Transforming and Analyzing Proofs in the \textit{CERES}-system

S. Hetzl A. Leitsch D. Weller B. Woltzenlogel Paleo

KEAPPA, 22 November 2008
Outline

System Overview

The CERES System
 Writing Proofs
 Transforming proofs
 System demonstration

Future Work
Purpose

- Proof transformations
- In particular: cut-elimination by resolution
- Goal: obtain new (analytic) proofs from known ones
Overview

S. Hetzl, A. Leitsch, D. Weller, B. Woltzenlogel Paleo

Proofs in the CERES-system
Proof calculus: sequent calculus \textbf{LK}

Example

Rules for \land:

\[
\frac{\Gamma \vdash \Delta, A \quad \Pi \vdash \Lambda, B}{\Gamma, \Pi \vdash \Delta, \Lambda, A \land B} \quad \land : r
\]

\[
\frac{A, \Gamma \vdash \Delta}{A \land B, \Gamma \vdash \Delta} \quad \land : l1
\]

\[
\frac{A, \Gamma \vdash \Delta}{B \land A, \Gamma \vdash \Delta} \quad \land : l2
\]
LKDe

- Additional rules for easier proof formalization
LKDe

- Additional rules for easier proof formalization
- Definition introduction

\[
\frac{A(t_1, \ldots, t_k) \vdash \Delta}{P(t_1, \ldots, t_k) \vdash \Delta} \underset{\text{def}_P}{\implies} I
\]
LKDe

- Additional rules for easier proof formalization
- Definition introduction
- Equality handling

\[
\frac{\Gamma_1 \vdash \Delta_1, s = t \quad A[s], \Gamma_2 \vdash \Delta_2}{A[t], \Gamma_1, \Gamma_2 \vdash \Delta_1, \Delta_2} = : \text{/1}
\]
Writing LKDe proofs

- Specialized language: *HandyLK*
- Why not Isabelle, Coq, etc.?
 - Higher-order logic vs. first-order method
 - Proof assistants focus on existence of proof, not proof object itself
The *HandyLK* language

- Between natural language and sequent calculus
 - closer to sequent calculus
- Supports many-sorted first-order language
HandyLK example - predicate definitions

- define predicate I by $\forall x \exists k \ f(n + k) = x$;
- $\forall x \ (I(x) \leftrightarrow \forall n \exists k \ f(n + k) = x)$
HandyLK example - predicate definitions

- define predicate \(I \) by all \(n \) ex \(k \) \(f(n + k) = x \);
- \(\forall x (I(x) \leftrightarrow \forall n \exists k f(n + k) = x) \)
- with undef \(I \)
 \[:- \text{ all } n \text{ ex } k f(n + k) = 0; \]
- \[
\frac{\Gamma \vdash \Delta, \forall n \exists k f(n + k) = 0}{\Gamma \vdash \Delta, I(0)} \quad \text{def}_I: \text{r}
\]
HandyLK features

- Prove propositional tautologies automatically
- Define proofs recursively
- Define proofs with parameters that can be instantiated
Proof transformations do not work directly on HandyLK proofs

- Compiled by HLK to LKDe in XML
- proofdatabase.dtd allows storage of proofs as DAGs
- Formulas, terms stored as trees
The CERES method

- Clause set $\text{CL}(\pi)$ is extracted from LKDe-proof π
- $\text{CL}(\pi)$ is refuted by a resolution theorem prover
- Resolution refutation is converted to an LK refutation γ
- γ is composed with material from π: LKDe-proof ψ
- ψ contains at most atomic cuts
Background: Tape with infinitely many cells where each cell is labelled 0 or 1.

Theorem

There are two distinct cells that are labelled the same.

Lemma

Either infinitely many cells are labelled 0, or infinitely many cells are labelled 1.
System demonstration
Simplified Herbrand Sequent

\[
\begin{align*}
\text{f}(p_1) &= 0 \lor \text{f}(p_1) = 1, \\
\text{f}(p_2) &= 0 \lor \text{f}(p_2) = 1, \\
\text{f}(p_3) &= 0 \lor \text{f}(p_3) = 1, \\
\text{f}(p_4) &= 0 \lor \text{f}(p_4) = 1, \\
\text{f}(p_5) &= 0 \lor \text{f}(p_5) = 1, \\
\text{f}(p_6) &= 0 \lor \text{f}(p_6) = 1, \\
\text{f}(p_7) &= 0 \lor \text{f}(p_7) = 1
\end{align*}
\]

\[
\vdash p_1 \neq p_2 \land f(p_1) = f(p_2), \\
p_3 \neq p_1 \land f(p_3) = f(p_1), \\
p_3 \neq p_2 \land f(p_3) = f(p_2), \\
p_1 \neq p_4 \land f(p_1) = f(p_4), \\
p_5 \neq p_6 \land f(p_5) = f(p_6), \\
p_7 \neq p_5 \land f(p_7) = f(p_5), \\
p_7 \neq p_6 \land f(p_7) = f(p_6), \\
p_4 \neq p_7 \land f(p_4) = f(p_7).
\]

where the \(p_i\) are distinct positions on the tape.
Even More Simplified Herbrand Sequent

\[f(p_1) = 0 \lor f(p_1) = 1, f(p_2) = 0 \lor f(p_2) = 1, f(p_3) = 0 \lor f(p_3) = 1, \]
\[\vdash p_1 \neq p_2 \land f(p_1) = f(p_2), \]
\[p_3 \neq p_1 \land f(p_3) = f(p_1), \]
\[p_3 \neq p_2 \land f(p_3) = f(p_2). \]

where the \(p_i \) are distinct positions on the tape.
Future Work

- Extend CERES method to fragments of higher-order logic
- Enhance HLK by term-rewriting features to handle equational aspects of proofs
- Long term: Use existing proof assistants
- Simplify Herbrand sequent automatically