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classical first-order proofs.

m Of practical interest:

method.

m Investigate the influence of Skolem functions on length of

m Skolemization used by resolution provers and the CERES

m Give an (efficient?) algorithm to remove Skolem functions.
m Of theoretical interest:

m How much expressivity is gained by using Skolem functions?
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Given: a proof of the Skolemization of a formula F.
Wanted: a proof of F.

Aim: Find upper and lower bounds for this problem.
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Upper bounds Lower bounds

Motivation

A related question was asked in [P. Clote and J. Krajitek 1993]:
Question (Pudldk)

Assume that (Vx)(3y)o(x, y) is provable in predicate logic.
Introduce a new function symbol f and an axiom Ay which states

(vx)¢(x, f(x))-

Does there exist formula ¢ such that the extended system gives a
superexponential speed-up over predicate calculus, with respect to
number of symbols in proofs?
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2003):

m A positive answer seems to require the construction of a lower
bound for a proof system with cut.
m A negative answer for a large class was given by (Avigad

m From proofs in theories strong enough to code finite functions,
Skolem functions can be eliminated in polynomial time.
m Here, we concentrate on cut-free systems.
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cut-elimination).

m Maehara 1955: Remove Skolem functions from proofs (uses

m de Nivelle 2003: Remove Skolem functions from resolution
proofs (introduces new predicate symbols).
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m We use cut-free G3c + T:

m Two-sided sequents.

axioms.
m Connectives T, L, =, V,A,—, 3, V.

m Length of proof || = number of sequents in 7.

m Contraction and weakening absorbed into logical rules and
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m Prefix Skolemization.

m Different forms of Skolemization are known:
m Structural Skolemization.
n ...
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m Prefix Skolemization.

m Different forms of Skolemization are known:
m Structural Skolemization.
n ..

m Know from (Baaz, Leitsch 1994):
Herbrand complexity.

m Prefix may be non-elementarily worse than Structural w.r.t.

m We concentrate on structural Skolemization.
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The structural Skolemization sk(F) is obtained from F by
iterating: Take a leftmost strong quantifier (Qx), remove it and

replace x by f(y1,...,¥n), where (Q1y1),...(Qnyn) are the weak
quantifiers dominating (Qx) and f is fresh.
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Upper bounds

Structural Skolemization

Lower bounds

Let F = (3x)((Vy)G(y) A (3z)H(z)) where G, H are
quantifier-free. Then

sk(F) = (3x)(G(f(x)) A (32)H(z2))
A prefix Skolemization of F is

(3x)(32)(G(f(x,z)) A H(2)).
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Upper bounds

Lower bounds
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Let 7w be a cut-free proof of sk(S). Then there exists a cut-free
proof 1) of S such that depth(¢) < |m|qoce(S) + |7| + qoce(S).
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Upper bounds Lower bounds

An upper bound

Theorem

Let 7 be a cut-free proof of sk(S). Then there exists a cut-free
proof 1) of S such that depth(¢)) < |mw|qoce(S) + || + qoce(S).

Proof sketch.
We will use a variant of expansion trees from (Miller 1983).
Extract a small expansion E from .

Construct a proof ¢ of E in a calculus LKE. » has small
depth. ¢ has to be constructed according to a specific
strategy.

Transform ¢ into 1 by replacing Skolem terms by
eigenvariables.

M. Baaz, S. Hetzl, D. Weller

On the complexity of proof deskolemization



information such that a valid Herbrand disjunction can
“easily” be computed.

Let w be a cut-free proof of a sequent S which does not contain
any strong quantifiers. Then there is a tautological expansion E of
S st |E| <.

m |ldea: For a formula F, store instantiation and Skolem term
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m Tautological expansions are not quantifier-free, but contain all
instantiation information necessary to prove them.

m So: define a calculus on expansions to be able to use the
usual bottom-up proof search for propositional logic.
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Axioms (A is an atom):

ANENA TFEAT, or LITEA
Propositional rules:
E;,MEAN EyNEA NEAE,E y
Ei Vv E,TTEA MENE VE r
NEANE ENEA _
“ENFA ' TAFA-E "
and analogously for A and —.

«O0)>» «Fr» «» <« 3 Q>



Quantifier rules:

MEAIxA+FE By 41 E_q i Eiy1...4" E,p E
NMEAIxA+LE ... +0 E,

E,MTEA

3
t 3
IxA+TEMTEA
and analogously for ¥, and V.

Note: No eigenvariable condition. Will be recovered later.
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Let  be an LKE-proof of an expansion E, then depth(r) < |E]|.
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Upper bounds Lower bounds

Skolem term ordering

Definition
For an expansion E we define the Skolem term ordering <g as
s <g tif

S is a proper subterm of t, or

E contains a strong quantifier Qx A’ +° E’ and E’ contains a
strong quantifier Qy A” +t E”.

m Analogous relations have been used in the literature when
removing Skolem terms.
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m The following condition will ensure that the LKE-proofs we
construct can be transformed to LK-proofs obeying the
eigenvariable conditions.

An LKE-proof is called compatible with a term ordering < if for all
quantifier inferences ¢1 and ¢y where (1 is strong and is above ¢
we have t(c1) Z t(z2).
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Upper bounds Lower bounds

Proof search

Lemma

Every tautological expansion E has an LKE-proof that is
compatible with <g.

Proof sketch.

By propositional proof search with the following strategy for
selecting main formulas:

m Take a <g-minimal element f(5,t). By definition it has a
unique strong quantifier (Qy) in E.

m Select the formula containing (Qy) as the main formula.
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Let E be an expansion of a sequent S and let = be an LKE-proof
of E which is compatible with <g. Then there is a cut-free proof
1 of S with depth(¢) = depth().
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Let 7w be a cut-free proof of sk(S), then there is a cut-free proof v
of S with depth(¢) < |r|qoce(S) + |m| + qoce(S) and hence
|¢| < olrlaoce(S)+|r[+qoce(S)
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Let 7w be a cut-free proof of sk(S), then there is a cut-free proof v
of S with depth(¢) < |r|qoce(S) + |m| + qoce(S) and hence
|,¢| < 2|7r|qocc(5)+|7r|+qocc($)_
Let m be a proof of S with quantifier-free cuts only, then there is a
and hence |¢| < olmlaoce(S)+|m|+qoce(S)

cut-free proof 1) of S with depth(v) < |m|qocc(S) + |7| + qoce(S)
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A proof 7 has essentially Skolem-free cuts if every term that starts
with a Skolem symbol and appears in a cut formula of = does not
contain a bound variable.
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Let 7w be a proof of sk(S) with essentially Skolem-free cuts. Let ¢

be the number of quantifiers in the cut-formulas of w. Then there
is a proof i) of S

s.t. depth(v) < (|7[>qoce(S) + |7| + 1)(c + qoce(S) + 1).
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Upper bounds Lower bounds

The case with cut

Proof sketch.
Let S=THF A and sk(S)=T"F A"
Construct a “Skolem-term overbinding T-extension” of 7,
obtain cut-free proof of ¥, " - A’.
Skolemize, obtain cut-free proof of ', " - A’.

Apply deskolemization theorem, obtain cut-free proof of
>, [ A with exponential blow-up.

Reverse T-extension, obtain proof (with cuts) of I - A.
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Upper bounds

Lower bounds
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There exists a sequence of sequents (R,) such that
m For all cut-free proofs T of Ry, |r| > 2N, and

m there exists a cut-free proof T of sk(Ry) such that
|7| < k x N + ¢ for some constants c, k.

«O0)>» «Fr» «» <« » Q>



Take
Ro = Go — Go
R, =

((Fxn)Pa(xn) V Gn) = (3yn)((Pa(yn) V Gn) A Ra—1).

Quantifier placement forces R,_1 to be proved twice. The tree
structure of proofs is used.
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We define a rewrite relation —¢,, on formulas that “pushes
quantifiers down’':

(Vx)=F —sm —(3x)F,

(Vx)(FV G) —sm (VX)FV G
provided that x is not free in G, and so on for the other cases and

connectives. If F —% G then sk(G) is an sm-Skolemization of F.
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There exist sequences of sequents (Sp), (M,)
M, is an sm-Skolemization of S,,, and

there exists a cut-free proof of M, of elementary length, and
all cut-free proofs of S,,, have non-elementary length.
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Upper bounds Lower bounds

Lower bound for sm-Skolemization

Theorem
There exist sequences of sequents (S,), (M,)
M,, is an sm-Skolemization of S,,, and
there exists a cut-free proof of M, of elementary length, and

all cut-free proofs of S, have non-elementary length.

Proof sketch.

Consider Statman's sequence T, and short proofs with cut 7, of
T,. Consider the end-sequent T} of the T-extension of 7,. Take
sk(T}) for M,. For S, we take a certain “bad prefixation” of T},
constructed as the witness for €) in Theorem 4.1 in (Baaz1994).
The result then follows from that Theorem. ]
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Skolem-free.

m The cut-free DAG case (our lower bound uses the fact that
proofs are trees).

m The case of proofs with cuts which are not essentially
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