a brief exposition of the terminology below:
A “hypersequent calculus" is a type of formal proof sys-

tem (introduced independently in [3, 23, 25]) that can be
used to generate proofs (‘derivations’) of an infinite set of
hypersequents. It is an extension of the “sequent calculus"
formal proof system introduced by Gentzen [15] in 1935.

A hypersequent calculus consists of a finite set of hyperse-
quent rule schemas. Each rule schema has a conclusion hyper-
sequent and some number of premise hypersequent(s). A rule
schema with no premises is called an initial hypersequent.

The conclusion and every premises of the rule schema has
the form s1 | . . . |sn where each si is either (i) a hypersequent-
variable (denoted by H ), (ii) a sequent-variable (written here
as X ⇒ Π), (iii) Γ⃗ ⇒ Π, or (iv) Γ⃗ ⇒. In the last two cases,
Γ⃗ is a finite list comprising of multiset-variables (denoted
using X ,Y ,Z ), formulas built from formula-variables (A,B)
and propositional-variables (p,q, r ), and Π is a succedent-
multiset-variable. Each si is not a sequent, but it is still re-
ferred to as a component. This overloading of the terminol-
ogy with (1) is standard practice. The variables in the rule
schema are collectively referred to as schematic variables.
A rule schema that contains neither formula-variables nor
propositional-variables is called a structural rule schema.

The extension of the hypersequent calculus H by the finite
set R of rule schemas is the hypersequent calculusH ∪ R
(following standard convention, we writeH + R).

A rule instance is obtained from a rule schema by uni-
formly instantiating the schematic variables with concrete
objects of the corresponding type. I.e. a hypersequent-variable
with a hypersequent, a sequent-variable with a sequent, a
multiset-variable with a multiset, and so on. In particular, a
succedent-multiset-variable is instantiated by a multiset that
is either empty or consists of a single formula.

It is worth noting that the standard practice in the field is
to not make a rigorous distinction between rule schema and
rule instance as it can be determined easily from the context.
Any component in the premise or conclusion of a rule

schema that is not a hypersequent-variable, as well as the
corresponding component in a rule instance, is called an
active component.
A derivation of the hypersequent h in the hypersequent

calculusH is defined in the usual way as a finite tree whose
nodes are labelled with hypersequents such that the root
is labelled with h, the leaves are labelled with instances of
initial hypersequents, and the labels of an interior node and
its child node(s) are the conclusion and premise(s) of an
instance of some rule schema inH .
A branch in a derivation is a path from the root to a leaf.

The height of a derivation is the number of nodes on the
longest branch.

Example 2.1. Consider the rule schema named (∧R).
H |X ⇒ A H |X ⇒ B (∧R)

H |X ⇒ A ∧ B

It has two premises H |X ⇒ A (the active component is X ⇒
A) and H |X ⇒ B (active component X ⇒ B), and its conclu-
sion is H |X ⇒ A ∧ B (active component X ⇒ A ∧ B).
A rule instance of this schema is obtained by uniformly

instantiating H by a hypersequent, X by a multiset of for-
mulas, and the formula-variables A and B by formulas (the
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instantiation of A∧ B is fully determined by the latter). Here
are some rule instances.
⇒ p ⇒ q
⇒ p ∧ q

r , r ⇒ p ∧ q r , r ⇒ q

r , r ⇒ (p ∧ q) ∧ q

⇒ s |q → p ⇒ p |r ⇒ p ∧ q ⇒ s |q → p ⇒ p |r ⇒ q

⇒ s |q → p ⇒ p |r ⇒ (p ∧ q) ∧ q

The active components in the rule instances above appear
as the rightmost component of each hypersequent.

Example 2.2. Consider the rule schema named (com).
H |X1,Y1 ⇒ Π1 H |X2,Y2 ⇒ Π2 (com)

H |X1,Y2 ⇒ Π1 |X2,Y1 ⇒ Π2
The conclusion has two active components X1,Y2 ⇒ Π1
andX2,Y1 ⇒ Π2. Meanwhile each premise has a single active
component. Consider the following instantiations:
X1 7→ {r , r } Y1 7→ {p} Π1 7→ {p}

X2 7→ ∅ Y2 7→ {r ,q} Π2 7→ ∅ H 7→ p ⇒ |q ⇒

Here is the corresponding rule instance. Following a slight
(and standard) abuse of notation, when writing a rule in-
stance, the curly brackets { } denoting themultiset are dropped,
and the comma betweenmultiset-variables in the rule schema
is interpreted as multiset union.

p ⇒ |q ⇒ |r , r ,p ⇒ p p ⇒ |q ⇒ |r ,q ⇒ ∅

p ⇒ |q ⇒ |r , r , r ,q ⇒ p |p ⇒ ∅

Notation.We use lower caseд,h to denote hypersequents
to make it easy to distinguish them from the hypersequent-
variable H . For an index set J = {r1, . . . , rn }, let H |X j ⇒

Πj (j ∈ J ) denote the hypersequent
H |Xr1 ⇒ Πr1 | . . . |Xrn ⇒ Πrn

Let An denote A, . . . ,A (n copies). We say that X contains at
least n copies of A (or A occurs at least n times in X ) if there
exists X ′ such that X is the multiset union of {An } and X ′.
If additionally X ′ does not contain A (denoted A < X ′) then
“at least" can be replaced by “exactly".

Hypersequent calculi for substructural logics. Ciabat-
toni et al. [7, 8] establish equivalence between a large set
of axiomatic extensions of FLe and the analytic structural
rule extensions of HFLe (i.e. HFLec minus the contraction
rule (c)). The following reformulates [7], [8, Def. 4.16].

Definition 2.3. An analytic structural rule schema has the
following form where each Γ⃗ik and ∆⃗l is a list of multiset-
variables, and satisfies the conditions listed below.

{H |Yi , Γ⃗ik ⇒ Πi }i ∈I,k ∈Ki {H | ∆⃗l ⇒}l ∈L

H |Yi ,Xi1, . . . ,Xiαi ⇒ Πi (i ∈ I ) | Z j1, . . . ,Z jβj ⇒ (j ∈ J )

(2)
(linear conclusion) The multiset-variables that occur

in the conclusion occur exactly once.
(separation) Nomultiset-variable occurs in an antecedent

and in a succedent.

(coupling) For every component in the conclusion with
succedent Π, there is a multiset-variable Y in its an-
tecedent such that the pair (Y ,Π) always occur to-
gether in a premise, and Y occurs exactly once there.

(strong subformula property) Each multiset-variable
in the premise occurs in the conclusion.

Let P0 = N0 be the set Var of propositional variables. The
substructural hierarchy [7] is defined as follows.

Pn+1 := 1 | ⊥ | Nn | Pn+1 ∨ Pn+ | Pn+1 · Pn+1

Nn+1 := 0 | ⊤ | Pn | Nn+1 ∧ Nn+ | Pn+1 → Nn+1

P ′3 := 1 | ⊥ | N2 ∧ 1 | P ′3 ∨ P ′3 | P ′3 · P ′3

The constructors in the definition of Pi+1 (i.e. ∨, ·) are those
whose rules in HFLe are invertible in the antecedent; the
constructors in the definition of Ni+1 (i.e. ∧,→) are those
whose rules in HFLe are invertible in the succedent. Observe
thatUi ⊂ Vi+1 (U ,V ∈ {P,N}) and P ′3 ⊂ P3.

In the presence of weakening, every formula in P3 can be
effectively transformed into an equivalent analytic structural
rule schema. In its absence, this holds for formulas in P ′3 that
are acyclic (i.e. those that do not lead the transformation into
cycles, see [8, Def. 4.11] for further details). This motivates
the following definition.

Definition 2.4 (amenable). A set F of formulas is amenable
if (i) F ⊆ P3 and left weakening p · q → p ∈ F , or (ii) F ⊆
P ′3 consists of acyclic formulas.

We say thatH is a hypersequent calculus for the logic L if
for every formula B: B ∈ L iffH derives⇒ B.

Theorem 2.5 ([7, 8]). (i) From every finite setF of amenable
formulas, a finite setRF of analytic structural rule schemas
is computable such that HFLe +RF is a calculus for FLe +
F with cut-elimination and the subformula property.

(ii) Every analytic structural rule extension HFLe + R is a
calculus for an amenable axiomatic extension of FLe.

Some amenable formulas and the analytic structural rules
computed from them are shown in Fig. 2

Remark 1. In addition to the above syntactic characterisation
of analytic structural rule extensions of HFLe via amenable
formulas, there is also a semantic characterisation in terms of
closure under hyper-MacNeille algebraic completions (see [8]).

3 Internalising a limited contraction:
from HFLec + R to HFL⇝ec + R⇝

A rule schema is hp-admissible (height-preserving admissi-
ble) if whenever the premises of a rule instance are derivable,
there is a derivation with no greater height of its conclusion.
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H |p ⇒ p H |⊥,X ⇒ Π H |X ⇒ ⊤ H |0⇒ H | ⇒ 1
H |X ⇒ Π

H |1,X ⇒ Π

H |X ⇒

H |X ⇒ 0

H |X ,A,B ⇒ Π (·L)
H |X ,A · B ⇒ Π

H |X ⇒ A H |Y ⇒ B (·R)
H |X ,Y ⇒ A · B

H |X ,A⇒ Π H |X ,B ⇒ Π (∨L)
H |X ,A ∨ B ⇒ Π

H |X ⇒ A (∨R)
H |X ⇒ A ∨ B

H |X ,A⇒ Π (∧L)
H |X ,A ∧ B ⇒ Π

H |X ⇒ A H |X ⇒ B (∧R)
H |X ⇒ A ∧ B

H |X ⇒ A H |Y ,B ⇒ Π (→L)
H |X ,Y ,A→ B ⇒ Π

H |X ,A⇒ B (→R)
H |X ⇒ A→ B

H |X ⇒ Π |X ⇒ Π (EC)
H |X ⇒ Π

H (EW)
H |X ⇒ Π

H |X ,A,A⇒ Π (c)
H |X ,A⇒ Π

Figure 1. The (cut-free) hypersequent calculus HFLec for FLec

In this section we will construct a new hypersequent
calculus HFL⇝ec + R⇝ from an analytic structural rule ex-
tension HFLec + R that derives exactly the same hyperse-
quents but where (EW), (c) and (EC) are hp-admissible. Hp-
admissibility of (EW) even holds in HFLec + R, so the chal-
lenge is (c) and (EC). The idea is to show that these rules can
be permuted with every rule instance above it. The insight of
Curry’s lemma was that such a permutation is achievable if
the rules internalise a fixed amount of contraction. Here we
present the extension of Curry’s lemma to the hypersequent
calculus.

3.1 Formula multiplicity, component multiplicity
Consider how we might permute an instance of (c) with a
rule instance above it.

If the duplicate formulas to be contracted are in the instan-
tiation of the same schematic variable in the conclusion of the
rule instance, then contraction is applied in every premise
where this variable occurs and permutation is achieved. The
obstacle therefore is when each of the duplicate formulas
belongs to the instantiation of a different schematic variable.
The solution is to internalise a fixed amount of contraction
into the rule to handle this situation. The more variables
that are present in the antecedent of an active component in
the conclusion, the more contractions we need to internalise
until we get to the stage where there are enough duplicate
formulas in the conclusion to ensure that the instantiation of
some variable must contains multiple copies. This motivates
the definition of formula multiplicity (the terminology is due
to [13], where an alternative definition is given).

Definition 3.1. The formula multiplicity of a rule schema is
the maximum of the numbers of elements in the antecedents
of each of the active components in its conclusion.

To permute (EC) with any rule instance above it, we re-
quire a similar definition, this time at the level of components
rather than elements in the antecedent of a component.

Definition 3.2. The component multiplicity of a rule schema
is the number of components in its conclusion (including
the hypersequent-variable).

Let us compute some of the values by way of example.

The initial hypersequent with conclusion H |⊥,X ⇒ Π
has two components (hence the component multiplicity is 2)
and the antecedent of the active component is ⊥,X . There
are 2 elements in this list so the formula multiplicity is 2.

The initial hypersequent with conclusion H | ⇒ 1 has two
components (hence the component multiplicity is 2) and
the antecedent of the active component is empty. Hence the
formula multiplicity is 0.
The conclusion H |X ,Y ,A → B ⇒ Π of (→L) has two

components (hence the component multiplicity is 2) and the
antecedent of the active component is X ,Y ,A → B. There
are 3 elements in this list so the formula multiplicity is 3.
The conclusion H |X ,A ⇒ Π of (c) has two components

and the antecedent of the active component is X ,A. There
are two elements in this list so the formula multiplicity is 2.

The general form of an analytic structural rule schema is
given in (2). In particular, its conclusion is:
H |Yi ,Xi1, . . . ,Xiαi ⇒ Πi (i ∈ I ) | Z j1, . . . ,Z jβj ⇒ (j ∈ J )

By inspection, its component multiplicity is 1 + |I | + |J |, and
its formula multiplicity is

max
(
max({αi |i ∈ I }) + 1 , max({βj |j ∈ J })

)
Some analytic structural rule schemas and their formula and
component multiplicities are given in Fig. 2.

Definition 3.3. Let HFLec + R be any analytic structural
rule extension of HFLec.
The formula multiplicity of HFLec + R is the maximum of

the formula multiplicities of its rule schemas.
The component multiplicity of HFLec + R is the maximum

of the component multiplicities of its rule schemas.

A quick inspection of Fig. 1 reveals that the formula mul-
tiplicity of HFLec is 3 and its component multiplicity is 2.

3.2 (EW), (c), (EC) are hp-admissible in HFL⇝ec + R⇝

Define these binary relations on hypersequents h and h1.
• h ⇝k

(c) h1 iff h1 can be obtained from h by applying
some number of (c) such that every formula is up to k
occurrences fewer in a component in h1 than in the
corresponding component in h.
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H |X1,Y1 ⇒ Π1 H |X2,Y2 ⇒ Π2 (com)
H |X1,Y2 ⇒ Π1 |X2,Y1 ⇒ Π2

(p → q)∧1 ∨ (q → p)∧1

(2, 3)

H |X ,Y ⇒ (wem)
H |X ⇒ |Y ⇒

(p → 0)∧1 ∨ ((p → 0) → 0)∧1
(1, 3)

H |Xi ,X j ⇒ Πi (0 ≤ i, j ≤ k ; i , j )
(Bwk)

H |X0 ⇒ Π0 | . . . |Xk ⇒ Πk

∨ki=0 (pi → (∨j,i pj ))∧1

(1,k + 2)

H |Xi ,X j ⇒ Πi (0 ≤ i ≤ k − 1; i + 1 ≤ j ≤ k )
(Bck)

H |X0 ⇒ Π0 | . . . |Xk−1 ⇒ Πk−1 |Xk ⇒

(p0)∧1 ∨ (p0 → p1)∧1 ∨ . . . ∨ ((p0 ∧ . . . ∧ pk−1) → pk )∧1

(1,k + 2)

H |Y ,X1 ⇒ Π H |Y ,X2 ⇒ Π mingle
H |Y ,X1,X2 ⇒ Π

p · p → p

(3, 2)

{H |Y ,Xi1 , . . . ,Xim ⇒ Π s.t. {i1, . . . , im } ⊆ {1, . . . ,n}} knotnmH |Y ,X1, . . . ,Xn ⇒ Π

pn → pm (n,m ≥ 0)
(n + 1, 2)

Figure 2. Some analytic structural rule schemas, each computed from the amenable formula that appears below it. Below that
is its (formula multiplicity, component multiplicity). Note: (A)∧1 is notation for (A ∧ 1).

• h ⇝k
(EC) h1 iff h1 can be obtained from h by applying

some number of (EC ) such that every component is
up to k occurrences fewer in h1 than in h.
• h ⇝k

l h1 iff there exists h′ such that h ⇝k
(c ) h

′ and
h′ ⇝l

(EC )
h1.

Example 3.4. Consider the following hypersequents.
h0 := p3,q2 ⇒ r | p2,q ⇒ r | p,q ⇒ r | ⇒ s

h1 := p2,q2 ⇒ r | p2,q ⇒ r | p,q ⇒ r | ⇒ s

h2 := p,q ⇒ r | p,q ⇒ r | p,q ⇒ r | ⇒ s

h3 := p,q ⇒ r | ⇒ s

h4 := ⇒ s

h5 := p3 ⇒ r | p2,q ⇒ r | p,q ⇒ r | ⇒ s

Then h0 ⇝2
(c) h1. Also: h0 ⇝2

(c) h2 and h2 ⇝2
(EC) h3 and

hence h0 ⇝2
2 h3. However it is not the case that h3 ⇝2

(EC) h4
since h4 cannot be obtained from h3 by (EC). Nor is it that
h2 ⇝1

(EC) h3 since h3 has two fewer p,q ⇒ r than h2 . Nor is
it that h0 ⇝2

(c) h5 since h5 cannot be obtained from h1 by (c).

Example 3.5. The analytic structural rule extensionHFLec+
(com)+(Bw4) has formula multiplicity 3 and component mul-
tiplicity 6 (refer Figs. 1,2). By Thm. 2.5 it is a calculus for the
logic FLec + (p → q)∧1 ∨ (q → p)∧1 +∨

4
i=0 (pi → (∨j,i pj ))∧1.

For the remainder of this section: fix an arbitrary ana-
lytic structural rule extension HFLec + R. Denote its formula
multiplicity by fm. Denote its component multiplicity by cm.

The hypersequent calculus HFL⇝ec + R⇝ is obtained from
the calculus HFLec + R by replacing each rule schema r (be-
low left) in the latter with the rule r⇝ (below right) that
internalises a fixed amount of contraction in the conclusion.
h1 . . . hn r

h0

h1 . . . hn r⇝ with h0 ⇝fm−1
cm−1 дд

For each instance of r there corresponds a finite number of
instances of r⇝ . A base instance of r⇝ is a particular instance
such that the conclusion is h0. In other words, the conclu-
sion is the hypersequent that would have been obtained by
applying r .

Lemma 3.6. HFLec + R and HFL⇝ec + R
⇝ derive the identical

set of hypersequents.

Proof. Every instance of a rule schema r⇝ ∈ HFL⇝ec +R⇝ can
be simulated in HFLec +R by a rule instance of r followed by
some applications of (c) and (EC). Meanwhile every instance
of a rule schema r ∈ HFLec + R can be simulated in HFL⇝ec +
R⇝ since the latter is a base instance of r⇝ . □

Since (EW⇝ ), (c⇝ ) and (EC⇝ ) are in HFL⇝ec + R⇝, the
admissibility of (EW), (c), and (EC) is trivial. The significance
of the following lemma is that this admissibility is height-
preserving.

Lemma 3.7. (EW), (c), (EC) are hp-admissible in HFL⇝ec +R
⇝.

Proof. We prove hp-admissibility of each rule schema in turn.
(EW): given a derivation δ in HFL⇝ec + R⇝ of h, let us

obtain a derivation of h |X ⇒ Π of no greater height. Proof
by induction on the height of δ .
Base case: if h is an instance of an initial hypersequent,

then so is h |X ⇒ Π.
Inductive case: let r⇝ be the last rule instance in δ . Let

us illustrate the argument when r⇝ has two premises д |д1
and д |д2 (the general case of ≥ 1 premise is analogous) and
conclusion д |д0, and д is the hypersequent that instantiates
the hypersequent-variable of the rule (every rule schema
in HFL⇝ec + R⇝ has exactly one hypersequent-variable). By
the induction hypothesis (IH) we obtain derivations of height
lesser than δ of д |X ⇒ Π |д1 and д |X ⇒ Π |д2. Applying r⇝
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to these hypersequents with the multiset-variable now in-
stantiated by д |X ⇒ Π, we obtain д |X ⇒ Π |д0. This is a
derivation of h |X ⇒ Π with height no greater than δ .
(c): given a derivation δ of h |A,A,X ⇒ Π let us obtain a

derivation of h |A,X ⇒ Π of the same height. Induction on
the height of δ .
Base case: if h |A,A,X ⇒ Π is an instance of an initial

hypersequent, then so is h |A,X ⇒ Π.
Inductive case. Let r⇝ be the last rule in δ . Then there

must be a base instance д0 of r⇝ and some д1 such that

д0 ⇝
fm−1
(c) д1 ⇝

cm−1
(EC) h |A,A,X ⇒ Π (3)

SinceX contains exactlyk copies ofA for somek ≥ 0, writeX
asAk ,X− such thatA < X−. Since h contains exactly l identi-
cal components ofA,A,X ⇒ Π (i.e.Ak+2,X− ⇒ Π) for some
l ≥ 0, partition it into the portion h− that does not contain
Ak+2,X− ⇒ Π and the remainder. So

h |A,A,X ⇒ Π :=

h− |

l components︷                                       ︸︸                                       ︷
Ak+2,X− ⇒ Π | . . . |Ak+2,X− ⇒ Π︸                                            ︷︷                                            ︸

h

|Ak+2,X− ⇒ Π

Since д1 ⇝cm−1
(EC) h |Ak+2,X− ⇒ Π by (3), partition д1 into the

portion д′1 that externally contracts to h− (i.e. д′1 ⇝cm−1
(EC) h−),

and the portion that externally contracts to the remainder.
Specifically, there exists α with 0 ≤ α ≤ cm − 1 such that д1
has the following form. Here α is the number of times fewer
that Ak+2,X− ⇒ Π appears in h |A,A,X ⇒ Π than in д1 (due
to⇝cm−1

(EC) ).

д1 := д′1 |

l + 1 + α components︷                                       ︸︸                                       ︷
Ak+2,X− ⇒ Π | . . . |Ak+2,X− ⇒ Π

For each of the l + 1+α components ofAk+2,X− ⇒ Π above,
the corresponding component in д0 will have up to fm − 1
more occurrences of A (due to⇝fm−1

(c) ). Therefore for each i
(1 ≤ i ≤ l + 1 + α ) there exists βi with 0 ≤ βi ≤ fm − 1,
and also a multiset Xi where the number of occurrences of
each formula is no less and at most fm − 1 greater than in X .
Let д′0 be such that д′0 ⇝fm−1

(c) д′1. Then

д0 := д′0 |

l + 1 + α components︷                                                         ︸︸                                                         ︷
Ak+2+β1 ,X1 ⇒ Π | . . . |Ak+2+βl+1+α ,Xl+1+α ⇒ Π

Without loss of generality, in the list βl+1, . . . , βl+1+α , we
can assume that there is some initial segment βl+1, . . . , βl+N
(possibly empty) such that each value is fm − 1 and that the

rest take values strictly less than fm − 1. I.e.

д′0 |

l components︷                                     ︸︸                                     ︷
Ak+2,X1 ⇒ Π | . . . |Ak+2,Xl ⇒ Π |

Ak+2+fm−1,Xl+1 ⇒ Π | . . . |Ak+2+fm−1,Xl+N ⇒ Π |

Ak+2+βl+N+1 ,Xl+N+1 ⇒ Π | . . . |Ak+2+βl+1+α ,Xl+1+α ⇒ Π

For every i such that l + 1 ≤ i ≤ l + N , either the com-
ponent Ak+2+fm−1,Xi ⇒ Π is in the instantiation of the
hypersequent-variable, or at least 2 of the copies of A oc-
cur in the instantiation of some multiset-variable (since the
antecedent of every active component in the conclusion
of the rule schema has at most fm elements by the defini-
tion of formula multiplicity). In either case apply the IH to
those instantiations in the premise(s)3 to make A,A into A.
Then apply r⇝ to get the following base instance. Note that
A,A 7→ A does not change anything else because the hyperse-
quent variable (see (2)) and each multiset-variable (by linear
conclusion Def. 2.3) occur exactly once in the conclusion.

д′0 |

l components︷                                     ︸︸                                     ︷
Ak+2,X1 ⇒ Π | . . . |Ak+2,Xl ⇒ Π |

A, A 7→ A via IH on premises︷                                                          ︸︸                                                          ︷
Ak+1+fm−1,Xl+1 ⇒ Π | . . . |Ak+1+fm−1,Xl+N ⇒ Π |

Ak+2+βl+N+1 ,Xl+N+1 ⇒ Π | . . . |Ak+2+βl+1+α ,Xl+1+α ⇒ Π

Since βi < fm−1 for every i such that l+N +1 ≤ i ≤ l+1+α ,
the above is related under⇝fm−1

(c) to

д′1 |

l components︷                                       ︸︸                                       ︷
Ak+2,X− ⇒ Π | . . . |Ak+2,X− ⇒ Π |

1 + α components︷                                       ︸︸                                       ︷
Ak+1,X− ⇒ Π | . . . |Ak+1,X− ⇒ Π

Since 0 ≤ α ≤ cm − 1 and д′1 ⇝cm−1
(EC) h−, the above is related

under⇝cm−1
(EC) to

h− |

l components︷                                       ︸︸                                       ︷
Ak+2,X− ⇒ Π | . . . |Ak+2,X− ⇒ Π |Ak+1,X− ⇒ Π

Since Ak+1,X− is A,X , this is exactly h |A,X ⇒ Π.
(EC): given a derivation δ ofh |s |s let us obtain a derivation

of h |s of the same height. Induction on the height of δ .
Base case: if h |s |s is an instance of an initial hypersequent,

then so is h |s .
Inductive case. Let r⇝ be the last rule in δ . Then there

must be a base instance д0 of r⇝ and some д1 such that

д0 ⇝
fm−1
(c) д1 ⇝

cm−1
(EC) h |s |s (4)

3The multiset-variable is not required to occur in the premises (e.g. consider
if r was the standard weakening rule). In that case, no IH on the premises
is required; simply use A instead of A, A in that variable’s instantiation.
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Since h contains exactly l (l ≥ 0) identical components of s
for some l ≥ 0, write h |s |s as follows such that s < h−.

h |s |s := h− |
l︷ ︸︸ ︷

s | . . . |s |s |s

Since д1 ⇝cm−1
(EC) h |s |s by (4), we can partition д1 into the

portion д′1 that externally contracts to h− (i.e. д′1 ⇝cm−1
(EC) h−),

and the portion that externally contracts to the remainder.
Specifically, there exists α with 0 ≤ α ≤ cm − 1 such that д1
has the following form. Here α is the number of times fewer
that s appears in h |s |s than д1 due to⇝cm−1

(EC) .

д1 := д′1 |
l + 2 + α︷ ︸︸ ︷
s | . . . |s

If α < cm−1 then д1 ⇝cm−1
(EC) h |s , so we have д0 ⇝fm−1

cm−1 h |s as
required. So assume that α = cm − 1. In that case д0 has the
following form for someд′0 withд′0 ⇝fm−1

(c) д′1, and sequents si
(1 ≤ i ≤ l + 1 + cm) such that si ⇝fm−1

(c) s .

д0 := д′0 |
l + 1 + cm︷                              ︸︸                              ︷

s1 | . . . |sl+cm−1 |sl+cm |sl+1+cm

Since the number of components in the conclusion of a
rule schema is at most cm, and since one of these is the
hypersequent-variable, the number of active components is
at most cm − 1. Therefore we may assume without loss of
generality that the last two components sl+cm and sl+1+cm
are in the instantiation of the hypersequent-variable. In each
premise, make use of hp-admissibility of (c) (proved above)
to replace sl+cm |sl+1+cm with s |s , and then replace s |s with s
using the IH. Reapplying r⇝ we can obtain the base instance

д′0 |

l+cm−1︷           ︸︸           ︷
s1 | . . . |sl+cm−1 |s

Because we had д′0 ⇝fm−1
(c) д′1 and each si ⇝fm−1

(c) s , the above
is related under⇝fm−1

(c) to

д′1 |

l+cm−1︷ ︸︸ ︷
s | . . . |s |s

Because we had д′1 ⇝
cm−1
(EC) h− it follows that the above is

related under⇝cm−1
(EC) to

h− |

l︷ ︸︸ ︷
s | . . . |s |s

This is exactly h |s . □

Remark 2. From the above lemma it follows using every-
where minimal derivations (see [19]) that (EW), (c), and (EC)
are hp-admissible also in HFL⇝ec +R

⇝\{(EW⇝ ), (c⇝ ), (EC⇝ )}.

4 The extended Kripke lemma
We write (ai ) to denote an infinite sequence with ith ele-
ment ai , more standardly denoted (ai )i ∈N. For strictly in-
creasing functions r and s on N: (ar (i ) ) is a subsequence
of (ai ) (denoted (ar (i ) ) ⊑ (ai )); also we drop parentheses and
write (ar s (i ) ) to mean the subsequence (ar (s (i )) ) of (ar (i ) ).

Lemma 4.1 (Kripke lemma [18]). For every sequence (si ) of
sequents built using a finite set Ω of formulas, there exists i, j
such that i < j, and si can be obtained from sj by repeated
applications of (c).

Meyer observed (see [28]) that the above is equivalent to
Dickson’s lemma from number theory. Order-theoretically it
expresses that the standard componentwise ordering on Nm
is a wqo.

The main result in this section is the following.

Lemma4.2 (extended Kripke lemma). For every sequence (hi )
of hypersequents built using a finite set Ω of formulas, there
exists i < j such that hi can be obtained from hj by repeated
applications of (c), (EC) and (EW).

4.1 Some order theoretic observations
A partially ordered set (S, ≤) is a set S with a partial order ≤.
Let x < y (also y > x) denote x ≤ y and x , y. A sequence
(xi ) from S is a descending chain wrt ≤ if xi+1 < xi for every
i ∈ N; it is an antichain wrt ≤ if for all i, j ∈ N, xi ≤ x j
implies i = j; it is an ascending chain wrt ≤ if xi+1 > xi
for every i ∈ N. The elements x and y are incomparable if
neither x ≤ y nory ≤ x . Thus an antichain (xi ) is a sequence
such that xi and x j (i , j) are incomparable.

The following is standard (see e.g. [1]).

Lemma 4.3. Let (A, ≤) be a partially ordered set, and let (xi )
be a sequence from A. Then there is a subsequence (xr (i ) ) such
that one of the following holds wrt ≤:

1. (xr (i ) ) is a descending chain
2. (xr (i ) ) is an antichain
3. (xr (i ) ) is an ascending chain
4. (xr (i ) ) is constant i.e. xri = xr j for all i, j ∈ N

For a partially ordered set (S, ≤), a subsetU ⊆ S is upward
closed if x ∈ U and x ≤ y implies y ∈ U . For a subset X ⊆ S ,
the upward closed set generated by X is defined ↑X := {y ∈
S |∃x .x ∈ X and x ≤ y}. The set U (S, ≤) of upward closed
subsets of S is partially ordered by set inclusion ⊆.
We use the symbol ≤ specifically to denote the standard

componentwise partial order on Nm defined: (a1, . . . ,am ) ≤
(b1, . . . ,bm ) iff ai ≤ bi for every i (1 ≤ i ≤ m).

Theorem 4.4. Letm > 0.
(i) (Nm , ≤) has no descending chain and no antichain.
(ii) (U (Nm , ≤), ⊆) has no ascending chain and no antichain.

Proof. (i) This result is known as Dickson’s lemma [1, 12].
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(ii) See [1, 2, 20]. This proof relies on the fact that (Nm , ≤)
is a ω2-wqo. In particular, it does not hold for every wqo
(Rado [26] has given a counterexample). □

Let P (Nm ) denote the powerset of Nm .
For X ,Y ∈ P (Nm ), let us define ≼1

s as follows. It is easily
seen that this relation is reflexive and transitive.

X ≼1
s Y iff ∀y ∈ Y∃x ∈ X (x ≤ y)

However it is not antisymmetric since e.g. when m = 2:
{(1, 2)} ≼1

s {(1, 2), (10, 20)} ≼1
s {(1, 2)}. To obtain antisym-

metry (and hence a partial order), we will need to treat such
elements as equivalent. We therefore define the following
equivalence relation:

X ∼s Y iff X ≼1
s Y and Y ≼1

s X

Then ∼s partitions P (Nm ) into the set P (Nm )/∼s of equiva-
lence classes. As usual, let [X ] denote the equivalence class
containing X . For X ,Y ∈ P (Nm ), define

[X ] ≼s [Y ] iff X ≼1
s Y

It is easy to check that the definition of ≼s does not depend
on the representative elements that are chosen and hence
is well-defined: let X ∼s X ′ and Y ∼s Y ′, and suppose that
[X ] ≼s [Y ]. Then X ′ ≼1

s X ≼
1
s Y ≼

1
s Y
′ so [X ′] ≼s [Y ′] as

required.
Clearly≼s is reflexive, transitive and antisymmetric so≼s

is a partial order on P (Nm )/∼s .
The definition of ≼1

s is motivated by the fact that it paral-
lels the operations of (EW), (c) and (EC) on hypersequents.
This will become clear in the next subsection. In turns out
that ≼1

s is known as the minoring ordering (see [4]), and is
also called the Smyth ordering in the power domain literature.

Lemma 4.5. For X ,Y ∈ P (Nm ): (i) [X ] ≺s [Y ] iff ↑X ⊃ ↑Y .
(ii) If X and Y are incomparable wrt ≼s , then ↑X and ↑Y are
incomparable wrt ⊆.

Proof. (i) Assume [X ] ≺s [Y ] (so [X ] ≼s [Y ] and [X ] ,
[Y ]). For every u ∈ ↑Y there exists y ∈ Y such that y ≤ u.
Since [X ] ≼s [Y ], there exists x ∈ X such that x ≤ y and
hence x ≤ u. Thus u ∈ ↑X so ↑X ⊇ ↑Y . Let us show that the
inequality is strict. Since [X ] , [Y ] then X ̸∼s Y and hence
∀x ∈ X∃y ∈ y (y ≤ x ) does not hold. So there exists x0 ∈ X
such that y ≰ x0 for every y ∈ Y . Thus x0 < ↑Y , so ↑X ⊃ ↑Y .
Assume ↑X ⊃ ↑Y . For arbitrary y ∈ Y : y ∈ ↑X so there

exists x ∈ X such that x ≤ y and hence [X ] ≼s [Y ]. Let
us show that the inequality is strict. Let u ∈ ↑X \ ↑Y . Then
there exists x ∈ X such that x ≤ u. If [X ] = [Y ] then X ∼s Y
and hence there would exist y ∈ Y such that y ≤ x . But
then y ≤ u and hence u ∈ ↑Y and this is a contradiction.
So [X ] ≺s [Y ].
(ii) Assume that X and Y are incomparable. ↑X ⊂ ↑Y is

not possible because this would imply [X ] ≻s [Y ] by (i),
and hence X ≻1s Y . Similarly ↑Y ⊂ ↑X is not possible. Fi-
nally, suppose ↑X = ↑Y . Then x ∈ X implies x ∈ ↑Y and

hence there exists y ∈ Y such that y ≤ x . Similarly y ∈ Y
implies y ∈ ↑X and hence there exists x ∈ X such that x ≤ y.
This implies X ∼s Y , contradicting the incomparability of X
and Y . We conclude that ↑X and ↑Y are incomparable. □

Lemma 4.6. (P (Nm )/∼s ,≼s ) has no descending chain and
no antichain.

Proof. If (Xi ) is a descending chain on (P (N)/∼s ,≼s ), then
(↑Xi ) is an ascending chain on (U (Nm , ≤), ⊆) by Lem. 4.5(i).
If (Xi ) is an antichain chain on (P (N)/∼s ,≼s ), then (↑Xi ) is
an antichain on (U (Nm , ≤), ⊆) by Lem. 4.5(ii). Each of these
consequences contradicts Thm. 4.4(ii). □

4.2 Relating to hypersequents
Let set(M ) denote the set of elements that occur a positive
number of times in multisetM . E.g. ifM is multiset {p,p,q, r }
then set(M ) = {p,q, r }.
Define the following restriction (EWr ) of (EW).

h (EWr ) h contains a component Y ⇒ A
such that set(X ) = set(Y )h |X ⇒ A

Example 4.7. An instance of (EWr ) is given below.
p5,q3 ⇒ r

(EWr )
p5,q3 ⇒ r |p2,q4 ⇒ r

However e.g. p5,q3 ⇒ r |q4 ⇒ r is not obtainable from
p5,q3 ⇒ r because set({q4}) = q , {p,q} = set({p5,q3}).
Let Ω be a set of formulas, and let HΩ denote the set of
hypersequents built using formulas from Ω.
For h1,h2 ∈ HΩ , define h1 ∼h h2 iff each hypersequent is

obtainable from the other using repeated applications of (c),
(EC) and (EWr ).

Clearly ∼h is an equivalence relation. Therefore it parti-
tionsHΩ into the setHΩ/∼h of equivalence classes. Let [h]
denote the equivalence class containing h.
Example 4.8. Observe that p,q ⇒ r is equivalent under ∼h
to p,q ⇒ r |p2,q3 ⇒ r since

p,q ⇒ r
(EWr )

p,q ⇒ r |p2,q3 ⇒ r
p,q ⇒ r |p2,q3 ⇒ r

(c),(EC)p,q ⇒ r

For [h1], [h2] ∈ HΩ/∼h , define [h1] ≼h [h2] iff h1 can
be obtained from h2 by repeated applications of (c), (EC)
and (EWr ).

Let us establish that the definition of ≼h does not depend
on the representative elements that are chosen and hence
is well-defined. Let h1 ∼h h′1 and h2 ∼h h′2, and suppose
that [h1] ≼h [h2]. Then h′1 is obtainable from h1 using (c),
(EC), (EWr ), similarly the latter from h2, and similarly the
latter from h′2. Thus [h′1] ≼h [h′2].
Clearly ≼h is reflexive, transitive, and antisymmetric, so

it is a partial order onHΩ/∼h .
Definition 4.9 ((S,Π)-component, hypersequent, sequence).
Let S be a finite set of formulas, and let Π be either empty or
consist of a single formula.
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A (S,Π)-component has the form X ⇒ Π with set(X ) = S .
If every component in a hypersequent is a (S,Π)-component,

call this a (S,Π)-hypersequent.
A sequence of (S,Π)-hypersequents is called a (S,Π)-

sequence.

For a non-empty finite set S , fix an enumerationA1, . . . ,A |S | .
Let X1 ⇒ Π | . . . |XN ⇒ Π be any (S,Π)-hypersequent h.
Then define h⊣ ∈ P (N |S | ):⋃

1≤j≤N
{(a1, . . . ,a |S | ) |Ai occurs exactly ai times in X j }

Example 4.10. Let h be the ({p,q,p → q}, r )-hypersequent
below left. Let us enumerate {p,q,p → q} as p,q,p → q.
Then h⊣ ∈ P (N3) is given below right.

p,p,p → q ⇒ r |p,q,p → q ⇒ r { (2, 0, 1) , (1, 1, 1) }

Observe that (д |h)⊣ = д⊣ ∪ h⊣.

Lemma 4.11. For a non-empty finite set S of formulas, and
(S,Π)-hypersequents д,h: [h] ≼h [д] iff [h⊣] ≼s [д⊣].

Proof. By inspection, the relation ≼1
s satisfies the following

properties for arbitrary X1,X2,Y1,Y2 ∈ P (N
m ).

(i) X1 ≼1
s Y1 and X2 ≼1

s Y2 implies X1 ∪ X2 ≼1
s Y1 ∪ Y2.

(ii) X1 ≼1
s Y1 implies X1 ∪ X2 ≼s Y1.

In the following rule instances, suppose that the premise
(and hence the conclusion) is a (S,Π)-hypersequent.

h |X ,A,A⇒ Π

h |X ,A⇒ Π

h |X ⇒ Π |X ⇒ Π

h |X ⇒ Π
h (EWr )

h |X ⇒ Π

We observe—using (i) and (ii)—that in every instance of one
of the above rule schemas, conclusion⊣ ≼1

s premise⊣. I.e.
(h |X ,A⇒ Π)⊣ = h⊣ ∪ (X ,A⇒ Π)⊣ ≼1

s h
⊣ ∪ (X ,A,A⇒ Π)⊣

= (h |X ,A,A⇒ Π)⊣

Hence [(h |X ,A⇒ Π)⊣] ≼s [(h |X ,A,A⇒ Π)⊣].
(h |X ⇒ Π)⊣ = h⊣ ∪ (X ⇒ Π)⊣ = h⊣ ∪ (X ⇒ Π)⊣ ∪ (X ⇒ Π)⊣

= (h |X ⇒ Π |X ⇒ Π)⊣

Hence [(h |X ⇒ Π)⊣] ≼s [(h |X ⇒ Π |X ⇒ Π)⊣].
Also (h |X ⇒ Π)⊣ = h⊣ ∪ (X ⇒ Π)⊣ ≼1

s h
⊣ and hence we

have [(h |X ⇒ Π)⊣] ≼s [h⊣].
Suppose that [h] ≼h [д]. By definition, there is some

finite sequence д = д0, . . . ,дN = h such that дi+1 is obtained
from дi by (c), (EC) or (EWr ). By the observations above,
д⊣i+1 ≼

1
s д
⊣
i . By transitivity of ≼1

s it follow that h⊣ ≼1
s д
⊣, and

hence [h⊣] ≼s [д⊣].
Now suppose that [h⊣] ≼s [д⊣]. By definitionh⊣ ≼1

s д
⊣ and

thus ∀y ∈ д⊣∃x ∈ h⊣ (x ≤ y). Since д and h are both (S,Π)-
hypersequents, every component in д can be made identical
to some component in h using (c). Let д1 be the hyperse-
quent obtained from д in this way. Note that a sequent may
occur as a component more times in д1 than in h. Obtain д2

from д1 by using (EC) to remove excess copies so this is no
longer the case. Finally, observe that h may contain some
(S,Π)-components that do not occur in д2. Obtain д3 from д2
by applying (EWr ) to insert these missing components. It
follows that д3 is identical to h, and thus [h] ≼h [д]. □

From the above, also [h] ≺h [д] iff [h⊣] ≺s [д⊣].

Corollary 4.12. If (hi ) is a (S,Π)-sequence with S finite,
([hi ]) is neither a descending chain nor an antichain wrt ≼h .

Proof. Immediate if S = ∅ as ([hi ]) would be constant. Sup-
pose that S , ∅. If ([hi ]) is a descending chain, then [hi ] ≻h
[hi+1] for every i . Lem. 4.11 implies [h⊣i ] ≻s [h⊣i+1], so ([h⊣i ])
would be a descending chain on (P (N |S | )/∼s ,≼s ). If ([hi ]) is
an antichain, for every i, j neither [hi ] ≼h [hj ] nor [hj ] ≼h
[hi ]. From Lem. 4.11: neither [h⊣i ] ≼h [h⊣j ] nor [h⊣j ] ≼h [h⊣i ],
so ([h⊣i ]) would be an antichain on (P (N |S | )/∼s ,≼s ). Each
of these consequences contradicts Lem. 4.6. □

4.3 Proof of the extended Kripke lemma
We will use the infinite Ramsey theorem (see [1, 24, 27]).

Theorem 4.13 (Ramsey [27]). For every function c mapping
each 2-element subset of N to an element of a finite set, there
exists an infinite set Y ⊆ N such that the restriction of c to the
2-element subsets of Y is a constant.

The (S,Π)-reduct of a hypersequent h—denoted h(S,Π)—
is obtained by deleting every non-(S,Π)-component in h.
Clearly h(S,Π) is a (S,Π)-hypersequent. Also, (hi (S,Π)) is
a (S,Π)-sequence for every sequence (hi ) of hypersequents.

Proof of Lemma 4.2. Let (hi ) be a sequence of hypersequents
fromHΩ for a finite set Ω of formulas. Since there are only
finitely many choices for S ⊆ Ω and Π (empty or an ele-
ment of Ω), it follows that there is a subsequence (hq (i ) ) ⊑
(hi ) such that the signature of hq (i )—define this as the set
{(S,Π) |hq (i ) has a (S,Π)-component}—is the same set T =
{(S1,Π1), . . . , (SN ,ΠN )} for every i . IfT is empty then (hq (i ) )
is a sequence of empty hypersequents so the result follows
trivially. Therefore take T as non-empty.
Let us suppose that ([hr (i )]) ⊑ ([hq (i )]) is a descending

chain and obtain a contradiction. Then for every i, j ∈ N
with i < j: [hr (i )] ≻h [hr (j )]. Hence [hr (i )] ̸≼h [hr (j )].
Since hr (i ) and hr (j ) have the same signature, any missing
components of hr (i ) can be supplied by (EWr ). Therefore
there must exist some (S i j ,Πi j )-component ((S i j ,Πi j ) ∈ T )
in hr (j ) that cannot be contracted to any component in hr (i ) .
Assign (S i j ,Πi j ) ∈ T to the 2-element subset {i, j} ⊂ N. By
Ramsey’s theorem there is an infinite Y ⊆ N such that every
2-element subset ofY is assigned the same element (S∗,Π∗) ∈
T . Write Y = {s (0), s (1), s (2), . . .} with s (0) < s (1) < s (2) <
. . .. Then [hr s (i ) (S∗,Π∗)] ≻h [hr s (i+1) (S∗,Π∗)], and thus we
have that ([hr s (i ) (S∗,Π∗)]) is a descending chain, contradict-
ing Cor. 4.12.
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Let us suppose that ([hr (i )]) ⊑ ([hq (i )]) is an antichain
and obtain a contradiction. Then for every i, j ∈ Nwith i < j:
[hr (i )] ̸≼h [hr (j )] and [hr (j )] ̸≼h [hr (i )]. From the former,
because hr (i ) and hr (j ) have the same signature, there ex-
ists some (S i j ,Πi j )-component ((S i j ,Πi j ) ∈ T ) in hr (j ) that
cannot be contracted to any component in hr (i ) . Assign
(S i j ,Πi j ) ∈ T to the 2-element subset {i, j} ⊂ N. Apply-
ing Ramsey’s theorem there is an infinite set Y ⊆ N such
that every 2-element subset of Y is assigned the same ele-
ment (S∗,Π∗). Write Y = {s (0), s (1), s (2), . . .} with s (0) <
s (1) < s (2) < . . .. Then [hr s (i ) (S∗,Π∗)] ̸≼h [hr s (j ) (S∗,Π∗)]
for every i < j. We continue:
For every i, j ∈ N with i < j, define c ({i, j}) = 1 if

[hr s (i ) (S∗,Π∗)] ≻h [hr s (j ) (S∗,Π∗)] and 0 otherwise. Once
again by Ramsey’s theorem, there is an infinite set Z ⊆ N
such such that every 2-element subset of Z is assigned ei-
ther 1 or 0. Write Z = {t (0), t (1), t (2), . . .} with t (0) <
t (1) < t (2) < . . .. If it is 1 then ([hr st (i ) (S∗,Π∗)]) is a de-
scending chain so by Cor. 4.12 we obtain a descending chain
in (P (N |S | ),≼s ) contradicting Thm. 4.6. So it must be 0.
Then for every i, j ∈ N such that i < j: [hr st (i ) (S∗,Π∗)] ̸≼h
[hr st (j ) (S∗,Π∗)] (previous paragraph) and [hr st (i ) (S∗,Π∗)] ̸≻h
[hr st (j ) (S∗,Π∗)]. It follows that ([hr st (i ) (S∗,Π∗)]) is an an-
tichain, contradicting Cor. 4.12.

Since no subsequence of ([hq (i )]) is a decreasing chain or
an antichain, it must have a constant or ascending subse-
qence ([hu (i )]) (Lem. 4.3). Then [hu (1)] ≼h [hu (2)], so hu (1)
can be obtained from hu (2) using (c), (EC) and (EWr ). □

5 Decidability via backward proof search
We are ready to establish the decidability of every amenable
axiomatic extension of FLec. Equivalently, these are the log-
ics that can be formalised by extending the hypersequent
calculus HFLec with analytic structural rules.
Theorem 5.1 (Main theorem). Every axiomatic extension
of FLec by amenable formulas is decidable.

Proof. Let L be an arbitrary amenable axiomatic extension
of FLec. By Thm. 2.5(i) we can compute a finite set R of
analytic structural rules such that for every formula F : F ∈
L iff⇒ F is derivable in HFLec + R. From Lem. 3.6: F ∈ L iff
⇒ F is derivable in HFL⇝ec + R⇝. Therefore in the following
we solely consider derivations in HFL⇝ec + R⇝.

A derivation has minimal height if there is no derivation
of the same hypersequent with lesser height. A derivation
is everywhere minimal [19] if every subderivation of it has
minimal height. A derivation is irredundant if no hyperse-
quent in the derivation can be obtained from a hypersquent
above it by repeated applications from (c), (EC), (EW).
Observation 1. Every derivable hypersequent has an ev-

erywhere minimal derivation. We proceed following [19].
Given a derivation d of h, obtain a derivation min(d ) of h
of minimal height by exhaustively searching for derivations
(‘backward proof search’) with height at most that of d . This

is a finite search because there are only finitely many possi-
ble rule instances in HFL⇝ec +R⇝ with a given hypersequent
conclusion (this was why we internalised a fixed amount
of contraction!). Replace each immediate subderivation d ′

of min(d ) with min(d ′). In the derivation so obtained, re-
place each immediate subderivation d ′′ of those min(d ′)
with min(d ′′). Proceed in this way until the initial hyper-
sequents are reached. The result is an everywhere minimal
derivation of h.

Observation 2. An everywhere minimal derivation is irre-
dundant. Indeed, if d were a everywhere minimal derivation
that is not irredundant, then it would contain a hyperse-
quenth1 and a hypersequenth2 above it from whichh1 could
be obtained by repeated applications from (c), (EC), (EW).
Then the subderivation of h1 would not have minimal height
since a derivation of lesser height is obtainable from h2 by
hp-admissibility of the latter rules (Lem. 3.7).
We have shown that if ⇒ F is derivable, it has an ir-

redundant derivation. The point of irredundancy (unlike
everywhere minimality) is that we can enforce it during
backward proof search. Perform irredundant backward proof
search on⇒ F by constructing a proof search tree as follows:
place⇒F at the root. Repeatedly, for each hypersequent in
the tree, place all the premises of all possible rule instances
as its children, omitting those rule instances that would in-
troduce a premise that violates irredundancy of the tree. The
proof search tree is finitely branching since there are only
finitely many possible rule instances that apply to a given
hypersequent conclusion. Moreover every branch has finite
length in the limit since, by Lem. 4.2, there is no infinite
sequence (hi ) of hypersequents built using subformulas of F
that can satisfy irredundancy (i.e. no element is obtainable
from a later element by (c), (EC), (EW)). The proof search
tree is therefore finite by König’s lemma and thus the con-
struction will terminate. Finally, check if the proof search
tree contains a derivation as a subtree. If it does, then⇒F is
derivable, otherwise it is not. □

6 Future work
Complexity bounds for the amenable extensions of FLec
are a challenging question in their own right, as indicated
by Urquhart’s [30] complexity arguments for FLec.
It is likely that an upper bound could be obtained here

along the lines of [30]: the idea is to show that arbitrarily long
necessarily finite non-constant non-ascending sequences
can be replaced by ones with bounded length (‘controlled
bad sequences’) and use an upper bound for controlled bad
sequences. Controlled bad sequences can be used because the
amount of contraction internalised in each rule is fixed and
hence the number of copies of a formula in the antecedent
can only increase by a fixed amount from conclusion to
premise. Balasubramanian [4] gives lower and upper bounds
for controlled bad sequences over the Smyth (minoring) wqo
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of finite sets of Nm that exceed Urquhart’s tight ‘primitive
recursive in the Ackermann function’ bound for FLec.
The question of lower bounds is of particular interest: is

there an amenable extensions of FLec that has a lower bound
exceeding the complexity of FLec? Given the reliance on the
hypersequent calculus, and hence the Smyth wqo, it seems
plausible that such an extension exists.

The decidability problem for arbitrary analytic structural
rule extensions of HFLew is open. In the specific case of
monoidal t-norm logic MTL (FLew + (p → q) ∨ (q → p)),
decidability is shown by a semantic argument establishing
the finite embeddability property—attributed to Ono, see [10]
for a proof—and it is not known how this could be argued
syntactically i.e. from its hypersequent calculus HFLew +
(com). In the proof of Thm. 5.1, the possibility of e.g.A2 ⇒ B
appearing above A⇒ B was excluded from the irredundant
backward proof search, justified by the hp-admissibility of (c).
However, if (c) is replaced by (w) then it is not clear how to
exclude from proof search an infinite branch containingA⇒
B, A2 ⇒ B, A3 ⇒ B, . . ., even if weakening is hp-admissible.
It seems therefore that a new idea is required.
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