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PREFACE

This study of Hilbert’s e-symbol is based on a doctoral dissertation which
was submitted to the University of London in June 1967. It contains a number
of new results, in particular a strengthening of Hilbert’s Second e-Theorem,
which should be of some interest to specialists in the field of mathematical
logic. However, this book is not written for the expert alone. We have tried to
make it as self-contained as possible so that most parts will be intelligible to any-
one with a good mathematical background but with a limited knowledge of
formal logic. Since the e-symbol can be used fo overcome many technical diffi-
culties which arise in formalizing logical reasoning, the present book may be
useful as supplementary reading material for an undergraduate course in logic.

In Chapter I we define the formal languages which are used throughout
the book and analyze the semantics of such languages. An interesting result
concerning finitary closure operations is then established. This result is used
in Chapter II to prove the (semantic) completeness of certain formal systems
which incorporate the e-symbol. In Chapter 11 we also establish a number of
derived rules of inference for these formal systems, Chapter 111, which is more
technical than Chapter II, contains proofs of Hilbert’s e-Theorems, Skolem’s
Theorem, and Herbrand’s Theorem. If the reader is interested in only these
results, he may omit all of Chapter I except for the definitions of formal
languages and may skim through most of Chapter II.

Chapter 1V deais with formal theories, We see how the g-symbol and
e-Theorems may be used to prove the consistency of various mathematical
theories. In particular, Hilbert's attempts to prove the consistency of arith-
metic are described, We then discuss the role which the e-symbol can play in
formalizing set theory, and we give particular attention to the relationship
between this symbol and the axiom of choice.

Chapter V may be regarded as an appendix to the book. In this chapter we
give alternative proofs of some of the theorems in Chapter II1, Our methods
illustrate the close connection which exists between Hilbert’s e~Theorems and

‘Gentzen’s Hauptsatz.

The author would like to express his gratitude to G. T. Kneebone (Bedford
College, London) under whose helpful supervision his thesis was written. He
is also indebted to Marian Cowan for her excellent work in typing the manu-
seript, and most of all to his wife, Flora, for her help, patience, and en-
couragement. A. C. Leisenring

Reed College
Portland, Oregon
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INTRODUCTION

1 Objectives

The purpose of this book is to examine the nature of Hilbert’s e-symbol and
to demonsirate the useful role which this logical symbol can play both in
proving many of the classical theorems of mathematical logic and also in
simplifying the formulation of logical systems and mathematical theories.

The e-symbeol is a logical constant which can be used in the formal languages
of mathematical logic to form certain expressions known as s-terms. Thus, if
A is a formula of some formal language & and x is a variable of %, then the
expression exA4 is a well-formed term of the language. Intuitively, the e-term
exA says ‘an x such that if anything has the property A, then x has that
property’. For example, suppose we think of the variables of the language as
ranging over the set of human beings and we think of 4 as being the state-
ment “x is an honest politician’. Then exA4 designates some politician whose
honesty is beyond reproach, assuming of course that such a politician exists,
On the other hand, if there are no honest politicians, then ex4 must denote
someone, but we have no way of knowing who that person is, Similarly, even
if there are honest politicians, we have no way of knowing which one of
them sxA designates.

Since the e-symbol, or e-operator as it is sometimes called, selects an
arbitrary member from a set of objects having some given property, this
symbol is often referred to as a ‘logical choice function’. It is not surprising
then that an investigation of the e-symbol also sheds some light on the nature
of the axiom of choice. One of the main theorems of this book, Hilbert’s
Second e-Theorem, provides a formal justification of the use of the e~symbol
in logical systems by showing that this symbol can be eliminated from proofs
of formulae which do not themselves contain the symbol, What this theorem
says intuitively is that the act of making arbitrary choices is a legitimate
logical procedure. However, it has been shown by Cohen [1966] that an
application of the axiom of choice in set theory cannot in general be elimin-
ated. It follows then that the real power of the axiom of choice lies not in the
fact that it allows one to make arbitrary selections but rather in the fact that
it asserts the existence of a set consisting of the selected entities,

Before saying anything more about the nature of the g-symbol and the role
it plays, we should first give a brief explanation of the basic objectives and
concepts of mathematical logic.



2 INTRODUCTION

2 Yormal languages

The objects of study in mathematical logic are formal or symbolic lang-
uages, and the primary aim is to provide a formalization of logical reasoning
in terms of such languages, A formal language & consists of a set of symbols
together with certain prescribed rules for building well-formed (or gram-
matical) expressions from these symbols. The well-formed expressions of &
are usually divided into two categories, formulae and terms. The formulae
correspond to the sentences of ordinary languages and the terms correspond
to the nouns, pronouns, and noun clauses. The symbols of the language
include certain function and predicate symbols (the vocabulary of the lang-
uage), variables, and logical constants. To the logician the most important
symbols are the logical constants. These usually consist of certain proposi-
tional connectives, such as 71 (‘not’), v (‘or”), A (‘and’), — (‘implies’}, and
«s (‘if and only if”}, and one or both of the guantifiers, ¥V (‘for all’) and 3
(‘there exists”). The formal languages dealt with in this book also contain the
logical constant & (Hilbert’s e-symbol).

To avoid any confusion between the formal language being studied and the
(informal) language which is used in carrying out this study, one refers to
the former as the object language and to the latter as the ‘metalanguage.
Similarly, the mathematical theory which is used in reasoning about the object
language is called the metatheory. Ideally, the metatheory should be as weak
as possible. For example, a proof of the consistency of formal arithmetic would
carry little weight if one were to use a strong metatheory which included all of
arithmetic and set theory. Therefore, throughout this book whenever possible
we shall use a weak ‘constructive’ metatheory, even though certain theorems
can be proved more easily using ‘non-constructive’ technigues. (A non-
constructive argument is one in which the existence of something is proved
by deducing a contradiction from the assumption that no such thing exists,)

Having specified a formal language &, one can then formalize logical
reasoning in either of two ways, (i) in terms of ‘models’, or (ii) in terms of
‘formal systems’,

2.1 The semantic consequence relation F

Without going into too much detail we can say that a mode! is an abstract
mathematical structure which provides an interpretation of the symbols of %
in such a way that every formula of % becomes either a true or a false state-
ment about this structure. The logical constants of & are always given their
natural interpretation, but the interpretations given to the function and
predicate symbols may differ for different models. Thus a formula 4 may be
true in one model and false in another. A formula A is said to be a semantic
consequence of a set of formulae X, denoted by X F A, if 4 is {rue in every
model in which all the members of X are true, For example, suppose that &
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is the language of elementary group theory and X is the set of formal axioms
of this theory. Then to say that A4 is a semantic consequence of X amounts to
saying that 4 is a statement which holds true for any group G. Obviously if
0 F 4, where @ is the empty set, then A is true in all models, and we then say
that A is valid (or logically true).

2.2 The deducibility relation

The semantic consequence relation, ¥, provides ‘a useful, though rather
abstract, formalization of logical consequence and logical truth. One objec-
tion to this approach is that one needs a strong metatheory which permits
non-constructive arguments about infinite sets. For many reasons it is often
preferable to regard the formulae of a language & as concrete objects, i.e.,
uninterpreted sequences of symbols, and to confine one's metatheory to
constructive, combinatorial arguments about these objects.

For this reason one often formalizes logical reasoning in terms of ‘deduci-
bility” in a formal system &, where a formal system usually consists of certain
axioms and rules of inference for the language .%. The notation X F s 4
is used to denote that 4 is deducible from X in . A formal system & is
said to be sound and (semantically) complete if the deducibility relation + for
& coincides with the semantic consequence relation k. In other words, by
proving that # is both sound and complete one justifies the axioms and rules
of inference of &.

The standard formal system used in mathematical logic is the (first-order)
predicate calculus, and proofs of the soundness and completeness of this
system are included in most textbooks of mathematical logic. The primary
formal system which is dealt with in this book is called the e-caleulus. This
system is essentially obtained from the predicate calculus by adjoining the
e-symbol as a new logical constant and by introducing some additional
axioms for dealing with this symbol. It is our contention that by enlarging
the predicate calculus in this way one obtains a much neater and simpler
formalization of logical reasoning.

We have now iniroduced enough of the basic concepts to give a precise
statement of Hilbert’s Second e-Theorem. Suppose 4 is a formula of some
language ., X is a set of formulae of &, and the e-symbol does not occur
mn A4 or in any member of X. The Second e-Theorem states that if A is deduc-
ible from X in the e-calculus, then 4 is deducible from X in the predicate
calculus. A more succinct statement of the theorem would be that the e
calculus is an ‘inessential extension’ of the predicate calculus.

2.3 Formal theories and the formalist programme

Strictly speaking, mathematical logic is a branch of applied mathematics.
However, unlike other branches of applied mathematics which are used to



4 INTRODUCTION

solve problems in the natural and social sciences, mathematical logic is used
to prove results about mathematical theories. When mathematical logic is
used in this way, the subject is often referred to as metamathematics.

A formalization & of a particular mathematical theory, e.g. arithmetic
or set theory, consists of a formal language & which is adequate for express-
ing the concepts of that theory, a suitable formal system #, such as the
predicate calculus, and a specified set X of formulae of & which serve as the
(non-logical) axioms of the theory. A formula 4 of the language % is said
to be a theorem of the formal theory & if 4 is deducible from X in &#. The
theory 7 is said to be inconsistent if a contradictory formula, i.e., one of the
form A A 714, is a theorem of 7 ; otherwise 7 is said 1o be consistent,

By reducing a mathematical theory to a formal theory one can prove
various results about that theory in a completely constructive way, since a
formal theory is nothing more than a meaningless array of symbols, together
with certain prescribed rules for manipulating these symbols.

This study of mathematical theories within a constructive metatheory
was first developed by the formalists under the leadership of David Hilbert.
The discovery of certain paradoxes in set theory around the year 1900 had
aroused grave doubts about the legitimacy of the non-constructive tech-
niques which mathematicians often used in dealing with infinite sets. The
formalists were convinced that these techniques were justifiable, and they
hoped to find such a justification by proving constructively that the basic
mathematical theories, such as arithmetic and analysis, were consisteat, Un-
fortunately for them, it was shown by Godel [1931] that even for such a
simple theory as arithmetic no such consistency proof can ever be found.

Despite the fact that their primary goal proved to be unattainable, the
formatists made outstanding contributions to the theory of mathematical
logic, and paved the way for many important later discoveries.

3 The history of the e-symbol

The g-symbol was introduced by Hilbert and his collaborators in order to
provide explicit definitions of the quantifiers ¥ and 3. These definitions are
expressed by the formulae '

(N - dxA > AlexA)
and
(2) YxA > A(exT14),

where T is the symbol for ‘not’. Hilbert was convinced that by using the
g-symbo} rather than the quantifiers in formalizing arithmetic and analysis,
one could establish the consistency of these two theories. The figst published
work in which the e-symbol is used is Ackermann’s doctoral dissertation
[1924], written under Hilbert, in which an attempt is made to prove the
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consistency of analysis. However, in the previous year an article by Hilbert
[1923] appeared in which a similar symbol, the z-symbol, is used. A com-
prehensive account of the results which the formalists proved using the e-
symbol is given by Hilbert and Bernays [1939].

The e-calculus used by Hilbert and Bernays is essentially the formal system
which is obtained from the predicate calculus by adjoining the e-symbol as an
additional logical constant and by taking all formulae of the form
3 A(f) = AfexA)
as additional axioms, where ¢ is any term. It can then be shown that (1) and
(2) follow from (3) by virtue of the axioms and rules of inference of the predi-
cate calculus. The two main results which Hilbert and Bernays prove con-
cerning the e-symbol are known as the First and Second ¢-Theorems, The
first of these is concerned with the eliminability of the quantifiers from the
predicate calculus, and as we have already seen, the second is concerned with
the eliminability of the e-symbol from the g-calculus.

For the most part, Hilbert and Bernays use their e-calculus only in a
subsidiary role to prove that certain deductions in the predicate calculus can
be rewritten in a simpler form. However, an &-calculus can be used advan-
tageously as a formal system in its own right. Ackermann [1937-8] and
Bourbaki [1954] present interesting formalizations of set theory which are
based on an e-calculus. The axioms of their e-caleulus include all formulae of
the form
4 Yx{A < B} -+ sx4d = exB
in addition to formulae of the form (3) above. When this formal system is
used in formalizing set theory, there is usually no need to adopt the axiom
of choice since this axiom is deducible from an axiom of replacement using
axiom {3) above. The conditions under which the axiom of choice is deduc-
ible will be discussed in Chapter IV (see page 106).

Naturally, if the g-calculus is used in this way as a formal system in its own
right, one would like to know whether the system is sound and complete,
The answer to this question depends on the semantic interpretation which is
given to the e-symbol. Asser [1957] in his Berlin Habilitationsschrift interprets
the g-symbol as a ‘choice function’ and proves the soundness and complete-
ness of various forms of the e-calculus, More recently, Hermes [1965] proves
the same result for his Termlogik mit Auswahloperator. In our proofs of the
soundness and completeness of the e-calculus we shall also interpret the
g-symbol as a choice function.

4 The indeterminacy of the s-symbol

One of the most intriguing and useful features of the e-symbol is its in-
determinacy. Carnap [1961], pages 162-163, describes this feature as follows:
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advisable that at least one of the symbols f and =1 be faken as a primitive.

With regard to the binary connectives -, A, and v, it is possible to define

any two of these in terms of the third and the negation symbol. Since we

shall be using an elegant unifying notation, due to Smullyan [1965], whereby
certain formulae are classified as ‘conjunctive’ or ‘disjunctive’ formulae, if
will be apparent that all our results would hold if the languages under
consideration contained only one or two of these three connectives. Similarly,
because of Smullyan’s notation, our results would hold if only one of the
quantifiers were taken as a primitive and the other were defined in terms of it.
We have seen (page 4} that both the quantifiers can be defined in ferms of
the s-symbal. However, since we shall be dealing with the predicate calculus,
where the e-symbol is unavailable, it is necessary to take at least one of the
quantifiers as a primitive, Furthermore, the definition of the quantifiers in
terms of the g-symbol leads to certain technical difficulties involving the
relabelling of bound variables. Although these difficulties can be overcome in
various ways, we shall not deal with them in this book. Methods for defining
the guantifiers in terms of the s-symbol appear elsewhere in the literature.
See for example, Bourbaki [1954], Hermes [1965], and a paper by the author
[1968] in which the main results of Chapter I of this book are proved for
languages in which the only logical primitives are f, —, and &,

In stating the rules of formation of our languages we do not exclude the
possibility of ‘vacuous bondage’ or ‘collisions of bound variables’. Thus an
expression of the form 3xd4, Vx4, or ex4d may be well-formed even if the
variable x has no free occurrence in A (vacuous bondage) or even if x already
has a bound occurrence in A (collision of bound variables). Nowadays, many
logicians allow these two situations because in so doing, various techmnical
difficulties can be avoided, and no new complications arise. For example, we
can replace one ¢-term by another in a formula A without first relabelling the
bound variables in 4 to avoid any collisions which might result.

With regard to the actual symbols which we use for individual objects it
has proved convenient to have two sorts available: (i) the ‘variables’ x,, x,, .
which are denoted syntactically® by the letters u, v, w, X, y, and z, and ({i) the
‘individual symbols’ a,, a,, . . . denoted by a, b, and ¢. The variables may be
bound by the operators 3, ¥, and ¢, whereas the individual symbols are never
bound. The terms and formulae of a language are defined as those well-

formed expressions in which no variable has a free (unbound) occurrence.
So far, our formulation does not differ from that of Hilbert and Bernays and
others who use different symbols for ‘free variables’ and *bound variables’,
Qur approach differs from the Hilbert-type formulation in that we follow the

more modern attitude of interpreting the symbols, ay, @,, ..., as ‘arbitrary

1 In other words, the letters w, v, . .. are used in the metalanguage as names for un-
specified variables.

M.L,—2
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constants’ rather than as ‘free variables’, This means that within our formal
system there is no general rule of substitution for individual symbols. There
are the derived rules that from X & 4(«) one can infer X A(fyand X F YxA(x)
provided that a does not appear in any member of X . Howc'ver, if a dqes
appear in the assumption set X, then the interpretation of ais tgmporarily
sfixed’ and it cannot be treated as a free variable is treated in a Hllbert-type
system. One advantage of this approach is that the statement of .the deduction
theorem does not involve any complicated restrictions concerning th.e use of
the individual symbols, since these restrictions are already built into the
system. N . o

It should be pointed out that instead of specifying a list of individual
symbols in our definition of a language, we could require .that the vgcabulary
must contain infinitely many 0-place function symbols. This method is used by
Robinson [1963]. These function symbols, or constants, copld then be used as
the individual symbols. We have not taken this approach since it seems more
natural to confine the O-place function symbols of the voca'bulary to those
particular constants, such as the symbol for zero in arithrt}cFlc, which have a
fixed intended interpretation. Within a deduction, the individual s:ymbo_ls do
not behave as constants since they are not the names of deﬁ.mte objects.
Consequently, these symbols should be regarded more as l'o.glcal symbols
than as vocabulary symbols, In fact, we shall see that the individual symbols
in a deduction can be thought of as abbreviations for e-terms. The close
connection between these symbols and e-terms is brought out by tl‘le. fact
that in formal systems which incorporate the ¢-symbol, the individual
symbols can be dispensed with, since their role is assumed by the e-terms of

the language.

CHAPTER 1

SYNTAX AND SEMANTICS

1 Introduction

In the study of ordinary languages, such as English, the word ‘syntax’ is
used to refer to the grammatical construction of sentences. Similarly, we
define the syntax of a formal language % to be the basic structure of & as
laid down by its rules of formation. Thus a syntactical study of & officially
ignores any intended interpretations of the symbols of &. For example, the
notion of formula is a syntactic concept, whereas the notions of validity and
theorem are not. On the other hand, a semantic study of a formal language %
deals with the possible interpretations which may be given to the symbols,
terms, and formulae of .%2. Thus the notions of model, validity, and satisfi-
ability are semantic concepts,

This chapter deals with the syntactic and semantic properties of formal
languages which incorporate Hilbert’s ¢-symbol. The main theorem of the

"chapter, Theorem 1.11, establishes an abstract semantic property of such

formal languages which is of sufficient generality for both the Compactness
Theorem and the Completeness Theorem for the e-calculus to follow from it
as corollaries, The Compactness Theorem, which has many applications in
other branches of mathematics, can be stated as follows:

For any set X of formulae of &, if every finite subset of X has a model,
then X has a model whose cardinality is less than or equal to the cardinality
of the set of symbols of Z.

It is well known that Henkin's proof of the completeness of the predicate
calculus (Henkin {1949]) can be used to prove the Compactness Theorem.
However, since this theorem deals only with models of sets of formulae, it is
natural to look for a proof which is purely model-theoretic—that is, one
which does not depend on the Completeness Theorem or on the particular
set of axioms and rules of inference which have been chosen to give the
language a formal deductive structure. One advantage of our abstract
approach is that the resulting proof of the Compactness Theorem is model-
theoretic in this sense.

In order to carry out our semantic investigations it is necessary to use
ordinary mathematical reasoning about sets. Consequently, throughout this
chapter our metatheory is set theory with the axiom of choice. The set-
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theoretic symbols &, 0, &, v, M, }, and {xi...x.. .} are used in the usual
way.

2 The formal language £(¥")

A vocabulary ¥ is an ordered triple (Fn Pr.p) wherfa Frnand Pr are any
two disjoint sets and p is a function from Fru Pr into the set of nonf-
negative integers. The elements of Fin are called the finction symbols of "/
and the elements of Pr are called the predicate symbols of ¥7. For any g 1n
Fir or P in Pr, p(g) is called the order of g and p(P)is c.alied the order of P.
Any function symbol (predicate symbol) of order n is call(::d an n-plac_e
function symbol (n-place predicate symbol). A O-place fu'nctmn symbol is
often called a constant and a O-place predicate symbo_l is often called a
proposition. The letters g and 4, with or without s.ubscripts, will be gsed as
metalinguistic variables to denote arbitrary function symb‘ols, and in par-
ticular, g" will be used to denote an arbitrary n-place function symboI: The
letter P, with or without subscripts, will be used to denote_an arbitrary
predicate symbol, and P" to denote an arbitrary n-place predicate S)(mbol.
We place no restriction on the cardinality of the sets £r and Pr. In particular,
both may be empty.

Let ¥ be the vocabulary (FnPr,p) and let ¥” be the vocabulary
' Pr',p"y. We say that ¥7' is an extension of ¥ if Fn € Fn', Pr < Pr',
and p and p’ agree on Fnw Pr. Given a vocabulary ¥, we often forn.l an
extension of that vocabulary by adjoining new function symbols or predicate
symbols, For example, to formalize arithmetic we might use a vocabulary ¥
consisting of the constants 0 and I, and the 2-place Ifunct:on symbols +
and -, The vocabulary ¥~ obtained from ¥~ by adjoining the 2-place predi-
cate symbol < is then an extension of ¥, o .

We shall now define the unique formal language which 1s determined by a
given vocabulary #". We normally denote this language by .3"(7’/ ). Howcve{r,
if it is irrelevant to our discussion what the vocabulary ¥ is, we write &

instead of Z(¥).
The symbols of L(¥) are:

the function symbols and predicate symbols of ¥;
the variables Xy, X3, X34+ + 3

the individual symbols ay, dp. @3, .. 1}
the logical constants f, 71, -r, A, v,3, ¥, e and =;
the separation symbols (), and , .

e

We require that no symbol comprehended under any one of the clauses
£,2,3,4,and 53 comprehended under any other. Tl}e letters Uy U, W, X ¥, 2,
with or without subscripts, will be used to denote arbitrary variables, and the
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letters a, b, ¢, with or without subscripts, to denote arbitrary individual
symbols. The set of variables will be denoted by ¥ and the set of individual
symbols by Ind,

An expression of length n is any string s, . . . s, of symbols of Z{¥"). We
include the possibility that » = 0. In this case the expression is called the
empty expression, and we denote this expression by e. Given any two expres-
sions 4 and B, we can form a new expression A8 by juxtaposing A4 and B,
Thus if 4 is an expression of length » and B is an expression of length », then
the length of AR is m + n. We say that an expression A occurs in {or appears
in or is contained in) an expression B if B is of the form B, A8, where B, and
B, are any two expressions.

The well-formed expressions of £(¥") fall into two disjoint categories, the
quasi-terms and the gquasi-formulae. These are defined by the following
recursive rules of formation.

GI1. Any variable or individual symbol is a quasi-term.

G2. Ifg" is an n-place function symbol of ¥" (n 2 0), and ¢, . . ., ¢, are quasi-
terms, then g, . . . 1, is a quasi-term,
G3. If P"is an n-place predicate symbol of ¥" (n 2 0), and ¢, ..., #, are

quasi-terms, then P, . .. t,is a quasi-formula.

G4. If s and ¢ are quasi-terms, then s = ¢ is a quasi-formula.

GS5. The symbol [ is a quasi-formula,

G6. If 4 and B are quasi-formulae, then 714, (4 — B), (4 A B), and
(A v B) are quasi-formulae.

G7. If A is a quasi-formula, then for any variable x, 3x4 and Vx4 are quasi-
formulae.

(8, If A i1s a quasi-formula, then for any variable x, ex4 is a quasi-term.

G9. Only those expressions which are generated by G1-G8 are well-formed.

Any expression which is well-formed by virtue of G8 is called a guasi
e-term and any which is well-formed by virtue of G3, G4, or G5 is called an
atom, A well-formed expression is said to be g-free if the symbol ¢ does not
oceur in it, identify-free if the symbol = does not occur in it, and elementary
if the symbols V, 3, and & do not occur in it.

Unless otherwise stated, the letters 4, B, and C, with or without subscripts,
will be used to denote arbitrary quasi-formulae, and the letters s and ¢, with
or without subscripts, will be used to denote arbitrary quasi-terms. The
following syntactic abbreviation is used throughout:

{4+ B) for ((4— B) A (B— A

We shall adopt the following conventions for the omission of parentheses,
First of all, we normaily omit the outermost pair of parentheses, For example,
we write

{(ArB)—-C
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instead of

(A AB)-=0C)
Secondly, we adopt the rule of association to the right. This means that
AvBv CAABACandd - B— Cshouldbereadas(4d v (B v C)),
(A A(BACQ) and (4 - (B — ), respectively, Thus if we restore the
parentheses to the abbreviated expression

(A=+B->C)>(A>B) A C

we obtain the expression
(A—-B-C))»{Ad>B)—= (4 - C)).

This rule of association to the right is applied to abbreviated expressions of
theform 4, v ... vA, A n ... Ad, and A, = ... = A, where the A,
are any quasi-formulae. (If # = 1, these three expressions all stand for 4,))

Although it is not necessary to enclose quasi-formujae of the form s = t by
parentheses, we often do so for sake of readability. Thus, for example,
¥x(x = x) and 71{x = y)stand for the well-formed expressions ¥xx = x and
Tx = y.

2.1 Terms and formulae

An occurrence of a variable x in any well-formed expression 4 is said to
be a bound occurrence if it is an occurrence in a well-formed part of 4 of the
form 3xB, VxB, or exB; otherwise it is a free occurrence. The free variables of
A are those variables which have free occurrences in 4. We denote the set of
free variables in A by V(4). If 4 is any well-formed expression and x any
variable, we say x occurs free in A within the scope of an e-symbol if x has a
free occurrence in A within a well-formed part of 4 of the form gy B.

For any language %, a quasi-formula of % in which no variable occurs
frec is called a formula of ¥, and a quasi-term of % in which no variable
occurs free is called a term of &£, Thus the sets Fy of all formulae of & and
Ty of all terms of & are defined by

Fg = {A: A is a quasi-formula of & and V{4) = 0},

Te = {t: 1 is a quasi-term of & and V(1) = 0}.
In particular, a quasi e-term in which no variable occurs free is called an
e-terni.

We say a quasi-term ¢ is free for x in a well-formed expression A4 if no free
oceurrence of x in 4 is an occurrence in a well-formed part of 4 of the form
eyB, 3yB, or VyB, where y is free in 7. It follows from this definition that if ¢
is free for x in A, then on replacing all free cccurrences of x in 4 by f, no
free occurrence of a variable in ¢ becomes bound. If ¢ is free for x in 4, we
shall use the notation

[4F
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to denote that (well-formed) expression which is obtained from A by re-
placing ail free occurrences of x in A4 by ¢, We shall adopt the convention that
this notation is used only when ¢ is free for x in 4. Thus when we write the
formula

W V([ AT; < [BE) — (x4 = syB),

it is understood that 7 is free for x in 4 and for y in B. (As will be seen later,
if all formulae of this form are taken as logical axioms and the usual axioms
for identity are available, it is unnecessary to adopt a rule for the relabelling
of bound variables.)

Since a ferm contains no free variables, then any term is free for x in A,
for any x and any A. In practice, the notation [A]F is seldom used when 7 is
not a term—formula (1) will be one of the few cases in which it is so used,
Consequently, our convention that ¢ is free for x in 4 is for the most part
superfluous.

When no confusion can arise, the notation [A] will often be simplified to
A7 or just 4(1). However, at times the full notation is necessary. For example,
ey[A]’ and [eyA]7 do not necessarily denote the same expression, and
therefore the notation ey 47 would be ambiguous. In view of our abbreviated
notation, the expressions

VxAd — A(t) and ™3x4 - "14(1)
are to be understood as

VxA - [A) and T3x4 - [4]%
The following properties are easy to verify.

THEOREM L.1.

() If s and t are terms and x and y are distinct variables, then [[AT]
and [[AL}] denote the same expression;

(i) If x and y are distinct variables, then [AyAY and 3 y[AlF denote the
same expression, [VyAlf and Yy[A]} denote the same expression, and
LeyAY and ey[ A7 denote the same expression.

In the case of multiple replacements of free variables, in order to economize
in the use of brackets, we shall write

)] CATR e
instead of
2 [V 72 I

Thus (1) denotes the expression which is obtained from A4 by first replacing
each free occurrence of x, by ¢,, then each free occurrence of X; by t,, ete,
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By Theorem LI1{i) it follows that if each ¢; is a term and if the variables
X4 0.5 X, are all distinct, then the order in which these replacements are
performed is immaterial.

A replacement operator for a language £ is any function, usually denoted
by I, from a finite set of variables, called the domain of Z, into Ty. We shall
denote the domain of by dom Z. For any well-formed expression 4 of & we
define [A4]X as

[AEe 0 St

where the x; are the distinct members of dom I, Since cach Z(x;) is a term,
this definition is independent of the order in which the replacements are
performed. If dom % = ), then [A]Z is 4. When there is no possibility of
ambiguily, we write A% instead of [A]Z.

If T is any replacement operator, x any variable, and ¢ any term, then ZJ is
defined to be that function whose domain is dom £ U{x}, such that for all
y € dom E wix}

won . 1Z(y) if yis distinct from x,
E0) = {z if y is x.

For any I and any variable x, the x-suppression of X is that function which
is obtained from Z by restricting its domain to dom I\ {x}. Thus if £’ is the
x-suppression of T, then for all y e dom £\ {x},

Z'(y)y = Z(3).

The following properties of replaccment operators follow immediately from
the definitions and Theorem I.1.

TuaroreM 1.2, For gny replacement operator L.

(Y If A is any gquasi-formuda and V(A) < dom Z, then AZ is a formuda,
Similarly, for any quasi-term 1.

(ii) For any well-formed expression A, and any variable x, if x ¢ dom Z,
then [AJEF and [[A]Z]; denote the same expression.

(i) If X' is the x-suppression of T, then [3xANL and 3x[ AL denote the
same expression, [VxA]L and Vx[ AL’ denote the same expression, and
[exA)% and ex[ AL’ denote the same expression.

2.2 A unifying classification of formulae

The formulae of any language % can be classified according to their
syntactic structure as follows:

1. the atoms and the negations of atoms;
2. the formulae of the form ™1 ™MA;
3. the formulae of the form 4 A B, 71(4 v B), and "(4 — B);
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4. the formulae of the form 4 v B, 71(4 A B), and 4 — B;
5. the formulae of the form ¥Yx4 and 713xA4:
6. the formulae of the form 3x4 and "VxA.

Clearly, any formula of % is included in one and only one of the above six
categories. We shall use the metalinguistic variables «, f, y, and 6 to denote
arbitrary formulae of types 3, 4, 5, and 6, respectively,

In particular, a formula of type 3 is called a comjunctive formula, The
conjunctive contponents, oy and o,, of a conjunctive formula « are defined as
follows: if & has the form A A B, 71(4 v B), or 7i(4 - B), then «,; and a,
are 4 and B, 714 and "B, or 4 and 7} B, respectively.

A formula of type 4 is called a disjunctive formula, The dispmctive canm-
ponents, f, and f,, of a disjunctive formula f§ are defined as follows: if 8
has the form 4 v B, 71(4 A B), or A — B, then 8, and j, are 4 and B,
14 and 1B, or 14 and B, respectively,

A formula of type 5 is called a universal formula. If y is a universal formula
of the form Vx4 or 713xA4, then for any term ¢ we use the notation y(¢) to
denote the formula A(r) or 14(¢), respectively.

A formula of type 6 is called an existential formula, If 6 is an existential
formula of the form 3xA or Vx4, then for any term t, we use the notation
d(r) to denote the formula A{¢} or T1A4(¢), respectively, Furthermore, we use
the notation 6 to denote the term gxA, if 6 is IxA, and the term ex 4,
if § is T1V¥xA. Thus 8(¢d) denotes A(exA) or ~14(ex™14), respectively.

This system of classifying formulae into types 3, 4, 5, and 6, which is due
to Smullyan [1965], greatly simplifies the metatheory since in many proofs
and definitions we can avoid tiresome considerations of cases. Furthermore,
since in the proofs of all our main theorems we shall not be concerned with
the particular syntactic structure of a given formula, but only its more general
structure as defined in the above six categories, then it is casy to see that our
results hold not only for languages as defined on pages 10-12, but also for
languages whose logical symbols include only one quantifier, and only one
or two of the three binary connectives. In this way the above classifications
and unifying notation give our metamathematical investigations an added
degree of generality.

For any formula A, we define the conrary of 4 as follows: If A is the
negation of some formula B, then B is the contrary of A, and if 4 is not a
negation, then 714 is the contrary of 4. Consequently, the contrary of a
disjunctive formula is a conjunctive formula, and vice versa. Similarly, the
contrary of an existential formula is a universal formula, and vice versa. Two
formulae are said to be contradiciory if one is the negation of the other. The
following very useful properties of coniradictoriness will be referred to as
the duality principle:
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1. ¥« and 8 are contradictory, then ¢, and 8, are contradictory, and «, and
B, are contradictory.

2, If y and & are contradictory, then for any term ¢, () and () are contra-
dictory.

2.3 The cardinality of a language
The cardinality of a language % is defined as the cardinality of its set of

symbols, and by an abuse of notation will be denoted by 2. Since every
language has enumerably many variables and individual symbols, the cardin-
ality of a language is at least ®. Because we allow the vocabulary of a
language to be of arbitrary cardinality, it is possible for languages to be
non-cnumerable. In fact, all mathematical theories can be formulated within
an enumerable language; however, in recent years it has been found that non-
enumerable languages play an important role in various metamathematical
investigations, particularly in the realm of algebra. One metamathematical
result involving non-enumerable languages which has fruitful applications is
the Compactness Theorem.

In connection with our proof of the Compactness Theorem we shall make
use of the following fact, If % is any language, and T is the set of its terms,
then Ty < 2. This can be proved by letting E, be the sct of expressions of
#. Since the set of symbols of % is infinite, and since Eg consists of all
finite sequences of these symbols, then by a familiar set-theoretical argument,

E, = 2. The result then follows from the fact that T’ is a subset of Ee.

3.1 Truth functions

We begin our study of semantics by formalizing our intuitive interpretations
of the symbols 7 (‘not’), v (‘or’), A (‘and’), and — (‘implies’).

Repardless of what is meant by the words ‘true’ and ‘false’ we would like
to arrange matters in such a way that the formula =14 is ‘true’ iff L 4 is “false’,
A A B is *true’ iif both 4 and B are ‘true’, A v B is ‘true’ iff at least one of
A and B is ‘true’, and 4 — B is ‘false’ iff 4 is ‘true’ and B is ‘false’.

We proceed as follows. Let @ denote the set {0,1}, where the numbers 0
and 1 are called truth values. (Intuitively, 0 and I denote falschood and truth,
respectively.) An n-ary fruth function is a function from 8" to 4. To the logical
symbols 7, A, v, and — we assign the truth functions H4, H ,, H,,and H_,,
respectively, where H- is unary and the others are binary. These functions
are defined as follows. For any m, ne & .

Hotm) =1 iff m=0,

H,(mpy=1 iffi me=1Tlandn=1,

H,mpy=1 iff m=1lor n=

H,nmy =0 iff m=1I1andn=
1 We use {ff as an abbreviation for if and only if.

Lame I
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Consequently, if by some means we have assigned the truth values m and »
to 4 and B respectively, then H.(m) is the correct truth value of 74,
H,{m, n) the correct truth value of 4 A B, etc. We shall now consider one
possible way in which truth values can be assigned to formulae.

3.2 Tautologics

A formula is a molecule if it is either an atom or a formula of the form
VYxB or 3xB. Thus every formula A either is a molecule or is ‘built up’ from
molecules by means of the symbols A, v, 7, and —. These molecules in A4
are called the molecular constituents of A.

A truth assignment is any function ¢ from a finite set X of molecules into
the set & which is such that y(f) = 0 if f is a member of X, For any formula
A, if i is a truth assignment whose dontain contains all the molecular con-
stituents of 4, then the truth value J/(4) which ¢ assigns to A is defined as
follows by induction on the length of 4:

(i) if 4 is a molecule, (4} = Y{(4);
(ii) if 4 is of the form 1B, then Y(4) = H-(J(B));
(iii)y if 4 is of the form B * C, where * may be either A, v, or —, then

Y(4) = H(J(B), §(C)).

A truth assignment v 13 said to be a truth assignment for A if the domain of
i is the set of molecular constituents of 4. Thus if A has » molecular constitu-
ents, then there are 2° truth assignments for 4. A formula A4 is a tautology if
W(A) = 1 for every truth assignment  for 4, and A4 is a tautological con-
sequence of formulae By, ..., B, if the formula B, - ...+ B, =+ 4is a
tautology. Thus a tautology is a formula which is ‘true’ no matter what truth
valugs are assigned te its molecular constituents, and A is a tautological
consequence of By, ..., B, if 4 is ‘true’ for every truth assignment which
gives cach of the B, the value ‘true’,

Although a tautology must certainly be regarded as a ‘logically true’
formula, the notions of tautology and tautological consequence do not give
us the complete picture. For, in computing ¥(4) one looks at only the
‘molecular structure’ of A and disregards any occurrences of the quantifiers,
e-symbol, or identity symbol in 4. For example, according to our intuitive
understanding of the symbols 4, V, and ¢, the formula 3xPx should be a
‘logical consequence’ of YxPx, and the formula PexPx should be a ‘logical
consequence’ of IxPx. However, these are not tautological consequences since
VxPx ~ IxPx and 3xPx — PexPx are not tautologies. Thus for the type
of languages which we are considering we need a more inclusive definition of
‘logical consequence’, i.e,, one which analyzes the ‘sub-atomic structure’
of formulae and reflects our intuitive understanding of the symbols ¥, 3, ¢, and
=, as well as the symbols 71, A, v, and —,
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Despite these inadequacies, the notion of a tautology is still a very useful
one, mainly because of its decidability, For, one can effectively determine
whether or not a given formula 4 is a tautology by computing /(A4) for each
of the 2" truth assignments for 4, where » is the number of molecular con-
stituents of 4. For this reason tautologies play an important role in the study
of formal systems, as we shall see in Chapters IT and 1I1.

EXERCISES
I. Prove that any formula of the form (4 — f) ~ 714 is a tautology.
2. Prove that if both 4 and 4 — B are tautologies, then B is a tautology.

3. Let a be any conjunctive formula and i any truth assignment for ¢. Prove
that ¥(a) = 1 il P(e) = 1 and Plo,y) = 1.
4. Let B be any disjunctive formula and  any truth assignment for f. Prove

that Y(B) = 1iff §(f;) = 1 or Y(f;) = 1.

3.3 Models

In order to give a precise description of the semantics of our formal
languages we define the notion of a model. Because of the g-symbol, it is
necessary to modify the conventional definition by equipping each model I
with a choice function @. This choice function provides a semantic interpreta-
tion of the e-symbol.

The following familiar set-theoretic notation will be used in our definition,
If A is any set and » is a positive integer, then M” denotes the set of ordered
n-tuples of M, M™" denotes the set of functions from M" into M, and
{0,1}M" denotes the set of functions defined on M" and taking as values 0 or 1.
The set {0,1}*" can be identifled with the set of n-ary relations on M. If
n = 0, then MM is M, and {0,1}™" is {0,1}.

Let ¥ be any vocabulary {Fn,Pr,p>. A model, M, for ¥ is an ordered
triple (M.IL,@> which satisfies the following conditions:

1. M is a non-empty set, called the wuniverse of M,
2. IT is a function defined on Fn '« Pru Ind which assigns values in the
following way:
(i) for any individual symbol a in Ind, I1(a) e M;

(ii) for any n-place function symbol g in Fn, Il{g) e MM";

(iif) for any n-place predicate symbol P in Pr, II(P) e {0,1}M".
3. @ is a choice function on M, i.e. ®(N)e N for any non-empty subset ¥
of M, and ®(D) is an arbitrary, but fixed, member of M.

The cardinality of a model is defined as the cardinality of ils universe,
Members of the universe will be denoted by the Greek letters p and v.

For any vocabulary ¥, any model i for #7, and any well-formed expression
A of some language &, we say that Wt is adequate for A if 4 is a well-formed
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expression of £(¥). In other words, 9 is adequate for A if the function IT in
Wt assigns values (in the proper way) to each function and predicate symbol
occurring in A.

For any model M, an Di-assignment is any function from the set of variables
Vr into the universe of 9N, MW-assignments will be denoted by the Greek
letter 0, with subscripts if necessary. If # is an ®M-assignment, then &} is that
M-assignment whose value for x is g and which otherwise coincides with 6.

If A is any well-formed expression, 9 is any model which is adequate for
A, and 0 is an M-assignment, then the interprefation of A with respect to M
and 6, which is denoted by IMO(A), is defined as follows by induction on the
length of A:

Gl, A4 is a variable x: MMO(x) == 6(x);
A is an individual symbol a: MHa) = (a).
G2, A is of the form g"t, ... t,:
Mo(g™, ... 1) = H(@EROQL), . .., MOE)).
G3. A is of the form P, ... 1,:
MOP™; ... 1) = TENEOR6(E), . . ., MOED.
G4. A is of the form (s = 1):
IMO(s = 1) = 1 if Mb(s) = TMO(r), and 0 otherwise.
G5, A is the formula f:
Mmof) = 0.
G6. A is of the form 7B, (BA C‘) (Bv(),or(B— C):
WMA( By = H (IR6(B)),
MABAC) = H, (ORO(B),IMG(CY),
MABv C) = H,ERE(B),INCY),
MO(B — C) = H_(MO(B),IMO(C)).
G7. A is of the form Ay B:
MOI(FpB) = 1 if there exists a pe M such that MO%(B) = 1; otherwise
MeEAyB) = 0;
A is of the form YyB:
IMMO(YyB) = Lif for all pe M, MOL(B) = 1; otherwise MMO(¥yB) = 0.
G8. A is of the form syB:
MO(eyB) = ©{u:MOKB) = 1}.
Obviously, if 4 is a quasi-formula, IMNO(4) € {0,1}, and if 4 is a quasi-term,
Ma(4) e M,

For any subset ¥ of Fr, and any Wi-assignments 0, and §,, we write

0, ~ 0, to denote that 8,(x) = 0,(x), forall xe V.
v

THEOREM L.3. For any well-formed expression A, any model M which is
adequate for A, and any W-assignments 8, and 8,, if 0, ~ 0,, then
(A = MG, (A). Y4
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Proof. The proof is by induction on the length of 4. For cases G1-G6, the

proof is trivial,

G7: Suppose A4 is of the form 3yB. Since 8; ~ @, then for any pe M,

¥(d

6% ~)02 ¥. Consequently, by the inductiori )hypothesis, MO, W(B) =
Vi

MO, %(B), for any ue M. It follows that there exists a pe M such that

M@, 3(B) = 1 if and only if there exists a g & M such that NG, 3(B) = 1.

Hence, W18,(3yB) == MO,(IyB). Similarly, it follows that INO,(VyB) =

NG, {VyB).

GR8: Suppose 4 is of the form eyB. As in G7, for all pe M, MO, UB) =

IR0, 3(B). Consequently, {p:90; 4(B) = 1} = {u:IMG, 3(B) = 1}. Hence,

MG, (eyB) = M, (evB).

COROLLARY. If x ¢ V(A), then for any pe M, MO(A) = ME(A).

THEOREM 1.4, For any well-formed expression A, any variable x, any quasi-
term t which is free for x in A, and any model I which is adequate for A and 1,
MALAT) = MOG0,(4).

Proof. 1f x ¢ V(A), then [ 4]} is A, and by the above corollary, MOge(A) =
MB{A). Hence, in this case the theorem obviously holds. We now consider
the case where x e V(A4), The proof is by induction on the length of 4. For
cases G1-G06, the proof is trivial.

G7 and G8: Suppose 4 is of the form 3yB, V¥ B, or gyB. Since x € ¥(4), then
x and y are distinct variables. Furthermore, since 7 is free for x in A4, then
y ¢ V(1) Take any p e M, By the above corollary, IRE(r) = INO(). Hence, by
the induction hypothesis

NOBY) = NG, Grp0ry(B),
and therefore since x and y are distinct variables,
MOYUBT) = MO0y 2(B)-
Consequently,
{:IMONBY) = 1} = {1:MOoqry 4(B) = 1}
This implies:

MOEy[BID) = im%mu)(aJ’B),
DOV y[ B]) = M0G0y (Y B),
and MO(ey[B)) = MOioq(eyB).

The theorem now follows by Theorem 1.1.

If 4 is a formula or term, then by Theorem 1.3 the interpretation of A with
respect {0 9t and # is independent of 8, since ¥{4) = 0. In this case we may
refer to the interpretation of A4 with respect to 9 and write Wi(4).
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TueorREM 1.5, For any adequate model .
(&) If o is a conjunctive formula with components o, and o4, then M) = 1
IFMary) = 1 and M(a,) = 1.
(1) For any formulae A and B, M(A <+ BY = 1 iff Ti(A) = NE).
(iii) For any universal formulay and any term ¢, if 9(y) = 1, then NG = 1.
(iv) For any existential formula 8, if M(G) = 1, then T(S(ed)) == 1.
V) IFMYx(4 < B)) = 1, then W(exA) = M(exB).
(vi) For any e-term exA, MexA) = Mey[A];)-
(vii) Foranytermssandt, if () = M) and P(AD = 1, then DY AD) = 1.

Proof. The proofs of (i) and (ii) follow trivially from our truth functional
interpretations of 73, A, v, and —, and from the definition of <.

(ii1): Suppose y is of the form VxA4. Let 8 be any t-assignment. Since
TM(VxA) = 1, then MO(VxA) = 1, and for all ye M, MO (A) = 1. In par-
ticular, MiO5en(4) = 1, and by Theorem 1.4 IMO(A(1)) = 1. Hence,
M(p(1)) = 1. The proof is similar for the case where y is of the form 713x4.
(iv): Suppose § is of the form —VxA. Let § be any IM-assignment. Since
PUS) = 1, then TRO(1¥xA) = 1, and therefore MO(VxA) = 0. Hence there
exists a e M such that SREY(A) = 0. Consequently, ING;(M14) = 1. Let
N = {{i: M1 A) = 1}. Since N # @, ®(N) e N. But IO(ex 71 A) == O(N).
Therefore, MOy (ex4)( 14) = 1, and by Theorem L4IMO(T1A(ex14)) = L.
Consequently, IN(5{ed)) = 1. The proof is similar for the case where & is
of the form IxA.

(v): Let 0 be any t-assignment. Since WAVx(A4 « B)) == 1, then for all p e M,
MG(A < By = 1. Hence by (ii), for all pe M, MO (A) = MO;(B). Thus
{p: MG (A) = 1} = {u:IMGAB) = 1}, and it follows that W(ex4) = M(exB).
{vi): If x and y are the same variable, the proof is trivial, Suppose x and y are
distinct variables. Since &xA4 is a term, then y ¢ F{4). Furthermore, by our
convention (p. 13), y is free for x in 4. Let Ny = {i:MO(4) = 1} and let
N, = {juIMe(45) = 1}. It will be sufficient to prove N, = N,. Since
&(y) = p, then by Theorem 1.4

IMO(AT) = M, (A,
© o= 9RO 3(A),
= TN@(4) since y ¢ V(A).
Consequently N; = N,. _
(vii): The proof follows immediately from Theorem 1.4
EXERCISES
I. Prove that for any formula A, if N is adequate for 4 and 4 is a tautology,
then IM(4) = 1.

2. Prove that, ifA) = 1 and M(4 — B) = 1, then PYB) = 1,
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3.4 Satisfiability and the semantic consequence relation

Let 4 be a formula of some language . and I any model. We say IR
satisfies A, or A is true in M, if 9N is adequate for 4 and T(A) = 1, We write
IN Sar 4 to denote that M satisfies 4, If X is any set of formulae, we say M
satisfies X, denoted by Wt Sar X, if Wt satisfies all the members of X, We say
X is satisfiable or has a model, denoted by Sat X, if there exists a model which
satisfies X, and we say X is m-satisfiable, denoted by m-Sar X, if there exists
a model of cardinality m which satisfies X, For any set of formulae X and
any formula A, we say 4 is a semantic consequence of X, denoted by X k 4,
if every model which is adequate for 4 and which satisfies X also satisfies A.
Finally A is valid, denoted by FA, if 4 is a semantic consequence of the null
set. It folows that 4 is valid if and only if every model which is adequate
for A4 satisfies 4.

For any language %, we define the finitary semantic closure for & as the
function, denoted by C,, such that for every X < F:

C{(X) = {4:4 € Fy and there exists a finite subset ¥ of X such that Y & 4}.

Clearly, if 4 e C{X), then X F A. For finite X, the converse is also true. The
fact that the converse is true for infinite X will follow from the Compactness
Theorem (p. 29).

For convenience of notation we shall write C(X, 4) instead of C (X U {4}),
where X is a set of formulae and A4 is a formula. The following theorem
follows readily from the definition of C,.

TAROREM L6, For any X © Fy:
(B X< CfX);
(i) CACX)) = C(X);
(i) ifY € X, then C(Y) = C(X);
(iv) if Ae X, then there exists a finite Y S X such that A € C{Y).

The proof is left as an exercise.

THEOREM L7. If f € C(X), then there exists a finite subset Y of X which is
unsatisfiable.

Proof. Since f e C,(X), then there exists some finite subset ¥ of X such that
Yk {. But for any model MM, YN(f) = 0. Hence there is no model which
satisfies Y, '

In view of Theorem 1.7, to prove the Compactness Theorem it will be
sufficient to prove that for any X € Fg:

(1) if f ¢ C(X), then M-Sar X, for some m < 2.
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This assertion follows as a special case from the main theorsm to be proved
in §4, Theorem I.11. The following theorem will be used in connection with
that result.

THEOREM L8. Ler C, be the finitary semantic closure for some language ¥.
Thenjorany X < Fy,anp Ae Fy, any o, 9, 8 € Fyp, and any t e Ty
(i) deC(X)iff je CLX, T14);
(i) oe CLX)iff oy, oy € CX);
(i) ¥ve X, theny(tye CLX);
(iv) ifde X, thend(ed)e C(X);
V) if(s=10eX and B € X, then B] e C{X);
(vi) for any eterms exA and evB of ¥, if Vz(AXes BYe X, then
(exd = eyB) e C(X).

Proof. (i): Assume Ae C{X). Then YE A for some finite ¥ & X, Let
Z=Ywvw{Md4}. Clearly, Z is unsatisfiable; hence, Zk /. Since Z =
X v {14}, then fe C{X,14). Conversely, assume that je C{X,714). By
Theorem 1.7, there exists a finite subset ¥ of XU {14} which is unsatisfiable.
Let Z = Y\ {714} It is enough to prove that Z k 4. Assume the contrary,
i.e. assume that there exists a model M such that W Sar Z, but M4) = 0.
Then M(14) = 1 and M Sar ¥, which is impossible.

The proofs of (i}-(vi) follow by Theorem L35.

4 The Satisfiability Theorem

In this section we prove our main result, the Satisfiability Theorem, from
which the Compactness Theorem follows as a special case. This abstract
result is obtained by introducing the general notion of a logical closure C
and then proving that for any set X of formulae of &:

if /& C(X), then m-Sat X, for some m < 2.

We first define the familiar notion of a finitary closure operation C on any
set S as a function from the power set of .S into itself such that, for any
X < S, the following conditions hold:

Cl. X ¢ C(X),

C2. C(C(X)) = C(X);

C3. if ¥ < X, then C(Y) = C(X);

C4. if 4 € C(X), then there exists a finite ¥ & X such that A ¢ C(Y).

The notion of a finitary closure operation, which is fundamental to both
algebra and logic, was apparently first applied to logic by Tarski [1930].

If & is a language and C is a finitary closure operation on Fy, then for
any X € Fy, we say X is maximal under C, denoted by Max.X, if:
M.L—3



24 SYNTAX AND SEMANTICS CH. I

1. /¢ CX);
2forall Y€ Fo, if X & Yand f¢ C(¥), then X = Y.

THEoREM 1.9, If C is a finitary closure operation on Fy and Max X, then
CX) =

Proof. By Cl, X © C(X). Since Max.X, then f¢ C(X), and hence, by C2,
{ ¢ C(C(X)). But this implies X = C(X) by the maximality of X,

TueoreM 110, If } ¢ C(X), then there exists some ¥ < Fo, such that X < Y
and Max.Y.

Proof. Let S = {X":1X € X', X' © F,, and f ¢ C(X")}. We shall use Zorn’s
lemma to prove that & contains maximal elements. Let T be any subset of &
which is totally ordered by inclusion, and let ¥ = U X’. In order to apply
X'el

Zorn’s lemma we need only show that Ye @, Clearly Y ¢ Feand X € Y.
To prove f¢ C(Y) we assume the contrary and produce a contradiction, If
fe C(Y), then by C4, fe C(¥,) for some finite subset ¥, of Y. Since Y is
finite, then ¥, = X" for some X'e X, and by C3, C(¥,) & C(X'). Hence
e C(X"), which contradicts the definition of . This completes ‘the proof,

Note: If the vocabulary of & is finite or denumerable, then Zorn’s lemma
{and the axiom of choice) can be avoided in the usual way by enumerating
the formulae in Fg.

Let & be any formal language. A finitary closure operation C on Fg
which possesses the following six properties is called a Jogical closure for
& Forany X © Fy, any A, ¢, 9, and § € Fy, and any s and ¢ ¢ Ty

Ll. Ae C(X)iff f e C(X,1A4).

L2, ae C(X) iff ay, o, & C(X).

L3. If y e X, then y(1) e C(X).

L4, If § € X, then d(ed) & CX).

15, For any atom B and any variable x which does not occur free in B
within the scope of an e-symbol, if s = t ¢ X and Bf e X, then B e C(X).

L6, For any e-terms exA and gyB, if Vz(A] < B)) e X, then (exd = eyB)
e C(X).

For example, by Theorems 1.6 and L8, the finitary semantic closure, C, is
a logical closure.

TueoreM L11 (The Satisfiability Theorem). Let C be a logical closure for a
language . For any X < Fo, if | ¢ C(X), then mt-Sat X, for some M < Zz .

By Theorem 1.10, if /¢ C(X), then X is contained in some set Y which is
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maximal under C. Also, if X < ¥, then m-Sar ¥ implies w-Sar X", Con-
sequently, to prove Theorem I.11, it will be sufficient to prove that:

Max X implies m-Sat X, for some m < 2.

Throughout the following lemmas and definitions it is assumed that X
is some fixed set which is maximal under the logical closure C. Thus, by
Theorem 1.9, X is closed, i.e. C(X) = X. The following lemmas and defini-
tions will enable us to construct the required model. The basic idea of this
proof is in the spirit of Henkin’s proof of the completeness of the predicate
calculus (ef. Henkin [19497), since the notion of a maximal set under Cis a
generalization of his notion of a ‘maximal consistent set’. Although the
presence of the e-symbol has a complicating effect in some respects, in other
respects this symbol simplifies the proof since the availability of e-terms
makes it unnecessary to adjoin new constant symbols to the language &, as
is done by Henkin.

Some of the techniques used here are adaptations of methods used by
Hermes [1965] in his proof of the completeness of his Termlogik mit Aus-
wahloperator. The proof given here Is an improvement on Hermes’ result,
however, since by its abstract nature our proof does not depend on a
particular set of logical axioms and rules of inference. Furthermore, Hermes'
result holds only for languages with a denumerable set of symbols, whereas
our result holds for languages of arbitrary infinite cardinality.

Lemma 1,

) AeX iff MAdéX,

(i), A= BeX iff A¢XorBelX;

(i) AvBelX iff AeXorBelX;

(iv) AABeX iff AeXandBe X,

(v) A« BeX if (deXiff BelX),
{(vi) IxdeX iff A()e X, for some te Ty;
(vii) VxdelX [ff A(t)e X, forallte Ty,
(viti) if A(exT14A)e X, then ¥xAd e X;

(ix) Q=0eX foralteT,.

Proof.
{i): AdeX if feC(X,14) by L1,
_ it TdA¢X by Max.X.
(ii): A >B¢gX iff (4 BleX by (i),
iff 4eXand TBeX by L2,
iff AeXand B¢ X by ().
(iii); The proof is similar to that of (it).
(iv): The proof follows immediately by L2,



26 SYNTAX AND SEMANTICS CH. I

(v): The proof is immediate by the definition of «, using (i) and (iv).
{vi): Assume IxA e X. By L4, A(exA) e X. Hence there exists a t € 7'y, such
that A(r) € X. Conversely, assume A(t) e X, forsome t & Ty By (i), 1A4() ¢ X.
Consequently, by (the contrapositive of ) L3, 713x4 ¢ X. Hence, by (i) again,
Ixd e X.

(vir}: The proof is similar to that of (vi).

(viii): If A(ex™14) e X, then by (i), T14(ex14) ¢ X. Consequently, by (the
contrapositive of) 14, "1¥xd ¢ X. Hence by (i), Vx4 e X.

(ix): Let 1, be the term ex1{{x = x) & 71(x = x)). By (v} we have
e = 1y) & "{fy = to) e X. Thus, by (viii) and the definition of #,,
Va(Mx=x)e Jx =x)eX. S0, by L6, (ex1(x = x) = ex71(x = x)) € X.
Again by (viil), Vx(x = x) e X. Consequently, by (vii), for any fe Ty,
(t=10eX.

We now define a binary relation ~ on Ty as follows: for any s, 1, € Ty,
s~tiff s =1Nelk.

LemMA 2. The relation ~ is an equivalence relation on Tg.

Proof. (1): That ~ is reflexive follows from Lemma 1(ix).

(it): The symmetry of ~ is proved as follows. Assume s ~ 7. Thus (s = f) e X.
Let B be the gquasi-formula (x = 5). Thus B € X, by Lemma 1(ix). Hence,
by L5, Bf e X,i.e.(t = s) e X. Therefore, t ~ 5.

(iii): To prove that ~ is transitive, assume r ~ sand s ~ ¢, Thus (s = ) e X,
and if B is the quasi-formula (r = x), then Bf e X. Thus, by L5, Bfe X,
te.(r=1eX,andsor ~ 1.

Lemma 3. If g" and P" are n-place function and predicate symbols, respec-
tively, of &, and s, ~ 1; for each i = 1, ..., n, then

(1) gnsl cea Sy ™ gntl < !m

iy P's;...5,€Xiff P, . 1,eX.

Proof. (i): Foreach i = 1, ..., n, let 4; be the quasi-formula

(g"51 el Sy = g“t,_ A FRE £ T RN .Sn).

Thus A4, §, is the formula

(g"s1 .8 = g1 8

Consequently, by Lemma 1(ix), A, € X, and by LS5, 4, ] € X. However,
foreachi =1,...,n, 4, and 4,4, 7, are the same formula. Therefore, by
n applications of L5, we obtain A, f e X, i.e. (g"s; ...5, = g"; ... t)e X,
and s0 g™ ...8, ~ g ... Iy

(if): The proof is similar to that of (i) except that we let A; be the quasi-
formula Pty ... 8, XS4y .. Sy
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We now let ]t| denote the equivalence class of any term ¢, and let M
denote the set of equivalence classes on Ty. The following definition is due
to Hermes [1965].

For any subset N of M, we say N is represeniable if there exists a quasi-
formula 4 of & and a variable x, such that for all 1€ T, lt| e N iff 47 € X.
In this case we say {(A4,x) is a representative of N, Clearly, if {A4,x) represents
N, then no variable other than x occurs free in A4, and therefore exA Is a term.

LEMMA 4. If {A,x> and {B,y> are both representatives of N, then exA ~ gyB,

Proof. Let z be any variable not appearing (either free or bound) in 4 or B.
Let 4" be AY and B’ be BJ. Thus for any term 1, 4’ is A, and B' is BY.
Consequently {(4',z> and {B',z) are representatives of N. Let 1, be the term
ez 1(A" «» B}, Since (4’,z) and {B'.z) represent N, then |[t,|e N iff
Az eXand|ty|eN if B'ieX ThusAd'ZeX iff B ZeX, andby
Lemma 1(v), A’} «» B’} ¢ X. By Lemma 1(viii) and our choice of 1,, this
implies that ¥z(A4' +» BY e X. Consequently, by L6, (exd = gyB}e X, and

exAd ~ eyB.

LEMMA 5. If {A,x) is a representative of a non-empty set N, then |sxA| e N.

Progf. Since N is non-empty and {A4,x> represents N, then there exists a
term ¢ such that A(t*)e X. Thus by Lemma I{(vi), 3x4 e X, and by L4,
A(exA) € X. Hence [sxA] e N.

The model MM for the set X that we need in order to prove Theorem 1.11 is
now defined in the following way.
1. The universe of M is the set A above, l.e, the set of equivalence classes on
T, under the equivalence relation ~.
2. The function IT is defined as follows:

(i) For any individual symbol a, II{a) = |a|.

(ii) For any g" in the vocabulary of & and any |4,..., o] in A,
(g™}, ... 6 =g .. .1,|. By Lemma 3, this definition is
independent of the choice of the ¢,

(i) For any P" in the vocabulary of & and any [1,),..., |t} in M,
CP™(|ty|, . ..o |ta]) = Liff Py ... £, & X. Again by Lemma 3, this
definition is independent of the choice of the ¢,.

3. ‘The choice function ® is defined as follows for any N © M.

Case 1: If N is representable, ®(N) = |£xA[, where {A4,x)> is one of its
representatives. By Lemma 4, this definition is independent of the
choice of representative.

Case 2: If N is not representable, {and hence ¥ # @, since the null set is
represented by { T1(x = x),x)), then &N} is an arbitrary member
of N.
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By Lemma 5, if N # 9, then ®(N)e N. Thus under this definition @ is a
choice function on M.

Under these definitions of M, I1, and @, the triple (A, IT,®>, which we shall
denote by 9, is a model for the vocabulary of & . Furthermore, since its
universe, M, is T'y/~, then M < T, Therefore the cardinality of the model
M is less than or equal to the cardinality of the language & (see page 16).
All that remains to prove is that I Sat X.

Let 0 be any TM-assignment and T any replacement operator for the
fanguage %, Since for any x € dom I, £(x) € Ty, then |Z(x)| is defined for
xedomE. Let ¥ be any subset of the set of variables, ¥r. We write §# ~ T

to denote that V' < dom £ and for all xe ¥, 0(x) = |Z(x)|.

LeEMMA 6. Ler A be any well-formed expression of . If 8 is any WM-assign-
ment and % is any replacement operator such that § ~ I, then:

yi4)
() MMO(A) = |AZ|, if 4 is a quasi-term;
(i) MMOA) = 1 iff AZe X, if A is a quasi-fornnda.

Proof. The proof is by induction on the length of 4.

Gl. A is a variable x: MO(x) = 0(x) = [£(x)| = |*Z|;
A is an individual symbol a; R6(d) = Il{a) = |a| [aZ,

G2. A is of the form g"ty ... t,: Since foreach i = 1, ..., n, V() = V(4),
then § =~ £. Therefore, by the induction hypothesis, SMO(r) = ltiZI. Now,

L <ty

MO(g"t, - .. 4) = I(g"HERO(,), - . ., MO,

= I(g"X|,.Z], . . ., [E]) "By induction hypothesis,
= gt 1% .. [t,,]):[ by the definition of I,
H:g"rl rn}z|

G3. Aisof the form P ... 1.
MOCP, ... 1) =1 iff TI(PDYEROC,), ..., 00 = 1,
iff (P62, ..., |nE) =1 by induction
hypothesis,
iff P, ]T...[t,]Z€X by the definition of I,
it [P ...1]%eX.

G4. A is of the form (s = 1}

MO(s = 1) =1 iff MA(s) = IOy
iff |sZ] = |[rZ| by induction bypothesis,
iff (5% = tZ)eX by the definition of ~,
iff [(s=0]%eX.

GS5. A is the formula {: WO(f) = 0, and by Max X, ¢ X. Consequently,
IMO(f) = 1 iff /L e X, since both sides of this equivalence are false,
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G6. A is of the form 7B, (B—- C), (Bv (), or (BA C): The proof follows
immediately by Lemma 1 (i)-{iv).

G7-G8. A4 is of the form 3xB, VxB, exB: Let ' be the x-suppression of £
(see p. 14). Let N = {§:9MG}(B) = 1}. Since § =~ I, then for any te T

V(4)
(JM e_/ L'}, We first prove that (1) for all 1 € Ty, [t}e N ill [BE' [} e X.

For any t € T, [r| eN iff URGY(B) =1 by definition of N,
iff [B]Z'FeX by induction hypothesis,
i [BXJfeX Theorem 12(ii) (p. 14).
Consequently (BY',x)> is a representative of N, as required.

Case 1. A is of the form IxB:

MOExB) =1 if N#9
iff there exists a t € Ty such that [BE'[F e X, by (1),
iff 3x[B]X e X by Lemma 1{vi},
iff [3xB]ZeX by Theorem 1.2(jii) (p. 14).

Case 2. A is of the form ¥xB:
MO(VxB) = 1 iff N = M,

iff forallte T, [BEeX, by(l),

iff Vx[B]Z'eX by Lemma I(vii),

iff [VxB]ZeX by Theorem I.2(iii).
Case 3. A is of the form exB:
WO(exB) = Q(N)

= |ex[B]Z'| by definition of ®, since {BY',x) represents N,

[exB]Z| by Theorem I.2(iii).

This completes the proof of Lemma 6.

Using Lemma 6, we now prove that for any 4 € Fo, MYA) = 1 if 4 & X.
Take any Ml-assignment 6 and any replacement operator X. Since A
is a formula, then V(A) = @, and therefore § ~ L. Thus by Lemma 6,

V(d)
MI(A) =1 if A e X. But AZ is A itself, and INO(A) = Y(A). Therefore,
4) = 1 iff 4e X. Consequently, I Sat X. This completes the proof of
Theorem 1.11.

TreOREM 1.12 (The Compactness Theorem). If' X is a ser of formulae of
some language & such that every finite subset of X is satisfiable, then X is

M-satisfiable, for some m < 2.
Proof. By Theorems 1.6 and 1.8, C, is a logical closure for . By Theorem 1.7,

if every finite subset of X is satisfiable, then f ¢ C,(X). The theorem, therefore,
follows from Theorem I.11.
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TuroreM 113 (Lowenheim-Skolem Theorem). If X is any satisfiable set of
SJormulae of some language 5, then X is M-satisfiable, for some M £ Z.

Proof. If X is satisfiable, then every finite subset of X is satisfiable, The result
then follows from Theorem 1.12, N

We can strengthen the statements of Theorems 1,12 and 1.13 by observing
that no condition is imposed on the language % except that X is a set of its
formulae. Thus we may consider & to be the language whose vocabulary
consists of just those function symbeols and predicate symbols which appear

in the members of X. In this case, & = max {NO,)'('}, and we can state the
conclusions of Theorems I1.12 and .13 as ‘X is m-satisfiable, for some
M max {No, X}

Consequently, using the abstract notion of a logical closure, we have
managed to prove the Compactness Theorem for a formal language & with-
out becoming involved in a particular deductive structure for that language,
L.e. without choosing some particular set of logical axioms and rules of
inference and then first proving the Completeness Theorem. Another advant-
age of this abstract approach is that when we do impose a particular deduc-
tive structure on the language &, by specifying certain axioms and rules of
inference, we can then prove the completeness of this formal system merely
by showing that #s deductive closure is a logical closure,

There are other ways of proving the Compactness Theorem without first
proving the Completeness Theorem. One such method involves the use of
ultraproducts (cf. Frayne, Morel, and Scott [1962]).

EXERCISES
1, Prove that if X F 4, then there exists a finite ¥ & X such that Yk A4,

2. Use the Compactness Theorem to prove that a partial ordering R on a set
S can be extended to a total ordering on that set. (Hint: Let 7 be the
vocabulary consisting of the 2-place predicate symbol < and constant
symbols for each member of the set S, Let X" be the set of formulae of
L(¥7) consisting of the axioms for a total ordering (cf. page 86, S1-S3)
and all formulae of the form ¢, < ¢, where ¢, and ¢; are constant symbols
which correspond to members of § which are in the refation R. Prove that
every finite subset of X is satisfiable.)

4,1 Logical closures
We now use Thecrem 1.11 to prove a few general results about logical
closures,

TueoreM 114, Let C be any logical closure on &. For any A € Fy and any
X & Fo, if XE A then A e C(X).
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Proof. Assume X k A. Then the set X v {714} is unsatisfiable. Consequently
by Theorem 1.11, /e C(X,~14). By LI, this implies 4 e C(X).

COROLLARY. For any X © Fy and any Ae Fy, A€ C(X) if and only if
XE A

Proof 1T 4 e C(X), then X F A by the definition of C. If X F A4, then 4 ¢ C(X)
by Theorem 1.14.

It is reasonable to ask the following question. Are there any logical
closures for % which do not coincide with C,, and if so, what are they?

The first half of this question can be answered easily. Suppose that X, is
any fixed set of formulae in the language .. If we define C by

() CX) = C(X v Xy), forany X & F,

then it is casy to prove that C is a logical closure. (The details of this proof
are left as an exercise. The only slightly difficult part is verifying that C
satisfies property C2.) If the formulae in X, are not all logically valid, then
C does not coincide with C,.

The interesting fact is that every logical closure for the language & has
the form (1}, as we shall prove in the following theoren:.

TreoOREM 115, If C is a logical closure for &£, then for every X < F,
C(X) = CLXx v C@)).
We first prove two lemmas.

LemMa 1. I Cis a logical closure for &, and « is a conjunctive formula of &£,
then for any X © Fg,
C(X,) = C(X00,%).

Proof. Since oe C{Xg), then by L2, o,,0,e C{X.2). Also X < CX,2).
Hence X U {ug,0,} & C(X,a). Thus, by C2 and C3 C{Xu,,0,) = C(X,@).
Conversely, since oy,0, € C(X0y,0;), then by L2, ae C(X,x,0;). Thus
Xu e} & C(Xa,,0,), and C(X,0) & C(X,0y,0,).

Lemma 2, For any logical closure C for &, any X < Fy, andany A, Be Fy:
(i) if Be C(X,A), then A — Be C(X);
(i) fdeXand A - Be C(X), then Be C{X).

Proof. (i}: Since Be C(X,4), then [fe C(X,4,71B), and by Lemma I,
fe C(X, T1(4 > B)). Hence 4 — Be C(X).

(i): Since 4 — Be C(X), then fe C(X, HA — B)), and by Lemma I,
fe C(X,4,71B). But since AeX, then fe C(X,71B), and it follows that
Be C(X).
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To prove Theorem L.15, we want to show that forany X < Fg,
ClX) = CLX v CB)).

First take any 4 € C(X). By C4, there exists a finite subset ¥ of X such that
Ae C(Y).If A, 4,, ..., A,are the members of ¥, 4 e C{dy, 4y, ..., A,
and by » applications of Lemma 2(i),

A = ... A4, — Ae CO).
By Lemma 2(ii)
Ay = ... A, Ae CX U CHY),

and by repeated applications of this lemma, we obtain 4 € C(X v (™).
Conversely, take any 4 e C(X v C(0)). Thus X v C(0) F 4 and by Theorem
.14 A e C(X v C(@). But ¥ < C(X)and C() = C(X), so that it follows that
C(X U C(9) = C(X). Therefore, 4 € C(X). This completes the proof of the
theorem.

COROLLARY. Let C be any function from the power set of Fy into itself. Then
C is a logical closure for £ if and only if for every X S Fy

CX) = CLX U C@)).

8  Alternative interpretations of the e-symbol

In §3.3 we formulated the semantics of a language & by interpreti.ng the
¢-symbol as a choice function ® for a universe M, such that @ assigns to
the empty set some arbitrary but fixed member of M. We shall now discuss
the general problem of finding a suitable interpretation for the g-symbol
and the particular solutions to this problem which appear in the literature.'

Since Hilbert introduced the e-symbol merely as a formal syntactic device
to facilitate proof-theoretic investigations of the predicate calculus and of
mathematical theories, such as arithmetic, which are based on the predicate
calculus, the status of the g-symbol is somewhat different from that of the
other logical primitives. Although the basic methodology of H_iibg?rt’s
formalist programme is to treat all symbols as meaningless, there is little
doubt as to the intended interpretation of the symbols —, =, &, Vv, ~s E
and (). On the other hand, it is by no means clear what interpretation 1s
intended for the e-symbol, or whether, in fact, any interpretation is intended.
Hilbert's informal remarks about this symbol amount to little more than
‘exA is some object of the domain of individuals, such that if anythitllg
satisfies the formula A, then exA does’ ([1939], page 12). Hilbert’s main
concern is with the formal system which is obtained when the e-symbol and

the e-formula,
A(a) — A(exA),
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are adjoined to the predicate calculus, and the rule of substitution is extended
to allow for the replacement of free variables by e-terms. The significance of
his s-Theorems is that a given deduction in the predicate calculus can be
converted, using the e-calculus, into another deduction of a certain special
form in the predicate calculus. Conseqguently, the question of an interpreta-
tion, or even an intended interpretation, of the e-symbol is unimportant both
to his methods and to his results. The intended interpretation of the other
logical symbols is unimportant only with respect to his methods.

Although Hilbert provides us with no precise semantic interpretation of
the e-symbol, his formal system does suggest certain properties which any
interpretation must satisfy, First of all, the e-formula and its deductive
equivalent

() IxA — A(exA)

must be valid under this interpretation. Secondly, the interpretation must
assign a value to every ternt of the form exA, even when the formula 4 is not
satisfiable. This second requirement follows from the fact that Hilbert's
system includes a rule for the replacement of free variables by arbitrary
e-terms. A third requirement would be that the ‘second g-axiom schema’

(&2} Vx(A4 ++ B} = {exA = exB)

should be valid under this interpretation. Although formulae of this form are
not taken as axioms in Hilbert’s system, schema (g,) is a standard axiom
schema in formalizations of set theory which incorporate the e-symbol, We
shall say that an interpretation of the ¢-symbol is ‘suitable’ if it satisfies these
three conditions.

The idea of using choice functions as an interpretation of this symbol was
first investigated by Asser [1957] following a suggestion by Schréter. His
investigations deal with three types of choice function, The first type is the
one which we have used in §3.3. This interpretation is suitable in view of our
results in that section.

Even if one agrees to interpret the e-symbol in terms of a choice function,
there are various ways of interpreting a ‘null term’—that is, an e-term exA,
where A4 is unsatisfiable. Clearly, the interpretation of such a term depends
on the entity, if any, which the choice function assigns to the null set. The
choice function we have used {Asser’s first type) assigns to the null set some
arbitrary, but fixed member of the universe Af. Two alternative definitions
have been proposed: (i) Asser’s second type of choice function, where @ is
undefined on the null set; (i) the choice function employed by Hermes [1965]
where @ assigns the same value to the null set as it does to the universe, i.e.

(1) D) = D(M).
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Hermes” definition seems to have been prompted by the way Hilbert and
Bernays initially define the g-symbol in terms of the s-symbol. The p-symbol
is formally introduced by means of the following n-rufe (J1939], page 10).

‘If a formula 3x4 is an axiom or is derivable, then #x4 can be introduced as
a term, and the formula A(nxA) can be taken as an initial formula’, i.e. from
dxA4, one can infer A(nxA).

Obviously, the #-symbol represents the ‘indefinite article’ in the same way that
Russell's -symbol represents the ‘definite article’. The e-symbol is then
defined as follows (p. F1):

2) exA =pe nx@ylAL—A4).

From this definition it follows by the #-rule and the predicate calculus that
any formula of the form

AxAd - AlexA)

is derivable. Furthermore, although #x4 is a term only if 3x4 is derivable,
any expression of the form £x4 is a term. Hilbert and Bernays then dispense
with the n-symbol, and instead take the z-symbol as a primitive and introduce
the e-formula as an axiom. .

Although this method of introducing the e-symbol is only a heuristic
device, Asser {p. 65) and presumably Hermes see in it an indication of
Hilbert’s intended inferpretation of a null term, For, suppose there is no x
for which A holds, then the formula 3p[A]} — A is true for all x. Consequently,
using a choice function interpretation for both » and ¢, it would follow from
definition (2) that this choice function must assign the same value to the null
set as it does to the universe,

If we define a model using Hermes’ notion of a choice function, our results
still hold subject to the following modifications. _

In the definition of a logical closure the following additional condition 1s
required:

L7, (ex(x = x) = ex1{x = 1)) e C(X).

In the proof of theorem I.11 it is necessary to show that the function & as
defined on page 27 satisfies Hermes’ condition

D) = DM),

This follows immediately from L7 and the fact that {{x = x),x) represents
M and {i(x = x),x) represents @. It is not difficult to show that € (under
our new definition of a model) satisfies L7, Hence the Compactness Theorem
still holds.
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The second type of choice function which Asser considers is that which is
undefined on the null set, [t is clear from his results that this concept of choice
function is better suited as an interpretation of the n-symbol than of the
e-symbol, since no value is assigned to a null term and thus our second require-
ment for a ‘suitable’ interpretation fails.

Asser points out that the e-calculus of Hilbert and Bernays is not complete
under his first interpretation of the e-symbol. In an attempt to find an in-
terpretation under which their ¢-calculus is complete, Asser defines a third
type of choice function, which is a very complicated modification of the first,

‘Wir werden nun zeigen, daB es tidtsachlich moglich ist, den Begriff der
Auswahlfunktion o zu fassen, daB die zugehdrige Interpretation dem
formalen Ansatz von Hilbert adiquat ist. Alerdings ist dieser Begriff von
Auswahlfunktion so kompliziert, daB sich seine Verwendung in der in-
haitlichen Mathematik kaum empfiehl.’!

Later (p. 65) Asser remarks that in view of the complexity of this third
type of choice function, it is unlikely that this was Hilbert's intended in-
terpretation of the s-symbol.

We have chosen to interpret the e-symbol in terms of Asser’s first type of
choice function for three reasons: (i) this interpretation is intuitively natural
and simple to define (as opposed to Asser’s third interpretation); (ii) this
interpretation satisfies the three requirements we have given for a ‘suitable’
interpretation; (iii) under this interpretation the s-calculus which is used in
formalizing set theory (cf. Ackermann [1937-8] and Bourbaki [1954]) is
complete. Although Hermes’ interpretation is also ‘suitable’, we have not
used it because it then becomes necessary to adjoin a new axiom, such as

ex(x = x) = ex1{x = x),

to the axioms of the e-calculus in order to maintain completeness, There
does not, in general, seem to be any good reason why such an axiom should
be available in the e-calculus.

However, it would be a mistake to state dogmatically that one particular
interpretation of the &-symbol is correct and all others are incorrect. One of
the advantages of this symbol is its flexibility and indeterminacy, It is always
possible, and often advantageous, to adjoin additional e-axioms to a system,
thereby making the designations of the e-terms more definite, For example,
Hilbert and Bernays have shown (pages 85-87) that by taking the formula
(schema)

(1) Aty > exd # '

b Asser (1957), p. 59.
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as an axiom schema of arithmetic, the principle of mathematical induction
can be derived. (The symbol ‘ denotes the arithmetic successor function.) In
this formalization of arithmetic, the e-symbol can be interpreted as a least
number operator, although this is not the only possible interpretation, sinqe
(1) still allows the e-symbol a certain amount of indeterminacy. If (1) is
replaced by the stronger axiom schema

{2) Ay »exd < o,

then the e-symbol is uniquely characterized as a least number operator ‘(cf.
Tait [1965]). We shall return to these applications of the e-symbol to arith-
metic in Chapter IV, §3.2.

6 Languages without identity
Although this book deals only with languages whose logical constants in-
clude the identity symbol =, it is easy to modify the definitions and proofs
so that our main results also hold for languages without an identity symbol.
In the definition of a logical closure for a language without identity we
replace conditions L5 and L6 by the following:

18. If Vz(A, ¥ «» A2 P e X and B, 4, € X, then B, ,, € C(X), where B is
any atom and y any variable which does not have a free occurrence in B
within the scope of an e-symbol,

Theorem 1.11 still holds for languages without identity. In the progf a
more complicated definition of the equivalence relation ~ is requ;req.
Observe that for any term 5, one of the following conditions must hold: (i)
s is an individual symbol, (ii) s is an e-term, (i) s is of the form g, . . . S»
where n = 0. The definition of 5 ~ ¢ is by induction on the length of s as
follows. o
Case 1. s is an individual symbol a: Then s ~ ¢ iff 7 is the same individual
symbol.

Case 2. s is of the form exA: Then s ~ 1 iff ¢ is of the form eyB and for all
reTy, ATe X T Ble X.

Case 3. s is of the form gs, .. .s,: Then s ~ ¢ iff #is of the formgt; ... 1,
and s; ~ ¢, foreach i=I,,..,n _
Lemma 1, that ~ is an equivalence relation, follows easily from the defini-
tion of ~. Lemma 2 follows by L8, and Lemma 3 is immediate from the
definitions. The rest of the proof of Theorem L.11 goes through unchanged.

CHAPTER II

FORMAL SYSTEMS

1.1 Finitary reasoning

In Chapter 1 we formalized the intuitive notion of logical consequence by
using the non-constructive techniques of set theory to define the semantic
consequence relation F. Although this approach has a certain abstract
mathematical appeal, it is important, particularly in proving the consistency
of mathematical theories, to find a more concrete definition of logical
consequence. For this reason we now turn to the notion of deducibility in a
formal system,

A formal system may be regarded as an array of uninterpreted symbols
together with rules for manipulating these symbols. Consequently, in dealing
with formal systems we can use a much weaker metatheory than that which
was used in dealing with models. Throughout the present chapter and suc-
ceeding chapters nearly all our metatheoretic arguments will fall within the
domain of what Hilbert calls finitary reasoning {das finite Schlieflerr), Hilbert
defines this type of reasoning as follows: (Hilbert and Bernays [1934], page
32, translation by Kneebone [1963] page 205):

‘We shall always use the word “finitary” to indicate that the discussion,
assertion, or definition in question is kept within the bounds of thorough-
going producibility of objects and thorough-going practicability of processes,
and may accordingly be carried out within the domain of concrete inspection.’

In other words our discussions will deal with concrete objects such as terms,
formulae, and finite sequences of formulae. In order to prove that a certain
concrete object exists we must exhibit that object or at least describe a
procedure for finding or constructing such an object. For example a proof of
a metalinguistic statement of the form ‘for all x, there exists a y such that .. .’
is a finitary proof if it enables one to construct an appropriate y for any
given x,

Throughout this chapter we shall use the basic facts about the natural
numbers and in particular the principle of mathematical induction. When we
do so our metatheory remains finitary, since a natural number may be
regarded as a sequence of vertical strokes and if we have proved by induction
that every natural number has a certain property, then for any given number
n, the inductive proof provides a method for showing in a finite number of
steps that » has that property. (See Hilbert and Bernays [1934].)



38 FORMAL SYSTEMS Ca. 11

We shall continue to use the language of set theory as part of our meta-
language, Thus, for example, we will speak of sets’ of formulae. This use of
set theoretic terminology is only a matter of convenience, and nearly all
references to sets couid be eliminated,

The only theorems of this chapter which are not proved by finitary tech-
niques are Theorems I1.1 and IL.11 which deal with the completeness of
formal systems. In these two cases a finitary proof is impossible since the
very notion of completeness depends on the non-finitary notion of semantic
consequence. Similarly, Exercise 3 at the end of §2, which deals with the
soundness of the e-calculus, cannot be proved by finitary reasoning.

1.2 General definitions

In general, we may say that a formal system & for a vocabulary ¥ consists
of certain concrete obiects called deductions, or more precisely deductions of
A from X, where A is a formula of #(¥7) and X is a set of formulae of L(¥).
For the formal systems which we are about to consider, the deductions of 4
from X are certain finite sequences of formulae whose last member is A.
However, in Chapter V we deal with a formal system whose deductions are
sequences of sequences of formulae. Although particular formal systems can
be set up in a variety of different ways, the one important feature which is
shared by every formal system is the existence of an effective procedure for
determining whether or not a given array of formulae is a deduction of A
from X in that system.

If there exists a deduction of A from X in &, then A is said to be deducible
Jrom X in & and we denote this by writing X F5 4, Thus the statement ¢x-
pressed by the notation X F & A is an existential statement in the metalanguage,
and a finitary proof of such a statement must provide a procedure for con-
structing a deduction of A from X. A deduction of 4 from @ in & is called a
proof of 4 in &. If there exists a proof of 4 in &, then A4 is said to be a
theorem of & . A formal system & for ¥ is consistent if { is not a theorem of
F, sound if X k5 A implies X £ A, and complete if X F 4 implies X k5 A, for
every X € Fyyyand every 4 € Fyy,. (This definition of completeness applies
only to formal systems which incorporate the e-symbol. For a formal system
&, such as the predicate calculus, where the e-symbol may not be used in a
deduction, we say that & is complete if X ¥ A implies X kg A for every
g-free formula A of Z(¥") and every set X" of e-free formulae of F(¥7).)

If & is a formal system for ¥, we define the deductive closure C for & as
follows. For any set X of formulae in £(¥7)

CX)y={A:Xtg A}

The following theorem, which depends on the Satisflability Theorem, pro-
vides a useful method for proving the completeness of a formal system.
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Tueorem IL.1. For any vocabulary ¥ and any formal system & Jor ¥, if the
deductive closure C for & is a logical closure for £L(¥), then F is complete,

Proof (non-finitary). Suppose X £ A, where ¥ = F wivy and A € Fyy,. Then
by Theorem L.14, 4 € C(X). Hence X k5 4, and F is complete.

1.3 Axioms and rules of inference

Let ¥” be any vocabulary. A particular formal system % for ¥ is often
defined by specifying certain formulae of £(#) as axioms and by prescribing
certain rules of inference, i.e., rules which determine effectively whether a
given formula of £(¥") ‘follows from’ other given formulae of L(¥"). The
formal concept of a deduction in & is defined in the obvious way. For any
set X of formulae of #(¥) and any formula A of L(¥"), a deduction of
Afrom X in & isasequence{4,, ..., 4,> of formulae of Z(+7ysuch that 4,
is Aand foreachi=1,...,n, 4, is an axiom, or 4, is a member of X, or 4,
follows by some rule of inference from some preceding members of the
sequence.

In order that & be effectively defined it is necessary to give an effective
definition of the axioms of &. Since in most cases we wish to specify infinitely
many formulae as axioms, it is impossible to list all the axioms, However,
we can specify a finite number of forms and then say that every axiom must
be of one of these forms. The forms themselves are called axiom schemata.
For example, we may say that any formula which has the form

A-+B- A4

is an axiom. Then the metalinguistic expression ‘4 — B — 4’ is an axiom
schema. Any formula which has this form is called an instance of the axiom
schema.

We shall now use the above approach to define a formal system called
the e-calculus for ¥,

2 The g-calculus for v

Let ¥” be any vocabulary, The e-calculus for ¥, which we shall denote by
g(¥"), is defined as follows.

The axioms of e(¥") are all formulae of #(¥) which are instances of the
following axiom schemata:

Pl A-+B-> A4
PZ A->B—-+C)»(Ad—=By5A~C
P3 (M4 - T1B) > (B - A)
P4 (A=))— 14
ML, —4
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PS (AAB)— A PS TI(AvB) -~ 14

P6 (AAB)— B P9 (AvB)~ 1B

P7 A B— (AAB) P10 "4 - T1B = "I(4v B)
Ql Vad —» "13x714 Q3 M3xd - A

Q2 ~1¥xd - 3x714 Q4 3Axd — AlexA)

El (s =tAA) = A B} 1=t

F2 Vz(Al & B}) - exA = ey B

Restriction: In axiom schema El, A4 is an atom and x any variable which
does not have a free occurrence in 4 within the scope of an g-symbol.

In particular, any instance of axiom schemata P1-P10 is a propositional
axiom, any instance of Q1-Q4 is a quantificational axiom, and any instance
of E1-E3 is an equality axiom. Furthermore, an instance of P1 is called a
Pl-axiom, an instance of P2 a P2-axiom, etc.

There is one rule of inference for &(¥7). A formula B follows by modus
ponens from A and C 1f and only if C is of the form A -+ B. This rule can be
expressed schematically as follows. -

A, A= B
modus ponens. —————
B

The deductions in the e-calculus for #7 are now defined in the usual way.
For any set X of formulae of Z{¥") and any formula 4 of Z(¥7) a deduction
@ of A from X in &¥") is any finite sequence <Ay, . .., A,> of formulae of
(¥ such that 4, is 4 and for cachi=1,...,natleast oneof the following

conditions holds:

(i) A;is an axiom of 77),
(i) A;is a member of X,
(it} A4, follows by modus ponens from A; and A, for some J, k<i

If A, is a member of X, then 4, is called an assumption of 2, and if 4, satisfies
condition (i) but not conditions (ii) or (iii), then A, is said to be used as an
axiom in @. In other words a formula in @ i used as an axiom if its presence
in 9 can be justified only by (i).

If there exists a deduction of A from X in &(¥"), we say that A is deducible
from X in &(*") and denote this fact by writing X b, 4. To simplify the
notation we write X, By, ..., By Foyy 4 instead of X w {B,...» B bay A
and F ey 4 instead of § by A

Since ¥ is an arbitrary vocabulary, the above definition of the formal
system &(¥7) determines a whole class of formal systems, one for each vocab-
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ulary ¥". Throughout this chapter we shall let ¥~ be a fixed, but arbitrary
vocabulary, and we shall often speak of ‘the s-calculus’ instead of ‘the
.ts-cfalcuius for ¥7 and write X I, 4, instead of X F 4, 4. Furthermore, when
it is understood that we are referring to deductions in the e-calculus (;'or )
we shall write simply X F 4.

Recall that a proof in a formal system & is a deduction from the empty
set, and that 4 is a theorem of & if there exists a proof of 4. We now give
an example of a proof in &(¥").

THeOREM IL2, For any formula A of F(¥"), the formula A — A is a theorem
of e(¥).

Proaf. The following sequence of formulae constitutes a proof of 4 — 4.
() A—(4d—> A)y— 4 Pl-axiom

2y A-d—- Ao A >2(A-A4A—-4)->4->4 Plaxiom

3 (A—-4-4)—A4—+ A4 modus ponens from (1) and {2)

4 A~ A- A Plaxiom

(5) A—- A modus ponens from (4) and 3)

TueoreMm IL3, Let X and Y be any sets of formulae of £ (¥ Y and A,B, ..
B,,. any formulae of F(F"). Then: o
((1; gz .;1; is an axiom of &(¥") or a member of X, then X +- A.

if LBy, oo B b A,and X & B, foreachi=1,...,nthenX Yl A
i) IfX< Yand X+ A, then Y+ A, ’ '
(iv) If X+ A, then there exists q finite subset X' of X such that X' + A.

Proof. _Parts (i), (iii), and (iv) follow immediately from the definition of a
d.educnon. To prove part (i} it is sufficient to consider the case wheren = 1
since t!le general case then follows by induction. Let (4,,..., 4, be 3i
deduction of B, from X and let {C},..., C,> be a deduction ,of mA from
Y u {B,}. Then the sequence {A4,, ..., 4,,Cy, ..., C,> is a deduction of 4
from X v Y.

A

EXERCISES

1. Using only Theorem 11,3, prove that the deductive closure C for (") is
a finitary closure operation on the set of formulae of Z(#7).

2. Prove that every propositional axiom of &(¥7) is a tautology.

3. Prove that e(¥") is sound, i.e., for any set X of formulae of #(#") and any
formula A of (¥7) prove that X |, A implies X' F 4.
3 Derived rules of inference

In general, it is very impractical to prove that there exists a deduction of 4
from X by actually displaying the appropriate sequence of formulae (as we
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did in proving Theorem I1.2). It is far more convenient to have at our disposal
certain basic rules which assert that a deduction of 4 from X can be formed
from certain known deductions. Such rules are called derived rules of inference.
For example, Theorem I1.3(ii) asserts a useful rule of this type. The following
theorem provides two rather obvious derived rules of inference.

TaeorEM 114, Let X and Y be any sets of formulae. Then:

(i) —-eliminationrule: If X+ A4 — B, then X, A+ B.

() MPrule: If YE B, —» ... B, = A,and X+ B, foreachi = 1,...,n,
then X 0 Y+ A.

Proof. (i) Let {A(, ..., 4,> be a deduction of 4 —» B from X. Then the

sequence {4,,..., 4,.4,B)> is a deduction of B from X u {4}, since B
follows by modus ponens from 4 and 4,.
(iiy Since Y+ B, —» ...+ B, = A4, then ¥, B,,..., B, F 4 by n applica-

tions of the -—s-glimination rule. Hence X U Y | 4 by Theorem I53(i1).

In the next section we shall prove the converse of part (i). Although this
result is commonly called the Deduction Theorem, we shall refer to it as the
—«introduction rule in order to emphasize its role as a derived rule of
inference,

3.1 The -»-introduction rule (Deduction Theorem)

In mathematics one commonly proves a statement of the form ‘if A4, then
B’ by taking A as an assumption and deducing B from 4. The following
theorem can be regarded as a formal justification of this method.

THEOREM ILS (The «s-introduction rule). If X, A+ B, then X+ A - B,

Proof. Let{A,,..., A, beadeduction of B from X U {4}. We shall prove
by induction that for each i, X+ 4 — A4;, thus proving X+ 4 — B, since
A, is B.

Case 1. A, is an axiom or a member of X: Hence

X A; Theorem 11.3(i)
FA;,» A4+ A, Pl-axiom

Xt A4, MP

Case 2. A, is the formula A:
FA— A4; Theorem II.2

X+ A A, Theorem 11.3(iii).

Case 3. A, follows from A; and Ay by modus ponens, where j, k < i: Then 4,
is the formula 4; — 4;. Hence
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Xt A4 A; -+ 4; induction hypothesis

XtA— 4 induction hypothesis
FA— A, Ay (A>A4) > A > 4,
P2-axiom
XFA - A MP

CoroLLARY (The syllogism rule). If X+ 4, » 4,, X+ Ay = A, ..., and
XtA, . > A, then X} A, - A,

Proof. 1t is sufficient to prove the rule for the case where # = 3, since the
general case then follows by induction on #.
Assume 4, - 4, and X+ 4, » A,. Then

X, A+ 4, —-glimination
X, A+ A, Mp
XFA - 4, -s-introduction

3.2 Some theorems of the e-calculus

Our derived rules of inference can now be used to show that formulae of
certain standard forms are theorems of the g-calculus.

THEOREM I1.6. For any formulae A and B

() F4d- 4B
() F 74 > 4,
(i) +A— 4.

Proof.

() F14—-"1B— 4 Pl-axiom
F(TIB = "A4)— (4~ B) P3-axiom
F1A—- 4B syllogism

(i) F174 - 34> 7371714 part (i)

F(I4 - 17174) - (71114 — 4) P3-axiom
FATld—- 114~ 4 sylogism

14+ 4 ~+-elimination (twice)
FAa714— 4 —-introduction

(i) F1M14 - 4 part (ii)
F(171714 <+ 14) 5 (4 - 1714)  P3-axiom
FA— 74 MP

Trrorem 117 (Contrapositive rules).

(i) IfXF 1A -> B, then X+ B — A,
(i) IfXF 14— B, then Xt "B - A.
(i) IfXFA - OB, then X+ B - " A4.
(v) IfXtA- B then X+ 1B - "A.
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Proof. Use axiom schema P3, Theorem I1.6(i1), (iii), the MP rule, and the
syllogism rule,

Tueorem 1L8. For any conjunctive formula «:
i) ta —oa,
(i Fa —a,,
(i) b oy = oy - oo
Proof. 1f o is of the form A A B or (4 v B), then (i), (ii), and (iii) follow by

the propositional axioms PS5, P6, and P7, or P§, P9, and P10 respectively.
Suppose o is of the form 71{4 - B).

§)] F14 -+ 48 Theorem 11.6{i}
F 1A - B)— A contrapositive
{ii) FB—+A- B Pl-axiom
F (4 - BY— B contrapositive

(iiy 4, 4- B+ B by modus ponens
Ar(A—-B)-> B -+-introduction
AFB—= 1{4d->B) contrapositive

FA—= 1B — {4 -+ B) -»-introduction

TreorREM 119 (The f-rules).
() XFAFX AV,
Gy X+rAiffX,14+1{.

Proof.
() Assume X 714
Fiderd-of Theorem I1.6(i)
XA} MP
X, AtY —-elimination
Assume X, A+
XtA-|f ~s-introduction
F(d—-]y-> 14 Pd-axiom
XF T4 MP
(i1) XtAiFXt 114 Theorem IL6(I), (i) and MP

WX IAF]  part (D)

4 Completeness of the e-calculus

So far everything which we have proved about the e-calculus for ¥ depends
only on the facts that formulae of the form P1-P10 are axioms and that
modus ponens is the one and only rule of inference. We shall now make use
of the guantificational axioms.
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Turorem 1110, For any universal formula y, any term t, and any existential
Jormula &

@ Fy -9,

(i} F & — 8(ed).

Proof. If v is of the form ~33xd4, then y — y(¢) is a Q3-axiom, and if § is of
the form dxd, then 8 — &{ed) is a Q4-axiom. Suppose y is Vx4 and 4§ is
VxA.

(i) FV¥xd — 13x734 Ql-axiom
Faxm A = 1A Q3-axiom
F 1 1AGR) — A Theorem IE6(1)
b VxA - A(r) syllogism

(i) F Vx4 - 3x14 Q2-axiom
Faxid -+ “14(Ex74)  Qd-axiom
F 1vxd = T1A(ex14)  syllogism

THrorEM I1.11 (The Completeness Theorem). For any vocabulary v the
e-caletdus for ¥ is complete.

Proof (non-constructive}. By Theorem II.1, in order to prove that &(7") is
complete it is sufficient to prove that its deductive closure C is a logical
closure operation, That Cis a finitary closure operation follows from Theorem
11.3. The ‘logical’ properties 1.1, 12, L3, and L4 follow from Theorems 1.9,
1.8, I 105}, and I1.10(iD), respectively, using the MP rule. Properties L5 and
L6 follow easily from the equality axioms El and E2.

Notice that our proof of the Completeness Theorem does not make use of
the fact that formulae of the form
E3 t =t
are regarded as axioms of the e-calculus. Although axioms of this form are

superfluous in the g-calculus, it is convenient to include them since they are
needed in proving that the E2-axioms, i.e., formulae of the form

E2 Vz(A «» B) - exA = ¢yB
can be eliminated from proofs of e-free formulae.
EXERCISE

Prove constructively that if X' F A, then there exists a deduction of A4
from X in which no formula of the form ¢ = t is used as an axiom. (See
the proof of Lemma 1{ix), page 26.)

5 The Tautology Theorem

Our proof of the Completeness Theorem is a good example of a non-
constructive existence proof, since we prove that there exists a deduction of A4
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from X without actually describing how such a deduction can be formed.
We now give a completely constructive proof of a much weaker complete-
ness result—namely, that if 4 i1s a tautological consequence of By, ..., B,
then there exists a deduction of 4 from {B,,..., B,}.

We first establish some additional derived rules of inference,

THEOREM 1112, Let X be any set of fornudae, o any conjunctive formula, and f§
any disjunctive formula. Then:
(i) Contradiction rule: if f is a member of X or if there exists some formula
A such that both A and 1A are members of X, then X | |,
(i) 1 7t-rule: X, AL, then X, 714
(i) o-rule: if X, o, 05 F f, then X, a b {.
(iv) frulerif X, 8, Ffand X, By b f, then X, I ],

Proof.
(iy If / is a member of X, then X + / by Theorem I1.3(i). Suppose 4 and
™14 are members of X. Since A F A4, then A, ™A F f by the f-rule. Hence

X+ f by Theorem IL3(ii).

(i) Assume X, AFf
XF 4 frule (i)
X, 14 k] J-rule (ii)
(i)  Assume X, ¢, o, b+ f
o b oy Theorem 11.8(i) and —-elimination
o ko, Theorem 11.8(i) and —-elimination
X,at{ Theorem 11.3(i)

(iv) Assume X, B, Ff and X, ff, +/, where §; and f§, are the disjunctive
components of some disjunctive formula . By the duality principle {page
16) the contrary of # is a conjunctive formula g such that «, and f, are
contradictory and «, and ff, are contradictory. Hence

Xta, f-rule
XFo, f-rule
b, = o, = o Theorem IN.8(iii)
Xta MP
X, B+ f-rule

A finite set of formulae {4, ..., 4,} issaid to be truth functionally invalid
if for every truth assignment i for 4, A , .. A A, there exists an 4, such that

e ) = 0.
TueoreM IL13. If the ser {4y, ..., A} is truth functionally invalid, then
Al!'--aAan-

Proof. Let m be the sum of the lengths of the 4, The proof is by induction
o1 a1,
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Case 1. Each of the A; Is either a molecule or the negation of a molecule: We
shall prove that since {4,, ..., 4,} is truth functionally invalid, then either
(i) some 4; is the formula /, or (i) some A, is the negation of some A;. It
then foilows that 4,, ..., 4, F f by the contradiction rule. Suppose neither
(1) nor (ii) holds. We can then define a truth assignment ¢ for 4;A... A4,
as follows. For each 4, if 4, is a molecule let ¥(4,) = 1, and if 4, is the
negation of a molecule B; let y(B,) = 0. It then follows that for each i,
¥(4,) = 1, which contradicts the assumption that {d,,..., 4,} is truth
functionally invahd.

Case 2. At least one of the A; is neither a molecule nor the negation of a
molecule: We may assume that such a formula is 4. Then one of the following
three cases must hold. .

Case 2a. A, is of the form 3 71B: In this case {B,4,, ..., 4,} must be truth
functionally invalid since for any W, if (™1 1B} = 0, then §(B) = 0. By the
induction hypothesis B, 4,, ..., 4, I f, and therefore 1 1B, 4,, ..., 4, + f
by the 7 1-rule.

Case 2b. A, is a conjunctive formula o In this case {o;,05,4,, ..., 4,} must
be truth functionally invalid since for any v, if ¥(x) = 0, then ¥(x,} = 0
or Y(m;) = 0. By the induction hypothesis &, #;, 4,, ..., 4, F f, and there-
fore a, A, ..., A, + by the a-rule,

Case 2¢. A, is a disjunctive formula f§: In this case both {§,,4,, ..., 4,} and
{B2.42, ..., A,} are truth functionally invalid since for any ¥, if () = 0,
then y(f,) = 0 and ¥(f,) = 0. Hence B, 4,,..., A, + [ by the induction
hypothesis and the f-rule,

Notice that the above theorem holds for any formal system which satisfies
the four rules that make up Theorem IL.12.

TreoreM 11.14 (The Tautology Theorem). Every rautology is a theorem of
the e-caleulus.

Proof. Let A be a tautology. Then {14} is truth functionally invalid and by
Theorem 11,13, 714 F /. Hence +A by the f-rule,

COROLLARY.

() If A is a tautological eonsequence of By, ..., B, then B, ..., B, A.

(i) The tautology rule: if 4 is a tautological consequence of By, . . ., B, and
XEBy, ..., XFB, then X+ A,

Proof. Part (i) follows by the Tautology Theorem and the —-elimination
rule, and part (ii) by the Tautology Theorem and the MP rule,

6 The consistency of the e-calculus

Recall that a formal system & is consistent if { is not a theorem of &,
Since [ is not a valid formula, the soundness of the e-calculus (cf. Exercise 3,
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page 41) implies its consistency. However this consistency proof is somewhat
unsatisfactory since it involves the non-finitary notion of validity. For this
reason, we shall now give a completely finitary proof of the consistency of
the s-calculus.

TurorReM IL.15. For any vocabulary ¥, the e-caleulus for V" is consisient.

Proof. For any quasi-formula 4 of £(¥"), we define the formula g(4} as
follows by induction on the length of 4.

(i) ¥f A is of the form Pt,, .. . 1, then g(4) is P, where P is now regarded
as a O-place predicate symbol,
(ii) If A is of the form s = ¢, then g{4) is 7f.
(iii} If 4 is“the formula f, then g(A4) is {.
(iv) If A is of the form 718, or B* C, where x is A, v, or —, then g(4)
is T1g(B), or g(B) * g(C), Tespectively.
(v} If A is of the form 3xB or YxB, then g(A4) is g(B).
In other words, g(4) is obtained from A by first erasing all the quasi-terms in
A and all occurrences of the symbols ¥x and 3x, and then replacing each
occurrence of = by T1f. It is easy to see that if 4 is an axiom of &(¥7), then
g(A) is a tautology, and if g(A4) and g(4 — B) are tautologies, then g(B) is a
tautology. Consequently, if 4 is a theorem of the e-calculus for ¥7, then g{A)
is a tautolology. Since g(f) is not a tautology, then f is not a theorem, and
therefore &(#7) is consistent.

7.1  Some derived rules for operating with quantifiers

Theorem I1.10 states that all formulae of the following forms are theorems
of the e-calculus: () Vxd - A@), (i} T13xA4 — 71A4(), (i) ™iVxd -
" AlexT1A), and (iv) 3x4 — A(exA). These results provide the following
derived rules of inference for the introduction and elimination of quantifiers.

TrrorEM 11.16. Let X be any set of formulae. Thei:
(iy V-elimination rule: if X F VxA, then X'+ A(t) for any term t.
(i) 3-introduction rule: if there exists a term t such that X & A(t), then
X FdxA.
(iiiy V-introduction rule: iff X F A(ex1A4), then X'F VxA.
(iv) 3-elimination rule: if X't 3x4, then X + A(exA).
The proof follows immediately by Theorem IL10 and the tautology rule.
Often the specified e-terms in the Y-introduction rule and the 3-elimination
rule are rather complicated expressions. For example, if we know that
X+ 3x3yPxy and we then make two applications of the 3-elimination rule
we obtain the following complicated result
X+ Pex3pPxyeyPexdyPxyy.
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In order to avoid such complicated expressions it is convenient to use
metalinguistic symbols, such as the letters s and ¢, to denote certain specified
e-terms. For example, we can prove F 3xYpPxy — Vy3xPxy as follows. Let X
be the set {IxVyPxy}. Then

X+ IxVyPxy Theorem I1.3(1)
X VyPsy J-elimination, s Is exVyPxy
X+ Pyt V-elimination, ¢ is ey 13xPxy
X F3xPxt 3-introduction
X F VydxPxy Y-introduction

F 3xV¥yPxy ~» VydxPxy -—+-introduction

EXERCISE

Prove Fax3yPxy — dydxPxy by using the letters 5 and 7 to denote the
appropriate e-terms.

An alternative way of avoiding complicated e-terms is by employing the fol-
lowing rules of inference in which individual symbols are used in effect as ab-
breviations for arbitrary e-terms.

TueoreM II.17. Let X be any set of formulae, B any formula, A any quasi-
Jormula which contains no free variable other than x, and a any individual
symbol which does not appear in A, B, or any member of X, Then:

(1) Substitution rule: if X F A3, then X F A, for any term t.

(ii) Generalization rule: if X + A%, then X F ¥xA.
(iify J-rule: if | AL — B, then X F3x4 — B.
(iv}) V-rule:if X} B — A7, then X + B -» VxA.

Proof.

(i Let{A,,...,A,> beadeduction of A*from X, Foreachi = 1,...,n,
let A; be the formula obtained from A, by replacing each occurrence of a
in 4; by the term t. Since a does not occur in A and since A, is 4%, then
4, is A7, It is easy to see that the sequence {A;’,..., 4, constitutes a
deduction of Af from X. For, if 4; is an axiom, then A4, is an axiom of the
same form, if 4; is a member of X, then A4, is 4;, and if 4; follows by
modus ponens from A; and A,, then 4;" follows by that rule from 4, and
Ay
(ii) Assume X b A} Then X F A(ex™1A4) by part (i}. Hence X + Vx4 by
the V-introduction rule,

(ili) Assume X F 4; — B. Since a does not appear in B, the proof of
part (i) yields X + 4(exA) —+ B. Therefore X - 3x4 — B by the syllogism rule
and the Q4-axiom IxA4 — AlexA).

(iv) The proof of (iv) is similar to that of {iii).
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The proof of the above theorem depends on the crucial fact that when an
individual symbol « is replaced by some term 7 in an axiom, the resulting
formula is an axiom of the same form. The converse assertion is not in
general true—that is, replacing a term ¢ by an individual symbol a in an
axiom does not necessarily yield another axiom of the same form. For
example, the term 7 may be one of the specified e-terms in a Q4-axiom or an
E2-axiom, or it may contain the specified terms in a Q3 or Q4-axiom. The
fact that the converse does not hold provides one of the major difficulties
in proving the eliminability of the e-symbol (Hilbert’s Second e-Theorem) as
we shall see in the next chapter.

In view of these remarks we can now explain the motivation behind the
restrictions which we imposed on the El-axioms. Recall that a formula is an
El-axiom if it is of the form

(s = tAAD) = A,

»

provided that 4 is an atom and x is g variable which does not have a free
occurrence in A within the scope of an e-symbol, This second restriction
guarantees that if any e-term is replaced by some other term £ in an El-axiom,
the resulting formula is still an El-axiom. Consequently in our proof of the
Second s-Theorem, the El-axioms present no difficulties. (The reason for
restricting 4 to an atom will be seen in Chapter V.)

In spite of these restrictions on the El-axioms, the desired results concern-
ing the identity symbol are deducible in the z-calculus. In particular, we shall
prove presently that gny formula of the form

(s =tAAD - A7

is a theorem of the e-calculus.
We now use Theorem I1.17 to establish another useful derived rule of
inference.

TraeoreM 1118 (The distribution rule). Let X be any set of formudae, A and
B any quasi-formulae, and a any individual symbol not appearing in A, B,
or any member of X. If X + A « B2, then

(i} XbFVxd VB,

(i) XF 3xA «3yA,
(i) Xtexd = syB.

Proof. (i) Assume X F A7 < B). Then
XFA— B tautology rule
X F¥xA — A7  Theorem 1I.10(i)
X FV¥xA - BY  syllogism rule
X FV¥xA - VyB V-rule,
Similarly, X F ¥y8 - Vx4, Hence X' I Vx4 < ¥YyB by the tautology rule.
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(ii) The proof of (ii) is similar to that of (i).

(ili) Assume X F A «» B Let z be any variable which is free for x in 4 and
free for y in B. Since [AY]? is A} and [BY]% is BI, then X F [AT) « [BY]:
Hence X F ¥Yz(A] «» BY) by the generalization rule, and X F exd = gyB by
axiom schema E2 and the MP rule.

7.2 Substitution instances and universal closures

Let A be any quasi-formula and let x, ..., x, be the free variables in 4.
For any terms f,...,¢, the formula A} 7" is called a substitution in-
stance of A, and the formula Vx, ... Vx4 is called a universal closure of A,
Thus A has n! universal closures—one for each ordering of the variables in
A. (If 4 has nofree variables, then 4 is regarded as a substitution instance and
a universal closure of itself.) For any X, we write X F V][ 4] to denote that
every universal closure of 4 is deducible from X.

THEOREM 19, Let X be any set of formulae and A any quasi-formula. Then:

(i) If Bis a universal closure of A and X & B, then every substitution instance
of A is deducible from X.

(i) If every substitution instance of A is deducible from X, then X + V[ 4].

Proof. The proof of (i) follows by repeated application of the V-elimination
rule and the proof of (ii) by repeated application of the V-introduction rule.

Theorem I1.19(ii} has the following very useful application. Suppose we
want to prove FV[A] for any quasi-formula 4 of a certain given form, If
every substitution instance of A is also of this form, then by the above
theorem it is sufficient to prove that every formula of this form is a theorem.,
In other words we may assume that 4 is a formula and simply prove b4, We
shall use this technigue in proving the following theorem.

TuroreM 1120, Ler B and C be any quasi-formulae, x any variable, and y any
variagble which is free for x in B and dees not occur free in either B or C. Let
O denote either Y or 3, Then:

(i) FVY[QxB o Qy[BY] and - V[exB = ey[B];];

(i) FVY[1OxB = Q'xB], where Q' isAif QisVand Q' isVif Qis3;
(iii) FV[(QxBvC)e Qy(Biv )L
(iv) FVY[(CvQxB)«e Qy(Cv B}l

Proof. In each of the four parts of this theorem we want to prove that if 4
is a quasi-formula of a certain form, then + V[ 4]. Since in each case every
substitution instance of 4 is a formula of the same form as that of 4, then by
the above remark we may assume that 4 is a formula and simply prove FA.
(i} Let @ be any individual symbol not appearing in B. Since y is free for
x in B, but not free in B, then [ B3]} is BL. Hence ++ B «» [ BX]} by the Tauto-
logy Theorem. The desired results now follow by the distribution rule.
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(i) If Q is ¥, then 1QxB « Q'x 1B is a tautological consequence of the
Q-axioms ¥xB — ~13x718 and 11¥xB - 3x71B8. Suppose Q is 3. Let a be
any individual symbol not appearing in B. Then

+ B «+ T171B; Tautology Theorem
FdxB < 3Ix™ R distribution rule
FAVX™MIB «»dx1 18 part (ii), where Q is ¥
F 13xB «Vx31B tautology rule

(ili) We shall give a proof for the case where Q is V. The other case can be
proved similarly. The proof hinges on the fact that for any term ¢, [B}v C}}
is B v C. Let ¢ be the term ey 71(B} v C) and s'the term ex71B,
i:if{:" g; - Bive } Theorem 11.10(i)
F B - VxB Theorem IL.10{(i1) and
FBfvC - YyByvC) } the contrapositive rule
F(¥xBv C)«» VY(B;vC)  tautology rule
(iv) The proof is similar to that of (iii).

7.3 The equivalence rule

In this section we establish a derived rule of inference, the equivalence rule,
which asserts in effect that within a given formula any expression may be
replaced by an equivalent expression. Before giving a precise statement of
this rule we first introduce the following unifying notation. Suppose E; and
E, are any two quasi-terms or any two quasi-formulae. Thenotation £, = E,
1s used to denote the quasi-formula E, = E, if E; and E, are both quasi-
terms, and the quasi-formula E, +» E,, if they are both quasi-formulae.

THEOREM I1.2]1 (The equivalence rule). Let X be any set of formulae, E and E'
any two guasi-terms or any two quasi-formulae, and A any formula or term
containing some specified occurrence of E. Let A' be the expression obtained
Jrom A by replacing this specified occurrence of E by E'. If A is a term or
Jormula and if Xt V[E = E'|, then X+ A = A",

Proof. The proof is by induction on the length of 4. (We may assume without
loss of generality that X is a finite set.)
Case 1. The specified occurrence of E in A is A itself: Then A’ is £’ and
X+ A= A by the hypothesis.

We now assume that Case 1 does not apply. Consequently one of the
following cases must apply.
Case 2, A is of the form Ps, . . . s, where P is an n-place function or predicate
symbol: Then the specified occurrence of £ in A must be contained within
some s;. Hence A" is of the form Ps; ... 5,.,5/5;4 1 ... 8, and X'+ s, = 5, by
the induction hypothesis. Let B be the quasi-formula
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Ps ... 5,= Ps{. o 821 X8157 40 Sy
Then B, is A = A and Bj. is A = A’. We prove X + Bf, as follows:
Xts; =5/ induction hypothesis
kB, E3-axiom or Tautology Theorem
Xt (s; =s5/nB;) - Bj, El-axiom
X+ B tautology rule

Case 3. A is of the form s = t: The proof is similar to that of Case 2.

Case 4. A is of the formt 71 B: Then A’ is of the form 7.8, and X+ B+ B' by
the induction hypothesis. Hence X'+ 7B «» "1 B’ by the tautology rule.
Case 5. A is of the form BAC, Bv C, or B — C: The proof is similar to that
of Case 4.

Case 6. A is of the form 3xB, VxB, or exB: Then 4’ is of the form dxB’,
¥xB', or cxB’, respectively, where B’ is obtained from B by replacing some
occurrence of Ein B by E’. Let a be some individual symbol not appearing in
B, B’, or any member of X. It is sufficient to prove X + B} « B’ since the
desired result then follows by the distribution rule. If no free occurrence of x
in B lies within the specified occurrence of E, then Bj contains this occurrence
of E and B’ % is obtained from B} by replacing this occurrence by E', Hence
FB* « B’ * by the induction hypothesis. On the other hand, suppose a free
occurrence of x in B does lie within the specified occurrence of £ in B. Then
B’ % is obtained from BX by replacing an occurrence of EF by E’ 7. Since
X FV[E = E7], then X FV[E] = E' 7] by the V-elimination ruie, and
therefore by the induction hypothesis X F B; <> B' J.

THEOREM 11.22, Any formula of the form {s = tAAY) — A] is a theorem
of the e-calculus.

Proof. Let n be the number of free occurrences of x in A. Then A is obtained
from A% by replacing » occurrences of s in A7 by 1. Since s = t 5 = ¢, then
by n applications of the equivalence rule and the tautology rule we have
s=tF AT AY. (If n = 0, then A7 «+ 47 is a tautology.) Consequently,
Fs=1t— (A7 < A) by the ~»-introduction rule, and F (s = tAA}) - A7
by the tautology rule.

7.4 Rule of relabelling bound variables

Let A be any formula. If some well-formed part of 4 of the form &xB, 3xB,
or VxB is replaced by ey[ B}, 3y[B]3, or Vy[B]}, respectively, where y is not
free in B and is free for x in B, then the resulting formula is said to be ob-
tained from 4 by an admissible relabelling of a bound variable. A formula A’
is said to be a variant of A if there exists a sequence 4, ..., A, of formulae
such that A, is A, 4, is A’ and for each i = 2,...,n, 4; is obtained from
A;_, by an admissible relabelling of a bound variable.
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TueoreMm 11.23 If A’ is a variant of A, then FA — A,

Proof. Clearly, it is sufficient to prove the theorem for the case where A’ is
obtained from A by a single admissible relabelling of a bound variable.
In this case +4 < A" by the equivalence rule, since by Theorem I1.20(])
FY[exB = ey[B]}], FV[3xB «» 3p[BL], and FV[VxB « Vy[B}:], if y is free
for x in B and not free in B.

CoroLLARY (The rule of relabelling bound variables). If X I A and A’ is a
varignt of A, then X + A',

8 DPrenex formulae

A prenex formula A is a formula of the form Q,x, ... Q,x,B where n = 0,
each @, is either 3 or V, the x; are all distinct variables, and B is an elementary
quasi-formula. (Recall that a quasi-formula is elementary if the symbols ¥, 3,
and ¢ do not occur in it.) The expression @,x, ... @,x, is called the prefix of
A and the quasi-formula B is called the matrix of 4. Since our definition of a
prenex formula includes the possibility that the prefix is empty, it follows that
any elementary formula A is a prenex formula, and in this case the matrix of
A is A itself, '

TacoreMm IL24. For any e-free formula A, there exists a prenex formula A’
such that FA «» A',

Proof. We first convert 4 into a formula A, which contains no occurrences
of the symbols A or —., This can be done by replacing those quasi-formulae
in A of the form BA C by 3(T1Bv "1C) and those of the form B — C by
BV C. Since FY[(BAC) < 1(T1Bv "1C)] and FV[(B » C) « (T1Bv ()]
by the Tautelogy Theorem and Theorem 11.19(ii), then FA «» A, by repeated
applications of the equivalence rule. We can now convert 4, into a prenex
formula 4’ by successively replacing those quasi-formulae in 4, of the form
@xB by O'x71B and those of the form QxBvC or Cv(QxB by
Qu(Byv C) or Qy(Cv Bj), respectively, where y is some variable which does
not occur free in B or C and which is free for x in B. By Theorem 11,20 and
by repeated applications of the equivalence rule, we have 4, « 4’. Hence
FA « A’ by the tautology rule.

EXERCISE

Let A4 be the formula Yx3yPxy — JyVxPxy. Convert 4 into a prenex
formula A’ such that F4 < 4’ and the prefix of A’ is 3x,3x,Vx,Vx,.

9 The addition of new funetion symbols
We know by the V-elimination rule and the generalization rule that
FYyB iff X B
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provided that a does not occur in B or in any member of X. The following
theorem is an interesting and useful extension of this result.

THEOREM I1.25. Let X be any set of formulae of L(¥") and A any formula of
LY of the form 3x, . .. Ax Yy B, where n = 0 and the variables xy, . . ., x,,
and y are all distinct, Let ¥ be the vocabulary obtained from ¥ by adjoining
a new n-place function symbol g. Then

X }*5(1’) 3xl o Bx,,VyB I.ﬁr X ?c('!’;) 3x1 vt qu[B}::xl Ca Xt

Proof. To simplify the notation we shall write F instead of k. and Fy in-
stead of k.. As a further notational simplification we shall prove the
theorem for the case where n = 1. However, the method of proof'is completely
general.

First, assume X  dx¥yB. Since every formula of &£(¥") is a formula of
L(¥",) and every axiom of &(¥7) is an axiom of &(¥";), then X'}, IxVyB. By
the J-elimination rule this yields X &, Yy[B]; where s is exVyB, and by the
V-elimination rule we then get X F, By .. However, Bf i, is B}, 7. Hence
the 3-introduction rule yields X + 3x[B])..

Secondly, let {4y, ..., 4, be a deduction of Ix[B]}, from X in &(¥").
Let gy' 1.8’ be a quasi-term obtained from ey 1B by replacing each bound
variable in &y~ B by some variable which does not occur (either free or
bound) in any of the A;. For each i, let 4 be the formula obtained from 4;
by replacing each quasi-term in A; of the form gt, for some f, by the quasi-
term [ey' 71 B']Y. (Note that by our relabelling of the bound variables in
ey™ B, t is free for x in g3’ 1.B’.) We can now prove by induction that for
each i, X I A;. For, if A, is a member of X, then A, is A;. If A4; is an axiom
of &(¥";), other than an El-axiom, then A, is an axiom of &(#"). If 4, is an
Ef-axiom, then 4, is a formula of #(¥") of the same form and therefore a
theorem of &(¥7) by virtue of Theorem I1.22. Finally, if 4; follows by modus
ponens, then so also does A", Since 4, is the formula 3x[B]}, 4., we have
X F3x[B)}~p. The rule of relabelling bound variables now yields
X t 3x[B]Y,p, and the desired result X I 3xVyB follows by applications
of the 3-elimination rule, V-introduction, and 3-introduction rules. (Noze: it
is implicit in the statement of the theorem that gx is free for ¥ in B. Hence
eyT1B is free for y in B, and therefore for any term s, [B]),~p 7 is
[BIS &gy
THeEOREM I1.26. Let X be any set of formulae of £(¥7), C any formula of
L), and A any formula of F(¥) of the form ¥x, ... Yx,3yB, wheren = 0
and the variables x, ..., x, and y are all distinet. Let ¥, be the vocabulary
obtained from ¥ by adjoining a new n-place function symbol g. Then

X: Vx[ v VX,.HJ’B I_g(‘l’) c I.‘}_?" Xs vxl LR Vxn[B];x, . i-s(“{/;) C‘
M.L,~—5
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Proof. Using the same notational simplifications as above, we want {o prove
X, ¥x3pB FC iff X, Vx[B]), +,; C.
By Theorem I1.25, we have
X,ACkIxvy1B iff X,71CH; Ix[BY..

However, Theorem 11.20(ii) and the equivalence rule yield

FAxVy 1B « T1Vx3yB
and Fax{B], & Vx[B],.
Hence, by the tautology rule

X,1CF vx3yB it X,71C F MYx[B],.

The desired result now follows by the -+-¢limination, —-introduction, and
contrapositive rules.

Theorem 11.26 provides a formal justification in terms of the g-calculus of
a type of reasoning which is commonly used in mathematics. Suppose that
we are trying to prove some statement C and in the course of the proof we
prove a statement of the form

(1) ‘for all x, there exists a y such that B(x,y)

where B(x,y) asserts some relationship between x and y. It is often convenient
to have, for each x, a way of denoting some y such that B(x,y). Since the
notation must express the fact that y depends on x, we infroduce a new
function symbol g and say

2) for all x, B(x,g(x))

thus using g(x) to denote an appropriate y. Theorem I1.26 shows that if
we can deduce C using statement (2}, then we can deduce C directly
from statement (1) without using the function g. Of course our justification
of this line of reasoning makes use of the e-symbol and the logical
power of the g-calculus, since in effect what we have done is to identify the
expression g{x) with the quasi e-term gy B(x,y) and to use the fact that under
this identification statements (1) and (2) are equivalent in the logic of the
e-calculus. However, once we have proved the Second e-Theorem, it will
follow that the above line of reasoning is justifiable even when one is using a
more standard system of logic (i.e., the predicate calculus) which does not
include the e-symbol. (See Chapter 111, §4.1.)

9.1 Skolem and Herbrand resolutions of pfenex formulae

A prenex formula is 3-prenex if the symbol ¥ does not occur in its prefix
and V-prenex if the symbol 3 does not occur in its prefix. In this section we
shall assign to any prenex formula A a certain 3-prenex formula, denoted by
A, and a certain Y-prenex formula, denoted by Ag. The formula Ay is
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called the Herbrand resolution of A, and the formula Ag the Skolem resolution
of A. Using Theorems II.25 and I1.26, we can establish close relationships
between 4y, and A and between Ay and 4.

Let ¥ be any vocabulary and A4 any prenex formula of #(¥#"). The Her-
brand resolution, Ay, of A is defined as follows. If 4 is already 3-prenex, then
Ay is A, Otherwise, 4 is of the form 3x, ... 3x,¥yB, where n = 0. Let ™'
be the vocabulary obtained by adjoining a new n-place function symbol g to
7. Let A" be the formula 3x, .. . 3x,[B]}, .. If A"is 3-prenex, then A4, is
A’, Otherwise, repeat the procedure by adding a new function symbol to ¥
and forming the prenex formula A”. After a finite number of steps a
J-prenex formula is obtained. This formula is 4. The new function symbols
which are added to ¥ in forming Ay are called Herbrand functions.

The Skolem resolution, 4g, of 4 is defined similarly, (Thus if A is of the

l form ¥x,...Vx,dyB, then A4’ is the formula Vx; ... Vx,[B], . .. The

new function symbols which are added to ¥ is forming Ay are called Skolem
Junctions. The process whereby A4 is converted to Ay is often referred to as
symbolic resolurion of existential formulae.

For example, suppose A is the prenex formula
Y 3y;Vx,dy, B,
where B is the matrix of 4. Then the formula
3y 3y:[ B &

is the Herbrand resolution of A4, where g, and g, are used as Herbrand
functions, and the formula

Vi, Voo [ R Baex,
is the Skolem resolution of A, where i, and A, are used as Skolem functions.

THEOREM 11.27. Let 4 be any prenex formula of L(¥7), X any set of formulae
of (¥, and ¥ the vocabulary obtained from ¥ by adjoining the Herbrand
Sunctions used in forming Ay, Then X F iy A Iff X F ey Ay

Proof. The proof follows from Theorem 11.25 by induction on the number
of occurrences of YV in the prefix of A.

THroOREM I1.28. Let A be any prenex formula of L(¥7), C any formula of
LY, X any set of formulae of F(¥7), and ¥"* the vocabulary obtained from
¥ by adjoining the Skolem functions used in forming Ag. Then

X, Abyyy C if X, Ag ¥ C.

Proof. The proof follows from Theorem .26 by induction on the number of
occurrences of 3 in the prefix of 4.
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EXERCISE

Let A be any prenex formula of £(¥7). Prove (i) F v+ A ~ Ay, where
#* is as in Theorem 1127, and (i) F,y+) A5 = A, where ¥7* is as in
Theorem 11.28, Find a prenex formula 4 such that Ay — A is invalid
and therefore not a theorem of &{(#"*).

10 The clementary calculus

Let ¥ be any vocabulary, We shall now define two formal systems for ¥7,
the elementary caleulus and the elementary calculus without identity. The
first of these will be denoted by EC(¥") and the second by EC'(¥"). Each
may be regarded as a subsystem of &(¥").

Recall that a formula of F{(¥") is elememtary if it does not contain the
symbols V¥, 3, or &. (Equivalently, a formula is elementary if it contains no
variables.} The axioms of EC(¥") are the elementary formulae of #(¥)
which are instances of axiom schemata P1-P10, El, and E3. For any set X
of formulae of L(¥7) and any formula 4 of &L(¥7), a deduction of 4 from
X in EC{¥") is any sequence (A4, ..., 4,» of elementary formulde of #(¥")
such that 4, is 4 and foreach i = 1, ..., n, 4;is an axiom of EC(¥"), or 4,
1s a member of X, or A4, follows by modus ponens from 4; and A4, for some
J k< i In other words a sequence of formulae of #(¥7) is a deduction in
EC(¥") if and only if it is a deduction in &(¥") and each of its members is
elementary. Asusual, we write X ey 4 to denote that there exists a deduction
of A from X in EC(¥"). Notice that if X gy 4, then A must be elementary.
Since any deduction in EC(¥") 1s automatically a deduction in &(¥7), then
X bpesy 4 implies Xty A. We shall see later that the converse is also true,
e, XF. A implies X bpeoy 4, provided that X is a set of elementary
formulae and 4 is elementary (see page 64).

The formal system BC'(¥7) is defined in a similar way except that the
axioms of EC'(¥#7) do not include instances of EI and E3, and a deduction
in EC'(#7) must be a sequence of ¢lementary, identity-free formulae,

Since, as usual, ¥ is an arbitrary vocabulary, we shall write EC instead of
EC(¥") and EC’ instead of EC'(¥#").

Many of the derived rules of inference which we have proved for the e-calculus
also apply to the elementary calculus (without identity). In particular we can
prove exactly as for the e-calculus that the jf-rule, contradiction rule,
1 73-rule, «-rule, and f-rule all hold in EC and EC’ (assuming, of course, that
the letters A, o, and § which appear in the statements of these rules now
denote elementary (identity-free) formulae). Consequently, the proofs
of Theorems II.13 and II.14 (the Tautology Theorem) can be used verbatim
to prove the following theorem.
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THEOREM 11.29. For any elementary (identity-free) formula 4, iff A is a tauto-
logy, then A is a theorem of the elementary calculus (without identity).

A theorem of the elementary calculus is not necessarily a tautelogy, since
for example, ¢ = ¢ is a theorem but not a tautology. Nonetheless, we have
the following very useful theorem.

THEOREM 11.30, Every identity-free theorem of EC is a tautology.

Proof. For any formula B, we write A{(B) to denote the formula which is
obtained from B by replacing every occurrence in B of a quasi-formula of the
form s = ¢ by f if 5 and ¢ are not the same quasi-terms and by =1/ if they are
the same.

Now let Ay, ..., 4,> be a proof in EC of some identity-free formula A,
We shall prove by induction that for each A;, #(4)) is a tautology, thus
proving that h(A,), i.e. A4, is a tautology.

Case 1. A; is a propositional axiom: Then h(A4,) is also a propositional axiom
and therefore a tautology by Exercise 2, page 41.

Case 2. A, is an E3-axiom: Then h(A;) 1s ~1f which is a tautology.

Case 3. A; is an El-axiom: Thus A4; has the form (s = t AB%) = B}. If sand
t are not the same terms, then /{4;) has the form (A C|) = C,, which is a
tautology. On the other hand, if s and ¢ are the same terms, then /(4;) has
the form (T1f A C) —» C, which is also a tautology.

Case 4. A; follows by modus ponens from 4; and Ay, where j, k < i: Then
h(A;) follows from #(A;) and i{4,) by modus ponens. Hence by the induction
hypothesis and Exercise 2, page 18, i{4,) is a tautology.

Theorems 11.29 and I1.30 together imply that for any identity-free formula
A, 4 is a tautology iff Fgc 4. Furthermore these theorems provide the interest-
ing, though perhaps not unexpected, information that any identity-free
theorem of EC is a theorem of EC'. In other words, in the elementary calculus
the identity symbol and the equalily axioms are superfluous in proving
identity-free theorems. We shall return to the general problem of proving the
eliminability of the identity symbol in Chapter II1, page 83,

11 The predicate calculus

We now turn to the standard formalization of logie, the predicate caleulus,
For any vocabulary ¥, the predicate calculus for ¥7, which we shall denote
by PC(¥") will have as its deductions certain sequences of g-free formulae.
We want to define the notion of a deduction in PC(*") in such a way that all
the derived rules of inference which hold for the e-calculus hold also for the
predicate calculus, except of course those rules, such as the 3-elimination and
V-introduction rules, in which certain g-terms are specified. Since the quanti-
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fier rules, such as the rule of generalization, 3-rule, and V-rule, depend on the
axiom schema

Q4 IxA4d — A{exA)

and since instances of this schema cannot be used in deductions in the
predicate calculus, we compensate for this deficiency by adepting the 3-rule
as one of the basic rules of inference of the system. Formally, we state this
rule as follows:

A formula of the form 3xA4 -~ B follows by the 3-rule from a formula C, if
and only if C is of the form 4} — B, where g does not occur in 4 or B.

The axioms of the predicate calculus for ¥ are the e-free instances of the
axiom schemata PI-P10, Q1-Q3, Ei, and E3. Thus the axioms of PC(¥")
are simply the e-free axioms of &(#"),

In defining a deduction in PC(¥") we are faced with the following problen.
Suppose we were to proceed in the usual fashion by defining a deduction of
A from X as any sequence {A,, ..., 4,> of e-free formulae of Z(¥"), such
that 4, is 4 and for each i, 4, is an axiom, or 4, is a member of X, or A4,
follows by modus ponens or by the 3-rule, Unfortunately, under this defini-
tion the —-introduction rule (Deduction Theorem) does not hold in its full
generality (cf. Mendelson [1964], pp. 60-61). One standard way of over-
coming this deficiency is to stipulate that in each application of the 3-rule
the specified symbol & must not occur in any member of X. However, this
restriction is too stroag, for although the —-introduction rule now holds,
we lose the MP rule as well as the simple rule which asserts that if ¥ < ¥
and X'F A, then Y A. Consequently, we adopt the following modified
restriction on the 3-rule, (Our definition of a deduction is due to Lyndon
1966]. For other suitable definitions as well as a full analysis of the problem
see Montague and Henkin [1956].)

First of all we define a ‘derivation’” in PC(¥"). For any finite set ¥ of
formulae of Z(¥7) and any formula 4 of £ (¥7) a derivation of A from Y in
PC(¥") is any sequence {4, ..., 4,» of e-free formulae of L(¥"), where 4,
is A and foreach i = 1, ..., n at least one of the following conditions holds:

(i) A, 1is an axiom of PC(¥"),

(i) A, is a member of ¥,

(iii} A, follows by modus ponens from 4; and A4, for some j, k < i,

(iv) A, follows by the 3-tule from some A;, where j < /, provided that the
specified individual symbol in 4; does not occur in any member of Y.

(Notice that this definition of a derivation corresponds to the second un-

successful definition of a deduction given above.) We now define a deduction

of A from X in PC(#") as any derivation of 4 from some finite subset ¥ of X

As usual, if there exists a deduction of A from X in PC(¥") we write

X bpeyy 4, or simply X Fped or X+ A when there is no possibility of
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ambiguity. Notice that by defining a deduction in this way we still have the
rule which asserts that if X € Y and X F 4, then Y F 4.

11,1 Derived rules of inference for the predicate calculus

Some of the derived rules of inference, such as the MP rule, -—-elimination
rule, and —-introduction rule, which were so easy to verify for the g-calculus,
are more difficult to establish in the case of the predicate calculus. For
example, the proof of the —-elimination rule is complicated by the fact that
if {4y,..., A4, is a derivation of A — B from X in PC, then the sequence
{Ay, ..., A4,,4,B) is not necessarily a derivation of B from X u {4} since
an individual symbol occurring in 4 may be involved in an application of the
J-rule. To overcome this difficulty we need the following theorem.

TueoreM IL3L If X and Y are any finite sets of formulae and @ is a derivation
of A from X, then there exists a derivation @' of A from X U Y.

Progf, Let I be the (finite) collection of individual symbols which occur in
the members of Y. We want to prove that there exists a derivation @' of 4
from X in which no member of [ is used in an application of the 3-rule, since
then 2’ is a derivation of 4 from X v Y. The preof is by induction on the
number m of members of T which are so used in £. If m = 0, then 2 itself
is the required derivation. Suppose m > 0. Let @ be some member of f which
is involved in an application of the 3-rule in £ and let & be an individual
symbol not in J and not occurring in any member of X or any member of &,
Suppose & is the sequence {(4,, ..., 4,>. Let @' be the sequence {4,’, ...,
A4y, ..., A, where each A4, is obtained from A4; by replacing every
occurrence of @ by b, Then %’ is a derivation of 4 from X in which onlym — 1
members of T are involved in applications of the 3-rule. For, if A; follows from
A;in & by an application of the 3-rule which involves a, then the presence of
A;in @' can be justified by applying the 3-rule to 4. This application of the
3-rule involves the new symbol b. The desired result now follows by induction.

Using this result we can prove the counterpart of Theorem IL.3(ii). (The
counterparts of parts (i), (iif), and (iv) are trivial.}

THeoOREM I1.32. Let X and Y be any sets of fornrilae and A, By, . .., B, any
e-free formulae. If ¥, B, ..., B, bt A and Xt B, for eachi = 1,...,n, then
XU YFE A,

Proof. It is sufficient to consider the case where n = [. Thus we want to
prove that if ¥, B+ 4 and X F B, then X v Y F A. Let 2, be a derivation of
A from Y’ and 2, a derivation of B {rom X", where ¥’ is a finite subset of
¥ v {B} and X' is a finite subset of X, By Theorem I1.31, there exist deriva-
tions {Ay, ..., A > of BfromX'v ¥ and<{B,,..., By of A from X' u Y".
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Hence the sequence {A,.... 4nB8y, ..., B> is a derivation of 4 from
X0 (Y'\ {BY) and therefore a deduction of A from X v Y.

EXERCISE
Prove that the —-¢limination rule and MP rule hold for the predicate
calculus, where of course the letters 4, B, B, ..., B, now denote &-

free formulae,

TuroreMm 1133, For any e-free formula A, if A Is a tautology, then by A.

Proof. For the purposes of this proof we write PCy(¥") to denote the formal
system which is obtained from PC(#") by excluding the 3-rule. Thus the
deductions in PCy(#") are simply the deductions in &(¥7) in which every
formula is e-free. For this formal system one can prove the Tautology
Theorem just as it was proved for the e-calculus. Hence if 4 is an e-free
tautology, then byc, 4 and a fortiori Fpc A,

The tautology rule now follows immediately using this theorem and the
MP rule.

We shall use the following important result in the next chapter to prove
the Second &-Theorem.

THEoREM I1.34, If F(3xA — AL} — C, where a does not occur in A or C,
then +C.

Proof. Assume (x4 — A%y — C. Since 47 - C is a tautological con-
sequence of (x4 —» 4%) — C, we have 4} — C by the tautology rule, and
hence FixA4 — C by an application of the 3-rule. However, C is a tautological
consequence of (3x4d — A — C and 3x4 - C. Hence +C by the tautology
rule.

EXERCISES

1. Prove that the —-introduction rule (Deduction Theorem) holds for the
predicate calculus,

2. Show that the counterpart of Theorem IL.17 holds for the predicate
calculus.

11.2  The predicate calculus without identity

If there exists a deduction of 4 from X in PC(¥") in which every formula is
identity-free we write X Fpoqyy 4. Thus PC'(¥7) may be regarded as a formal
system for ¥~ whose axioms are the identity-free axioms of PC(¥") and whose
deductions are the identity-free deductions of PC{¥"). This formal system for
¥ is called the predicate calculus without identity. Obviously, all the results
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which we proved for PC(¥") in the last section also hold for PC'(¥"), assuming
that we restrict our attention to identity-free formulae.

In the next chapter we shall prove that for any identity-free, e-free formula
A, if Fpe A, then Fpo 4. Notice that the technique which we used to prove the
analogous result for the elementary caleulus cannot be used for the case of
the predicate calculus. [For, suppose A is the axiom 13x(x = ) - 74 = 4.
Then using the technique employed in proving Theorem IL.30, the identity-
free formula which is assigned to A is the formula T13xf - ™17/, This latter
formula is not a theorem of PC".

EXERCISE

Prove that the formula Tdxf — 7173/ is not a theorem of PC’. (Hint:
use the technique employed in proving Theorem 11.15.)

12 The formal superiority of the e-calculus

It should now be apparent that the e-calculus is a much simpler and neater
formalization of logic than is the predicate calculus.

The deductions in the e-calculus can be defined in a simple straightforward
way, and the basic derived rules of inference can be established with very little
difficulty. On the other hand, we have seen that no matter how one defines a
deduction in the predicate calculus certain complications arise since one must
adopt an additional rule of inference for dealing with the quantifiers.

Furthermore, in the e-calculus the derived rules of inference for the quanti-
fiers can be expressed more easily and can be used more conveniently than in
the predicate calcutus. For example, although it is possible to formulate a
derived rule of inference for the predicate calculus which is analogous to the
3-introduction rule (cf. rule C in Mendelson [1964], page 74), this rule is
subject to many tedious restrictions.

In spite of these formal advantages which are gained by using the e-symbol,
the question arises whether the nse of such an indeterminate logical symbol is
philosophically justified. In the next chapter we shall give the best possible
Justification for the use of the e-symbol in logic by proving that any e-free
theorem of the e-calculus is a theorem of the predicate calculus. In other
words, the e-symbol and the axioms associated with it can be eliminated from
proofs of ¢-free formulae,



CHAPTER 11l

THE ¢-THEOREMS

1 Introduction

In Chapter II we defined three basic formal systems (for a given vocabulary
¥"): the elementary calculus, the predicate calculus, and the e-calculus,
Loosely speaking, the predicate calculus is obtained from the elementary
calculus by adjoining the quantifiers and the appropriate axioms and rule of
inference for dealing with them, and the e-calculus is obtained from the
predicate calculus by adjoining the é-symbol and the appropriate axioms for
dealing with it (2nd by excluding the redundant 3-rule). Thus by passing from
the elementary calculus to the predicate calculus and from the predicate
calculus to the g-calculus we obtain stronger and stronger logical systems.
One of the main objectives of this chapter is to show that these successive
strengthenings of the elementary calculus are completely justified since in
each case the new logical symbols and axioms are in a certain sense eliminable.
To put it more precisely, we shall prove the following two theorems.

1. If 4 is an elementary formula of Z(¥"), X is a set of elementary formulae
of Z(¥"), and X bpes) A, then X Fpeyy 4.

2. If A is an e-free formula of (¥, X is a set of ¢-free formulae of L(¥),
and X F ) A4, then X Fpegy 4.

The second of these two statements is known as Hilbert’s Second e-Theorem
and the first is a special case of his First e-Theorem. The full statement of the

First e-Theorem Is as follows.

1, If 4 is any prenex formula of £(¥7), X is any set of prenex formulae of
LY, and X bpeny A, then Z bpeey By vV By, where each member of
7 is some substitution instance of the matrix of some member of X and
each of the B, is a substitution instance of the matrix of 4.

We shall also see in this chapter that besides providing a formal justification
for these extensions of the elementary calculus, the two e-theorems can be
used to prove some important results about the predicate calculus, such as
Skolem’s Theorem (Theorem I11.12) and Herbrand’s Theorem (Theorem
111.14).

As in Chapter 11, our proofs will be completely finitary in the sense that
whenever we prove that a certain deduction exists, our method of proof will
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provide a technique for constructing such a deduction. It should be pointed
out that by using a non-constructive, model-theorstic argument the Second
e-Theorem follows trivially from the completeness of the predicate calculus.
Forif X+, A, where X and A are s-free, then X E A by the soundness of the
g-calculus (cf. Exercise 3, page 41), and hence X +p- A by the completeness of
the predicate calculus.

Throughout this chapter the vocabulary ¥ shall be some arbitrary, but
fixed vocabulary.

2.1 The basic problem

Since e-terms play the same role in the e-calculus as individual symbols
play in the predicate calcuius, it would seem that one could prove the Second
e-Theorem by assigning an appropriate individual symbol to each e-term in
a deduction & and then forming a new deduction %’ by simply replacing
each e-term by its assigned individual symbol and making the necessary
alterations so that the 3-rule can be used where the Q4-axioms were used in &,

However, this procedure Is complicated by the following problem. Suppose
that A; is an axiom of the e-calculus, sy B is some g-term, and A4," is the formula
obtained from A, by replacing each occurrence of ey B by some term s. Then
A may fail to be an axiom, namely if one of the following cases holds:

(i) A, is the Q4-axiom 3yB -» B(eyB), in which case 4, is IpB — B(s);
(i) A;is an B2-axiom in which eyB is one of the two specified s-terms;
(iil) A, is a Q3-axiom or Q4-axiom and an occurrence of the specified term
in that axiom (i.e., ¢ or exA) Hes within an occurrence of gyB.

The third case is the most troublesome one. Consider the following
example. Suppose A; is the Q3-axiom
(1) TAx(x = ep(y = x)) > (0 = ey = 1)
and eyR is the term gv(y = ). Notice that an occurrence of the specified
term ¢ of this Q3-axiom lies within an occurrence of gy(y = ). Now if we

replace every occurrence of gy(y = ¢) in 4; by the term s, we obtain the
formula

2) TAx(x = ep(y = x)) = Tt = 5).
This formula is not an instance of axiom schema Q3.
Notice that case (ili} can only arise if 4; is of the form ™3xd = "14()

or dx4 — A(exA) where a free occurrence of x in A lies within the scope of
an e-symbol. Thus, in the above example, where A is the quasi-formula

x = ep(y = x),
the second free occurrence of x lies within the quasi e-term gp(y = x).

Formulae such as (1) above are examples of what we shall now call ‘improper’
formulae,
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2.2 Proper and improper formulae

Let A be any term or formula, If ¢ is a term which occurs in A4, but is not
A itself, then 1 is called a subrerm of A. For any formula A, the skelefon of
A is that formula which is obtained from A by successively replacing each
subterm of 4 by the individual symbol a, (starting with those subterms of
maximal length). We shall denote the skeleton of 4 by 4™, A formula 4 is
proper if its skeleton is e-free, and improper if ifs skeleton is not ¢-free.

For example, suppose 4 is the formula

3x(x = gy(y = 5)) — At = ep(y = 5)),
where s and 1 are any iwo terms. Then the skeleton of A is the formula
"]Hx(x = a;) — ’—l(ai =4 al).

Since this latter formula is e-free, then A is proper. On the other hand,
suppose A is the formula

T3x(x = ey(y = x)) = ( =ep(y = 1)).
Then the skeleton of A4 is the formula
T3x(x = gp(y = x)) = e, = ay),

and therefore, in this case, 4 is improper.

Obviously, if 4; is a proper formula of the form “13x4 ~ ~14() or of the
form 3xA4 — A(exA), then x does not have a free oceurrence in 4 within the
scope of an e-symbol. Consequently, if 4, is a proper axiom of the e-calculus
and A, is obtained from A4; by replacing every occurrence of gyB by some
term s, then the troublesome case (iif) considered above cannot arise. There-
fore, we have the following theorem,

TueorReM 1111, Ler eyB be any e-term, s any term, and 4 any axiom of the
e-calculus other than an E2-axiom or the Q-axiom 3yB — B(eyB). If A is a
proper formula, then the formula obtained from A by replacing each occurrence
of eyB by s is an axiom.

2.3 The c*-calculus

We shall now use the new notion of a proper formula to define a certain
formal system called the e*-calculus (for ¥7). We then prove quite easily that
the Second e-Theorem holds for this weakened version of the e-calculus.

The axioms of the e*-caleuius (for ¥7) are all proper formulae of #(¥7)
which are instances of axiom schemata P1-P10, Q1-Q4, El, and E3. (Note
that we exclude E2-axioms.) A deduction of 4 from X in the ¢*-calculus (for
¥} is any sequence {A, ..., 4> of proper formulae (of £(¥") such that
A,is Aand foreach i = I, ..., neither 4;is an axiom, or 4 is a member of
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X, or A4; follows by modus ponens from some Ajand A, where j, k < i In
other words, a deduction in the e*-caleulus is a deduction in the s-calculus
in which every formula is proper and no instances of axiom schema E2 are
used as axioms. As usual we write X ,. 4 to denote that there exists a
deduction of 4 from X in the e*-calculus.

Obviously the arguments used in proving the —-introduction rule, —-
elimination rule, and tautology rule for the e-calculus apply equally well in
the case of the ¢*-calculus. Furthermore Theorem 11.17 can be proved for the
e*-calculus just as it was proved for the e-caleulus, since if A; is a proper
formula and 4 is the formula obtained from A ; by replacing each occurrence
of a by some term ¢, then 4, is also proper. Consequently, the 3-rule holds
for the e*-calculus. In fact, the only derived rules of inference which hold
for the e-calculus but not for the g*-calculus are those rules, such as the
distribution rule, rule of relabelling bound variables, and equivalence rule,
which depend on axiom schema E2. Even so, these rules still hold for the
g*-caleulus if one restricts one’s attention to e-free formulae.

In view of the fact that the 3-rule holds for the g*-caleulus, we have the
following theorem.

THEOREM UL2, If X b1 A, then X . A,

Proof. Assume X bpe A, Then there exists a derivation {4, ..., Ay of A4
from Y in the predicate calculus, where Y is some finite subset of X, It
follows trivially by induction that, for each i = 1,...,n, Y e« A; Hence
Xh, A

We now prove the converse of Theorem IIL.2. This result may be regarded
as a weaker form of the Second e-Theorem.,

Tueorem L3, For any efree X and A, if X b,o A, then X bpe A.

By z}ppgalillg to the -»-introduction rule for the e*-caleulus and the —-
elimination rule for the predicate calculus, the proof of Theorem 1113 can
be reduced to proving the following lemma.

LeMMA. If @ is a proof in the &*-calculus of some e-free formula C, then @ can
be converted into a proof of C in the predicate calculus.

Proof. The proof'is by induction on the number » of distinet e-terms occurring
in@. If n =0, then @ is already a proof in the predicate calculus,

Suppose 1 > 0. Let eyB be an e-term occurring in @ such that the length
of ey B is less than or equal to the length of every other e-term occurring in 2.
Hence no e-terms occur in B, Let g be some individual symbol which does not
occur in B or C, and let @' be the sequence of formulae obtained from 9 by
replacing each occurrence of eyB by a. If the formula

) dyB — B(eyB)
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is not used as an axiom in 2, then by Theorem IIl.1 2’ is a proof of C in
the z*-calculus. Since only #-1 distinct e-terms occur in £, then by the
induction hypothesis there exists a proof of C in the predicate calculus.
Suppose on the other hand that the formula (1) is used as an axiom in 2.
Then by Theorem 1.1, 2’ is a deduction in the ¢*-calculus of C from the
formula

) B — B(a).

By the —-introduction rule %’ can be converted into a proof 2 in the
g*-calculus of the formula

3 (@yB — B(a)) - C.

Since C is e-free, B contains no g-terms, and (1) is proper, it follows that (3)
is e-free. Furthermore only # - 1 distinct e-terms oceur in 2. Consequently,
by the induction hypothesis there exists a proof of (3) in the predicate
caleulus. By our choice of @ and by Theorem I1.34, this implies that there
exists a proof of C in the predicate calculus,

2.4 The usefulness of the *-calculus .

The e*-calculus is considerably weaker than the s-calculus since (i) the
E2-axioms are excluded and (ii) only proper formulae may be used in a
deduction. Nonetheless, this weaker system can play a very useful role in
the study of mathematical logic. For example, in order to prove various
results about the predicate caleulus, such as the —-introduction rule (Deduc-
tion Theorem), generalization rule, substitution rule, distribution rule,
equivalence rule, rule of relabelling bound variables, efc., it is perhaps easier
to show that these results hold in the e¥-calculus (subject to certain conditions)
and then use Theorems 111.2 and 111.3 to prove that they hold in the predicate
calcuius.

It has been suggested (Fraenkel and Bar-Hillel [1958] page 184) that the
s-symbol be used in teaching elementary logic. However, if a full analysis
of the e-calenius together with a proof of the Second s-Theorem seems too
ambiticus for an introductory course in logic, one could easily restrict one’s
attention to the g¥-calculus. In this case one would medify the rules of forma-
tion of the formal languages by stating that an expression of the form ex4 is
well-formed provided that no variable other than x is free in 4. In this way all
the formulae of the language would be proper formulae. This is essentially
the method which is used by Shoenfield [1967] (page 46) although the &-
symbol is not explicitly mentioned. Shoenfield shows that this approach
provides a simple proof of the completeness of the predicate calculus,
Furthermore, we shall see in a later section that in order to prove the First
e-Thecrem one may use the e¥-calculus and avoid the e-calculus altogether.
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Because of the exclusion of the E2-axioms from the g*-calculus, the equiv-
a!cnce_ruie does not hold for this system. However, we can still prove the
following weaker result,

THEOREM HI.4 (The equivalence rule for the e*-calculus). Let X be any set
of proper formulae, E and E' any two quasi-terms or quasi-formulae, and A any
proper formula or term containing some specified occurrence of E, provided
that this occurrence does not lie within the scope of an e-symbol in A. Let A’
be the expression obtained from A by replacing this specified occurrence of E

by E'. If A" is a proper formula or term and if Xt V[E = E7, then
Xt A=A

Pro.of The. proof is identical to the proof of Theorem I1.21 except that we can
0m1t the third part of Case 6, where 41s of the form exB. In this way we avoid
using E2-axioms,

THEOREM LS. Any proper formula of the form
(s = tAAD - AT

is a theorem of the e¥-calculus, provided that x does not have a free occurrence
in A within the scope of an e-symbol,

Progf. See the proof of Theorem 1,22,

COROLLARY. Any e-free formula of the form
(5 =tAAY) o> AF
is a theorem of the predicate calculus.

3.1 Subordination and rank

In view of Theorem 111.3, to complete the proof of the Second g-Theorem
it is sufficient to prove that for any e-free X and A if X b, A4, then XF,, A,
In other words we must prove the eliminability of improper formulaeeand
E2-axioms from deductions of 4 from X in the e-calculus, where 4 and X
are e-free. This is by far the most difficult part of the proof of the Second
§~Theor6m, and in order to carry it out we must examine the structure of
improper formulae in some detail.

The notion of an improper formula is closely related to Hilbert and
Bernays’ notion of the subordination of quasi e-terms. Hilbert and Bernays
[19397, page 23, define a quasi e-term ¢ to be subordinate (untergeordnet) to
another quasi e-term g).8 if and only if B contains 7, and a free occurrence of
y in B lies within 1. Thus, for example, the quasi e-term

. . exPxy
is subordinate to the term

ey(y = exPxy).
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We shall extend this notion of subordination to inciude subordination
within quasi-formulae. If 4 is a quasi-formula of the form QyB or a quasi-
term of the form gyB, then a quasi e-term ¢ is said to be subordinate to A if
and only if B contains ¢, and a free occurrence of y in B lies within ¢. Clearly,
a formula QyB is improper if it contains a quasi e-term which is subordinate
to it. For example, the quasi s-term

exPxy
is subordinate to the (improper) formula
Yy(y = exPxy).

We shall now assign to every e-term ¢ a positive integer, called the ‘rank’
of t. We shall denote this number by r&k (7). Intuitively, the rank of ¢ is a measure
of the complexity of the subordination within ¢. Before giving a definition of
the rank function, we list the four properties which this function must
possess,

Properties of rank:

R1. rk(t) = 1, and if there are no quasi s-ferms subordinate to ¢, then
rk(f) = L.

R2. If ¢ is obtained from ¢ by replacing every occurrence of some subterm
of t by some other term, then rk(t’} = rk(z).

R3. If ¢ is of the form [z,]} for some term s, and ¢, is subordinate to ex4,
then rk{exA) > ri(n).

R4, For any e-terms exA and eyB, rk(ez 1(A7 <> BY)) = max {rk(ex4),
rk(eyB)}.

In what follows, every argument concerning the rank of an e-term depends
only on properties R1-R4, and therefore any definition of the rank function
which yields these four properties will suffice. The definition we use is that
which is given by Hilbert and Bernays (vol. 2, p. 25)." For any quasi e-term
t, rk(t) is defined as follows (by induction on the length of 7):

If there are no quasi e-terms subordinate to 1, then rk(¢) = 1; otherwise
rk(t) is one greater than the maximal rank of the quasi e-terms which are
subordinate to .

For example, rk(exPxy) = 1 and rk{ey(y - exPayp)y = 2.

! Property R4 is not needed in proving the Second ¢-Theorem for an e-calculus without
axiom schema E2. To prove this weaker theorem the following simpler definition of the
rank of r may be used. Let t? be the term obtained from r by replacing every subterm of ¢
by the symbol a;. Then the rank of ¢ is defined to be the number of occurrences of the
g-symbol in 19, This definition clearly satisfies R1-R3,
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EXERCISE

Show that the above definition of rank satisfies properties RI-R4,

3.2 r, T,-deductions

Let 2 be any deduction in the e-calculus. An e-term eyBisa Q-termin @
if the formula

dyB — BlcyR)
or some formula of the form
T13y8 — T1B{t)

s used as an axiom in 2. The term eyB is an E2-ferm in 9 if a formula of the
form

Vz(AZ <> BY) = exA = ¢yB
or of the form

Vz(B} «» A}) — eyB = exA4

Is used as an axiom in 2. For any non-negative integer r, a deduction & in
the e-calculus is an r-deduction if every Q-term and every E2-term in 2 has
rank < r. Furthermore, if T, is some finite collection of e-terms of rank r,
then an r,T,-deduction is an r-deduction in which every E2-term of rank ris a
member of T, Notice that since every e-term has rank > 1, a2 O-deduction is
one In which no instances of axiom schemata Q3, Q4, or E2 are used as
axioms, and a 1, @-deduction is one in which every Q-term has rank ! and o
instances of axiom schema E2 are used as axioms. To denote that there exists
an r-deduction of A4 from X we write X " 4, and to denote that there exists
an r,7,-deduction of 4 from X we write X +7774,

It is easy to see that for any r and T, the r-deductions and the r,T~-deduc-
tions satisfy the MP rule, tautology rule, f-rule, —-introduction rule, and
—-¢limination rule, since no Q-axioms or E2-axioms are used in verifying
these rules. Thus for example

X, TAMTf if X i g4,
and X, Ar"T*B  if Xt T Ao B,
In order to prove the e-Theorems we shall prove the following two results:

(1) For any ¢-free X and any r > 1, if X F*#/, then X 1/,
(2) For any e-free X, any r > 1, and any finite collection T, of e-terms of
rank r, if X FoTr f, then X 179 5,

Using these two results (and the f-rule) it then follows that for any e-free X
and e-free 4, if X F, A, then X F1'? 4,

M,L.—6
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The proof of the two results depends on the following theorem concerning
the way in which an axiom is affected when an e-term occurring in that axiom
is replaced by some other term.

Taeorem IIL6. Suppose ey B is any e-term, s any ferm, C any axiom, and C'
the formula obtained from C by replacing each occurrence of eyB by s. Then:
() If C is a propositional axiom, Ql-axiom, Q2-axiom, El-axiom, or

E3-axiom, then C' is an axiom of the same form.

(i) If Cis an E2-axiom and sy B is neither of the two specified e-terms in C,
then C' is an E2-axiom,

(Y If C is the Q3-axiom T13xA — TVAQ), where rk(exA) < rk(syB), then
C' is a Q3-axiom.

(iv) If Cis the Qd-axiom IxA — A(exA), where rk(exA) < rk(eyB) and exA4
is not ey B, then C' is a Qd-axiom.

Proof. The proofs of (i) and (ii) are trivial. (For a discussion of the El-axioms
see page 50.)

(iti). We shall prove that C’ is the Q3-axiom ™13x4’ — 71.4'(¢"), where A’ and
1" are obtained from A4 and ¢ by replacing each occurrence of eyB by s.
Suppose this is not the case. Then eyB must be of the form [p]}, for some
quasi-term p which is subordinate to 3xA4. Hence p is subordinate to exA, and
by rank property R3 we have rk(eyB) < rk(exA) which contradicts our
assumption that rk(exA4) < rk(eyB). In other words our assumption on the
ranks of exA4 and gyB rules out the type of situation which we illustrated on
page 65, where C was the formula

T3x(x = ep(y = x)) - "W = ep(y = 1))

and cyB the term gy(y = {). Note that in this example ¢yB is {ey(y = x}]7,
and gy(y = x) is subordinate to Ix(x = ep(y = x)).

{iv). To prove part (iv) we can use the same argument that was employed in
(iii} to show that €’ must be the Q4-axiom

IxA" - A'(exA"),

where A’ 1s obtained from A4 by replacing each occurrence of epB by s.

3.3 The Rank Reduction Theorem

TuroreM II1.7 (The Rank Reduction Theorem). For any set X of e-free
formulae and any r > 1, if X P f, then X F'° 1 f.

Proof, Let & be an r, 9-deduction of f from X, The proof follows by indue-
tion on the number, p, of Q-terms of rank rin @. If p = 0, then 2 itself is
an (r- 1)-deduction of / from X, Suppose p > 0. Let eyB be some Q-term of
rank r in @ whose length is at least as great as that of every other Q-term of
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rank r in . Let § be the collection of remaining p- 1 Q-terms of rank r.
Thus ¢y B is not contained in any member of S. For the purposes of this proof
we write ¥ ' 4 to denote that there exists an r, ¢-deduction of 4 from Y in
which every Q-term of rank r is a member of S. It is sufficient to prove
X+ f, since we may then apply the induction hypothesis. '

Suppose that & is the sequence (4,,. .., Ay>. Foreachi=1,...,m,
let A/ be the formula obtained from A, by replacing each occurrence of
3yB by B(eyB) and, if B is of the form 1C, by replacing each occurrence of
VyCby C(ey1C), ie., CleyB). Thus if 4, is the Q4-axiom 3¥B — B(eyB),
then A4, is the tantology

() B(eyB) — BleyB).

If B is of the form 71C and 4, is the Ql-axiom YyC — —13y™1C, then A/ is
the tautology

@) Cley1C) » 11CEy™C),
and if 4, is the Q2-axiom ~1¥yC — 3p71C, then 4, is the tautology
3 T1CEyICY - "1C(ey™1C).

Finally, if 4, is the Q3-axiom —13yB — T1B(¢), for some term ¢, then 4, is
the formula

@ 1 B(eyB) » "1 B().

If A, is any other axiom, then 4, is an axiom of the same form. (Using rank
property R4 and the fact that every E2-term in 2 has rank < r, verify that
if A4; is an E2-axiom, then so is 4;".) Finally if 4, is a member of X, then 4, is
A For, since rk(gyB) > 1, then 3yB (and YyC) are not e-free. Therefore,
since every member of X is s-free, the members of X are unaffected,

Consequently, if we augment the sequence (A4,/, ..., A."> by including
proofs of the tautologies (1), (2), and (3), and if we regard the formulae of
the form (4) as assumptions, we obtain a deduction of f from

X v {MB(eyB) — 1B(4), ..., "1BeyB) - B}

for some terms #,, . . ., t,. Furthermore by rank property R2 and our choice
of eyB with maximal length this deduction is an r@-deduction such that
every Q-term of rank r is still a member of S, Hence

(5) X, T1B(eyB) - “1B(t), ..., 1 B(eyB) » 1B{t) F [
Now using the tautologies

B(eyB) — T1B(eyB) —» 1B(1)
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and Theorem 11.3(ii), (5) implies

(6) X, BeyB) ' f,
and therefore
(©))] X+ T1B{syB)
by the f-rule.

Now let {C;, ..., G be thisr, #-deduction of 71B(eyB) from X. For each
C; and each term t; let C} be the formula obtained from C; by replacing
each occurrence of eyB by t;. Then for each j = I,...,n, the sequence
KCi, ..., Ciyis an r, 9-deduction of T1B(1)) from X, by Theorem IIL6.
Furthermore by our choice of gyB with maximal length, every Q-term of
rank r in this deduction is still a member of S, Hence, foreachj=1,...,#n
8 XF MB(tp,
and consequently by the tautology rule
) X+ T1B(eyB) — T1B().

The desired result, X ' f, now follows from (5) and (9) by Theorem IL3(ii).
This completes the proof.

Notice that the above proof depends on two essential conditions: (i) that
r > 1, and (ii) that X is e-free. We impose these conditions in order to ensure
that the replacements of yB by B(eyB), ¥yC by C(ey1C), and eyB by ¢; do
not affect any members of X. In the following theorem we consider the
special cases where » = 1 and where X is a certain set of formulae which may
contain the e-symbol. This theorem will be used later as the central lemma in
proving the First e-Theorem.

Recall that a quasi-formula is elementary if it contains no occurrences of

the symbols ¥, 3, or &

THEOREM 1118, Ler Y be any set of elementary quasi-formulae and let X be
any set of substitution instances of members of Y. (The members of X are not
necessarily e-free) If X 19 f, then there exists a set Z of substitution instances

of members of Y such that Z Ve f.

Proof. The proof is identical to that of the Rank Reduction Theorem except
that we may no longer assume that the various replacement procedures
used in this proof leave the members of X unaffected. However, since any
member of X is a formula of the form
By

where B is an elementary quasi-formula, then any member of X which is
affected is converted into another substitution instance of the same quasi-
formuta. Consequently, the proof of the Rank Reduction Theorem yields a
O-deduction & of f from some set X of substitution instances of members of
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Y. Now a O-deduction has no Q-terms or E2-terms. Consequently no Q3, Q4,
or B2 axioms are used in 2. If throughout 2 we replace every quasi-formula
of the form YyC by f and every quasi-formula of the form 3x8 by ~1f (starting
with those of maximal Jength), the Ql-axioms and Q2-axioms are converted
into tautologies and the other axioms are converted into new axioms of the
same form. If we then replace every remaining e-term by some individual
symbol a, we obtain a deduction of f from a set Z of substitution instances of
members of Y. Since every formula in this deduction is elementary, then
Zbgcl.

3.4 The E2 Elimination Theorem

To complete the proof of the Second e-Theorem we need to show that the
E2-axioms are eliminable, This is the essence of the following theorem,

THeorREM [11.9 (The E2 Elimination Theorem). For any e-free X, any r > 1,
and any finite collection T, of e-terms of rank r, if X FPTr f, then X +78 §,

Proof. The proof is by induction on the number n of terms in T, If . = 0,
there is nothing o prove. Suppose # > 0. Let ex4 be a member of T, whose
length is at least as great as that of every other term in 7,. Let S, be the
collection of remainingn — | terms in 7,, By our choice of ex4 with maximal
length it follows that ex4 does not occur in any member of \S,. To prove the
theorem it is sufficient to prove X "5 f, since we may then apply the induc-
tion hypothesis.

Let & be any #, T,-deduction of f from X. We may assume that ex4 is an
E2-term in 2, since otherwise there would be nothing to prove. Secondly,
we may assume that no E2-axiom of the form

Vz(AL +» A3) — exAd = exAd

is used as an axiom in 2, since any formula of this form follows by modus
ponens from axiom schema P1 and axiom schema E3. Finally, we may assume
that every E2-axiom, involving exA, which is used in & is of the form

Vz(AL «» B) — exA = eyB,

ie., exA is on the left-hand side of the identity symbol. This assumption can
easily be justified by observing that

F0 Vz(B} > A7) - Yz(A] «» BY),
and FiPexd = eyB — eyB = exA.

Let Ey, ..., E, be the E2-axioms, involving exA, which are used in £,
If these are regarded as assumptions, then £ is an r, S,-deduction of / from
Xul{E,..., E,}. Thus

X, El: R Em l'.nsrf'
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Consequently, to prove X F-57 f, it is sufficient by virtue of Theorem I1.3(if)
to prove foreachi = 1,...,m

n X S E,
Take any E,. Let it be the formula
E; Vz(A% + BY) - exA = eyB.

Thus either (i) rk(syB) < r or (ii) rk(gpB) = r and sy B is a member of S.. By
the tautology rule and the f-rule, to prove (1) it is sufficient to prove

) X, V2(AF & BY) 5 .

The proof of (2} is as follows. Throughout the original deduction 2 of f
from X replace every occurrence of ex4 by eyB. For any formula 4; which
is used as an axiom in 9, if 4; is not one of the E2-axioms E,, ..., E, and
not the Q3-axiom 3xA4 — A(exd4), then by Theorem II1.6, the formula
obtained from A; by replacing ex4 by eyB is an axiom of the same form.
Furthermore since X is e-free, the members of X are unaffected by the re-
placement of x4 by eyB. Consequently, it follows that

3) X,3x4 —» A(eyB), E,’, ... ,E, F{,

where for each j = 1,...;m, E/ is the formula obtained from E; by re-
placing each occurrence of exA by gyB. (Why is the deduction still an r, S,-
deduction?)

Now to prove {2 it is suflicient by virtue of (3) and Theorem I1.3(ii) to
prove that

(4) Vz(AZT e BY 9 Axd — A(eyB),
and foreachj=1,...,m,
(5 Vz(4; < BY) " ES

Proof of (4): Let Y be {Vz{A4] «» B)}. Since exA and eyB have rank < r,
the term sz (A7 «— BY) also has rank < » by rank property R4. Therefore
these three terms may be used as Q-terms in the desired r, @-deduction of
IxA — A(eyB) from Y. This deduction can be consfructed as follows:

Y F2VYz(AF & BY)
¥ F® A(exA) > B(exA) - . V-elimination
Y +"® 4(eyB) « BleyB)  V-elimination

Y P 3xd - A(exA) Q4-axiom
Y+ 13yB — T1BlexA)  Q3-axiom
Y ®3yB — B(eyR) Q4-axiom

Y F#3x4 - A(eyB) tautology rule
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Proof of (5): Suppose E; is the formula
| Vu(AZ <> C2) = sxA = aoC.
Then E; is the formula
Vu(Al & C'2) - gyB = sv (',

where C’ is obtained from C be replacing every occurrence of exA4 (if any) by
eyB, Recall that each of the terms eyB and svC satisfies the condition that
either (i) its rank is less than r or (ii) its rank equals r and it is a member of S,.
Consequently by rank property R2 and the fact that ex4 does not occur in
any member of §,, the term evC’ also satisfies this condition. Therefore the
terms &yB and soC’ may be used as E2-terms in the desired #, S,-deduction
of E; from Vz{A] < B}). This deduction can be constructed as follows. Let
Y be the set

{Vz(A7 & BY), Yu(4] & C' 1)}

and let 7 be the term ew ™ 1(B%, «+ C' ), where w is some variable which is
free for y in B and free for v in C', Then

Y F5r Yz(AZ «» BY)

Y FSeYu(AX « C' 0

Y E AT < BT

Y S AL e O

Y S [BL o Ol tautology rule

Y FSr Yw(BY, «— ') Y-introduction

Y S (B s €' %) - gyB = goC'  E2-axiom

Y FSrgyB = eoC’ modus ponens
Yz{AS < BY) P E —-introduction

Y-elimination
Y-elimination

This completes the proof of Theorem II1.9.

3.5 The First and Second s-Theorems

We have now established all the major resulis which are needed in proving
the Second &-Theorem. However, in order to prove the First e-Theorem we
still need the following simple lemma,

LemMa. For any prenex formula A, there exists a substitution instance A’ of
the matrix of A such that F'° A" > A,

Proof. The proof depends on the following fact. Y rk(eyB) = 1, then
) F® BleyB) <> 3yB, and
) F® B(gy ™1 B) ¢+ VyAB.
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This fact is an obvious consequence of Theorem I1.10. Now let A be the
prenex formula

Qixy ... 0,x,B,

where B is its matrix. Foreach i = 1, ..., n, we define the term ¢, as follows:

f iS BleX2 “ e anB ile iS 4
PP Yex, 10x,. .. Qx L if Q) is VY,

ex, 10Xy . .. Ox,[B] if Qs Y,

and so on, Now let A’ be the substitution instance B! ;[ of B. Since B is
e-free (by the definition of a prenex formula), then rk(r) = 1, for each i.
Consequently, using induction on # we can prove F4’ < A4 from (1) and (2).

. {ax2Qx3. L Ox,[BIY ifQyis 3
1, is

THEOREM IIL10 (The First e-Theorem). If X is any set of prenex formulae,
A is any prenex formula, and X bpc A, then Z b oo B v ... v B, where each
member of Z is some substitution instance of the marrix of some member of X
and each B; is some substitution instance of the matrix of A. ‘

Proof. We shall first prove the theorem for the special case where A is the
formula f.

Assume X bpo/f. Then there exists a finite subset X, of X such that
X, Fpcf. Let Y be the (finite) set consisting of the matrices of the members
of X,. By Theorem I11.2 there exists a deduction of f from X, in the &*-
calculus, and therefore X; F® /. Now let X, be the finite set of substitution
instances of members of ¥ which correspond to each member of X, according
to the above lemma. Since X, F** C for each C in X, then by Theorem
11.3(i1), X, F*? /. Therefore by Theorem II1.8 there exists a set Z of substitu-
tion instances of members of ¥ such that Z by f. This proves the theorem
for the special case where A is the formula /.

Now suppose that 4 is any prenex formula of the form Q,x, ... Oux,C,
where C is its matrix. Let B be the prenex formula Q,'x, ... Q/x,71C,
where as usual @ 1s 3if Q,1s ¥, and Q, is V if Q, is 3. Note that any sub-
stitution instance of B is the negation of the corresponding substitution
instance of 4. Since Fpc 4 « 718, then X Fp 4 implies X, B Fpc /. Therefore
by the above special case there exists a set Z such that Z by f and every
member of Z is a substitution instance of the matrix of some member of X
or a substitution instance of T1C. Let 1B, ..., "B, be the substitution
instances of 7€ and let 4,, ..., 4, be the remaining members of Z, Since

_lBjs---: —]BmAl’-'-)Am i«IEC!!’
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repeated applications of the e-rule (Theorem 1£.12) yield
—](Biv e VBn)9A1! . ,Am }'ch,
and the desired result now follows by the f-rule.

TueOREM [I.11 (The Second &-Theorem). For any s-free X and any s-free
AITXE, A, then X Fpe A.

Proof. Since X'F, A, then X, A4 b, f by the f-rule. By the Rank Reduction
Theorem and the E2-Elimination Theorem this implies that there exists a
1, @-deduction of f from X < {14}, and therefore a 1, @-deduction @ of
A from X, We want to convert the deduction 2 into a deduction of 4 from X
in the g*-caleulus, since we can then apply Theorem II1.3 to get a deduction
of 4 from X in the predicate calculus. The only difficulty is that the formulae
in 2 are not necessarily proper. Consequently, throughout £ we replace
every quasi e-term which contains a free variable by the symbol a (starting
with those quasi-terms of maximal Jength.) Since every O-term in & has
rank 1, it is easy to see that this procedure does not damage any of the
axioms and therefore provides a deduction of 4 from X in the e*-calculus.

4,1 Skolem’s Theorem

One of the most important consequences of the Second e-Theorem is
the counterpart of Theorem I1.28 for the predicate calculus. This resulf is
commonly known as Skolem’s Theorem,

Traeorewm 11112 (Skolem’s Theorem). Let A be any prenex formula of L(+°),
C any e-free formula of £(¥°), X any ser of e-free formulae of £+, and +°%
the vocabulary obtained from ¥ by adjoining the Skolem functions used in
forming the Skolem resolution Ag of A. Then

X, A bpeyC iff X, As Focwr sy C.
FProof. Use Theorem .28 and the Second e-Theorem. (Note: The half of the
theorem which states that X, A Fpeyy C implies X, Ag Fpey v € is much
‘weaker’ than the other half and can be proved directly using only the
axioms and rules of inference of the predicate calculus.)

Notice that Theorems I1.25, 11.26, and 11.27 also hold for the predicate
calculus by virtue of the Second e-Theorem. The analogue of Theorem I11.26
now provides us with a full justification (in terms of the predicate calculus) of
the familiar ‘rule of inference’ used by mathematicians when they pass from
the staternent

‘for all x, there exisis a y such that B(x,p)
to the statement
‘for all x, B(x,g(x))’,
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or, to put it more colloguially, to the statement
‘for each x, let g(x) be some y such that B(x,y)",

provided that the function g does not appear in the statement B(x,y), in the
statement being proved, or in any of the assumptions on which the proof is
based (cf. Chapter 11, §9). We can state the formal justification of this rule
as follows.

TaporeM HIL13, If X Fpc Vg .. Vx,3yBand ¥, Vx, .. .\f,\‘,,i;B:]E’,’X1 U P o
then X U Yty C, provided that g does not oceur in C, B, or any member of Y.

Proof. By Theorem 1112, Theorem I1.26, and the Second e-Theorem we have
Y, ¥x; ... Vx,3pB Fpe €. Hence X U Y by C by Theorem 11,32,

Unfortunately, the restriction that g does not occur in any member of ¥
limits the applicability of this rule in ordinary mathematical arguments. In
most branches of mathematics the axioms of set theory are used as basic
assumptions. These axioms usually include certain formulae known as
axioms of replacement {cf, p. 106). In order to apply the above rule concerning
the eliminability of the new function symbol g, one must make sure that the
set of assumptions ¥ does not include an axiom of replacement in which the
symbol ¢ occurs. For example, if one uses the fact that the values of g(x)
form a set when x ranges over some set, then one is using an axiom of replace-
ment which contains g. In this case the above rule can only be justified if the
axiom of choice is included as one of the basic assumptions.

However, one does not need to appeal to the axiom of choice if one has
proved the stronger statement

‘for all x, there exists a unique y such that B(x,y)'.

In this case the function symbol g can be eliminated even if it is used in an
axiom of replacement. The proof of this fact does not depend on the Second
g-Theorem, but rather on the eliminability of the i-symbol (cf. p. 100).

We shall return to these problems in Chapter IV when we consider formali-
zations of set theory based on the s-calculus.

4.2 Herbrand’s Theorem

Herbrand’s Theorem, as it was originally formulated (Herbrand [1930]),
involves the complicated notions of ‘properties B and C of order p’. In order
to simplify both the statement and proof of this theorem various people have
proved results which bear the title ‘Herbrand’s Theorem’, but which are
considerably weaker than Herbrand’s original assertion. This situation,
together with the relative inaccessibility of Herbrand’s paper, has doubtless
given rise to a certain amount of confusion about the exact nature of this
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theorem. In this section we shall give a relatively simple formulation and
proof of Herbrand’s Theorem which incorporates most of the cssential
features of the original assertion.

The essence of Herbrand’s Theorem can be described as follows, Let A be
any identity-free, prenex formula. For each positive integer p we assign to A4
a particular elementary formula, called the ‘p-reduction’ of 4. We say that 4
is a ‘p-tautology’ if the p-reduction of A is a tautology. The theorem then
states that A is a theorem of the predicate calculus if and only if 4 is a
p-tautology for some p > 0. This theorem is a very powerful one since it
establishes a useful necessary and sufficient condition for provability in the
predicate calculus. One of its main applications has been in solving various
cases of the decision problem for the predicate caleulus,

Before defining the p-reduction of 4, we need the following definitions,
For any term ¢, the degree of ¢ is defined as follows by induction on its
length:

1. If ¢ has no subterms, the degree of ris 1,

2. If ¢ has subterms, the degree of £ is one greater than the maximal degree of
all its subterms,

For example, the degree of any individual symbol or 0-place function symbol

is 1, and the degree of the term g2ah'a is 3.

Let ¢ be any finite collection of individual symbols and function symbols.
Then a @-rerm is any term whose symbols are all members of .

Now let 4 be any prenex formula, let 44 be its Herbrand resolution, let B
be the matrix of Ay, and let & be the collection of individual symbols and
function symbeols occurring in B, (If B contains no individual or O-place
function symbols, we take g, as an additional member of %.) For any
positive integer p, a p-substitution instance of B, is any substitution instance

BRm

of B where each ¢, is a %-term with degree < p. Thus for any p, there are
finitely many p-substitution instances of B. The p-reduction of 4 is now defined
as the disjunction, B, v ... v B, of all the p-substitution instances of B, We
say that 4 is a p-tautology if its p-reduction is a tautology. (To be exact, the
p-reduction of A depends not only on 4 and p, but also on the order of its
disjunctive parts, By, ..., B,, and on the particular choice of Herbrand
functions used in forming A4 However, for any two p-reductions of A, the
one is a tautology if and only if the other is. Consequently, the notion of a
p-tautology is well-defined.)}

Clearly, if 4 is a p-tautology, then for any g2 p, 4 is also a g-tautology.
For, if ¢ = p, then every p-substitution instance of the matrix of A4y is also
a g-substitution instance, and therefore the p-reduction of 4 is a ‘sub-
disjunction’ of the g-reduction of 4.
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To illustrate the above definitions, consider the following example. Let 4
be the formula
3IWz(Py — Pz),

where P is some 1-place predicate symbol. Then the Herbrand resolution, A,
of 4is
Py — Pgy),

where ¢ is a I-place function symbol. Thus we let ¥ be the set {a,,¢}. The
only %-term of degree 1 is a,, the only %-term of degree 2 is ga,, etc. Con-
sequently, the 1-reduction of 4 is

(1) Pa; — Pga,
and the 2-reduction of 4 is
) (Pa; — Pga,)v(Pga; — Pgga,).

Although (1) is not a tautology, (2) is a tautology, Hence A is a p-tautology
forany p = 2.
We can now give the statement and proof of Herbrand’s Theorem.

THEOREM I11.14 (Herbrand's Theorem). Let A be any identity-free prenex
Jormula, Then:

(1) If e A, then there exisis a positive integer p such that A is a p-tautology.
(i) If 4 is a p-tautclogy for some positive integer p, then b pc. A.

Proof. (1) Assume Fpc A. Let 4, be the Herbrand resolution of 4, B the
matrix of Ay, and % the collection of individual symbols and function symbols
occurring in B. (¥ also contains a, if necessary.) Since Fpe 4, then F, 4 by
Theorem II11.2, and therefore F, Ay by Theorem I1.27. By the First and
Second e-Theorems this implies that there exist substitution instances
By,..., B, of Bsuch that Fc B, v ... v B,. Since 4 is identity-free, this
implies by Theorem 1130 that B, v ... v B, is a tautology. If any of the
substituted terms in B, v ... v B, are not @-terms, replace every occurrence
of such terms by some #-term of degree 1. In this way we obtain substitution
instances B,",..., B, of B such that B,"v ... v B,/ is still a tautology.
Let p be the maximal degree of all the substituted termsin B, v ... v B, (If
there are no such terms let p = 1.) Since each B, is a p-substitution instance
of B, then the tautology B," v ... v B isa sub-disjunction of the p-reduction
of A. Hence A is a p-tantology.

(i1) Conversely, assume that 4 is a p- tqutoiogy for some p > 0. The
knowledge of p enables us to form the p-reduction of A, which we shall
denote by By,v ... vB,. Since B v...vB, is a tautology, then by
Theorem I1.29, bger B, v B, and therefore bpo. B, v ... v B,. However,
since each B; is a substitution instance of the matrix of the 3-prenex formula
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Ay, then B bpe Ay for each i = 1,...,n Consequently, by repeated
applications of the f-rule, we have B, v ... v B, Fpe Ay, and therefore

Fpcr Ay By Theorem 1I1.2, this Implies that there exists a proof of A, in
the e-calculus in which every formula is identity-free. Consequently, by
Theorem I1.27 and the Second e-Theorem we have Fper A. This completes the
proof of Herbrand’s Theorem.

it should be mentioned that in Herbrand’s original statement of the
theorem A is an arbitrary formula rather than a prenex formula, Since any
e-free formula is equivalent to some prenex formula, our version of the
theorem is no weaker than Herbrand’s, except that Herbrand attempts to
reveal the relationship between an arbitrary formula and the various prenex
equivalents of that formula. However, Dreben, Andrews, and Aanderaa
[1963] have discovered errors in Herbrand’s proof. A corrected proof has
been produced by Denton and Dreben [1969].

EXERCISES

1. Using Herbrand’s Theorem, prove that the formula Yx3y Pxy -+ JyVxPxy
is not a theorem of the predicate calculus. (See the exercise on page 54.)

2. Let 4 be any identity-free, prenex formula of the form
Vx, ... ¥,y ... 3,8,

where B is the matrix of 4 and no »-place function symbols eccur in B for
1 > 0. Describe a decision procedure for determining whether or not 4
is a theorem of the predicate calculus without identity.

4,3 The eliminability of the identity symbol

Herbrand’s Theorem can be used to prove that the identity symbol can be
eliminated from proofs in the predicate calculus of formulae which do not
themselves contain the identity symbol.

TueoreM W15, If A is an identity-free formula and ©pe A, then Foo A.

Proof. We may assume that 4 is a prenex formula since for any s-free,
identity-free formula A there exists an identity-free prenex formula A’ such
that Fpe- A <« A’ (cf. the proof of Theorem 11.24). Since Fpe 4 and A4 i
identity-free, then by the first half of Herbrand’s Theorem there exists a
positive integer p such that A is a p-tautology. By the second half of Her-
brand’s Theorem this implies Fpcr 4.

The climinability of the =-symbol does not hold for the e-caleulus since the
E2-axioms are needed for proving theorems which do not themselves contain
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the identity-symbol. For example, if P, O, and R are l-place predicate
symbols, the formula

(Vz(Pz « Qz) A RexPx) - ReyQy
is a theorem of the e-calculus by virtue of axioms El and E2, but there exists
no identity-free proof of this formula.

EXERCISE

Modify the axioms of the e-calculus to obtain an equivalent formal system
in which the identity symbol is eliminable. (Hint: sce Chapter 1, §6.)

CHAPTER IV

FORMAL THEORIES

1 Introduction

The objective of this chapter is to reveal the role which the g-symbol can
play in the stndy of formal theories. First of all, we shall explain how the
formalists used the e-symbol and the e-Theorems in constructing finitary
consistency proofs of various formal theories, Secondly, we shall see how the
formulation of certain theories can be simplified if the g-calculus rather than
the predicate calculus is used as the underlying formal system. Lastly, we
shall investigate the relationship between the g-symbol and the axiom of
choice in formal set theory,

A formal theory & consists of a vocabulary ¥7, a formal system # for ¥,
and a set & of formulae of #(¥7). Thus we may regard a formal theory 7 as
an ordered triple (¥",#,s/>. The members of & are called the {(non-logical)
axioms of 7, ¥ is called the vocabulary of &, and & is callied the underlying
Jormal system of 7. Alternatively, we often say that 7 is based cn F. By an
abuse of language we often say a ‘formula of 7 instead of a “formula of
Z(¥'y. Furthermore, if & is based on the predicate calculus we say a
‘formula of 7 instead of an ‘z-free formula of F{¥7y. Throughout this
chapter most of the formal theories we deal with are based either on the
predicate calculus or on the e-calculus,

let & be some formal theory (¥ % ,#> A formula 4 of Z(¥)isa
theorem of & if and only if & b4z A, The theory J is inconsistent if f is a
theorem of & ; otherwise it is consistent. A theory J' is an extension of a
theory 7 is every formula of & is a formula of 7 and every theorem of 7
is a theorem of &, Two theories are said to be eguivalent if each is an ex-
tension of the other. An extension ' of 7 is an inessential extension of T
if every formula of & which is a theorem of F is also a theorem of .
Obvicusly if 7 is an inessential extension of 7, then & is consistent if and
only if & is consistent.

2 Finitary consistency proofs

Suppose & is a theory based on the predicate caleulus. If there exists a
model M which satisfies the set o of axioms of 7, it follows that 9~ must be
consistent. For, the soundness of the predicate calculus implies that every
theorem of J~ must be true in the model 9. Since the formula f is false in all
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models, then f is not a theorem of &7, and & is consistent, The objection to
this type of consistency proof is that a very strong metatheory is required.
For example, the cardinality of the model may be infinite, and in order to
show that f is not a theorem of F one must use non-constructive arguments
to show that the axioms of the predicate calculus are true in this model. One
of the main contributions of the formalists was in showing that for certain
special theories this type of consistency proof can be carried out in a com-
pletely finitary way by appealing to the First s-Theorem rather than to the
soundness of the predicate calculus.

To illustrate the formalists’ method we shall prove the consistency of the
following simple theory S.

Let ¥ be the vocabulary consisting of the single 2-place predicate symbol
<, where as usual we write § < ¢ instead of <sr, and let &7 be the set con-
sisting of the following five formulae:

S1 Yx{x < X),

82 Vavyvz({x < yAy <z}~ x < 2),
53 VaVplx < yvy <xvy=x),

5S4 Vxdy(x < y),

S5 AxVy(x = yvx < y)

We define S to be the formal theory (¥ ,PC(¥#"),&>. Obviously, the model
consisting of the set of positive integers with the usual ordering relation
satisfies the set 7, and therefore by a non-finitary argument it follows that S
is consistent, However, despite the fact that every model which satisfies &/
has infinite cardinality we can still prove the consistency of S in a completely
finitary way.

First of all, we modify S so that its axioms are all ¥-prenex formulae. Let
¥ be the vocabulary obtained from ¥” by adjoining the O-place function
symbol ¢ and the 1-place function symbol g, and let &' be the set of formulae
obtained from &/ by replacing formulae 54 and S5 by

54 Va(x < gx),
S5 Yy(c =yve < y)

We define 8 to be the formal theory (¥, PC(#7),of">. Since S4’ and 85
are Skolem resolutions of S4 and S5, then by Skolem’s Theorem, S’ is an
inessential extension of S, and therefore ' is consistent if and only if § is
consistent. .

Let ¥ be the set of matrices of the members of 7', Thus Y consists of the
following five quasi-formulae:

SIv “Hx < x),
82" (x <yAy <z} x <z,
837 X <YVYy < XVY =X,
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S4* X < gx,
55" cC=yve <y

In order to prove the consistency of §', and therefore of S, we shall describe an
effective procedure for assigning truth values to all elementary formulae of
Z(¥) in such a way that every substitution instance of a member of ¥ has
the value 1 (true’). It will then follow by the First e-Theorem that fisnota
theorem of §'.

First of all, to any formula of the form s = ¢ we assign the value 1 if s and
t have the same length, and the value 0 if they do not. Similarly, to any
formula of the form s < ¢ we assign the value 1 if the length of s is less than
the length of ¢, and the value 0 if it is not. Notice that one can effectively
compare the lengths of any two expressions by successively crossing off the
initial symbol from each of them until (at least) one of them is reduced to
the empty expression. As usual, we assign the truth value 0 to the formula f.
Since every atom of Z(¥"") is either the formula f or a formula of the form
§ = fors < 1, then this assignment of values to the atoms can be extended
to all elementary formulae by means of the truth functional interpretations
of the propositional connectives,

We shall now show that, for any elementary formula B, if B isa theorem of
§’, then B has the truth value 1. By the First e~Theorem, if Bis a theorem of
§’, then there exists a set Z of substitution instances of the members of ¥ such
that Z b B. However, it is easy to see that every member of Z must have
the value 1, and furthermore every El-axiom and every E3-axiom must have
the value 1. Since the propositional axioms are tautologies and since the rule
of modus ponens preserves the truth value 1, then B has the value 1. However
/ has the value 0. Consequently f is not a theorem of §, and therefore §'
and § are consistent.

In general, we may describe the formalists’ method of proving consistency
as follows. Suppose & is some theory based on the predicate caleulus. By
replacing each axiom of & by some prenex equivalent of that axiom and then
taking the Skolem resolutions of these prenex formulae and adjoining the
new Skolem functions to the vocabulary, one obtains a theory ' which is
an inessential extension of 7. One then tries to find an effective assignment
of truth values to the atomic formulae of & such that every El-axiom, every
E3-axiom, and every substifution instance of the matrices of the axioms of 7
has the value 1 under this assignment. If this can be done, it then follows that
both 7 and & are consistent. A detailed account of this method of proof is
given in Hilbert and Bernays [ 19397, where the principal results are embodied
in the Consistency Theorem { Widerspruchsfreiheits-Theorem, pages 36-37).

This method of proof actually establishes more than just the consistency of
T, since one shows that every elementary theorem of & has an elementary

M.L.—7
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proof, i.e., one without quantifiers. A major objective of Hilbert’s formalist
programine was to justify the use of infinity in mathematics by proving that
the non-finitary statements and methods can be eliminated from proofs of
finitary (i.c. elementary) statements. Kreisel [1964], page 157, explains this
aspect of Hilbert’s programme as follows:

‘... The Consistency Problem was associated with the problem of under-
standing the concept of infinity. He (Hilbert) sought such an understanding
in understanding the use of transfinite machinery from a finitist point of view.
And this he saw in the elimination of transfinite (e-} symbols from proofs of
formulae not containing such symbols, He was convinced from the start
that such an elimination was possible, and expressed it by saying that the
problems of foundations were to be removed or that doubts were to be
eliminated instead of saying that they were to be investigated.’

The classical logic of mathematics, as formalized by the predicate calculus,
transcends the Hmits of finitary reasoning since it admits statements which
refer to an infinite totality of objects. For example, if p is a prime number,
the statement ‘there exists a prime number which exceeds p’ is non-finitary,
since it asserts the existence of a number having a certain property in the
infinite totality of numbers which exceed p. On the other hand, the stronger
statement ‘there exists a prime number between p + 1 and p! + 17 is finitary
since it can be expressed as a finite disjunction {cf. Hilbert [19267). Further-
more, certain arguments which are used in classical logic and which can be
formalized in the predicate calculus are unacceptable from the finitary point
of view. For example, in classical logic one can prove that there exists a
number which has a certain property by deducing a confradiction from the
assumption that every number does not have this property.

Perhaps, the main significance of Hilbert’s First e-Theorem is the following.
Although classical logic, as formalized by the predicate calculus, contains
certain non-finitary elements, any proof of a finitary statement can be con-
verted into a finitary proof of that statement. It is in this sense that Hilbert
justifies the use of the concept of infinity,

Unfortunately, this use of the First e-Theorem has a very limited range of
applications. If the formal theory under consideration is at all complicated,
the First e-Theorem may be inadequate for proving the eliminability of non-
finitary elements from proofs of finitary statements. We shall consider such
a theory in the following sections. :

3 Formal Arithmetic

As we have already mentioned, one of the primary goals of Hilbert's
formalist programme was to prove by finitary means the consistency of
formal arithmetic, i.e., the theory which deals with the additive and multi-
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plicative structure of the natural numbers. In the following sections we shall
describe the way in which Hilbert hoped to use the ¢-symbol to prove this
consistency result,

Arithimetic can be formalized as follows. Let #7 be the vocabulary consist-
ing of the 0-place function symbol O (which designates the natural number 0),
the l-place function symbols * and ¢ (which designate, respectively, the
successor function and the predecessor function), and the 2-place function
symbols + and - (which designate addition and multiplication), As usual, we
write (¢)', (s + ), and (s - ¢) instead of "¢, +s¢, and - 57, and we shall omit
parentheses whenever their omission gives rise to no ambiguity. Let &/ be
the set consisting of the following formulae:

N1 ¥Vx1(0 = x)

N2 Ux¥p(x' =y -5 x =y)

N3 Vx(x + 0 = x)

N4 YaVylx + (v) = (x + »))

NS5 Vx(x - 0=10)

N6 Vavplx - ()Y =(x - y) + x)

N7 Vx(0 = x v (gx) = x)

and all universal closures of quasi-formulae of the form
I A(D) = Vx(4(x) ~ A(x")) = VxA(x).

The form I is called the axiom schema of induction and any universal closure
of a quasi-formula of this form is called an induction axiom. Formal arithmetic,
which we denote by N, is now defined as the formal theory {¥",PC(¥"),s#>.
Actually, the function symbol g and axiom N7 are usually omitted in formaliz-
ations of arithmetic. We include them here only for technical reasons.
Notice that formula N7 is the Skolem resolution of Va3y(0 = xvy' = x).
This latter formula can be deduced without using axiom N7,

Let R be the model {M,I1,0) for ¥, where M is the set of natural numbers,
IT assigns the above-mentioned inferpretations to the symbols 0, /, g, +,
and - and assigns the number 0 to every individual symbol, and @ is the
jeast number operator, i.e., for any subset A{; of 3, if M, is non-empty,
B(M,) is the least member of M|, and if M| is empty, ®(M,} is 0. (For the
interpretation of the predecessor function g we arbitrarily define the prede-
cessor of 0 to be 0.} We shall refer to this model as the standard model of
arithmetic. Since every axiom of N is true in 9, then by the soundness of the
predicate calculus every theorem of N is true in 3.

Since it is possible to prove in N all the usual results about the addition
and multiplication of natural numbers, the formalists felt that this theory was
an adequate formalization of arithmetic and that a finitary proof of its
consistency would justify the use of non-finitary statements in informal



90 FORMAL THEORIES CH. IV

arithmetic. However, Godel [1931] proved two profound results which under-
mined the whole formalist programme, His first result, which implies that N
Is not an adequate formalization of arithmetic, was that if N is consistent
then there exists an e-free formula A, containing no individual symbols,
such that 4 is true in the standard model M but is not a theorem of N.
Furthermore, this deficiency cannot be rectified by adding new axioms to
N. His second result, a corcllary of the first, showed that any proof of the
consistency of N must involve techniques or concepts which cannot be
formalized within N, In particular, this result ruled out the possibility of
proving the consistency of N by finitary reasoning,

Despite Godel’s results it is worth while examining Hilbert’s unsuccessful
attempt to find a finitary consistency proof of N since his methods can be
used both to demonstrate the consistency of weakened versions of N and
also to prove, using a non-finitary but limited metatheory, that N itself is
consistent. Furthermore, his whole approach provides us with a clear
analysis of the nature of the abstract and the concrete in mathematics,

EXERCISES

1. Prove that the following formulae are theorems of N:
(i) VxVy(x +py =y + x),
(i) Vavy(x-y=yp-x),
(i) YaVpvz(x - (¥ + 2) = (x- ) + (x- 2)).

2. For any quasi-terms s and ¢, let s < f be an abbreviation of the quasi-
formula 3w(s + w' = ¢), where w is some variable which does not occur
free in s or ¢. Prove that with this definition of < the axioms S1-85 of
the theory S (page 86) are theorems of N,

(For solutions of these exercises see Mendelson [19641, pages 104-112.)

3.1 Numerals and namerically true formulae

The consistency of N would be established if we could prove that every
theorem of N has a certain property which the formula f does not have. If
we were to allow ourselves the luxury of using non-finitary reasoning, a
suitable property would be ‘truth in the standard model’. Of course, from
our finitary point of view this property is far too abstract. However, we shall
now show that if we restrict our attention to elementary formulae and replace
the abstract notion of ‘natural number’ by the concrete notion of ‘numeral’,
we can define in concrete terms an effective notion of ‘numerical truth’,
Having defined this notion, we can then try to prove that every elementary
theorem of N is numerically true, thus establishing the consistency of N,

An expression of the language #(¥7) is called a numeral if the only symbol
occurring in that expression is the function symbol ‘. Thus, in particular,

§3.1 NUMERALS AND NUMERICALLY TRUE FORMULAE 9]

the emply expression e is a numeral. We shall refer to this numeral as zero.
For any numeral », the successor of » is the numeral #” and the predecessor
of n is the numeral obtained from » by removing the last occurrence of * in
n. For any two numerals m and n, the sum of s and » is the numeral mn, and
the product of m and » is the numeral obtained from » by replacing each
occurrence of the symbol ’ in # by the numeral m. For example, the successor
of the numeral zero is /, the predecessor of  is , the sum of ” and " is “,
and the product of “ and “ is ",

To each e-free term 1 of the language #(#") we assign a unique numeral »,
called the numerical value of ¢, as follows. To each individual symbol a and
to the symbol O we assign the numeral zero. If we have already assigned the
numerals m and n to the terms s and ¢ respectively, then we assign the suc-
cessor of m to the term s, the predecessor of m to the term gs, the sum of m
and 7 to the term s + 4, and the product of m and » to the term s - 7. Now
to any e-free formula of the form s = t we assign the truth value 1 if the
numerals assigned to s and f are of the same length, i.e., if 5 and 7 have the
same numerical values. Otherwise, we give it the truth value 0. For example,
for any e-free terms s and ¢, to the formula

s =0E"D4s
Is assigned the truth value 1, and to the formula
GH . Gf” s 6” + Glﬂ'

is assigned the truth value 0,

Since the vocabulary ¥” contains no predicate symbols, every elementary
formula of Z(¥7) is built up by means of the propositional connectives from
formulae of the form s = ¢ and possibly the formula f. Consequently by
using the above assignment of truth values to formulae of the form s = ¢
and by giving the symbols /, 71, A, v, and — their usual truth functional
interpretations, we can assign a unique truth value to any elementary formula
B. If this truth value is 1, we say that B is numerically true. For example,
an elementary formula of the form s = ¢’ — s = ¢ is numerically true,
since regardless of what numerals are assigned to s and ¢ the case where
s' = ¢’ has the truth value 1 and s = ¢ has the truth value 0 can never arise.
It is important to observe that this definition of numerical truth is an effective
one. In other words, for any given elementary formula B, the above definitions
describe an effective procedure for determining whether or not Bis numerically
true,

EXERCISES

1. Prove that every e-free substitution instance of the matrices of axioms
NI-N7 is numerically true.
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2. Let N, be the theory whose axioms are the formulae NI1-N7. Give a
finitary proof of the consistency of this theory.

3.2 Formal arithmetic based on the g-calculus

We now turn to the problem of proving that every elementary theorem of
N is numerically true. The exercises at the end of the last section reveal that
the First s-Theorem provides a simple solution to this problem if we exclude
the induction axioms from N. However, when the induction axioms are
included, the problem is much more difficult, since these axioms are not
¥-prenex formulae. Although we know by Skolem’s Theorem that N has an
inessential extension N’ in which all the axioms are V-prenex formulae, in
“order to form N’ we must replace each induction axiom by the Skolem
resolution of some prenex equivalent of that axiom and adjoin the new
Skolem functions to the vocabulary ¥". Obviously, the theory N’ which is
obtained in this way is very complicated, and it seems unlikely that one could
devise an effective notion of numerical truth for the elementary formulae of
this theory,

In order to overcome this difficuity Hilbert and Bernays define a new
formalization of arithmetic, which we shall denote by N,, which is based on
the e-calculus and in which the e-symbol is used in effect as a least number
operator. The formulation of the theory N, is based on the well-known fact
that the principle of mathematical induction is deducible from the principle
of the least number. ’

We can define the theory N, as follows, Let ¥ be the vocabulary used in
defining the theory N and let &, be the set of formulae of #(¥#") which are
instances of the following axiom schemata:

N1’ (0 =17

N2’ =1 5=t

N3 s+ 0=y

N4 s+ @) = (s + 1Y

N5 s-0=0

N6’ s ) =0")+s

N7/ O=svigs) =s¢
gy NA(exd) = 1A4()
&y t == gxAd — T1A(L)

We now define N, to the theory {¥ ,e(¥"),4Z > where as usual, &(#") denotes
the e-calculus for ¥~. A formula of the form ¢, is called an ¢,-axiom and one
of the form ¢, an g,-axiom. Note that the sy-axioms are theorems of the
.e-calculus by virtue of axiom schemata Q3 and Q4. However, it is convenient
to include formulae of this form as axioms of the theory in order to prove
the eliminability of the quantifiers.
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Recall that the choice function @ of the standard model 9 was defined as
the least number operator. It is easy to see that with this interpretation of the
e-symbol the g;-axioms are all true. Consequently all the axioms of N, are
true in N, and therefore by the soundness of the e-calculus every theorem of
N, is also true in R,

However, the least number operator is not the only interpretation of the
e-symbol which would satisfy the g;-axioms. These axioms merely siate,
intuitively, that the number denoted by exA is not the successor of a number
having the property A. For example, if 4 is the quasi-formula

W0 =x),
i.e., “x is an even number’, then there is no way of knowing which even
number exA designates, since the gy,-axiom exA = t' > “14(r) merely states
the obvious fact that the even number designated by ex4 is not the successor
of an even number,

Despite the fact that the s,-axioms do not uniquely characterize the e-
symbol as a least number operator, we shall now see that these axioms are
still strong enough to provide us with the principle of mathematical induction.

THEOREM IV.1. If B is any formula of £ (¥°) of the form

A(D) - Yx(A(x) - A(x")) = VxA(x)
then s/, -, B. Furthermore, if B is a proper formula and x does not have a free
occurrence in A(x) within the scope of an e-symbol, then s, F,. B.

Proof. Let s be the term ex ™1 A(x) and let X be the set

A, 0 {AD), Vx(A(x) ~ A}
By virtue of the ¥-introduction rule and the —-introduction rule it is sufficient
to prove X'}, A(s). The proof is as follows, where we let ¢ be the term gs.

() XFO0=svt' =5 axiom N7’

(2) X+ AD) member of X

(3 XH(0 =sAAD) - A(s) Theorem I1.22

@) XFD =25 A() tautology rule from (2) and (3)

(5) X FV¥x(A(x) = A(xD) member of X

6y XF A — A1) V-glimination

(7)) X+ (@ =sArA()) -+ A(s) Theorem I1.22

& XF!'=s5- 17140 gy-axiom and definition of s

() XFi1' =25 As) tautology rule from (6), (7, and (8)
(10) X+ A{s) tautelogy rule from (1), (4), and (%)

For the special case where B is a proper formula and x does not have a free
occurrence in A(x} within the scope of an e-symbol, the proof is the same
except that steps (3) and (7) are justified by Theorem IIL5,
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Often in mathematics it is simpler to use the principle of the least number
than to use mathematical induction, Similarly, because of the e;-axioms it is
often easier to prove theorems in N, than it is in N. For example, there
exists a very simple preof in N, of the formula ¥Vx1{(x" = x). Let ¢ be the
term £x7171(x" = x). Then the formula ¢/ = ¢ — T = £) is an é&,-
axiom. By the tautology rule 71(¢' = ¢} is a theorem of N,, and by the
V-introduction rule, ¥x71(x' = x) is also a theorem. To prove that this
formula is a theorem in N one must use axioms N1, N2, and an induction
axiom.

Theorem 1V.1 can now be used to prove that N, is an extension of N,

THeorReM IV.2. If 4 is a theorem of N, then o F,+ A, and therefore A is a
thearem of N

Proof. Let @ be a proof of 4 in N. Thus £ is a deduction in the predicate
calculus of A from some finite set X" where each member of X is an (s-free)
axiom of N, By Theorem 1I1.3, there exists a deduction 2, of 4 from X in
the e*-calculus, It is easy to see that for each B, in X, &/, F,. B, For, if B,
is one of the axioms N1-N7 of N, then B, follows by the V-introduction rule
from an instance of the correspending axiom schema in N, and if B, is an
induction axiom, then &7, ¥, . B, by the V-introduction rule and Theorem IV.1.
Consequently &, F,+ A4 by Theorem IL3(ii).

EXERCISES

1. Prove that axiom schema NI’ is redundant in the theory N,. In other
words prove that any formula of the form ~1(0 = ') is deducible from the
other axioms of N,. Using finitary reasoning prove that axiom N1 is not
redundant in the theory N. (Hint: Use the techniques employed in proving
Theorem 11.15.}

2. Prove that N, is an inessential extension of N, or in other words, prove
that for any e-free formula 4, 4 is a theorem of N if and only if 4 is a
theorem of N,. (Hinf: Adjoin the i1-symbol and the appropriate rules of
inference to the theory N to form the theory N, (cf. Hilbert and Bernays
[19347). By replacing every e-term, exA4, by the i-term ‘the least x such
that A’ show that every e-free theorem of N, is a theorem of N, The
desired result now follows by Hilbert and Bernays’ proof of the elimin-
ability of the i-symbol.) Why is the Second &-Theorem inadequate for
solving this problem? -

3.3 Quantifier-free proofs
We now return to the problem of proving the consistency of N. In view of

Theorem IV.2, in order to prove the consistency of N it is sufficient to prove
the consistency of N, This result in itself does not really simplify the problem,
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since N, is also a rather complicated theory. However, we shall now show
that in fact it is sufficient to prove the consistency of a quite simpile sub-
theory of N,

A well-formed expression of F(¥") is quantifier-free if the symbols ¥V and 3
do not occur in that expression. A quantifier-free proof is now defined to be
a proof in N, in which every formula is quantifier-free and in which the rule
of relabelling bound variables may be used as a basic rule of inference.
More precisely, a quantifier-free proof of B is a sequence {A4,,..., 4> of
quantifier-free formulae of (¥ ) such that A, is Band foreachi=1,..., n
at least one of the following is true: :

1. A;is an instance of one of the axiom schemata P1-PI0, E1, E3, NI'-N7’,
&y, OT £

2. A, follows by modus ponens from 4; and A4, for some j, k < i;

3. A;is a variant of 4; for some j < i.

(Recall that 4 is a variant of B if 4 can be obtained from B by a succession
of admissible relabellings of bound variables.) Strictly speaking, a quantifier-
free proof of B is not a proof in N,, since the rule of relabelling bound vari-
ables is only a derived rule of inference in the e-calculus. However, it is
obvious that any quantifier-free proof of B can be converted into a proof
of Bin N,. On the other hand, a proof in N, of some quantifier-free formula
B cannot necessarily be converted into a quantifier-free proof of B, since
within a quantifier-free proof there are no formal counterparts of the E2-
axioms, Nonetheless we can prove the following weaker result which is all
that is needed to simplify the problem of proving the consistency of N.

TuroreM IV.3. For any elementary formula B, if B is a theorem of N, then
there exists a quantifier-free proof of B.

FProof. Since B is a theorem of N, then by Theorem IV.2 there exists a
deduction 2 in the ¢*-calculus of B from &7,. We now eliminate the quantifiers
from % as follows.

First of all we replace every occurrence of V by 71377, thus converting every
Ql-axiom and QZ2Z-axiom into a tautology without damaging any of the
other axioms, and without affecting B since B is elementary. (Recall that E2-
axioms are not used in the g*-calculus.) In this way we obtain a proof 2, of
Bin N, such that no formula in 2, contains the symbol V.

The following procedure can now be used to eliminate every cccurrence of
the symbol d. We start 'with some quasi-formula of the form 3x4 in 2,
where A is quantifier-free. If exA is free for x in 4, we replace every occurrence
of 3xA in &, by A(exA). On the other hand, suppose that exA is not free for
x in A. For example, 4 might be y = e¢y(y = x). Let 4 be some variant of 4
such that exA4 is free for x in A. For example, if 4 is y = gp(y = x), let 4
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be y = ez(z = x). We may now replace every occurrence of 3x4 in 2, by
A(exA), Successive applications of this procedure will eventually yield a
sequence 2, of quantifier-free formulae whose last member is the original
formula B, Every Q3-axiom in 2, will have been converted into an g,~axiom
(or a variant of an g,-axiom), every Qd-axiom will have been converted into
a tautology (or a variant of a tautology), and the remaining axioms will have
been converted into axioms of the same form (or variants of such axioms).
Consequently we obtain a quantifier-free proof of B, This completes the proof,

The following example reveals why it is necessary in the above proof to
ensure that sxA is free for x in 4 before replacing x4 by A(exA4). Let 4 be
y = gp(y = x) and let A, be t = gy(y = x) where ¢ i3 some quantifier-free
term. Then the formula

1" == gydxd — T33xA4,

is an gy-axiom. If we were to eliminate the symbol 3 from this axiom simply
by replacing Ix4 by A{exA) and Ix4, by A,(exA,) the resulting formula

t" = epd{exA) - 14 (ex4))

would not be an g,-axiom, since a free occurrence of y in ex.4 becomes bound
in A(exA) and therefore the formula ~14,{(exA4;) is not of the form
[ 4(exA)]? as it should be.

Historical Note: Theorem IV.3 is an improvement on the corresponding
result proved by Hilbert and Bernays [1939] since their e-axioms include all
formulae of the form

&3 5 =1 [exA]l = [exA]

as well as the ¢,-axioms and g,-axioms. Clearly, such formulae are weaker
versions of the E2-axioms.

3.4 The consistency of arithmetic

It now follows that in order to prove the consistency of arithmetic, as it is
formalized by the theory N, it is sufficient to prove the following proposition.

ProrositioN 1. For any elementary formula B of £ ("), if there exists a
quantifier-free proof of B, then B is numerically true.

Once this proposition has been proved, it then follows by Theorem IV.3
that every elementary theorem of N is numerically true. Since the elementary
formula f is not numerically true, then f is not a theorem of N, and N is
consistent. We know by Gédel’s results that the above proposition cannot be
proved by finitary reasoning since we would then have a finitary proof of
the consistency of arithmetic. However, Hilbert and Bernays [1939] show
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that a finitary proof is possible if a certain condition is imposed on the &,-
axioms, We shall now see what that condition is and what effect it has on the
original theory N.

For any e;-axiom T1A(exAd) — T1A4(r) or any g;-axiom t' = gxAd — T1A(),
the term exA is said to belong to that axiom, The rank of an g,-axiom is now
defined to be the rank of the e-term belonging to it. Tt follows from our
definition of rank (page 70) that the rank of an g,-axiom,

t' = exd = T1A(),
equals 1 if and only if x does not have a free occurrence in A within the scope

of an e-symbol. We can now give an exact statement of the result which
Hilbert and Bernays prove.

Provrosition 1. For any elementary formula B of L), if there exists a
quantifier-free proof of B in which the rank of every ey-axiom equals 1, then
B is numerically true.

If we carry this restriction on the g,-axioms back to the original theory N,
it follows that N is consistent provided that we define the induction axioms
to be all universal closures of guasi-formulae of the form

AD) = Vx(A(x) = A(x")) — ¥xA(x)
where x does not have a free occurrence in A(x) within the scope of a quantifier.
We shall refer to this weakened version of N as restricted arithmetic,

The proof of Proposition II is rather long and complicated, and instead of
giving all the details we shall merely outline the basic ideas,

Let B be any elementary formula of #({¥") and let & be a quantifier-free
proef of B in which the rank of every e,-axiom equals 1. We would like to
prove that B is numerically true. First of all, using essentially the same
techniques which we used in proving the Rank Reduction Theorem we can
eliminate from 2 all the e-terms with rank > 1. Consequently, we may assume
that the rank of every e-term occurring in & equals 1. In order to prove that
B is numerically true, we would like to replace each e-term in & by an appro-
priate g-free term and then show that this total replacement (Gesamrersetzung)
of e-terms by e-free terms converts every formula in £ into a numerically true
formula, Since the instances of axiom schemata P1-P10, El, E3, N1'-N7’ are
converted into numerically true formulae no matter what terms are used to
replace the e-terms, our only concern is in finding a total replacement of
e-terms which will convert the ¢, -axioms and g;-axioms into numerically true
formulae. (Because of the rule of relabelling bound variables we must also
make sure that any two s-terms which are variants of each other are replaced
by the same term. This presents no difficulty if we simply regard any two
such terms as being the same term,)

To illustrate how such a total replacement can be found we shall consider
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the special case where no e-term in 2 contains another e-term as a subierm,
(In the terminology of Hilbert and Bernays this is the case where the degree
of every e-term in & equals 1.) Since the rank of every s-term in & equals 1,
it follows from this additional restriction that if ex4 occurs in &, then A is
e-free. In order to find a total replacement of e-terms which will convert the
g -axioms and e,-axioms into numerically true formulae we proceed by trial
and error. Let R, be the total replacement whereby cach e-term is replaced
by 0. Notice that every e;-axiom is thereby converted into a numerically true
formula of the form
t' =0 = 4.

If R, works, then we are done. If not, then certain of the g,-axioms must be
to blame. Let
TJA(exA) — 1A@)

be one of the offending & -axioms. Thus R; converts this axiom into the
numerically false formula

T1A4(0) — “1A(s),

where s is obtained from ¢ by replacing any e-terms in ¢ by 0. Notice that the
quasi-formula A4 is unaffected by the replacement R, since A is e-free. We now
compute the numerical value of s and the truth values of the formulae

A(D), A(07), A(D"), .. ., AQ")

where # is the numerical value of 5. Let A(r) be the first formula in the series
which is numerically true. Such a formula exists -since T1A(D) — T1A4(s) is
numerically false and therefore the formula 4(0") is numerically true, We shall
refer to the term r as the minimal value of exA, It is easy to see that if exA
is replaced by r, then the g,-axioms and ¢,-axioms to which exA belongs are
converted into numerically true formulae no matter what terms are used to
replace the other -terms. Let R, be the total replacement whereby sx4 (and
all its variants) are replaced by r and all the other e-terms are replaced by 0.
If R, works, we are done. If not, we calculate the minimal value of one of the
offending e-terms and then define a new total replacement R, as before.
After at most m + 1 such attempts, where m is the number of s-terms in 2,
we arrive at a total replacement which converts every formula in & into a
numerically {rue formula, thus proving that B is numerically {rue.

Of course the above restriction on the *degree’ of the e-terms in & consti-
tutes a very special case. In the general case the g-free term which is used to
replace one e-term will depend on the terms which are used to replace the
subterms of that term. However Hilbert and Bernays show that the basic
ideas which we have just used in dealing with the special case can be applied
to the general case to provide a total replacement which converts all the

§3.4 THE CONSISTENCY OF ARITHMETIC 99

formulae in & into numerically frue formulae, assuming that every e-term in
2 has rank = 1, In this way they prove Proposition II and therefore the
consistency of restricted arithmetic. ‘

The basic ideas underlying Hilbert and Bernays’ proof were originally
devised by Ackermann [1924] in his doctoral dissertation written under
Hilbert. As we have already mentioned, this was the first published work in
which the e-symbol was used. It is interesting to point out that Ackermann’s
dissertation was intended to prove the consistency of analysis. However, at
the time of publication an error was discovered which invalidated many of
the results. In order to correct the error Ackermann introduced a footnote
{page 9) which severely restricted the formal theory he was dealing with. The
proof of the cousistency of restricted arithmetic which is given in Hilbert
and Bernays [1939] and which we have just described is based on a letter
from Ackermann to Bernays in which Ackermann clarifies and develops the
methods used in his dissertation. Other finitary proofs of the consistency of
restricted arithmetic were discovered by von Neumann [1927] and Herbrand
[1931]. (For further historical details and for English translations of many
important papers and lectures by Hilbert, Bernays, von Neumann, Acker-
mann, and Herbrand, see van Heijenoort [1967].)

The formalists’ attempts to find a finitary proof of the consistency of
unrestricted arithmetic came to an end in 1931 with the publication of
Gaodel’s famous paper. By modifying Godel’s argument, Hilbert and Bernays
[1939], pages 324-340, show that no proof of the consistency of N can be
formalized within N. Thus any consistency proof must in some way or other
involve techniques which cannot be formalized in N. Gentzen [1936] and
Ackermann [1940] have constructed such consistency proofs by using trans-
finite induction up to the first e-number (the first ordinal & such that »® = a).

Ackermann’s proof is based on an extension of his earlier methods. By
using transfinite induction he essentially shows that given any array of ¢,-
axioms and g,-axioms it is possible to assign numerals to the g-terms so that
these axioms are all converied inte numerically true formulae, thus proving
Proposition I and the consistency of N. An exposition of Ackermann’s proof
is given by Wang [1963], pages 362-370.

More recently, Tait [1965] has used recursive function theory to formalize
the elimination of e-terms from quantifier-free formalizations of arithmetic.
He proves that if S is arithmetic with induction up to some ordinal &, then
the elimination of e-terms from proofs in S can be achieved by using second
order functionals defined by transfinite recursion up to &, &, £, . . . etc. This
theorem sharpens the results of Ackermann, Hilbert, and Bernays by making
more explicit the metatheory which is used in eliminaling the g-symbol.

Gentzen's proof [1936] of the consistency of arithmetic depends on the
eliminability of a certain rule of inference, the cut rule, and does not involve
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the z-symbol. In many ways this method of proof is more straightforward
than that of Ackermann. A simple version of this proof'is given by Mendelson
[1964], pages 258-270,

4 Theories based on the e-calculus

The g-calculus is often used instead of the predicate calculus in formalizing
certain mathematical theories, particularly arithmetic and set theory. The
advantages of using the g-calculus in this way are many. We have aiready
discussed how the g-calculus can be used to prove the consistency of arith-
metic, We shall now consider how the esymbol can simplify the actual
formulation of a theory. It has been seen in Chapter II, §12 that the formula-
tion of the underlying logic is simplified by the availability of the g-symbol,
since, for example, the e-calculus provides simple derived rules of inference
for the introduction and elimination of quantifiers. Three other advantages
of using the ¢-calculus as the basis of a theory are: (1) the 1-symbeol is super-
fluous, since its role is assumed by the e-symbol; (ii) Skolem functions can
be explicitly defined as s-terms; (iii) the e-symbol can be used to define
certain entities and concepts whose intended interpretations are to some

-extent indefinite. '

If one is to use the g-calculus rather than the predicate calculus in formaliz-
ing some mathematical theory one would like fo know how this formalization
compares with the corresponding formalization based on the predicate
calculus, Obviously, the Second e-Theorem provides the following answer to
this question.

THEOREM IV.4, Let T~ be the theory (¥ PC(¥"),sofy where every member of
&7 Is e-free, and let T, be the theory {¥ " &(¥°),&>. Then for any efree fornula
A of L), A is a theorem of T if and only if A is a theorem of T . In other
words, &, is an inessential extension of 7.

Proof. If A is a theorem of 7, then by Theorem 111.2, A is a theorem of & .
Conversely, if A is a theorem of &, then by the Second e-Theorem A is a
theorem of 7.

It is important to notice that the above theorem would not hold if we
removed the condition that every member of &7 is e-free, since the Second
e-Theorem could no longer be used. We shall refurn to this important point
when we discuss formalizations of set theory which are based on the g-calculus.

We shall now look at some of the simplifications which the e-caleulus
provides,

4.1 The 1-symbol

It is often desirable to have within a formal theory 7 some way of desig-
nating ‘the unique x such that 4°. The i-symbol was introduced for just this
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reason. The formal treatment of this symbol is given by the following r-rule
(cf. Hilbert and Bernays [1934] page 384):

If the formulae

(1) IxA

(2) VVy((A A 4}) = x = )

are theorems of a theory 7, then 1xA4 is a term of ¥ and the formula
3) A(ixA4)

is a theorem of &

Formula (1) is called the existence condition and formula (2) the unigueness
condition,

If the theory 7 is based on the ¢-calculus, then the 1-symbol and -rule are
superfluous since one may replace ix4 by exA4. In this way (3) follows from
(1) by the J-elimination rule.

One objection to the above treatment of the 1-symbol is that when the i-rule
is adjoined the concept of a term becomes undecidable since there may be no
way of knowing whether or not formulae (1) and (2) are theorems (cf.
Bernays [1958], page 49). For this reason the following approach is often
used. We write 31x4 as an abbreviation for

I(AAYY(A] = x = p))

where y is not free in 4. Thus 3!x4 may be read as ‘there exists a unique x
such that A’. Notice that 31xA is logically equivalent to the conjunction of
formulae (1) and (2). We adopt the 1-symbol as a new logical symbol of the
language and we enlarge the rules of formation of the language so that for
any quasi-formula 4 and any variable x, the expression 1x4 is a well-formed
quasi-lerm. We then adjoin all formulae of the following forms as additional
axioms of the theory:

4 Mxd — A(xA)
(5) 3 x4d - xd = ¢,

where 7 is some specified term of the language such as the symbol U in arith-
metic or the term denoting the empty set in set theory. Intuitively, these
axioms say that if there exists a unique x such that 4, then 1x4 designates
that unique object, and if not, then 1x4 designates whatever 7 designates.

Once again, however, if our theory is based on the e-calculus, there is no
need to adjoin the 1-symbol as a new logical symbol and adopt formulae (4)
and (5) as additional axioms, since the quasi 1-terms may be defined in terms
of the g-symbol as follows;

1A =p ex((A1xA A A v (T13Ix4A Ax = 1)),
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where ! is the term in {5). In other words we regard 1x4 as the format abbrevia-
tion of the expression on the right. With this definition of the :-symbol it is
easy to prove that all formulae of the forms (4) and (5) above are theorems
of the e-calculus and hence of our theory. To see this observe that any
formula of the form

(6) Ix((AxA A A V(XA AX = 1)

is a theorem of the e-calculus, and therefore by the 3-elimination rule and our
definition of 1x4, the formula

) BAlxA A AxA) v (13 xAd nxd = 1)
is a theorem. Formulae (4) and (5) follow from {7) by the tautology rule.

EXERCISE
Prove that any formula of the form (6) is a theorem of the -calculus,

4.2  Skolem functions

In §2 of this chapter we saw that by replacing the axioms of a theory &
by their Skolem resolutions and by adjoining the new Skolem functions to
the vocabulary one can sometimes find a proof of the consistency of & This
elimination of the existential quantifiers from the axioms of & also provides
a more practical formulation of the theory itself. For example, in set theory
instead of stating the power set axiom in the usual existential form,

() Vx3pwWe(zey oz © X),
it is preferable to state it in the form
{2) Vx¥z{z € n(x) < 2z € Xx),

where the new function symbol # is taken as a primitive {cf, the system of
Bernays {1958]). The availability of this symbol makes it possible to designate
within the theory the power set of any given set. If, however, the theory is
based on the e-calculus, there is no need to take the formula (2) instead of (1)
as an axiom, since we can define n(¢) for any ¢ as follows

() =preWWz(zey oz = 1)

Under this definition of =, formula (2) follows from (1) by the 3-elimination
rule. Thus, in general, if a theory &, is based on the e-calculus, the axioms
may be stated in the weaker existential form (or unreselved form) and the
Skolem functions for the existential variables may be introduced by explicit
definitions in terms of the e-symbol. By Theorem [V.4 it follows that the
introduction of these new function symbols does not essentially strengthen
the theory, since any formula not containing these symbols which is a theorem
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of 7, is a theorem of the corresponding theory & which is based on the
predicate calculus (assuming that the axioms of 7, are e-free). e
This method of eliminating existential quant:ﬁers by means of e-terms can
be used to simplify not only the axioms of .7' o but also the theorems For
exampie suppose the formula :
3) A Esz(z,e y HB)
is a theorem of some formalization of set theory, where B is a quaéx~formula
not containing a free occurrence of y. Formula (3) asserts that there exists a’
set y whose members are those entmes which satlsfy B. Usmg the terminology’
of Bourbaki (1954), We say ‘Bis collectivizing i m zh CTtis convenient, though'
not nécessaty, to have somé forma1 apparatus for deslgnatmg this set Such’
designations are pogsible if, for t:xam”ple the primitive’ symbols of- the theory
include the comprehensmn operator’ ~, where the term 28 denotes the set
whose members are ‘thé entities which satisfy B. 1, however the e-symbol is
available, the operator” ~ "need not be taken as a primitive; but can be'
defined explicitly as follows

@, . tBepotlzeyeB)

where B is any quasx-formula and y-any variable which does not oceur free:
in-B.-Then by formula (3) and the -3- ellmmatlon rule we obtam the formula

(5j - Vz(z €28 B)

which asserts that the term 2B does designate the requxred set, It is mterestmgi
to note that definition (4) may be used for any quasi-formula B, even if B
is not co!leetmzmg in z. For example, B may be the quasi-formula Tz ez
T_hx_s deﬁmtton of 2B does not introduce any contradictions, such as Russell's
paradox, since formula (5) depends on (3), i.e. on the fact that B is collec-’
tivizing in z. If B is not collectivizing in z, the expression 28 as defined by
(4) is still a well-formed term of the lariguage, but nothing very much can be
said about it {cf. Bourbaki [1954] p. 63). In this case 2B is a ‘null term’ (see!
Chapter I, page 54).

We shall return to this subject in a later section (see page 107} where a
formal system similar to that used by Bernays [1958] is presented in which the
operator ~ is taken as a prxmltwe symbol and Church’s schema -

Vz(z €8B — B)
is taken as an axiom schema.

4,3 Definability of indeterminate concepts

The above definition of the comprehension operator is used by both
Bourbaki [1954], p. 63, and Ackermann [1937-8]. Clearly, the 1-symbol

M.L—§
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could be used instead of the e-symbol in formulating this definition, since by
the axiom of extensionality,

YaVy(x = y «+V2(zex = z€y)),

formula (3) satisfies the uniqueness condition. However, if an existential
formula 3x4 does not satisfy the uniqueness condition, then in order to
designate some object which satisfies 4, one must use the e-symbol. In this
case the designation, ex4, has a certain degree of indeterminacy since as we
have observed before, nothing definite can be said about exA4 except that it
satisfies A if anything does. It more than one entity satisfies 4, then there is
no way of knowing exactly which of these objects ex4 designates. Occasion-
ally, it is desirable to define objects which have just this degree of indetermin-
acy. We shall now consider two such occasions.

In set theory, the concept of cardinal number is difficult to formulate
explicitly since the intended interpretation of this concept is rather indefinite,
All that we require of the definition is that the following formula be a
theorem
o VXVp(x ~ y <X = ),
where X and § are, respectively, the cardinal numbers of x and y, and the
expression X ~ y is an abbreviation of the assertion that there exists a one-
to-one correspondence between x and y, Various definitions of ™ can be
found in the literature, but probably the simplest is the following, which is
used by Bourbaki and Ackermann: .

(2) T=ppez(z ~ t),

where ¢ is any quasi term and z does not ocour free in 1. Using the fact that
~ Is an equivalence relation, it is a simple matter to prove (1). The proof
is as follows. Let s and ¢ be any two terms, Since ¢ ~ 7, then 3z(z ~ ¢), and
consequently, ez(z ~ 1) ~ ¢, i.e,

(3) P~

Similarly, we get

G} §~s.

From (3) and {(4) and the fact that ~ is an equivalence relation we obtain
(%) Fmlwr s~ '
On the other hand, the fact that ~ is an equivalence relation implies

(6) §~toaVzz ~ sz~ 1)

By axiom schema E2, we obtain
N Ve(z ~ 5 er 2 ~ 1) = g2(z ~ §) = gz{z ~ 1),
Therefore, (6) and (7) yield

(8) S~t-§= 0,
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Consequently, from (5) and (8) we get
® s~ted=1

Formula (1) now follows {rom (9) by the V-introduction rule.

This definition of cardinal number is an essentially indeterminate one since
nothing can be said about the set # in (2) except that it is equivalent to ¢ and
that it equals the cardinal number of any set which is equivalent to . It is
just this degree of indeterminacy which we want the concept of cardinal
number to possess. Ackermann [1937-8] has observed that for any equival-
ence relation ~, definition (2) can be used to specify a representative element
from each equivalence class of ~. This method of designating a completely
arbitrary representative of an equivalence class could have usefu] applications
in the formulation of various mathematical theories, particularly in the
introduction of ‘definitions by abstraction’ (cf. Beth [1959], pp. 91-95).

The basic indeterminacy of ¢-terms is also used by Carnap [1961] to over-
come certain difficulties which arise in the formulation of theories of empirical
science. Such theories include certain terms, called the ‘theoretical terms’ or
‘T-terms’, which represent the ‘unobservables’ of the theory (e.g. ‘tempera-
ture’, ‘electric field’, etc.). The interpretation of these terms is provided by the
postulates of the theory. These postulates are of two kinds, the ‘theoretical
postulates’ (‘T-postulates’) and the ‘correspondence postulates’ (‘C-postu-
lates’). However, these postulates do not provide a complete interpretation
of the T-terms ‘because the scientist can always add further C-postulates
(e.g., operational rules for Tterms) or T-postulates and thereby increase the
specification of the meanings of the T-terms’. Because of the imdeterminacy
of these terms, the following problem arises: how can one give explicit
definitions of the T-terms which satisfy the postulates without contributing
anything new to the factual content of the theory? Carnap solves this problem
by defining the T-terms as e-terms, thereby obtaining just the intended degree
of indeterminacy,

4.4 The ¢-symbol and the axiom of choice

Finally, the indeterminate nature of the e-symbol helps to explain the close
connection which exists between this symbol and the axiom of choice. The
axiom of choice differs from the other axioms of set theory in that these
other axioms (e.g., the axioms of power set, pairing, replacement, ete.) not
only assert the existence of a new set, but also specify the members of this set.
The axiom of choice, on the other hand, merely asserts the existence of a
selection set y for a given set x without actually specifying the members of ¥
Similarly, the quasi e-term zu{u € w) expresses a choice function for the set x
as the variable w ranges over x, but there is no way of knowing which
member of w is being selected. For these reasons the e-symbol and Q4 axioms
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are often regarded as logical counterparts of the axiom of choice. However,
it does not necessarily follow that the axiom of choice is derivable in a
formalization of set theory which is based on the e-calculus. For, suppose that
J is a set theory based on the predicate calculus, and &, is the corresponding
theory based on the g-calculus, i.e. & and &, have the same set of axioms.
Then by Theorem IV.4 (or the Second e-Theorem), if the axiom of choice is
not a theorem of &, then it is not a theorem of J, even though this latter
theory is based on the e-calculus.

The intuitive explanation of why the ¢-symbol and g-axioms do not neces-
sarily vield the axiom of choice is as follows. Although the quasi e-term
eu{u & w) can be used to make a simultaneous selection from each member of
a given set x, it does not necessarily follow that there exists a set y consisting
of these selected entities. The axiom of choice, on the other hand, does assert
the existence of the selection set y. Wang [1935] has observed that if the
formula

(H Yx3yVz(z ey e» Iwlwe x Az = eu(u e w)))

is a theorem of J°,, then the ¢-axioms do yield the axiom of choice, Clearly,
formula (1) asserts that for any x, there exists a set y whose members are the
selected entities from each member of x.

In most set theories, the axioms include the instances of a certain axiom
schema, usually referred to as the axiom schema of replacement, If the theory
is based on the g-calculus, then the question of the deducibility of the axiom
of choice usually hinges on whether the axioms include all the instances of
this schema, or just those instances which are e-free. In the former case, the
e-symbol does provide the axiom of choice, but in the latter case it does not,

For example, consider the set theory of Bourbaki [1954]. This system is
based on an e-caleulus which is virtually equivalent to ours, (The differences
are that the Greek lefter 7, instead of &, is used for the selection operator,
and the quantifiers are defined in terms of 7 instead of being taken as primitive
symbols.) The theory has the following axiom schema:

S8 YuwdyVz{d — ze y) » VxDVz(z ey — Iw(we x A 4)),

where A is any quasi-formula not containing free occurrences of x and y,
and w, x, y, and z are all distinct. Letting A4 be the quasi-formula z = st € w),
S8 yields the following theorem (cf. Bourbaki, p. 66, C53):

YxdypVz(zey «> w(wex Az = eu(u € w))).

Consequently, the axiom of choice is derivable in this system. On the other
hand, if the axiom schema S8 were subject to the restriction that the quasi-
formula A must be e-free, then all the axioms would be e-free, and by the
Second e-Theorem the axiom of choice would not be derivable in this system
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(since it is known that this axiom is independent of the other axioms of a set
theory based on the predicate calculus).

Wang [1955], pp. 66-67 points out another distinction between the -
symbol and the axiom of choice:

‘There are also cases where, although the e-rule would yield the desired
result, the axiom of choice would not. For example, in the Zermelo theory
we can infer “(x)R(x,epRxy)” from “(x}(Zy)Rxy” by the grule, but we can-
not infer “there exists f, (x)R(x,/x)” from “(x)(Iy)Rxy™ by the axiom of
choice, on account of the absence of a universal set in Zermelo’s theory.’

In other words, the e-symbol provides us with a ‘universal choice function’
which is defined on the class of all sets, The existence of such a function is
normally provided by only the strongest forms of the axiom of choice (e.g.,
axiom E in Gddel [1940] and axiom A, in Bernays [19587). We shall return
to this subject in § 5.2.

In conclusion, if 7, is some theory based on the e-calculus, then various
simplifying definitions and processes can be formufated within .7, which
could not be fornulated within the corresponding theory 7, based on the
predicate calculus. However, if all the axioms of &, are e-free, then by the
eliminability of the e-symbol, every e-free theorem of 7, is also a theorem of
. Thus the introduction of the e-symbol and the e-axioms can simplify the
formulation of a theory without enlarging its set of theorems in any essential
way, and in particular, without introducing any inconsistency.

On the other hand, if the axioms of &, include alf the instances of some
axiom schema, such as the axiom schema of replacement in set theory, then
the Second e-Theorem is not applicable and the theory 77, is not necessarily
consistent relative to the consistency of &. Nevertheless, we shall show in
§ 5.2 that in the case of set theory the relative consistency of &, with respect
to & still holds. This provides a positive solution to the following problem,
raised by Fraenkel and Bar-Hillel [1958], p. 185:

“This relative consistency need no longer hold if the axioms of the theory
do also contain s-terms; indeed, the consistency of every set theory in which
the axiom schema of comprehension (in any of its variants) is to hold also for
conditions containing s-terms relative to that in which this is not assumed,
has not vet been proved.’

5.1 The predicate calculus with class operator and choice function

In § 4.2 we observed that in a set theory based on the e-calculus the operator
can be defined in terms of the e-symbol in such a way that the formula

(1 Yx(x e £4 < A4)

A
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is derivable from
IWx(x ey« 4).

It is often convenient, however, to take the symbol ~ as a primitive and to
adopt (1) as an axiom schema. In such a system the expressions of the form
%A, which we call class-terms, must be treated with some caution so as to
avoid the paradoxes, One common way of doing this is to formulate the
grammar of the language in such a way that class-terms may only appear on
the right hand side of the membership symbol e (cf. Bernays [1958] p. 48).
Such a system can be further strengthened by taking as a primitive a choice
function whose arguments are class ferms, For example, Bernays [1958]
takes the symbol ¢ as a primitive and adopts the following formulae as
axioms:

A aeC - o(C)eC,

A A = B — a(4) = o(B),

where g is a free set variable, and 4, B, and C are free class variables. In
Bernays’ system of set theory, these two axioms provide a very strong form
of the axiom of choice.

In this section we define a formal system, C(¥7), which mcorporatcs the
class operator ~ and the choice function e, and investigate the relationship
between this system and the e-calculus,

We first define the class-language, % (¥}, which is determined by a given
vocabulary ¥, Let ¥ be any vocabulary, The set of symbols of & (#7) is the
same as that of (¥ except that we exclude the e-symbol and include the
symbols g, ~, and ¢ as logical symbols. The rules of formation for defining
the quasi-terms and quasi-formula of the language are the same as for £(¥")
(see page 11) except that we replace G8 (the rule for forming quasi e-terms)
by the following:

G8°. If ¢ is a quasi-term, A a guasi-formula, and x any variable, then ¢ € £4
is a quasi-formula, and o(£4) is a quasi-term.

Any expression of the form 24 is called a guasi class-term. The quasi class-
terms are not included among the quasi-terms of the language, and to avoid
any confusion we shall refer to the quasi-terms of the language as guasi set-
terms. As can be seen from the above rule a quasi class-term £4 can occur
within a well-formed expression in only two possible contexts: (i) 1 e 84
and (ii) o(£4). As usual, we shall use the letters s and 7 to denote arbitrary
quasi set-terms. The quasi class-terms will be denoted by the letters S and 7.
For any two quast class-terms S and T we write

(§=1T) for VzzeSeozeT),

where z is some variable which does not occur free in S or T,
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Free and bound occurrences of variables are defined in the usual way,
where any occurrence of x in £4 is bound, and we define a set-term, class-
term, and formula as a quasi set-term, quasi class-term, or guasi- formula
respectively, in which no variable occurs free.

We now define the formal system C(¥7), called the class calculus for the
vocabulary . The (logical) axioms of C(¥") are all formulae of #,(¥") which
are instances of axiom schemata PI-P10, Q1-Q3, El, E3 (see page 39) as
well as the following three schemata:

Cs te A « A7,
ol Ix(x e 8) = o(S)e S,
a2 S = T g(8) = o(T).

The rules of inference of the dlass calculus are the same as for the predicate
calculus, namely, the modus ponens rule and the 3-rule, The deductions in
C{(¥") are defined exactly as they were for the predicate calculus by first
defining a derivation (see page 60). To denote that A is deducible from X
in C(¥") we write X by 4, or just X ke A, The usual derived rules of in-
ference can be established for C(¥7) as they were for PC(¥).

THEOREM IV.5. Any formulae of the following forms are theorems of the class
calculus:

(i) IxA - Alo(£4)),

{i1) Yz(AZ «+ BY) — o{%A) = o(PB).

Proof. Throughout the proof we shall write | instead of F..
{(i): Let ¢ be some individual symbol not appearing in A.

FaglAder AS Cs
Faefd— 3x(xe tA) Q3 and P3
F3x(x e £4) » o(24) e 24 al

F o(24) € 24 & A(o(24)) Cs

F A - A(g(RA4)) tautology rule
Fdxd - A(o(2A)) J-rule.

(ii): Let a be some individual symbol not appearing in A4 or B, By axiom
schemata Q1 and Q3,

F Vz(AX «» BY) — (45 o BY).

But by CS,
Faefd o Al
FaePB«r Bl

Hence, by the tautology rule,
FVz{A] o B)) - (a e £4A & a & §B).
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By the V-rule and the deﬂmtlon of =g

_ : }- Vz(A‘ B’) - JBA j)B
Consequently, by &2, '
| I* (A7 B”) -+ U(QA) = o(_ﬁB)

The above theorem indicates that there is a close connection between the
system C(¥") and the e-calculus. Of course, this: refationship is not un-
expected in view of our semantic interpretation of the e-symbol as a choice
function. In order to investigate this relationship more rigorously we define
a transform operation which translates a formula of £(¥") into a formula

£ (¥ and another transform operation which trans]ales a formula Z,(¥")

into a formula of Z{¥").
- For any formula B of #(¥") the C-transform of B is that formula of £ ,(¥")

‘which is-obtained from B by replacing each quasi e-term exA4 in B by a(24).
‘Conversely, for any formula B of & ,(¥") the e-transform of B is that formula
‘of #(¥7) which is .obtained from B by eliminating the quasi class-terms in B
as follows: (i) replace each expression of the form (r € £4) by A7 (if 7 is not
free for x in A, relabel the bound variables in 4 so that it is free for x); (ii)
replace each expression of the form ¢(%4) by ex4.

TueorEM IV.6, The c-transform of an msmnce of CS, al, or o2 is a theorem
of the e-calculus.

Proof. (i): Clearly, the e-transform of an instance of CS isa theorem of the
e-calculus since it has the form

Vy(d — A).
(if): An instance of ¢l has the fornr -
1)) Ix(x e PB) - a(PB) e §B.
The e-transform of (1) has the form
vy 3[BT - [B Ly

which by the Q4 axiom schema is clearly a theorem of the e-calculus.
{iif): An instance of ¢2 has the form .

Vz(ze 24 +»z € §B) — G(S’.A) = o{§B).
Clearly, by axiom schema E2, the e-transform of this is a theorem of the

¢-calculus,

THEoREM IV.7. (i) If B is a theorem of the class calcu!us then the e-transform
of B is a theorem of the e-ealculus. SR
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(i) If B is a theorem of the s-calculus, then the C-transform of B is a theorem
of the class caleulus.

Proof. (i): The proof follows immediately by induction on the length of the
proof of B in C(¥7) since by Theorem IV.6 the e-transform of every axiom
of C(¥") is a theorem of the e-calculus, modus ponens is a rule of the &-
calculus, and the 3-rule is a derived rule in the e-calculus.

(ii): Similarly, the proof follows immediately by induction on the length of
the proof of B, since the C-transform of every axiom of the ¢-calculus is a
theorem of C(¥7) by Theorem 1V.5, and modus ponens is a rule of inference
of C(¥").

Toeorem IV.8 (Eliminability of ~ and o). Suppose X is a set of formulae
of & and A is a formula of ¥, such that the symbols ~ and o do not appear
in A or in any member of X. If X I A, then X by A,

Progf. Since X k. A, then there exist formulae By, ..., B, of X such that
By - ... > B, — A4 is a theorem of C{¥"). We shall denote this formula
by B. Since B does not contain ~ or g, then the g-transform of B is 8, and
therefore by Theorem IV.7 B is a theorem of the e-calculus, Finally by the
Second &-Theorem B is a theorem of the predicate calculus. Hence X Fpn 4

The class calculus can be used as the logicai basis for formalizing set theory.
In this case the rules of formation of % are extended to include quasi for-
mulae of the form s e t. (Alternatively, two distinct symbols e and # can be
used for set membership and class membership, respectively.) Although the
symbol ¢ can have only quasi class-terms as its arguments, we can extend
the use of this symbol in practice by writing

o(t) for o(f(xe)),

for any quasi set-term ¢, where x does not occur free in 7. Using Theorem
IV.5, it follows that for any set-terms s and ¢:

Fix(xer) — o(t) e,
Fs =t oa(s) = o)

Although the symbol ¢ provides the system with a “universal choice func-
tion’, in view of Theorem 1V.8 it does not necessarily follow that the axiom
of choice is a theorem of set theory based on the class calculus. Clearly, the
relationship between the symbol ¢ and the axiom of choice is similar to the
relationship between the e-symbol and the axiom of choice (cf. §4.4). If the
axioms of the theory include those instances of the axiom schema of
replacement which contain ¢, then the axiom of choice is derivable, For, the
formula

{1 o VxdpVz(zey er Iw(we x Az = o(w)))
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together with ¢l and o2 does yield the axiom of choice, and (1) is an im-
mediate consequence of the unlimited axiom schema of replacement, In the
set theory of Bernays [1958], the axioms A’ and A,” do yield the axiom of
choice because the instances of his axiom schema A3 include formulae which
contain the symbol o.

5.2 The relative consistency of set theory based on the s-calculus

‘We now turn to the problem raised at the end of § 4.4—namely, whether
a set theory based on the g-calculus with an unrestricted axiom schema of
replacement is consistent relative to the consistency of the same theory based
on the predicate calculus.

Let ZF be a set theory, based on the predicate calculus using set-variables
only (i.e., no class-terms or class-variables), whose axioms consist of the
axioms of extensionality, pairing, union-set, power-set, infinity, foundation,
and the axiom schema of replacement. Let ZF, be the corresponding theory
based on the g-calculus, where an instance of the axiom schema of replace-
ment may contain the e-symbol. We wish to prove that if ZF is consistent,
then ZF, is also consistent.

Let B,’ be the system of Bernays [1958] with axioms A" and A,”. Let B,
be the system of Bernays where the axioms A," and A" are replaced by

A, a#0—olaea

(In B, the arguments of the primitive symbol ¢ are set-terms, and in B,’
the arguments are class-terms.) Bernays has shown (pp. 200-207) that under
a suitable definition of ¢(4), axioms A," and A,” are derivable from A, and
the axiom of foundation,

Let G’ be the set theory of Godel [1940] with axioms A, B, C, D, and E,
and let G be the same theory without Axiom E, Axiom E, the axiom of choice,
is the formula

3AUN(A) AVX(IEM(x) = Iy € X ALpxD € A))),
where

Unt(A) =p VuVoiw({ou) e AA{wid e A) — v = w),
Em(x) =pYu (e € x),

and A is a class-variable.

Suppose that B is an e-free theorem of ZF,. It can be shown that the
C-transform of any axiom of ZF, is a theorem of B,". Hence by Theorem
IV.7(1), B is a theorem of B,’. Consequently, using Bernays’ definition of
o, B is a theorem of B,. It can then be shown that B is a theorem of G'.
Consequently, if G’ is consistent, then ZF, is also consistent. But by Godel's
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proof [1940] of the relative consistency of the axiom of choice, G is consistent
if G is. Finally, using the method of Shoeenfield [1954], G is consistent
relative to the consistency of ZF. This completes the argument.

One further question remains, Is every e-free theorem of ZF, also a
theorem of ZF with the axiom of choice? Or, in other words, are the e-axioms
and the unrestricted axiom schema of replacement equivalent to the axiom
of choice and the axiom schema of replacement? The answer to this problem
seems to depend on whether the universal or the local version of the axiom
of choice is used. These two versions of the axiom are defined by Lévy [1961]
as follows. The local version of the axiom of choice is the formula

(1 Vx3fVy(yex -y =0vfyey)
The universal axiom of choice is obtained by taking the formula
(2) Vx(x # 0 = a(x) € x)

as an axiom and allowing the instances of the axiom schema of replacement
to include the primitive symbol ¢. Let ZF” be the theory obtained from ZF
by adjoining the local version of the axiom of choice, and let ZF, be the
theory obtained from ZF by adjoining the universal version. The above
results can be used to show that the set of e-free theorems of ZF, coincides
with the set of o-free theorems of ZF,. However, it is not known whether

this set coincides with the set of theorems of ZF'. For a partial solution of

this problem, see Lévy [1961].



CHAPTER V

THE CUT ELIMINATION THEOREM

1 'The sequent calculus

In this chapter we define a new formal system called the sequent calculus,
This system resembles Gentzen’s system LK [1934-5] except that it in-
corporates the e-symbol and the identity symbol. The main theorem of this
chapter, the Cut Elimination Theorem can be regarded as an analogue of
Gentzen's Hauptsaiz. We shall use this theorem to provide new proofs of the
g-Theorems (except that in the case of the Second e-Theorem we consider
an g-calculus in which the E2-axioms are not used). Although we are in effect
only giving alternative proofs of some of the theorems of Chapter IFI, this
new approach sheds some light on the relationship between Gentzen's
Hauptsatz and Hilbert’s ¢-Theorems. ’

Throughout this chapter ¥  denotes some arbitrary vocabulary, and %
denotes the language determined by #7.

in the sequent calculus, the rules of inference apply not to formulae, but
rather to more complicated formal objects called ‘sequents’. A sequent of the

language & is an expression of the form A4,,..., 4, where the 4, are for- ~

mulae of &, n = 0, and the symbol *,” (comma) is a formal separation symbol
of the language % (page 10). A formula belongs to, or is a member of, a
sequent 4y, ..., A, if it is one of the 4;. A sequent is e-free if every formula
belonging to that sequent is e-free. The capital Greek letters I", A, ®, and A
are used as syntactic variables for sequents, If I" and A denote two non-empty
sequents, then clearly I', A denotes a sequent, By an abuse of notation we
shall also write I', A when either I or A is empty. If T is empty, then I', A
denotes the sequent A, and vice versa when A is empty. Notice that a formula
is a sequent. This situation should not lead to any confusion, however. For
any sequent A, we write A* to denote the set of formulae which belong to A.
Thus if A is 4, B, 4, 4, then A* = {4, B}.

A non-empty sequent 4, ..., 4, has the same semantic interpretation
as the formula 4, A ... A A4,. The empty sequent is given the truth value 1
(true). We shall not, however, be concerned with the semantics of sequents
except as an intuitive guide to our understanding of the axioms and rules of
inference of the system.

The sequent calculus deals with refutations rather than deductions, In-
tuitively, we can regard a refutation of A as a formal demonstration of the
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inconsistency of the set A*, Each axiom is an invalid sequent, and each rule
of inference leads from invalid sequents to invalid sequents. When we have
defined the notion of a refutation, we can then define a ‘deduction’ of 4 from
X as a refutation of some sequent 714, A where A* € X. In particular a
‘proof’ of 4 is a refutation of the sequent 714,

2 The axioms and rules of inference of the sequent calculus
A sequent A is an axiom of the sequent calcuius if either

(i) the formula /f belongs to A, or
(ii) for some atom A, both 714 and A belong to A, or
(iii) a formula of the form —1(r = 1) belongs to A.

If A satisfies either (i) or (i) above, it is called a C-axiom.
In defining the rules of inference we use the customary schematic notation,
Thus to denote that I' ‘follows’ by some rule of inference from A we write
A

r

and to denote that ¥" ‘follows’ by some rule of inference from A; and A, we
write ‘
A, A,
T
The sequent written below the line is called the conclusion of that rule of
inference, and the formulafe) written above the line the premiss(es).
The rules of inference are as follows:

_AT

1714, T
o -rule “, T

o, I

o,-rule % I

a, T
Bla I ﬁz: r

BT

0, T

T
5(e), T

a,7T _
Ms=0HT 4LT

*r

-1 1-rule

B-rule
p-rule
d-rule

El-rule
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AT AT
cut-rule B —E—

r
structure rule E, where I'* = A¥*

Restriction. In the El-rule, A is an atom and x any variable not having a free
occurrence in A within the scope of an e-symbol.

Notice that the f-rule, El-rule, and cut rule all have two premisses and the
remaining rules have only one, The structure rule is a very useful one since
it permits us to add new members to a sequent, to rearrange the order of
the members of a sequent, and to remove repetitions, Thus the sequent
A, B, C follows from the sequent C, C, B by the structure rule. In each of
the above rules the specified formula in the conclusion is called the major
Jormula, and the specified formula(e) in the premiss(es) the minor formula(e).
Thus in the application of the f-rule by which 4 — B, C, D follows from
4, C, D and B, C, D, the formula 4 -+ B is the major formula, and the
formulae 714 and B are the minor formulae, An application of the structure
rule has no major or minor formulae, and an application of the cut rule has
ne major formula. In any application of the cut rule the minor formula
which was denoted above by A is called the cut formula.

EXERCISE :

Let T, A,, and A, be any three sequents, Suppose that I' follows by
one of the above rules of inference from A, (or from A, and A,). Prove
that if A* F, f (and A,* . ), then T* F, {. (cf. Theorem 11.12.)

2.1 Refutations

A refuration of the sequent A in the sequent calculus is any sequence of
sequents such that the last member of the sequence is A and each member of
the sequence either is an axiom or follows by some rule of inference from a
preceding member {or from preceding members) of the sequence. A refutation
in which the cut rule is not used is called a normal refutation. If there exists a
refutation of A, we say A is refutable and denote this fact by writing Ref(A).
Furthermore, if there exists a normal refutation of A, we write norm-Ref(A).

In order to show that the sequent calculus fits our general definition of a
formal system, we define the notion of a deduction of A from X as follows:
For any formula A4 {of 2£(¥") and any set X of formulae {of £(¥7}) the
deductions of A from X in the sequent calculus (for £(¥7)) are the refutations
of sequents of the form ™A, A, where A* = X, Thus a proof of 4 is a refuta-

tien of the sequent 1 A.
By defining a refutation as a sequence of sequents we encounter a nota-
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tional ambiguity, since the expression (A, . .., A,> could mean the sequence
whose members are the sequents A, and A,, ete., or it could mean the sequence
whose only member is the sequent A,,..., A, To avoid such ambiguity

we shall denote a sequence of sequents by inserting a semi-colon between
each member of the sequence. Thus the expression

<r1; v ';PJII;A’F>

denotes a sequence of m + 1 sequents where for each i = 1,...,m, T is
the /th member, and the sequent A, T is the last member,

Having defined the notions of a refutation and a normal refutation, we
can now give the precise statement of the major theorem of this chapter.

THe CuT ELIMINATION THEOREM. For any e-free sequent A, if Ref(A),
then norm-Ref(A).

In the next section we shall see why the notion of a normal refutation is so
important,

3 The subformula property of normal refutations

The notion of an immediate logical subformula is defined by the following
rules.

I. A Is an immediate logical subformula of 1171 4.

2. For i = 1,2, o is an immediate logical subformula of ¢, and §; is an
immediate logical subformula of 8.

3. For any term ¢, y(¢) is an immediate logical subformula of y, and 8(z) is an
immediate logical subformula of &.

4. For any formulae 4 and B, 4 is an immediate logical subformula of B only
if it is so by virtue of one of the above rules.

A formula A is said to be a logical subformula of B if and only if there exists
a finite sequence of formulae whose first member is B and last member is A4,
such that every member of the sequence, except the first, is an immediate
logical subformula of the preceding member. (Since the sequence may have
only one member, then any formula is a logical subformula of itself.)

Now consider the rules of inference of the sequent calculus. Except in the
case of the cut rute and the El-rule, any formula which belongs to the premiss
of a rule of inference is a logical subformula of some formula which belongs
to the conclusion. In the case of the El-rule every formula which belongs to
the premiss is either the negation of an atom or a logical subformula of some
formula which belongs to the conclusion. These facts yield ‘the following
subformula property of normal refutations:
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If & is a normal refutation of A, then every formula in & (i.e., every for-
mula which belongs to some sequent of @} is either (i) the negation of an
atom, or (it) a logical subformula of some formula belonging to A.

Thus by proving the Cut Elimination Theorem, we can show that for every
refutable e-free A, there exists a refutation whose formulae are ‘no more
complicated’ than those which belong to A,

3.1 The eliminability of the identity symbol
In order to demonstrate the usefulness of the subformula property we shall
prove the following theorem concerning the eliminability of the identity-

symbol from normal refutations.
A sequent is said to be identity-free if all its members are identity-free,

THEOREM V.1, For any identity-free sequent A, if norm-Ref A, then there
exists a normal refutation of A in which every sequent is identity-free.

Proof. To prove the theorem it is sufficient to prove that there exists a normal
refutation (A ;.. .; A, of A, where each A, either is a C-axiom (see page 115)
or follows by some rule other than the El-rule. For in such a refutation, the
identity symbol plays no essential role, and hence every occurrence of a
quasi-formula of the form s = ¢ can be replaced by the formula .,

The proof hinges on the fact that if 4 is a subformula of some identity-free
formula B, then its skeleton A (p.66) is identity-free. Let {I'y;...; I,> be
any normal refutation of A. By the subformula property of normal refuta-
tions, for any formula 4 in the Iy, if the skeleton of 4 is not identity free,
then A4 must be the negation of an atom and hence of the form (s = 1),
Now for each i = 1,...,n let A; be obtained from I'; by replacing every
member of T'; of the form 71(¢ = ¢) by /, and by removing every member of
I'; of the form (s == ¢), where s and ¢ are different. Then the scquence
{Ay;...; ALy is the required refutation of A, For, if T, is an axiom, then A,
is a C-axiom; if T; follows from I'; and I by the El-rule, then 4, follows
by the structure rule from either A; or A;; and if T, follows by any other
rule of inference, then A, follows by that same rule.

This theorem will be used later, in conjunction with the Cut Elimination
Theorem, to give an alternative proof of the eliminability of the identity
symbol from the predicate calculus.

4 The contradiction rule 7

In this section we shall prove the useful fact that if for some formula 4,
both 4 and 714 occur in A, then norm-Ref(A). The proof of this fact depends
on the following notion of the index of a formula or term.
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By the skeleton 4™ of any formula or term 4 we understand that ex-
pression which is obtained from A by replacing every subterm of 4 by q,
(cf. p. 66). We now define the index of any formula or term to be the length
of its skeleton, and we denote the index of 4 by ind(A). Clearly the index
function possesses the following properties:

KI1. ind(A) < ind(MA);

K2. If 4 is an immediate logical subformula of B, then ind(A4) < ind(B);

K3. if 4" is obtained from 4 by replacing every occurrence of some ferm ¢
by s, then ind(4") = ind(A);

K4. if eyB is an e-term of the form [p]F and p is subordinate to QOxA, then
ind(eyB) + 2 < ind(QxA).

Thus the index function, like the rank function in Chapter I, is a useful
measure of the complexity of any term or formula.

THEOREM V.2 (The contradiction rule). For any sequent A and any formula
4, if A and A belong to A, then norm-Ref(A).

FProof. The proof is by induction on the index of the formula 714, At each
stage of the induction it is sufficient to prove either norm-Ref(714,4) or
norm-Ref(A4,714), since A follows from each of the sequents 4,714 and
4, 4 by the structure rule. By our unifying classification of formulae
(page 14) one of the following four cases must hold.

Case 1. A is an atom: In this case A is an axiom and therefore norm-Ref(A).
Case 2. A is of the form —1B: Since ind(T1B) < ind(T14), we have norm-
Ref(B,71B) by the induction hypothesis. Hence norm-Ref(T1 1B, 718) by
the 71 7-rule,

Case 3. One of the two formulae, A and ™A, is a conjunctive formula o and
the other is a disjunctive formula §: By the duality principle (page 16) o,
and f3; are contradictory and a, and f, are contradictory. Hence by the
induction hypothesis we have

norm-Ref(f;,;,2;) and

norm-Ref(f,,00,2,).

Hence norm-Ref(B,a,,a,) by the S-rule. The desired result, norm-Ref(a,f),
now follows by applications of the structure rule, the « y-Tule, and the a,-rule.
Case 4. One of the two formulae, 4 and T A, is a universal Jormula vy and the
other is an existential formula §: By the duality principle y(e8) and 8(ed) are
contradictory. Hence by the induction hypothesis we have norm-Ref(y(ed),
8(ed)). The desired result, norm-Ref(8,y) now follows by applications of the
y-rule, structure rule, and d-rule,

THEOREM V.3. For any sequent A, if A% is truth functionally invalid, then
norm-Ref(A).

M.L,—9
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Proof. The proof is practically identical to the proof of Theorem II.13.

CoroOLLARY (The Tautology Theorem). If A is a taufology, then norm-
Ref(1A). :

EXERCISE

Prove that if 4 is any axiom of the e-calculus other than an E2-axiom,
then norm-Ref( 1 4).

4.1 The relationship between the sequent calculus and e-calculus

THEOREM V.4. For any sequent A and any formula A, Ref(T1A,A) iff there
exists a deduction of A from A* in the g-caleulus in which no E2-axioms are
used.

Proof. (i) Let{T,;...; T, be some refutation of ™14, A. It is easy to prove
by induction that for each i = 1, ..., m there is a deduction of / from I';*
in the e-calculus without the E2-axioms. (See the exercise at the end of § 2,
page 116.) Hence {14} u A* F, f (without E2), and therefore A*F, A (with-
out E2) by the f-rule,

(ii) Conversely, assume that {(4,,..., 4,> is a deduction of A from A*
in the e-calculus (without E2). We shall prove by induction that for each
i=1,...,n, Ref(T14,A}). One of the following three cases must hold.
Case I, A; is an axiom (of the e-calewlus) other than an E2-axiom: Then
Ref(T14;) by the exercise at the end of the last section. Hence Ref{ 14,A)
by the siructure rule.

Case 2. A, is a member of A*: Then Ref{ 74,A) by the contradiction rule.
Case 3. A, follows from A; and A, by modus ponens: Then A, is of the form
A; = A;. By the induction hypothesis we have

(n Ref(T14,,A) and
(2) Ref(T1(4; — A)4).
The structure rule applied to (1) gives

3 Ref(MA;,14,4),
and by the contradiction rule, we have

4 Ref(A,714,.4).

The f-rule applied to (3} and (4) gives )

%) ' Ref(d; — A, 1A4L4),

and the structure rule applied to (2) gives

(6) R@f(_i(AJ - Al‘):—]AivA)'
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Finally, the cut rule applied 1o (5) and (6) gives
N Ref(1A4,,4).

THEOREM V.5, Let A be any proper formula and A any sequent whose
members are proper formulae. If norm-Ref (™1 4,4), then A* b A,

Proof. Let {I'y;...;T,»> be any normal refutation of 714,A. Since every
subformula of a proper formula is proper (and atoms are proper), then by
the subformula property of normal refutations every member of I'; is proper,
for each i = 1,...,n Hence, as in the proof of Theorem V.4(i), one can
prove that T)*¥ . fforeachi=1,...,m.

§ k, F-refutations

We now turn fo the main problem, that of proving the eliminability of the
cut rule. In order to prove this result by an inductive argument we need the
following definition.

For any k& = 1 and any finite collection F, of formulae with index k, a
k, Fi-refutation is a refutation {I",; . . . ; [,> such that a sequent T, can follow
by the cut rule from some I'; and I'; only if the cut formula A in that rule
satisfies the following conditions: (1) ind(A) < k and (ii) if ind(4)} = k, then
A is a member of F,. If there cxists a k, F-refatation of A, we write k, £~
Ref(A}. Obviously, if there exists a refutation of A, then there existsa kb > 1
and a finite collection F, of formula of index & such that k, F,-Ref(A). Since
every formula has index =1, then a 1, @-refutation is a normal refutation.
Consequently, in order to prove the Cut Elimination Theorem it is sufficient
to prove that if k, {A} w F,-Ref(A), for some e-free A, then &, Fi-Ref(A).

Since our definition of a k, F-refutation imposes a liniit on the index of
any formula which is the minor formula in an application of the cut rule,
we have the following medified subformula property for k, F,-refutations:

If # is a k, F-refutation of A, then for any formula 4 which belongs to
some sequent of &, either (i) A4 is a subformula of some member of A, or
(i) 4 is the negation of an atom, or (iii) ind(4) < & + 1.

5.1 The invertibility of the logical rules

Our next theorem states that the ™3 7-rule, a-rules, S-rule, y-rule, and
d-rule are, in a certain sense, invertible, The proof of this theorem depends
on the fact that a non-atomic formula 4 can be the major formula in one and
only one type of rule. For example, if 4 is a conjunctive formula, it can be
the major formula only in the a-rules, and if A4 is disjunctive, only in the
B-rule,

THEOREM V.6. For any sequent A, and any formula A, conjunctive formula o,
disjunctive formula §3, wniversal formula v, and existential formula 6:
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(i) k, F-Ref(114,A) iff k, F-Ref(A,A);
)k, FRef(aA) iff k, Fi-Ref (2,83
(iil) &, Fi-Ref(B,AY iff k, F-Ref(f1,A) and k, F-Ref(B,,A);
(iv) k, Fi=Ref(y,A) iff there exists terms t, ..., I, such that
k& Fk"Ref(?(tl): v '}’(1,,),A);
vy kK, F-Ref(8,4A) iff k, F\- Ref{8(e5),4).

Proof, We shall prove only part {iv), since the other four parts can be proved
in a similar fashion. .

(iv) First assume k&, F-Ref(p(t,), . . ., v(1,),A). Then by repeated applica-
tions of the y-rule and the structure rule we obtain a k, F-refutation of y, A.

Conversely, let <T';;...; T be a &, F, refutation of v, A, For nota-
tional simplicity suppose that y is the formula Vx4, (The proof is identical
for the case where y is of the form ™3x4.) Let ¢, ..., ¢, be all those terms ¢
such that, for some j = 1, ..., m, I'; is of the form A4(), A. (If there are no
such 7, let 1, be a,.) For any sequent A, let A? denote the sequent obtained
from A by removing every occurrence of VxA. For each i = 1,...,m let
I/ be the sequent I';°, A(t,), ..., A(t,). We now claim that the sequence of
sequents

<F1r; Ve Fmr; A(Fl)’ ey A(tu)7A>

is a k, F-refutation of A(1,), . . . , A(t,), A. Since I, is the sequent A®, A(#,),
v, A, then the final sequent A{t), ..., A(r,), A follows from I, by
the structure rule. The justifications for the I') are as follows, If T'; is an
axiom, then clearly T'; is also an axiom since Yx4 is neither an atom nor the
negation of an atom. Suppose I'; follows from T'; (and I'}) by some rule of
inference R. One of the following cases must hold.

Case I. The formula VxA is neither a major nor minor formula in this gpplica-
tion of the rule R: Then I'Y follows from I}’ (and I'}') by the same rule R.
(This includes the case where R is the structure rule.)

Case 2. The formula YxA is the major formula in this application of the rule
R: Then R must be the y-rule, I'; is of the form Vx4, A, and I'; of the form
A(ry, A. Hence 7 is one of the terms 74, . . ., 1,,, and therefore I";’ follows from
T';' by the structure rule.

Case 3. The formula ¥YxA is a minor _formula in this application of the rule R:
Then I';’ follows from I'}’ (or I'y') by the structure rule.

EXERCISE

Show how the required refutations for the other four parts of Theorem
V.6 can be constructed.

The technique employed in proving Theorem V.6 can be used to prove the
fotlowing theorem,
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Tureorem V.7. For any atom A, if k, F~Ref(A,A) and k, F,-Ref{4,4),
then k, Fi-Ref(A).

Proof. (Note: we cannot apply the cut rule to prove this theorem since the

index of A may be greater than k.)

Case 1. A is the formuda f: Let (T;;...;,> be any k, F-refutation of

"4, A. For each i = 1, ..., m, let T,° be the sequent obtained from I'; by

removing each occurrence of 71f. Then <I",%;...; % A> is a k, Fy-refuta-

tion of A,

Case 2. A is not the formula f: Let {¥';; .. .; T, be any k, F-refutation of

AA and {Ay;...; Ay any k, Frefutation of 14, A. For each i = 1,
., m, let T';% be the sequent obtained from I'; by removing each occurrence

of 4 and let T, be the sequent I',%, A. Then the sequence

A s ATy T A

is a k, Fi-refutation of A. The proof of this assertion is identical to the proof
of Theorem V.6, except for the following two changes: (1) Case 2 in the
proof of Theorem V.6 does not apply since no rule of inference has an atom
as its major formula, and (2) if ['; is an axiom by virtue of the fact that both
A and 714 occur in it, then I') follows from A, (i.e., "1 4,A) by the structure
rule. '

In order to prove the Cut Elimination Theorem we would like to improve
on Theorem V.6(v) by showing that if k, F,-Ref(3,A), then for any term 1,
k, F-Ref(8(s),A). The following theorem shows that this is indeed the case
provided that certain conditions are satisfied.

THEOREM V.8, Let 8 be any existential formula and A any e-free sequent.
Suppose k, F.-Ref(8,A), where ind(8) = k and the length of § is at least as
great as the length of any member of F,. Then for any term t,

k, F-Ref(d(1),A).

Proof. Since k, F,-Ref(8,4), then by Theorem V.6(v) k, F,-Ref(5(z6),A).
Recall that if § is 3p8, then &(ed) is B(eyB), and if § is T\VyC, then &(ed) is
1C(ep1C). Thus the term denoted by 6 has the same index and the same
length as §. Let 8(ed) be the formula B(eyB) and let {I',;...; > be the
k, F-refutation of B{zyB),A. Notice that by our assumption on the length of
& the term ¢pB does not occur in any member of F,. Foreachi=1,...,m,
let I',° be the sequent that we obtain from T, by replacing each occurrence
of eyB (in the members of I';) by the term r. Let T} be the sequent I')°, B(1),
We shall prove that the sequence ("5, .. ; T, B(),A) is a k, Fi-refutation
of B(t}, A, ie., of (), A.

First of all, since A is e-free, then I, is B(t), A, B{1), so that B(r), A follows
from I,/ by the structure rule, If I'; is an axiom, then I';’ is also an axiom,

m
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and if T'; follows from I'; (and I') by some rule of inference other than the
y-rule or d-rule, then clearly I')’ follows from I';’ (and I')') by the same rule.

We now consider the case where I'; follows from I'; by the y-rule or d-rule.
First of all, suppose that I"; is of the form B(eyB), A. Then I'}’ is B(t), A°, B(1),
and I';’ follows from I';" by the structure rule. On the other hand, suppose
['; is of the form A(s), A, where A(s) is not B(eyB). Assume I'; is of the form
VxA, A. (The other possibilities can be handled similarly.) As in the proof of
Theorem II1.6, we want to rule out the possibility that gpB is of the form
[p] where p is a quasi ¢-term subordinate to Vx4, Suppose that this is the
case. Then the index of ¥xA is at least & + 2 (since the index of ¢yB is at
least k). Consequently, by the subformula property of k, F.-refutations,
¥xA must be a subformula of some member of A. But this is impossible
since every member of A is e-free, and an improper formula, such as Vx4,
cannot be a subformula of an e-free formula. Hence I, is of the form
¥xA®, A°, B(f), and I'}’ is of the form A°(s%), A®, B(r); and T} follows from
I'; by the y-rule. This completes the proof. (Why-is this refutation still a
k, Fi-refutation?)

COROLLARY. For any e-free A, any existential formula 8, and any term i,
if norm-Ref(8,A), then norm-Ref{5(1),A). ‘

EXERCISE

Using the cut rule give a simple proof of the following: for any sequent
A, any existential formula 8, and any term ¢, if Ref(8,A), then Ref(5(r),A).
Using this result prove that Theorem V.8 still holds if we remove the
condition that ind(8) = k.

6 'The Cut Elimination Theorem

The next theorem is the last subsidiary result needed in the proof of the
Cut Elimination Theorem,

THEOREM V.9 (The cut property). For each i =1,...,n, let A; and B, be
contradictory formulae with index < k. If k, F-Ref(A4,,..., A, A) and
k, F.-Ref(B,A) for eachi = 1,. .., n, then k, F,~Ref(A).

Proof. The proof is by induction on #.

Case I. n = 1: Assume k, Fi-Ref(A4,A) and k, F,-Ref(B,A), where 4 and B
are contradictory and each has index 5 k. Then A follows from A4, A and
B, A by the cut rule, where the cut formula has index < & (since its negation
has index < k), and hence k, F.-Ref(A).

Case 2. n = 2: Assume k, Fi-Ref{A,,..., A,,A) and k, F-Ref(B,A) for
each { = 1,...,n By the structure rule, from k, F-Ref(B,,A} we infer
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k, F-Ref(B,4,, ..., A,A). Case 1 then gives &, Fi-Ref(A., ... ,A4,,4). The
desired result now follows by the induction hypothesis.

THeEOREM V.10 (The Cut Elimination Theorem). For any e-free sequent A,
if Ref(A), then norm-Ref(A).

Proof. By using an obvious inductive argument, we can reduce this theorem to
the following lemma.

LEMMA. Suppose k, {A} v Fi-Ref(A), where A is e-free and A is any formula
with index k whose length is at least as great as the length of any member of
Fy. Then k, F-Ref(A).

Proof. Let {(Ty;...:0 . be a k, {4} v Frefutation of A. For each
i=1,...,mletT/ beT, A, and let T, be I';, 714. Then the sequence

<1—‘1’; AR | rm’; A9A>
is a k, F-refutation of 4, A, and the sequence

¢ LA D I W1 Y

is a k, F-refutation of 714, A. For, if I'; follows from T'; and I'; by an appli-
cation of the cut rule where 4 and 714 are the minor formulae, then T/
and I';” follow by the structure rule. Otherwise, I';” and I';” have the same
justification that I'; has in the original refutation, Hence we have
{(H k, F-Ref(A4,A), and
(2) k, Fi-Ref(M A4,A).
As in the proof of Theorem V.2, one of the following cases must hold.
Case 1. A is an atom; Then by Theorem V.7, (1) and (2) vield k, F.-Ref(A).
Case 2. A is of the form —1B: By Theorem V.6(i), (2) vields &, F,-Ref(B,A).
Since ind{ 1 B) = k, then by (1) and the cut property we have k, F.-Ref(A).
Case 3. One of the two formulae, A and ™A, is a conjunctive formula o and
the other is a disjunctive formula B Thus we have

(3) k, Fi-Ref(a,A), and
4 k, F-Ref(f,A).

By Theorem V.6, (3) and (4) yield

(5) k, Fi-Ref{o,,25,4),
(6) k, F-Ref(f;,A), and
{7 k. Fi-Ref(f33,A).

Since ¢, and f,; are contradictory and «, and f, are contradictory, and the
index of each of these formulae is less than k, then the cut property yields
k, Fi-Ref(A).
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Case 4. One of the two formulae, A and T\ A4, is a universal formulae y and the
other is an existential formula §: Thus we have

(8) k, F=-Ref(y,A), and

(9 ik, Fi-Ref(3,A),

By (8) and Theorem V.6(iv) there exist terms f,, ..., {, such that
(10) ki E-Ref(a(ty), . . . v(t),A).

Since A is a e-free and since § is either 4 or 714 we can apply Theorem V.8
to (9 and get foreachi = 1,...,n

(1 k, Fi-Ref(8(1)),4).
The desired result, &, F-Ref(A) now follows from (10) and (11) by the cut
property.

This completes the proof of the lemma and hence also of Theorem V.10.

The following counterexample shows that the Cut Elimination Theorem
no longer holds if the condition that A is e-free is removed. ‘

Let P be any 1-place predicate symbol. Since the sequent 3xPx, 71 PexPx
follows by the &-rule from the axiom PexPx, “1PexPx, we have at once
norm-Ref(3xPx, 71 PexPx). Hence, by the exercise at the end of the last
section, there exists a refutation of Pt, 7] PexPx for any term f. However,
since Pf and PexFPx are both atoms, it 1s easy to see that there exists no normal
refutation of the sequent P, 71 PexPx when ¢ is any term other than exPx.
Consequently, if we let A be the sequent Pa, 71 PexPx the Cut Elimination
Theorem does not hold. (For possible ways of modifying the axioms and
rules of inference of the sequent calculus so that the Cut Elimination Theorem
holds for arbitrary A, see Machara [1955], [1957] and Curry [1963], page

342.)

6.1 Applications

In this section we show how the Cut Elimination Theorem can be used {o
provide new proofs of some of our earlier results. In each case the main
function of this theorem is to prove the eliminability of certain symbols or

certain types of formulae.

TuroreM V.11 (The Second e-Theorem-—weaker form). For any g-free X
and A, if X ¥, A (without E2), then X Fpc A.

Proof. Since X'+, A (without E2), then there cxist formulae B,,..., B,

such that By, ..., B, F, A {without E2). Let A be the sequent By, ..., B,
Then Ref(™1A,A) by Theorem V.4, Hence norm-Ref(T14,A) by the Cut
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Elimination Theorem and therefore X F.. A by Theorem V.5. This impli
e+ 3. mpl
X Ipe A by Theorem II1.3. P

Notice that Fhe Cut Elimination Theorem has been used in this proof to
s}low that any improper formulae can be eliminated from the original deduc-
tion of 4 from X. (cf. Theorem V.5,)

THEOREM V.12. For any e-free X and A, X Fpe A iff there exists a sequent
A, such that A* < X and norm-Ref( 1 4,A).

Proof. Assumg XFpcA. Then Xt,. A by Theorem IIL2. Hence norm-
Ref(714,4) as in the proof of Theorem V.11. Conversely, if norm-Ref (™ A,AN),
where A* & X, then X Fpe A as in the proof of Theorem V.11. i

Using this e§sentia1 link between deductions in the predicate calculus and
normal {efptatlons, we can now give new proofs of the First e-Theorem and
;)f the eliminability of the identity symbol (cf. Theorem HI.10 and Theorem
IL135).

THEOREM V.13, Let X be any set of e-free Y-prenex formulae and B any
d-prenex formula. If X byc B, then A, ..., A, Fpc By v ... vB, where the
Ay are certain substitution instances of the matrices of members of Y and the
B; are certain substitution instances of the matrix of B.

Proof. By Theorem V.12, there exists a sequent A such that A* c X and
norm-Ref( 71 B,A). By repeated applications of the invertibility of the y-rule
(Theorem V.6(iv)) we get norm-Ref(T1B,, ..., B, 4y, ..., A), where the
B; and 4, are of the required form. By applying the ¢-rules and the structure
rule, this yields

norm-Ref(T1(Byv ... vB), A}, ..., A4,).

Now since each of the 4, and B, are quantifier-free, then by the subformula
property of normal refutations every member of the refutation is elementary
(since any stray e-terms can be replaced by a). Consequently, as in the proof
of Theorem V.5 we get

A1,...,Am|'EcB1V PR VBn.

THEOREM V.14, For any identity-free (efree) X and A, if X by A, then
there exists a deduction of A from X in the predicate caleulus without identity.

Proof. Since X Fpc A, then by Theorem V.12, norim-Ref(™14,A) for some
A"" & X. This implies by Theorem V.1 that there exists 2 normal refuta-
tion .of 714, A in which every sequent is identity-free. Returning now to the
predicate calculus by means of Theorem V.12, we obtain an identity-free
deduction of 4 from .X.

M.L,~—10
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principle of the least number, 92

product, 91

proof, 38

proper formula, 66

proposition, 10

propositional connectives, 2

quantifier, 2, 4, 6-7
quantifier-free proof, 95
quasi-formula, 11
quasi-term, 11

quasi e-term, 11
Q-term, 71

rank, 69 f, 97
Rank Reduction Theorem, 72
refutable, 116
refutation, 114, 116
normal, 116
relabelling bound variables, 7, 5354,
95
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replacement operator, 14
representable, 27
representative, 27
resohution, Herbrand, 57
Skolem, 57
r, ¥-deduction, 71
rule of inference, 3, 39, 42
rules of inference for e-calculus, 40

rules of inference for predicate calculus,

60

rules of inference for sequent calculus,

115

Satisfiability Theorem, 24 ff

satisfiable, 22

satisfies, 22

schema, axiom, 39

Schroter, K., 33

scope, 11, 50, 97

Scott, D. A, 30

Second e-axiom, 33

Second e-Theorem, 1, 5, 64, 79, 126

semantic consequence, 2, 22

semantics, 9

separation symbol, 10

sequent, 114

sequent calculus, 114 ff

set theory, 100

Shoenfield, J. R., 68, 113

skeleton, 66, 118, 119

Skolem function, 57, 102-103

Skolem resolution, 57

Skolem's Theorem, 64, 79

Smuilyan, R., 7, 15

sound, 3, 38

standard model of arithmetic, 89

structure rule, 115

subformula, logical, 117

subformula property of &k, Fy-
refutations, 121

subformula property of normal
refutations, 117-118

subordination, 69 ff

substitution instance, 51

substitution rule, 49

subterm, 66

successor, 91

successor function, 36, 89

suitable interpretation of e-symbol, 33 ff

sum, 91

x-suppression, 14

syllogism rule, 43

symbol, 2, 10
defined, 6
function, 2, 10
individual, 7, 8, 10
predicate, 2, 10
primitive, 6
separation, 10

syntactic, 7

syntax, 9

system, formal, 2, 38

Tait, W. W, 36, 99
Tarski, A., 23
tautological consequence, 17-18, 46
tautology, 17-18
tautology rule, 47
Tautology Theorem, 45 ff, 120
term, 2, 12
null, 6
quasi, 11
e-term, 1, 12
theorem, 4, 38, 85
transform, 110
true in model, 2, 22
truth assignment, 17
truth function, 16
truth functionally invalid, 46
truth value, 16

ultraproduct, 30
uniqueness condition, 101
universal closure, 51
universal formula, 15
universe, 18

vacuous bondage, 7
valid, 3, 22
variable, 2, 7, 10
free, 7
bound, 7
variant, 33-54
vocabulary, 2, 10

Wang, Hao, 99, 106, 107
x-suppression, 14

Zorn's Lemma, 24



