CERES in Higher-Order Logic

Stefan Hetzla, Alexander Leitschb,1, Daniel Wellerb,1

a Laboratoire Preuves, Programmes et Systèmes (PPS), Université Paris Diderot — Paris 7, 175 Rue du Chevaleret, 75013 Paris, France
b Institute of Computer Languages (E185), Vienna University of Technology, Favoritenstraße 9, 1040 Vienna, Austria

Abstract

We define a generalization CERESω of the first-order cut-elimination method CERES to higher-order logic. At the core of CERESω lies the computation of an (unsatisfiable) set of sequents CS(\(\pi\)) (the characteristic sequent set) from a proof \(\pi\) of a sequent \(S\). A refutation of CS(\(\pi\)) in a higher-order resolution calculus can be used to transform cut-free parts of \(\pi\) (the proof projections) into a cut-free proof of \(S\). An example illustrates the method and shows that CERESω can produce meaningful cut-free proofs in mathematics that traditional cut-elimination methods cannot reach.

1. Introduction

Proof analysis is a central mathematical activity which proved crucial to the development of mathematics. Indeed many mathematical concepts such as the notion of group or the notion of probability were introduced by analyzing existing arguments. In some sense the analysis and synthesis of proofs form the very core of mathematical progress [19].

Cut-elimination introduced by Gentzen [11] is the most prominent form of proof transformation in logic and plays a key role in automating the analysis of mathematical proofs. The removal of cuts corresponds to the elimination of intermediate statements (lemmas) from proofs, resulting in a purely combinatorial proof.

In a formal sense Girard’s analysis of van der Waerden’s theorem [13] is the application of cut-elimination to the (topological) proof of Fürstenberg/Weiss with the “perspective” of obtaining van der Waerden’s (combinatorial) proof. Naturally, an application of a complex proof transformation like cut-elimination by humans requires a goal oriented strategy.

Email addresses: stefan.hetzl@pps.jussieu.fr (Stefan Hetzl), leitsch@logic.at (Alexander Leitsch), weller@logic.at (Daniel Weller)

1Supported by the Austrian Science Fund (project no. P22028-N13)
The development of the method CERES (cut-elimination by resolution) was inspired by the idea to fully automate cut-elimination on real mathematical proofs, with the aim of obtaining new interesting elementary proofs. While a fully automated treatment proved successful for mathematical proofs of moderate complexity (e.g., the tape proof [3] and the lattice proof [15]), more complex mathematical proofs required an interactive use of CERES; this way we successfully analyzed Fürstenberg’s proof of the infinitude of primes (see [4] and [1]) and obtained Euclid’s argument of prime construction. Even in its interactive use CERES proved to be superior to reductive cut-elimination due to additional structural information given by the characteristic clause set (see below).

So far the CERES-method was defined within first-order logic. This made the analysis of Fürstenberg’s proof of the infinitude of primes rather problematic. In fact the problem could not be formalized as a single proof but only as an infinite schema of proofs. On the other hand it is shown in [4] that the proof can be formalized in second-order arithmetic in a simple and natural way. As higher-order logic is quite close to mathematical practice, the extension of CERES to higher-order logic became a matter of major importance. An extension to a (relatively small) subclass of second-order logic was given in [16].

In this paper we define an extension of CERES to higher-order logic. Some features of the CERES-method like proof Skolemization do not carry over to higher-order, while others (like proof projection) become much more complicated. To overcome the Skolemization problem we define a calculus LK_{sk}, where eigenvariables are replaced by Skolem terms (this technique can be also found in [17]). The proof projections become proofs which may be locally unsound (due to violations of eigenvariable conditions), but fulfill some global soundness properties. It is shown that, by the global soundness property, a transformation into an ordinary LK-proof is possible. The underlying resolution calculus is a restricted variant of Andrews’ higher-order resolution calculus (see [2]), where only atomic simplification is admitted. Despite the complicated behavior of CERES in higher-order logic, the characteristic sequent set $\text{CS}(\pi)$ for a proof π of a sequent S remains the major advantage of the method. Roughly speaking, the problem of finding a cut-free proof of S is reduced to finding a resolution refutation of $\text{CS}(\pi)$. In general, it is easier to refute $\text{CS}(\pi)$ than to prove S directly in a cut-free way. Hence CERES can be seen as a “semi-semantic” method of cut-elimination. Furthermore, CERES can find more cut-free proofs of S than can be found by application of Gentzen-style proof reduction rules.

The method is demonstrated by transforming a proof in second-order arithmetic using order induction into another one using the least number principle. The proof transformation is achieved by cut-elimination on the second-order induction axiom. The analysis by CERES$^\omega$ also shows that a solution can be found which cannot be obtained by the reductive Gentzen method.

2. Preliminaries

We work in a version of Church’s simple theory of types [8], using the base types ι, o of individuals and booleans, respectively. The only binding opera-
tor in our language is \(\lambda \), and we assume logical constants \(\lor_{\alpha \rightarrow \alpha}, \land_{\alpha \rightarrow \alpha}, \rightarrow_{\alpha \rightarrow \alpha}, \neg_{\alpha \rightarrow \alpha}, \forall_{(\alpha \rightarrow \alpha) \rightarrow \alpha}, \exists_{(\alpha \rightarrow \alpha) \rightarrow \alpha} \) for all types \(\alpha \). As metavariables for terms we use \(T, S, R, \ldots \), for variables we use \(X, Y, Z, \ldots \), for formulas we use \(F, G, H, \ldots \), and for lists of formulas we use \(\Gamma, \Delta, \Lambda, \Pi, \ldots \) (all possibly with subscripts). We will not provide type information if it can be inferred from the context. Terms of type \(o \) are called *formulas*. If the uppermost symbol of a formula \(F \) is not one of the logical constants, then \(F \) is called *atomic*. We consider terms only modulo \(\alpha \)-equality, i.e., modulo renaming of bound variables. If \(T, S \) are terms, then we write \(T > S \) if \(S \) is a proper subterm of \(T \) (i.e., \(S \) is a subterm of \(T \) and \(T \neq S \)).

Our terms will contain Skolem symbols (i.e., function symbols to be introduced by Skolemization). To obtain sound proof systems, we will need to restrict the terms that can be used: we follow the approach of Miller [17], who provides a precise definition of such a restriction.

2.1. Sequent calculus

A *sequent* is a pair of lists of formulas, written \(\Gamma \vdash \Delta \). While we define sequents as lists to be able to define occurrences in sequents and proofs, we will treat them as multisets most of the time. Hence we do not explicitly include exchange or permutation rules in our calculi. For simplicity, we restrict ourselves to proof trees in which all formulas are in \(\beta \)-normal form. Hence we note that the quantifier rules below include an implicit \(\beta \)-reduction.

Definition 1 (LK rules and proofs). The following figures are the rules of LK:

Propositional rules:

\[
\frac{\Gamma \vdash \Delta, F}{\neg F, \Gamma \vdash \Delta} \quad \frac{F, \Gamma \vdash \Delta}{\Gamma \vdash \Delta, \neg F} \\
\frac{F, \Gamma \vdash \Delta, G, \Pi \vdash \Lambda}{F \lor G, \Gamma, \Pi \vdash \Delta, \Lambda} \quad \frac{\Gamma \vdash \Delta, F}{F \lor G, \Gamma \vdash \Delta, \Lambda, F \lor G} \\
\frac{\Gamma \vdash \Delta, F, \Pi \vdash \Lambda}{F \land G, \Gamma, \Pi \vdash \Delta} \quad \frac{F, \Gamma \vdash \Delta, \Lambda, F \land G}{F, \Gamma \vdash \Delta} \quad \frac{F \rightarrow G, \Gamma, \Pi \vdash \Delta, \Lambda}{\Gamma \vdash \Delta, F \rightarrow G} \quad \frac{\Gamma \vdash \Delta, G}{\Gamma \vdash \Delta, F} \quad \frac{\Gamma \vdash \Delta, F}{\Gamma, \Pi \vdash \Delta, \Lambda}
\]

Structural rules:

\[
\frac{\Gamma \vdash \Delta, F, F}{\Gamma \vdash \Delta, F} \quad \frac{F, F, \Gamma \vdash \Delta}{F, F, \Gamma \vdash \Delta} \\
\frac{\Gamma \vdash \Delta, F, F}{\Gamma \vdash \Delta} \quad \frac{\Gamma \vdash \Delta, F, F, \Pi \vdash \Lambda}{\Gamma, \Pi \vdash \Delta, \Lambda} \quad \frac{RT, \Gamma \vdash \Delta}{\forall R, \Gamma \vdash \Delta}
\]

Quantifier rules:

\[
\frac{RT, \Gamma \vdash \Delta}{\forall R, \Gamma \vdash \Delta} \quad \frac{\Gamma \vdash \Delta, RX}{\Gamma \vdash \Delta, \forall R} \quad \frac{\Gamma \vdash \Delta, \forall R}{\Gamma \vdash \Delta, \forall R}
\]
Γ ⊢ Δ, RT Ξ; r RX, Γ ⊢ Δ Ξ; l

The ∀: r and ∃: l are called strong quantifier rules. In the strong quantifier rules, X must not occur free in Γ, Δ, R. X is called the eigenvariable of this rule. In ∀: l and ∃: r, T is called the substitution term of the rule.

An LK-proof is a tree formed according to the rules of LK such that all leaves are of the form F ⊢ F. The formulas in Γ, Δ, Π, Λ are called context formulas. The formulas in the upper sequents which are not context formulas are called auxiliary formulas, those in the lower sequents are called main formulas. The auxiliary formulas of a cut rule are also called cut formulas. If π is an LK-proof, by |π| we denote the number of sequent occurrences in π.

If S is a set of sequents, then an LK-refutation of S is an LK-tree π where the end-sequent of π is the empty sequent, and the leaves of π are either axioms F ⊢ F or sequents in S.

A formula occurrence in a sequent or proof tree is a formula together with its position in the sequent or proof tree. Formula occurrences in proof trees come equipped with an ancestor and descendant relation which is defined in the usual way (see [6]). An end-sequent ancestor (cut ancestor) is an ancestor of a formula in the end-sequent (a cut formula). An inference ρ in a proof tree is said to operate on an occurrence ω if ω is an auxiliary or main formula of ρ. An LK-proof π is called regular if for all ∀: r inferences ρ with eigenvariable X in π, X only occurs in the subproof ending in ρ. It is well-known that every LK-proof of a closed sequent S can be transformed into a regular LK-proof of S by renaming eigenvariables.

Recall the system T introduced in [8] and used in [2]. T is a Hilbert-type system for higher-order logic. Using the well-known transformations from sequent calculi to Hilbert-type systems (see [12, 20]), one can prove a relative soundness result. If S = Γ ⊢ Δ is a sequent, then F(S) = \(\bigwedge \Gamma \rightarrow \bigvee \Delta \). If S is a set of sequents, then F(S) = \{ F(S) | S ∈ S \}.

Proposition 1. If there exists an LK-refutation of S, then there exists a T-refutation of F(S).

3. CERES

The CERES method in first-order logic is defined via two crucial structures: the characteristic clause set CL(π), and the proof projections \(\mathcal{P}(\pi) \) of some proof π of S with arbitrary cuts. The proof projections are cut-free parts of π. One can show that CL(π) is always unsatisfiable. The main transformation of CERES is to combine a resolution refutation of CL(π) and the cut-free proofs from \(\mathcal{P}(\pi) \) into a proof of S with at most atomic cuts.

In first-order logic, CERES is restricted to proofs of Skolemized sequents, i.e. sequents not containing ∀ in a positive or ∃ in a negative context. This is justified by the following well-known proposition:
Proposition 2. For every first-order sequent S there exists a Skolemized sequent S' such that S is provable iff S' is.

Furthermore, constructive proofs of this proposition are known (see e.g. [5]). The fact about proofs of Skolemized sequents most important to the CERES method is that inferences with eigenvariable conditions only operate on cut-ancestors:

Proposition 3. Let π be a first-order LK-proof of a Skolemized sequent S. Then there does not exist a strong quantifier inference in π that operates on an end-sequent ancestor.

In higher-order logic, this does not hold anymore. Furthermore, it seems that proof Skolemization used in Proposition 2 cannot be generalized to yield LK-proofs fulfilling Proposition 3, see [14]. For example, the following LK-proof proves a sequent that does not contain strong quantifiers, but the proof contains a strong quantifier inference:

Note that the auxiliary formula of the lowermost $\forall l$ inference can not be Skolemized. For this reason, we now introduce a sequent calculus without eigenvariable conditions.

4. The calculus LK$_{sk}$

Definition 2 (Labelled sequents). A label is a finite multiset of terms. A labelled sequent is a sequent $F_1, \ldots, F_n \vdash F_{n+1}, \ldots, F_m$ together with labels ℓ_i for $1 \leq i \leq m$; we write $(F_1)^{\ell_1}, \ldots, (F_n)^{\ell_n} \vdash (F_{n+1})^{\ell_{n+1}}, \ldots, (F_m)^{\ell_m}$. We identify labelled formulas with empty labels with the respective unlabelled formulas. If S is a labelled sequent, then the reduct of S is S where all labels are empty. If C is a set of labelled sequents, then the reduct of C is $\{S \mid S$ a reduct of some $S' \in C\}$.

We extend substitutions to labelled sequents: Let σ be a substitution and $S = (F_1)^{\ell_1}, \ldots, (F_n)^{\ell_n} \vdash (F_{n+1})^{\ell_{n+1}}, \ldots, (F_m)^{\ell_m}$, then

$$S\sigma = (F_1)^{\ell_1\sigma}, \ldots, (F_n)^{\ell_n\sigma} \vdash (F_{n+1})^{\ell_{n+1}\sigma}, \ldots, (F_m)^{\ell_m\sigma}.$$

Labels such as ours are often used to add (syntactic) information to formulas, see [10]. They have been used in a setting very similar to ours in [9].

The purpose of the labels will be twofold: first, they will track quantifier instantiation information throughout proof trees (as expressed in Proposition 4).
Second, they will enable us to combine resolution refutations and sequent calculus proofs in a certain way — this will be one of the main constructions of the CERESω method; see Lemma 3.

From now on, we will only consider labelled sequents, and therefore we will call them only sequents. Analogously, we will refer to labelled formula occurrences as formula occurrences. We will denote the union of labels \(\ell_1 \) and \(\ell_2 \) by \(\ell_1, \ell_2 \). Let \(T \) be a term and \(\ell \) a label, then we denote by \(\ell, T \) the union \(\ell \cup \{T\} \).

Definition 3 (LK\textsubscript{sk} rules). The following figures are the rules of LK\textsubscript{sk}:

Labelled quantifier rules:

\[
\Gamma \vdash \Delta, \langle F(S_1 \ldots S_n) \rangle^\ell \quad \forall^{sk} : r
\]

where \(\ell = S_1, \ldots, S_n \) and, if \(\tau(S_i) = \alpha_i \) for \(1 \leq i \leq n \), then \(f \in K_{\alpha_1, \ldots, \alpha_n} \), is a Skolem symbol. An application of this rule is called source inference of \(fS_1 \ldots S_m \), and \(fS_1 \ldots S_m \) is called the Skolem term of this inference. Note that we do not impose an eigenvariable or eigenterm restriction on this rule.

\[
\langle FT \rangle^\ell, \Gamma \vdash \Delta, \langle F \rangle^\ell, \Gamma \vdash \Delta \quad \forall^{sk} : l
\]

\(T \) is called the substitution term of this inference. The \(\exists^{sk} : l \) and \(\exists^{sk} : r \) rules are defined analogously. The \(\forall^{sk} : r \) and \(\exists^{sk} : l \) rules will be called strong labelled quantifier rules, and the \(\forall^{sk} : l \) and \(\exists^{sk} : r \) will be called weak labelled quantifier rules. The other rules of LK are transferred directly to LK\textsubscript{sk}:

Propositional rules:

\[
\langle F \rangle^\ell, \Gamma \vdash \Delta, \langle G \rangle^\ell, \Pi \vdash \Lambda \quad \lor: l
\]

\[
\Gamma \vdash \Delta, \langle F \lor G \rangle^\ell, \Gamma, \Pi \vdash \Delta, \Lambda \quad \lor: r^1
\]

The rest of the propositional rules of LK are adapted analogously.

Structural rules:

\[
\Gamma \vdash \Delta, \langle F \rangle^\ell, \langle F \rangle^\ell \quad \text{contr: } r
\]

\[
\Gamma \vdash \Delta, \langle F \rangle^\ell, \langle F \rangle^\ell \quad \text{weak: } r
\]

and analogously for contr: \(l \) and weak: \(l \). An LK\textsubscript{sk}-tree is a tree formed according to the rules of LK\textsubscript{sk}, such that all leaves are of the form \(\langle F \rangle^\ell_1 \vdash \langle F \rangle^\ell_2 \) for some formula \(F \) and some labels \(\ell_1, \ell_2 \). The axiom partner of \(\langle F \rangle^\ell_1 \) is defined to be \(\langle F \rangle^\ell_2 \), and vice-versa. Let \(\pi \) be an LK\textsubscript{sk}-tree with end-sequent \(S \). If \(S \) does not contain Skolem terms or free variables, and all labels in \(S \) are empty, then \(S \) is called proper. If the end-sequent of \(\pi \) is proper, we say that \(\pi \) is proper.

Note that LK\textsubscript{sk} is a cut-free calculus.
Example 1. The following figure shows a proper $\text{LK}_{\lambda k}$-tree of a valid sequent:

\[
\begin{array}{c}
\vdash S(f(\lambda x.\neg S(x))) |^{\lambda x.\neg S(x)} \\
\vdash (\neg S(f(\lambda x.\neg S(x)))) |^{\lambda x.\neg S(x)} \\
\vdash (S(f(\lambda x.\neg S(x)))) |^{\lambda x.\neg S(x)} \\
\end{array}
\]

where $S \in K_{\lambda \to o}$, $f \in K_{\lambda \to o,1}$, and the substitution term of the $\exists^k: r$ is $\lambda x.\neg S(x)$. Note that although the labels in the axiom coincide, this is not required in general.

So far, we have not called the trees built up using the rules of $\text{LK}_{\lambda k}$ proofs. The reason is that without further restrictions, $\text{LK}_{\lambda k}$-trees are unsound:

Example 2. Consider the following $\text{LK}_{\lambda k}$-tree of $(\exists x)P(x) \vdash (\forall x)P(x)$:

\[
\begin{array}{c}
P(s) \vdash P(s) & \quad \exists^k: l \\
(\exists x)P(x) \vdash P(s) & \quad \forall^k: r \\
(\exists x)P(x) \vdash (\forall x)P(x) & \quad \forall^k: r
\end{array}
\]

where $s \in K_{\lambda}$. The source of unsoundness in this example stems from the fact that in $\text{LK}_{\lambda k}$-trees, it is possible to use the same Skolem term for distinct and “unrelated” strong quantifier inferences.

Towards introducing our global soundness condition, which will be more general than the eigenvariable condition of LK, we introduce some definitions and facts about occurrences in $\text{LK}_{\lambda k}$-trees.

Proposition 4. Let ω be a formula occurrence in a proper $\text{LK}_{\lambda k}$-tree π with label $\{T_1, \ldots, T_n\}$. Then T_1, \ldots, T_n are exactly the substitution terms of the weak labelled quantifier inferences operating on descendents of ω.

Proof. By induction on the number of sequents between ω and the end-sequent of π. If ω occurs in the end-sequent, then it has no descendents and, as π is proper, ω has the empty label.

Assume ω occurs in the premise of an inference. Denote the direct descendents of ω by ω'. If ω occurs in the context, then ω has the same label as ω', the weak labelled quantifier inferences operating on descendents of ω are the same as those operating on descendents of ω', so we conclude with the induction hypothesis. If ω is the auxiliary formula of a propositional inference, a contraction inference, or a strong labelled quantifier inference, the argument is analogous. Finally, assume ω is the auxiliary formula of a weak labelled quantifier inference ρ with substitution term T, and that the label of ω is T_1, \ldots, T_n, T. Then the label
Definition 4 (Paths). Let μ be a sequence of formula occurrences μ_1, \ldots, μ_n in an LK_{sk}-tree. If for all $1 \leq i < n$, μ_i is an immediate ancestor (immediate descendant) of μ_{i+1}, then μ is called a downwards (upwards) path. If μ is a downwards (upwards) path ending in an occurrence in the end-sequent (a leaf), then μ is called maximal.

Definition 5 (Homomorphic paths). If ω is a formula occurrence, then denote by $F(\omega)$ the formula at ω. If μ is a sequence of formula occurrences, we define $F(\mu)$ as μ where every formula occurrence ω is replaced by $F(\omega)$, and repetitions are omitted. Two sequences of formula occurrences μ, ν are called homomorphic if $F(\mu) = F(\nu)$.

Example 3. Consider the LK_{sk}-tree π:

$$
\vdash (R(a, f(a)))^a, (\neg R(a, f(a)))^a \quad \vdash (R(a, f(a)))^a, (\neg R(a, f(a)))^a \quad \vdash (\exists x)(\forall y)(R(x, y) \vee -R(x, y))
$$

π contains the following maximal downwards paths μ_1, μ_2:

$\mu_1 = \langle R(a, f(a)) \rangle^a, \langle \neg R(a, f(a)) \rangle^a, \langle R(a, f(a)) \vee \neg R(a, f(a)) \rangle^a$

$\mu_2 = \langle R(a, f(a)) \rangle^a, \langle \neg R(a, f(a)) \rangle^a, \langle R(a, f(a)) \vee \neg R(a, f(a)) \rangle^a$

$F(\mu_1) = \langle R(a, f(a)) \rangle^a, \langle \neg R(a, f(a)) \rangle^a, \langle R(a, f(a)) \vee \neg R(a, f(a)) \rangle^a$

$F(\mu_2) = \langle R(a, f(a)) \rangle^a, \langle R(a, f(a)) \vee \neg R(a, f(a)) \rangle^a$

Proposition 5. Let π be a proper LK_{sk}-tree, let ρ be a strong labelled quantifier inference in π with Skolem term S and auxiliary formula α, and let μ be a maximal downwards path starting at α. Then $FV(S) = FV(\mu)$.

8
PROOF. As π is proper, its end-sequent does not contain free variables. Hence all free variables in μ are contained in substitution terms of weak labelled quantifier inferences, and they are exactly the free variables of S by Proposition 4.

□

Proposition 6. Let α_1, α_2 be formula occurrences. If there exists a downwards path from α_1 to α_2, then it is unique.

PROOF. Every formula occurrence has at most one direct descendent. □

Corollary 1. If α is a formula occurrence, then there exists a unique maximal downwards path starting at α.

Our investigation of paths allows us to define a relation between inferences in a tree that, through paths, are connected in a strong sense.

Definition 6 (Homomorphic inferences). Let α_1, α_2 be formula occurrences in an LK_{sk}-tree π. Let c be a contraction inference below both α_1, α_2 with auxiliary occurrences γ_1, γ_2. Then α_1, α_2 are homomorphic in c if the downwards paths $\alpha_1, \ldots, \gamma_1$ and $\alpha_2, \ldots, \gamma_2$ exist and are homomorphic. α_1, α_2 are called homomorphic if there exists a c such that they are homomorphic in c.

Let ρ_1, ρ_2 be inferences of the same type with auxiliary formula occurrences $\alpha_1^1 (\alpha_1^2)$ and $\alpha_2^1 (\alpha_2^2)$. ρ_1, ρ_2 are called homomorphic if there exists a contraction inference c such that α_1^1 and α_2^1 are homomorphic in c and α_1^2 and α_2^2 are homomorphic in c. Call this contraction inference the uniting contraction of ρ_1, ρ_2.

Example 4. Consider the following LK_{sk}-tree π:

\[
\begin{array}{c}
\frac{(\forall x)P(x) \vdash P(s)}{(\forall x)P(x) \vdash P(x)} \quad \forall_{sk} ; l \quad (1) \\
\frac{(\forall x)P(x) \vdash (\forall x)P(x)}{(\forall x)P(x) \vdash (\forall x)P(x)} \quad \forall_{sk} ; l \quad (2) \\
\frac{(\forall x)P(x) \vdash (\forall x)P(x)}{(\forall x)P(x) \vdash (\forall x)P(x)} \quad \forall_{sk} ; l \quad (3)
\end{array}
\]

The inferences (1), (3) in π are homomorphic, and (2) is their uniting contraction. More concretely, let μ be the path from the auxiliary formula of (1) to the auxiliary formula of (2). Let ν be the path from the auxiliary formula of (3) to the auxiliary formula of (2). Then $F(\mu) = P(s), (\forall x)P(x) = F(\nu)$.

On the other hand, consider π':

\[
\begin{array}{c}
\frac{(\forall x)P(x) \vdash P(s_1)}{(\forall x)P(x) \vdash P(x)} \quad \forall_{sk} ; l \quad (1) \\
\frac{(\forall x)P(x) \vdash (\forall x)P(x)}{(\forall x)P(x) \vdash (\forall x)P(x)} \quad \forall_{sk} ; l \quad (2) \\
\frac{(\forall x)P(x) \vdash (\forall x)P(x)}{(\forall x)P(x) \vdash (\forall x)P(x)} \quad \forall_{sk} ; l \quad (3)
\end{array}
\]
In π', there are no homomorphic inferences because the auxiliary formulas of the $\forall^{sk}: r$ applications differ: Define μ, ν as above, then $F(\mu) = P(s_1), (\forall x)P(x) \neq P(s_2), (\forall x)P(x) = F(\nu)$.

The previous example motivates the following statement about homomorphic quantifier inferences.

Proposition 7. If two strong labelled quantifier inferences are homomorphic, they have identical Skolem terms.

Proof. Denote the two strong labelled quantifier inferences applications by ρ_1, ρ_2. Then there exist homomorphic paths p_1, p_2 starting at the auxiliary formulas of ρ_1, ρ_2 respectively. The second elements of p_1, p_2 are the main formula occurrences induced by them are equal, therefore ρ_1, ρ_2 have the same auxiliary and main formulas and therefore their Skolem terms are identical. □

Proposition 8. The homomorphism relation on inferences is a partial equivalence relation.

Proof. The homomorphism relation on inferences is symmetric because the homomorphism relation on sequences of formula occurrences is. It is transitive: Assume ρ_1, ρ_2 are homomorphic, and ρ_2, ρ_3 are homomorphic. We assume that ρ_1, ρ_2, ρ_3 are unary inferences, the binary case is analogous. Designate the respective auxiliary formulas by $\alpha_1, \alpha_2, \alpha_3$. Then there is a contraction c on formula occurrences γ_1, γ_2 s.t. the downwards paths $\alpha_1, \ldots, \gamma_1$ and $\alpha_2, \ldots, \gamma_2$ exist and are homomorphic, and there is a contraction c' on formula occurrences γ'_2, γ_3 s.t. the paths $\alpha_2, \ldots, \gamma'_2$ and $\alpha_3, \ldots, \gamma_3$ exist and are homomorphic. From the existence of these paths, it follows that c, c' cannot be parallel. W.l.o.g. assume that c is above c', then

$$\alpha_2, \ldots, \gamma'_2 = \alpha_2, \ldots, \gamma_2, \gamma'_2, \ldots, \gamma'_2$$

by Proposition 6, and there exists a path

$$\alpha_1, \ldots, \gamma_1, \gamma'_2, \ldots, \gamma'_2.$$

For $i \in \{1, 2\}$, let ω_i be the first formula occurrence from the right in $\alpha_i, \ldots, \gamma_i$ such that $F(\omega_i) \neq F(\gamma_i)$. ρ_1, ρ_3 are homomorphic by the following chain of equalities:

$$F(\alpha_1, \ldots, \gamma_1, \gamma'_2, \ldots, \gamma'_2) =$$

$$F(\alpha_1, \ldots, \omega_1), F(\gamma'_2, \ldots, \gamma'_2) =$$

$$F(\alpha_2, \ldots, \omega_2), F(\gamma'_2, \ldots, \gamma'_2) =$$

$$F(\alpha_2, \ldots, \gamma_2, \gamma'_2) =$$

$$F(\alpha_3, \ldots, \gamma_3)$$

□

We can now define the notion of an \textbf{LK}_{sk}-proof, for which we will require the converse of the Proposition 7 to hold.
Definition 7 (Weak regularity and \(\mathsf{LK}_{sk}\)-proofs). Let \(\pi\) be an \(\mathsf{LK}_{sk}\)-tree with end-sequent \(S\). \(\pi\) is weakly regular if for all distinct strong labelled quantifier inferences \(\rho_1, \rho_2\) in \(\pi\): If \(\rho_1, \rho_2\) have identical Skolem terms, then \(\rho_1, \rho_2\) are homomorphic. We say that \(\pi\) is an \(\mathsf{LK}_{sk}\)-proof if it is weakly regular and proper.

In ordinary \(\mathsf{LK}\), it follows directly from the definition of regularity that all strong quantifier inferences in a regular \(\mathsf{LK}\)-tree \(\pi\) fulfill the eigenvariable condition, and thus are \(\mathsf{LK}\)-proofs. Hence the name “weak regularity”: inferences are allowed to use the same eigenterm, provided they are homomorphic.

Example 5. The \(\mathsf{LK}_{sk}\)-tree from Example 1 is (trivially) an \(\mathsf{LK}_{sk}\)-proof. Also the first \(\mathsf{LK}_{sk}\)-tree from Example 4 is an \(\mathsf{LK}_{sk}\)-proof: the only two strong labelled quantifier applications in the tree are homomorphic.

Finally, consider the following example:

\[
\begin{align*}
\frac{(R(s,f(s))^s \vdash (R(s,f(s))^f(s))}{\exists^s k : l} &\quad \frac{((\exists y)R(s,y))^s \vdash (R(s,f(s))^f(s))}{\exists^s k : l} \\
\frac{(\forall x)(\exists y)R(x,y), ((\exists y)R(s,y))^s \vdash (R(s,f(s))^f(s))}{\forall^s k : l} &\quad \frac{((\exists y)R(s,y))^s \vdash (R(s,f(s))^f(s))}{\forall^s k : l} \\
\frac{(\forall x)(\exists y)R(x,y), (\forall y)(R(x,y) \rightarrow R(s,y))^s \vdash (R(s,f(s))^f(s))}{\forall^s k : l} &\quad \frac{(\forall x)(\exists y)R(x,y), (\exists y)(\forall y)(R(x,y) \rightarrow R(s,y))^s \vdash (R(s,f(s))^f(s))}{\forall^s k : l}
\end{align*}
\]

where \(f \in \mathcal{K}_{i_s}\) and \(s \in \mathcal{K}_s\).

Denote the upper-left \(\exists^s k : l\) application by \(\rho_1\), the upper-right \(\forall^s k : l\) application by \(\rho_2\), and the bottommost \(\exists^s k : l\) application by \(\rho_3\). \(\rho_3\) is the only \(\exists^s k : l\) application with Skolem term \(s\), so there is nothing to check. On the other hand, \(\rho_1\) and \(\rho_2\) have the same Skolem term \(f(s)\). They are indeed homomorphic: the \(\text{contr} : l\) application is their uniting contraction, and the homomorphic paths are

\[
\mu(\rho_1) = (R(s,f(s))^s, ((\exists y)R(s,y))^s, (\forall y)(\exists y)R(x,y), (\forall x)(\exists y)R(x,y))
\]

\[
\mu(\rho_2) = (R(s,f(s))^s, ((\exists y)R(s,y))^s, (\exists y)(\forall y)(R(x,y) \rightarrow R(s,y))^s, (\forall x)(\exists y)R(x,y))
\]

because \(F(\mu(\rho_1)) = F(\mu(\rho_2)) = (R(s,f(s))^s, ((\exists y)R(s,y))^s, (\forall x)(\exists y)R(x,y))\).
We postpone the proof of soundness of LK_{sk} to Section 7 and instead consider the problem of cut-elimination. Since LK_{sk} is cut-free, we first connect ordinary LK with the rules of LK_{sk}. The following definition will provide an analogue to Proposition 3, but in higher-order logic:

Definition 8 (LK$_{\text{skc}}$-trees). An LK$_{\text{skc}}$-tree is a tree formed according to the rules of LK_{sk} and LK such that

1. rules of LK operate only on cut-ancestors, and
2. rules of LK_{sk} operate only on end-sequent ancestors.

Hence the cut-ancestors in an LK$_{\text{skc}}$-tree have empty labels.

The method for showing cut-elimination for LK$_{\text{skc}}$ will be cut-elimination by resolution. Hence we will now introduce our resolution calculus.

5. The resolution calculus \mathcal{R}_{al}

In this section, we introduce the resolution calculus \mathcal{R}_{al} we will use to define the CERES$^\omega$ method in the next section. As in LK_{skc}, we deal with labelled sequents. Note that \mathcal{R}_{al} will include rules for CNF transformation: this is standard in higher-order resolution, as the notion of clause is not closed under substitution. It is also done in the ENAR calculus from [9] for a similar reason.

Definition 9 (\mathcal{R}_{al} rules, deductions and refutations).

\[
\begin{align*}
\Gamma \vdash \Delta, (\neg A)^\ell & \quad \frac{\Gamma \vdash \Delta, (A)^\ell, \Gamma \vdash \Delta}{\frac{\neg A}{A}}\quad \frac{(A)^\ell, \Gamma \vdash \Delta}{\neg T} \\
\Gamma \vdash \Delta, (A \lor B)^\ell & \quad \frac{\Gamma \vdash \Delta, (A)^\ell, (B)^\ell, \Gamma \vdash \Delta}{\frac{(A \lor B)^\ell}{A \lor B}}\quad \frac{\Gamma \vdash \Delta, (A \lor B)^\ell \lor T}{A \lor B} \\
\Gamma \vdash \Delta, (A \land B)^\ell & \quad \frac{\Gamma \vdash \Delta, (A)^\ell \land F}{\frac{(A \land B)^\ell}{A \land B}}\quad \frac{(A \land B)^\ell \land F}{B} \\
\Gamma \vdash \Delta, (A \rightarrow B)^\ell & \quad \frac{\Gamma \vdash \Delta, (A)^\ell \rightarrow T}{\frac{(A \rightarrow B)^\ell}{A \rightarrow B}}\quad \frac{(A \rightarrow B)^\ell \rightarrow T}{B} \\
\Gamma \vdash \Delta, (\forall A)^\ell & \quad \frac{\Gamma \vdash \Delta, (AX)^\ell \forall T}{\frac{(\forall A)^\ell}{\forall A}}\quad \frac{(AX)^\ell \forall T}{A} \\
\Gamma \vdash \Delta, (\exists A)^\ell & \quad \frac{\Gamma \vdash \Delta, (AX)^\ell \exists F}{\frac{(\exists A)^\ell}{\exists A}}\quad \frac{(AX)^\ell \exists F}{A} \\
\Gamma \vdash \Delta, (S)[X \leftarrow T] & \quad \text{Sub} \\
\Gamma \vdash \Delta, (A)^\ell, \ldots, (A)^{\ell_n} & \quad \frac{\Gamma, \Pi \vdash \Delta, (A)^\ell, \ldots, (A)^{\ell_n}, \Pi \vdash \Lambda}{\text{Cut}}
\end{align*}
\]
In Cut, \(A \) is atomic. In \(\forall^F \) and \(\exists^F \), \(X \) is a variable of appropriate type which does not occur in \(\Gamma, \Delta, A \). In \(\forall^F \) and \(\exists^F \), \(\ell = S_1, \ldots, S_n \) and if \(\tau(S_i) = \alpha_i \) for \(1 \leq i \leq n \) then \(f \in K_{\alpha_1, \ldots, \alpha_n, \alpha} \) is a Skolem symbol. An application of this rule is called source inference of \(fS_1 \ldots S_m \), and \(fS_1 \ldots S_m \) is called the Skolem term of this inference.

Let \(C \) be a set of sequents. A sequence of sequents \(S_1, \ldots, S_n \) is an \(R\)al-deduction of \(S_n \) from \(C \) if for all \(1 \leq i \leq n \) either

1. \(S_i \in C \) or
2. \(S_i \) is derived from \(S_j \) (and \(S_k \)) by an \(R\)al rule, where \(j, k < i \).

In addition, we require that all \(\forall^F \) and \(\exists^T \) inferences used have pairwise distinct Skolem symbols. An \(R\)al-deduction of the empty sequent from \(C \) is called an \(R\)al-refutation of \(C \).

The calculus \(R\)al is quite close to Andrews’ resolution calculus \(R \) from [2]. Just like in \(R \), \(R\)al-deductions are defined in a linear fashion (in contrast to \(LK\) proofs and \(LK_{skc} \)-trees). The two main differences to \(R \) are (1) the use of labels to control the arguments of the Skolem terms introduced by the \(\forall^F \) rule, and (2) the incorporation of Andrews’ rules of Simplification and Cut into the Cut rule of \(R\)al. Regarding the latter, note that this restriction is not as serious as it may appear at first glance: For example, the sentence \(F = \forall x P(x) \rightarrow (P(a) \land P(b)) \) cannot be proved in \(LK \), restricted to atomic cut, without using non-atomic contraction. Still, \(\neg F \) can be refuted in \(R\)al. We state the relative completeness problem of \(R\)al:

Relative Completeness of \(R\)al. Let \(S \) be a set of labelled sequents. \(R\)al is relatively complete if the following holds: If there exists an \(R\)-refutation of the reduct of \(S \), then there exists an \(R\)al-refutation of \(S \).

Relative completeness will imply completeness of the CERES\(^\omega \) method, in conjunction with the following result from [2] (which still holds in the presence of Miller’s restriction):

Theorem 1. Let \(S \) be a set of sentences. If there exists a \(T\)-refutation of \(S \) then there exists an \(R\)-refutation of \(S \).

Note that the above formulation of relative completeness is not the only way to attain this goal: completeness with respect to an appropriate intensional model class (see [7, 18]) for higher-order logic would also suffice (together with a soundness theorem for that class for \(LK \)). The formulation above has the advantage that an effective proof of it would give an algorithm to transform \(R\)-refutations into \(R\)al-refutations, allowing proof search to be done in practice in the more convenient \(R \) calculus.

6. CERES\(^\omega \)

In this section, we will show cut-elimination for \(LK_{skc} \). To connect this result to \(LK \), our first task is to show that \(LK\)-proofs can be translated to \(LK_{skc} \)-proofs.
We extend the notions of paths, homomorphic inferences, and wea k regularity to LK\textsubscript{skc}-trees. Let \(\pi \) be an LK\textsubscript{skc}-tree with end-sequent \(S \). We say that \(\pi \) is an LK\textsubscript{skc}-proof if it is weakly regular and proper.

Definition 10. Let \(\pi \) be an LK\textsubscript{skc}-tree. \(\pi \) is called regular if

1. each strong labelled quantifier inference has a unique Skolem symbol and
2. the eigenvariable of each strong quantifier inference \(\rho \) only occurs above \(\rho \) in \(\pi \).

Proposition 9. Let \(\pi \) be an LK\textsubscript{skc}-tree. If \(\pi \) is regular, then \(\pi \) is weakly regular.

The following lemma provides an analogue to the \(\Rightarrow \)-direction of Proposition 2.

Lemma 1 (Skolemization). Let \(\pi \) be a regular LK-proof of \(S \). Then there exists a regular LK\textsubscript{skc}-proof \(\psi \) of \(S \).

Proof. Let \(\rho \) be an inference in \(\pi \) with conclusion \(F_1, \ldots, F_n \vdash F_{n+1}, \ldots, F_m \).

By induction on the height of \(\rho \), we define a regular LK\textsubscript{skc}-tree \(\pi_\rho \) with conclusion \(\langle F_1 \rangle^\ell_1, \ldots, \langle F_n \rangle^\ell_n \vdash \langle F_{n+1} \rangle^\ell_{n+1}, \ldots, \langle F_m \rangle^\ell_m \) such that for all \(1 \leq i \leq m \), \(\ell_i \) is the sequence of substitution terms of \(\forall \): \(l \) inferences operating on descendants of \(F_i \) in \(\pi \), and such that \(\pi_\rho \) fulfills an eigenterm condition, i.e. every Skolem symbol occurs only above its source inference. \(^2\)

1. \(\rho \) is an axiom \(A \vdash A \). Let \(\ell_1 \) be the sequence of substitution terms of the weak quantifier inferences operating on the descendents of the left occurrence of \(A \), and let \(\ell_2 \) be the sequence of substitution terms of the weak quantifier inferences operating on descendents of the right occurrence of \(A \). Then take as \(\pi_\rho \) the axiom \(\langle A \rangle^\ell_1 \vdash \langle A \rangle^\ell_2 \).

2. \(\rho \) is a \(\forall \colon l \) inference operating on an end-sequent ancestor:

\[
\begin{align*}
\text{(\varphi)} & \quad \frac{\text{FT}, \Gamma \vdash \Delta}{\forall_\alpha F, \Gamma \vdash \Delta} \forall \colon l
\end{align*}
\]

By (IH) we obtain a regular LK\textsubscript{skc}-tree \(\varphi' \) of \(\langle \text{FT} \rangle^{\ell, T}, \Gamma' \vdash \Delta' \) where \(\Gamma', \Delta' \) are \(\Gamma, \Delta \) with the respective labels. We take for \(\pi_\rho \)

\[
\begin{align*}
\text{(\varphi')} & \quad \frac{\langle \text{FT} \rangle^{\ell, T}, \Gamma' \vdash \Delta'}{\langle \forall_\alpha F \rangle^{\ell}, \Gamma' \vdash \Delta'} \forall^{sk} \colon l
\end{align*}
\]

\(^2\)It is possible to assign arbitrary labels to cut-ancestors in LK\textsubscript{skc}-trees. To avoid a case distinction, cut-ancestors are assigned labels in the same way as end-sequent ancestors in this proof.
3. ρ is a ∀: l inference operating on a cut-ancestor. Then we simply take the regular LK_{skc}-tree obtained by (IH) and apply ρ to it.

4. ρ is a ∀: r inference operating on an end-sequent ancestor:

\[
\frac{\Gamma \vdash \Delta \forall \alpha : \text{FX}}{\Gamma \vdash \Delta, \forall \alpha : \text{r}}
\]

By (IH) we obtain a regular LK_{skc}-tree \(\varphi' \) of \(\Gamma' \vdash \Delta', (\text{FX})^{T_1, \ldots, T_n} \), with \(\Gamma', \Delta' \) as above. Let \(f \in \mathcal{K}_{\alpha_1, \ldots, \alpha_n, \alpha} \), where for \(1 \leq i \leq n \) \(\tau(T_i) = \alpha_i \), be a new Skolem symbol, and let \(S = f(T_1 \ldots T_n) \). Let \(\sigma \) be the substitution [\(X \leftarrow S \)]. By regularity, \(X \) is not an eigenvariable in \(\varphi' \), and does not occur in \(T_1, \ldots, T_n \). Hence \(\varphi' \sigma \) is a regular LK_{skc}-tree of \(\Gamma' \vdash \Delta', (\text{FS})^{T_1, \ldots, T_n} \).

Take for \(\pi_\rho \)

\[
\frac{\left(\varphi' \sigma \right)}{\Gamma' \vdash \Delta', (\text{FS})^{T_1, \ldots, T_n} \forall \text{sk}; \ r}
\]

5. ρ is a ∀: r inference operating on a cut ancestor. Again we take the regular LK_{skc}-tree obtained by (IH) and apply ρ to it.

6. ρ is a cut inference

\[
\frac{\Gamma \vdash \Delta, \text{F} \quad \Pi \vdash \Lambda}{\Gamma, \Pi \vdash \Delta, \text{A} \ \text{cut}}
\]

By (IH) we obtain regular LK_{skc}-trees \(\varphi', \lambda' \) of \(\Gamma' \vdash \Delta', (\text{F})^{\ell_1} \) and \((\text{F})^{\ell_2}, \Pi' \vdash \Lambda' \), respectively. If the intersection of the Skolem symbols of \(\varphi', \lambda' \) is non-empty, by the eigenterm condition we can rename Skolem symbols to achieve this. Hence the LK_{skc}-tree \(\pi_\rho \)

\[
\frac{\left(\varphi' \right)}{\Gamma' \vdash \Delta', (\text{F})^{\ell_1} \quad \frac{\left(\lambda' \right)}{\Pi' \vdash \Delta', \Lambda' \ \text{cut}}}
\]

is regular.

7. ρ is a contr: r inference

\[
\frac{\Gamma \vdash \Delta, \text{F}, \text{F} \ \text{contr: r}}{\Gamma \vdash \Delta, \text{F} \ \text{contr: r}}
\]

By (IH) we obtain a regular LK_{skc}-tree \(\varphi' \) of \(\Gamma' \vdash \Delta', (\text{F})^{\ell_1}, (\text{F})^{\ell_2} \). Note that the inferences operating on descendents of the occurrences of \(\text{F} \) coincide, so \(\ell_1 = \ell_2 \) and we may take for \(\pi_\rho \)

15
\[
\frac{(\varphi′) \\
\Gamma′ \vdash \Delta′, (F)^{f_1}, (F)^{f_2} \\
\Gamma′ \vdash \Delta′, (F)^{f_1}}{\text{contr: } r}
\]

8. \(\rho\) is another type of inference: analogous to the previous cases.

Let \(\rho\) be the last inference in \(\pi\), then \(\psi = \pi_\rho\) is the desired regular LK\(_{skc}\)-proof.

\[\Box\]

We will now set up some notation for the main definitions of CERES\(^c\). Let \(\pi\) be an LK\(_{skc}\)-tree, and let \(S\) be a sequent in \(\pi\). Then by cutanc\((S)\) we denote the sub-sequent of \(S\) consisting of the cut-ancestors of \(S\), and by esanc\((S)\) we denote the sub-sequent of \(S\) consisting of the end-sequent ancestors of \(S\). Note that for any sequent \(S\) = cutanc\((S)) \circ esanc\((S)\)

Definition 11 (Characteristic sequent set and proof projections). Let \(\pi\) be a regular LK\(_{skc}\)-proof. For each inference \(\rho\) in \(\pi\), we define a set of LK\(_{skc}\)-trees, the set of projections \(P_{\rho}(\pi)\), and a set of labelled sequents, the characteristic sequent set \(CS_{\rho}(\pi)\).

- If \(\rho\) is an axiom with conclusion \(S = \langle A \rangle^{f_1} \vdash \langle A \rangle^{f_2}\), distinguish:
 - cutanc\((S)\) = \(S\). Then \(CS_{\rho}(\pi) = P_{\rho}(\pi) = \emptyset\).
 - cutanc\((S)\) ≠ \(S\). Distinguish:
 (a) if cutanc\((S)\) = \(\vdash \langle A \rangle^{f_1}\) then \(CS_{\rho}(\pi) = \{\vdash \langle A \rangle^{f_1}\}\) and \(P_{\rho}(\pi) = \{\langle A \rangle^{f_1} \vdash \langle A \rangle^{f_1}\}\),
 (b) if cutanc\((S)\) = \(\langle A \rangle^{f_1} \vdash \vdash\) then \(CS_{\rho}(\pi) = \{\langle A \rangle^{f_1} \vdash \}\) and \(P_{\rho}(\pi) = \{\langle A \rangle^{f_2} \vdash \langle A \rangle^{f_2}\}\),
 (c) if cutanc\((S)\) = \(\vdash \) then \(CS_{\rho}(\pi) = \{\vdash\}\) and \(P_{\rho}(\pi) = \{S\}\).
- If \(\rho\) is a unary inference with immediate predecessor \(\rho′\) with \(P_{\rho′}(\pi) = \{\psi_1, \ldots, \psi_n\}\), distinguish:
 (a) \(\rho\) operates on ancestors of cut formulas. Then \(P_{\rho}(\pi) = P_{\rho′}(\pi)\)
 (b) \(\rho\) operates on ancestors of the end-sequent. Then \(P_{\rho}(\pi) = \{\rho(\psi_1), \ldots, \rho(\psi_n)\}\)
In any case, $\text{CS}_\rho(\pi) = \text{CS}_{\rho'}(\pi)$.

- Let ρ be a binary inference with immediate predecessors ρ_1 and ρ_2.

 (a) If ρ operates on ancestors of cut-formulas, let $\Gamma_i \vdash \Delta_i$ be the ancestors of the end-sequent in the conclusion sequent of ρ_i and define

 $$\mathcal{P}_\rho(\pi) = \mathcal{P}_{\rho_1}(\pi)^{\Gamma_2 \vdash \Delta_2} \cup \mathcal{P}_{\rho_2}(\pi)^{\Gamma_1 \vdash \Delta_1}$$

 For the characteristic sequent set, define

 $$\text{CS}_\rho(\pi) = \text{CS}_{\rho_1}(\pi) \cup \text{CS}_{\rho_2}(\pi)$$

 (b) If ρ operates on ancestors of the end-sequent, then

 $$\mathcal{P}_\rho(\pi) = \mathcal{P}_{\rho_1}(\pi) \times_{\rho} \mathcal{P}_{\rho_2}(\pi).$$

 For the characteristic sequent set, define

 $$\text{CS}_\rho(\pi) = \text{CS}_{\rho_1}(\pi) \times_{\rho} \text{CS}_{\rho_2}(\pi)$$

 The set of projections of π, $\mathcal{P}(\pi)$ is defined as $\mathcal{P}_{\rho_0}(\pi)$, and the characteristic sequent set of π, $\text{CS}(\pi)$ is defined as $\text{CS}_{\rho_0}(\pi)$, where ρ_0 is the last inference of π.

Note that for LK_{skc}-proofs π containing only atomic axioms, $\text{CS}(\pi)$ consists of sequents containing only atomic formulas. This is not required, though.

Proposition 10. Let π be a regular LK_{skc}-proof. Then there exists an LK-refutation of the reduct of $\text{CS}(\pi)$.

Proof. We inductively define, for each inference ρ with conclusion S in π, an LK-tree γ_ρ of the reduct of $\text{cutanc}(S)$ from the reduct of $\text{CS}_\rho(\pi)$.

- If ρ is an axiom $\langle A \rangle_{\ell_1}^\odot \vdash \langle A \rangle_{\ell_2}^\odot$, distinguish:

 - $\text{cutanc}(S) = S$. Take the axiom ρ for γ_ρ.
 - $\text{cutanc}(S) \neq S$. Then $\mathcal{P}_\rho(\pi) = \{S'\}$ and we may take the reduct of S'.

- If ρ is a unary inference with immediate predecessor ρ', let S' be the conclusion of ρ' and distinguish:

 - ρ operates on ancestors of cut formulas. By (IH) we have an LK-tree $\gamma_{\rho'}$ of $\text{cutanc}(S')$ from $\text{CS}_{\rho'}(\pi)$. Apply ρ to $\gamma_{\rho'}$ to obtain γ_ρ. Note that as $\text{cutanc}(S')$ is a sub-sequent of S', if ρ' is a strong quantifier inference, its eigenvariable condition is fulfilled. As $\text{CS}_\rho(\pi) = \text{CS}_{\rho'}(\pi)$ by definition, γ_ρ is the desired LK-tree of $\text{cutanc}(S)$.

 - ρ operates on ancestors of the end-sequent. Then $\text{cutanc}(S) = \text{cutanc}(S')$ and $\text{CS}_\rho(\pi) = \text{CS}_{\rho'}(\pi)$ and hence we may take for γ_ρ the LK-tree obtained by (IH).
• If ρ is a binary inference with immediate predecessors ρ_1, ρ_2, let $\gamma_{\rho_1}, \gamma_{\rho_2}$ be the LK-trees obtained by (IH) and distinguish:

- ρ operates on ancestors of cut-formulas. Then obtain γ_ρ by applying ρ to $\gamma_{\rho_1}, \gamma_{\rho_2}$: As $\text{CS}_\rho(\pi) = \text{CS}_{\rho_1}(\pi) \cup \text{CS}_{\rho_2}(\pi)$ it is the desired LK-tree.

- ρ operates on ancestors of the end-sequent. Then $\text{CS}_\rho(\pi) = \text{CS}_{\rho_1}(\pi) \times \text{CS}_{\rho_2}(\pi)$. We may assume that the eigenvariables of γ_{ρ_1} are distinct from the variables occurring in γ_{ρ_2} and vice-versa, otherwise we perform renamings. Let S_1, S_2 be the conclusions of ρ_1, ρ_2 respectively. For every $C \in \text{CS}_{\rho_1}(\pi)$, construct an LK-tree γ_C of $\text{cutanc}(S_2) \circ C$ from $\text{CS}_{\rho_2}(\pi) \times \{C\}$ by taking γ_{ρ_2} and adding C to every sequent, and appending contractions on C at the end. As the eigenvariables of γ_{ρ_2} are distinct from the variables of C by the consideration above, γ_C is really an LK-tree. Now, construct γ_ρ by taking γ_{ρ_1} and appending, at every leaf of the form $C \in \text{CS}_{\rho_1}(\pi)$, the LK-tree γ_C, and adding contractions on $\text{cutanc}(S_2)$ at the end. Again, no eigenvariable conditions are violated by the above consideration and γ_ρ is an LK-tree of $\text{cutanc}(S_1) \circ \text{cutanc}(S_2)$ from $\text{CS}_\rho(\pi)$, as required.

Let ρ be the last inference in π, then γ_ρ is the desired LK-refutation. \hfill \Box

We will now address a central problem of CERES\textcopyright: how to combine an \mathcal{R}_{cut}-refutation of $\text{CS}(\pi)$ with the LK\textsubscript{sk},trees from $P(\pi)$ into an LK\textsubscript{sk}-proof of the end-sequent of π. The following definitions set up the main properties of the LK\textsubscript{sk}-trees in $P(\pi)$:

Definition 12 (Restrictedness). Let \mathcal{S} be a set of formula occurrences in an LK\textsubscript{sk}-tree π. We say that π is \mathcal{S}-linear if no inferences operate on ancestors of occurrences in \mathcal{S}. We say that π is \mathcal{S}-restricted if no inferences except contraction operate on ancestors of occurrences in \mathcal{S}.

If \mathcal{S} is the set of occurrences of cut-formulas of π and π is \mathcal{S}-restricted, we say that π is restricted.

Example 6. Consider the LK\textsubscript{sk}-tree π

\[
\begin{array}{c}
P(a) \vdash P(a) \quad Y(b) \vdash Y(b) \\
\hline
P(a) \lor Y(b) \vdash P(a), Y(b) \quad \lor; l
\end{array}
\begin{array}{c}
Y(b) \vdash (Y(b))^T \\
\hline
Y(b), Y(b) \vdash (Y(b) \land (Y(b))^T) \quad \land; r
\end{array}
\begin{array}{c}
Y(b) \vdash (Y(b) \land (Y(b))^T) \\
\hline
Y(b) \vdash (\exists X)X(b) \quad \exists^k; r
\end{array}
\begin{array}{c}
P(a) \lor Y(b) \vdash (\exists X)X(b), P(a) \quad \text{cut}
\end{array}
\]

where $T = \lambda x. Y(x) \land Y(x)$. Let \mathcal{S} be the ancestors of $P(a)$ in the end-sequent, and let C be the ancestors of cut-formulas in π. Then π is \mathcal{S}-linear and C-restricted, and thus restricted.

In principle, labels of linear occurrences in LK\textsubscript{sk}-trees may be deleted:
Proposition 11. Let π be an LK_{skec}-tree, and S a set of formula occurrences in π that is closed under descendents, and let π be S-linear. If π' is obtained from π by replacing all labels of ancestors of occurrences in S by the empty label, then π' is an LK_{skec}-tree.

Proof. As π is S-linear, no inferences operate on the respective occurrences. As no inference has restrictions on labels of context formulas (except that direct descendents have the same labels as their direct ancestors), and also axioms pose no restrictions on labels, the proposition holds. \hfill \square

Definition 13 (Skolem parallel). Let ρ_1, ρ_2 be strong labelled quantifier inferences in LK_{skec}-trees π_1, π_2 with Skolem terms S_1, S_2 respectively. ρ_1, ρ_2 are called Skolem parallel if for all substitutions σ_1, σ_2, if $S_1\sigma_1 = S_2\sigma_2$ then μ_1, μ_2 are homomorphic, where μ_1, μ_2 are the maximal downwards paths starting at S_1, S_2 respectively. π_1, π_2 are called Skolem parallel if for all strong labelled quantifier inferences ρ_1, ρ_2 in π_1, π_2 respectively, ρ_1, ρ_2 are Skolem parallel.

Example 7. Consider the LK_{skec}-trees π

\[
\frac{Y(f(Y)) \vdash \langle Y(f(Y)) \rangle^Y}{Y(f(Y)) \vdash (\forall y)Y(y)} \quad \forall^k: r
\]

\[
\frac{\exists^k: r}{Y(f(Y)) \vdash (\exists X)(\forall y)X(y) + \exists^k: r}
\]

and ψ

\[
\frac{P(f(T)) \vdash (P(f(T)))^T, Q(\alpha) \vdash \langle Q(\alpha) \rangle^T}{P(f(T)) \vdash (P(f(T)))^T, (Q(\alpha))^T} \quad \forall: l
\]

\[
\frac{P(f(T)) \vdash (P(f(T)))^T, (Q(\alpha))^T}{P(f(T)) \vdash (P(f(T)))^T} \quad \forall: r
\]

\[
\frac{P(f(T)) \vdash (\exists X)(\forall y)X(y) + \exists^k: r}{P(f(T)) \vdash (\exists X)(\forall y)X(y) + \exists^k: r}
\]

where $T = \lambda x. P(x) \lor Q(\alpha)$ and $f \in K_{\lambda \to \alpha}$. Then π and ψ are Skolem parallel.

Proposition 12. Let π_1, π_2 be LK_{skec}-trees and σ a substitution. If π_1, π_2 are Skolem parallel, then $\pi_1\sigma, \pi_2\sigma$ are.

Proof. Consider Skolem terms S_1, S_2 occurring in auxiliary formulas of strong labelled quantifier inferences ρ_1, ρ_2 in $\pi_1\sigma, \pi_2\sigma$ respectively. Then by construction of $\pi_1\sigma, S_1 = S'_1\sigma$ for some Skolem term S'_1 occurring in the auxiliary formula of a strong labelled quantifier inference ρ'_1 in π_1. Let μ'_1 be the maximal downwards path starting at S'_1, and μ_2 the maximal downwards path in π_2 starting at S_2. Let σ_1, σ_2 be substitutions such that $S_2\sigma_2 = S_1\sigma_1 = S'_1\sigma_1$. As μ'_1, μ_2 are Skolem parallel, $F(\mu'_1\sigma_1) = F(\mu_2\sigma_2)$. But by construction of $\pi_1\sigma, \mu'_1\sigma$ is the maximal downwards path starting at S_1 in $\pi_1\sigma$, so ρ_1, ρ_2 are Skolem parallel. \hfill \square
Definition 14 (Axiom labels). Let π be an LK_{skc}-tree, let ω be a formula occurrence in π, and let μ be an ancestor of ω that occurs in an axiom A. Then A is called a source axiom for ω. Let S be a set of formula occurrences in π. We say that π has suitable axiom labels with respect to S if for all formula occurrences ω in S, the source axioms of ω are of the form $(F)^{\ell_1} \vdash (F)^{\ell_2}$.

Example 8. Consider the LK_{skc}-tree π

$$
\frac{(Y(b))^T \vdash (Y(b))^T \ Y(b) \vdash (Y(b))^T}{\not\exists \; r }$

where $T = \lambda x. Y(x) \land Y(x)$. Let ω be the occurrence of $(Y(b))^T$ in the end-sequent. Then π has suitable axiom labels with respect to $\{\omega\}$. Note that π does not have suitable axiom labels with respect to the occurrence of $Y(b)$ in the end-sequent.

Definition 15 (Balancedness). Let π be an LK_{skc}-tree, and let S be a set of formula occurrences in π. We call π S-balanced if for every axiom $(F)^{\ell_1} \vdash (F)^{\ell_2}$ in π, at least one occurrence of F is an ancestor of a formula occurrence in S. We say that π is balanced if π is S-balanced, where S is the set of end-sequent occurrences of π.

Example 9. Consider the LK_{skc}-tree π from Example 6. Let ω_1 be the occurrence of $P(a) \lor Y(b)$ in the end-sequent of π, and let ω_2 be the occurrence of $(\exists X)X(b)$ in the end-sequent of π. Then π is neither $\{\omega_1\}$-balanced nor $\{\omega_2\}$-balanced, but π is $\{\omega_1, \omega_2\}$-balanced.

Definition 16 (CERES-projections). Let S be a proper sequent, and C be a sequent. Then an LK_{skc}-tree π is called a CERES-projection for (S, C) if the end-sequent of π is $S \circ C$ and π is weakly regular, \mathcal{O}_C-linear, \mathcal{O}_C-balanced, restricted, and has suitable axiom labels with respect to \mathcal{O}_C, where \mathcal{O}_S resp. \mathcal{O}_C is the set of formula occurrences of S resp. C in the end-sequent of π.

Let C be a set of sequents. A set of LK_{skc}-trees \mathcal{P} is called a set of CERES-projections for (S, C) if for all $C \in \mathcal{C}$ there exists a $\pi(C) \in \mathcal{P}$ such that $\pi(C)$ is a CERES-projection for (S, C) and moreover, for all $\pi_1, \pi_2 \in \mathcal{P}$, π_1 and π_2 are Skolem parallel.

Lemma 2. Let π be a regular LK_{skc}-proof of S. Then $\mathcal{P}(\pi)$ is a set of CERES-projections for $(S, \text{CS}(\pi))$. Furthermore, for all $\psi \in \mathcal{P}(\pi)$, $|\psi| \leq |\pi|$.

Proof. By inspecting Definition 11. Let ρ be an inference in π with conclusion R. By induction on height(ρ), it is easy to see that for every $C \in \text{CS}(\pi)$, $\mathcal{P}_\rho(\pi)$ contains an LK_{skc}-tree of esanc$(R) \circ C$. Hence $\mathcal{P}(\pi)$ contains an LK_{skc}-tree $\pi(C)$ of $S \circ C$ for every $C \in \text{CS}(\pi)$. It remains to verify that (1) $\pi(C)$ is a CERES-projection for (S, C) and (2) every $\pi(C_1), \pi(C_2) \in \mathcal{P}(\pi)$ are Skolem parallel.
Regarding (1): $\pi(C)$ is regular, which follows from the fact that π is regular, and that in constructing $\pi(C)$ from π, every inference in π induces at most one copy of it in $\pi(C)$. Hence $\pi(C)$ is also weakly regular. S-balancedness, C-linearity and suitable axiom labels follow immediately from the definition. As $\pi(C)$ is cut-free, it is trivially restricted.

Regarding (2): Consider $\mu_1, \mu_2, S_1, S_2, \sigma_1, \sigma_2$ as in Definition 13. By construction, if an inference ρ of π is applied in both $\pi(C_1)$ and $\pi(C_2)$, also all inferences operating on descendents of the main formula of π are applied in both $\pi(C_1)$ and $\pi(C_2)$. Therefore by regularity of π, $\mu_1 = \mu_2$. $\mu_1 = \mu_2$ implies $S_1 = S_2$, hence $S_1 \sigma_1 = S_1 \sigma_2$ and therefore $\sigma_1 \vdash FV(S_1) = \sigma_2 \vdash FV(S_2)$. Therefore $\mu_1 \sigma_1 = \mu_2 \sigma_2$ by Proposition 5. □

Lemma 3. Let S be a proper sequent. Let C be a set of sequents, and P a set of CERES-projections for (S, C). Then, if there exists an R_{al}-refutation of C, there exists a restricted, weakly regular, balanced LK_{skc}-tree of S.

Proof. Let $\gamma : S_1, \ldots, S_n$ be an R_{al}-refutation of C (hence $S_n \models \top$). Let $S = \Gamma \vdash \Delta$. By induction on $0 \leq i \leq n$, we construct sets of LK_{skc}-trees $P_i \supseteq P$ such that P_i is a set of CERES-projections for $(S, C \cup \{S_1, \ldots, S_i\})$ and such that P_i contains only Skolem symbols from P and S_1, \ldots, S_i. Then P_n contains a CERES-projection for (S, \top) which is the desired LK_{skc}-tree of S. We set $P_0 = P$.

For $i > 0$, distinguish how S_i is inferred in γ:

1. $S_i \in C$. Then we may take $P_i = P_{i-1}$ by $P \subseteq P_{i-1}$ and (IH).
2. S_i is derived from S_j (and S_k). Then by (IH) we obtain a set of CERES-projections P_{i-1} for $(S, C \cup \{S_1, \ldots, S_{i-1}\})$. By definition there exist CERES-projections $\pi_j \in P_{i-1}$ for (S, S_j) (and $\pi_k \in P_{i-1}$ for (S, S_k)). We set $P_i = P_{i-1} \cup \{\pi_j\}$, where π_j is an LK_{skc}-tree defined by distinguishing how S_i is inferred in γ:
 (a) $S_i = \langle A \rangle ^{\ell}, \Pi \vdash \Lambda$, is derived from $S_j = \Pi \vdash \Lambda, \langle \neg A \rangle ^{\ell}$ by $\neg \ell$. Then the end-sequent of π_j is $S \circ S_j = \Gamma, \Pi \vdash \Lambda, \Delta, \langle \neg A \rangle ^{\ell}$. By S-linearity of π_j, the maximal upwards path μ starting at $\langle \neg A \rangle ^{\ell}$ is unique. Let μ end in $\langle \neg A \rangle ^{\ell} \vdash \langle \neg A \rangle ^{\ell}$ (the labels are identical because π_j has suitable axiom labels with respect to S_j). By S-balancedness, we may replace this axiom in π_j by

\[\langle A \rangle ^{\ell} \vdash \langle A \rangle ^{\ell} \]

\[\langle A \rangle ^{\ell}, \langle \neg A \rangle ^{\ell} \vdash \neg : l \]

to obtain π_i of $\langle A \rangle ^{\ell}, \Gamma, \Pi \vdash \Lambda, \Delta = S \circ S_i$. The desired properties of π_i and P_i follow trivially from the fact that they hold for π_j and P_{i-1} respectively.

(b) S_i is derived from S_j by some other propositional rule: analogously to the previous case, there exists a unique axiom introducing the auxiliary formula of the inference in π_j. Depending on the rule applied,
we perform one of the following replacements to obtain π_i:

$$\neg^F : \langle \neg A \rangle^\ell \vdash \langle \neg A \rangle^\ell \rightsquigarrow \langle A \rangle^\ell \vdash \langle A \rangle^\ell \neg^r : r$$

$$\lor^T : \langle A \lor B \rangle^\ell \vdash \langle A \lor B \rangle^\ell \rightsquigarrow \langle A \rangle^\ell \lor \langle B \rangle^\ell \vdash \langle A \rangle^\ell \lor \langle B \rangle^\ell : l$$

$$\lor^l : \langle A \lor B \rangle^\ell \vdash \langle A \lor B \rangle^\ell \rightsquigarrow \langle A \rangle^\ell \lor \langle A \rangle^\ell \lor \langle B \rangle^\ell \vdash \langle A \rangle^\ell \lor \langle B \rangle^\ell : r^1$$

$$\lor^r : \langle A \lor B \rangle^\ell \vdash \langle A \lor B \rangle^\ell \rightsquigarrow \langle B \rangle^\ell \lor \langle A \rangle^\ell \lor \langle B \rangle^\ell \vdash \langle B \rangle^\ell \lor \langle A \rangle^\ell : r^2$$

The replacements for the cases of $\land^F, \land^T, \land^r, \rightarrow^T, \rightarrow^r$ are analogous. As in the previous case, the desired properties of π_i and P_i follow from those of π_j and P_{i-1}.

(c) $S_i = \langle AS \rangle^\ell, \Pi \vdash \Delta, \Lambda$ is derived from $S_j = \langle \forall A \rangle^\ell, \Pi \vdash \Delta, \Lambda$ by \forall^F. Then the end-sequent of π_j is $\langle \forall A \rangle^\ell, \Pi, \Gamma \vdash \Delta, \Lambda$. By S_j-linearity and suitable axiom labels there exists a unique axiom $\langle \forall A \rangle^\ell \vdash \langle \forall A \rangle^\ell$ introducing the ancestor of $\langle \forall A \rangle^\ell$. By S-balancedness, we may replace it by

$$\frac{\langle AS \rangle^\ell \vdash \langle AS \rangle^\ell}{\langle AS \rangle^\ell \vdash \langle \forall A \rangle^\ell} \forall^k : r$$

to obtain π_i of $\langle AS \rangle^\ell, \Pi, \Gamma \vdash \Delta, \Lambda$. As π_j is weakly regular, so is π_i (note that the Skolem symbol of this inference does not occur in π_j by assumption and the fact that it is fresh in γ). As π_j is Skolem parallel to the LK_{skc}-trees in P_{i-1}, so is π_i as the downwards paths of auxiliary formulas of strong labelled quantifier inferences are unchanged, except for the new inference which has a fresh symbol. Restrictedness, S-balancedness and suitable axiom labels carry over from π_j.

(d) $S_i = \Pi \vdash \Delta, \langle AX \rangle^{\ell, X}$ is derived from $S_j = \Pi \vdash \Delta, \langle \forall A \rangle^\ell$ by \forall^T. By (IH) we have an LK_{skc}-tree π_j of $\Pi, \Gamma \vdash \Delta, \Lambda, \langle \forall A \rangle^\ell$. By S_j-linearity there exists a unique axiom $\langle \forall A \rangle^\ell \vdash \langle \forall A \rangle^\ell$ introducing the ancestor of $\langle \forall A \rangle^\ell$. By S-balancedness, we may replace it by

$$\frac{\langle AX \rangle^{\ell, X} \vdash \langle AX \rangle^{\ell, X}}{\langle \forall A \rangle^\ell \vdash \langle AX \rangle^{\ell, X}} \forall^k : l$$

to obtain π_i of $\Pi, \Gamma \vdash \Delta, \Lambda, \langle AX \rangle^{\ell, X}$. Again the desired properties carry over from π_j. 22
Lemma 4. Let \(S \) be a restricted LK_{skc}-proof of \(S \). Then there exists a LK_{skc}-proof of \(S \).

Proof. We proceed by induction on the number of Cut inferences in \(\pi \). Consider a subtree \(\varphi \) of \(\pi \) that ends in an uppermost Cut \(\rho \). Let the end-sequent of \(\varphi \) be \(S_j \circ S_k \), where \(S_j \) are the end-sequent ancestors and \(S_k \) are the cut-ancestors (in \(\pi \)). We will transform \(\varphi \) into an LK_{skc}-tree \(\varphi' \) such that replacing \(\varphi \) by \(\varphi' \) in \(\pi \) results in a restricted LK_{skc}-proof of \(S \) (in particular \(\varphi' \) will be \(S_2 \)-restricted). We proceed by induction on the height of \(\rho \).

1. \(\rho \) occurs directly below axioms. Then \(\rho \) is

\[
\frac{(A)^{f_1} \vdash (A)^{f_2}}{(A)^{f_1} \vdash (A)^{f_4}} \quad \text{Cut}
\]

and we replace it by \((A)^{f_1} \vdash (A)^{f_4} \).

2. \(\rho \) does not occur directly below axioms. Then we permute \(\rho \) up. The only interesting case is permuting \(\rho \) over a contraction — here, the Cut is duplicated and the context contracted. By this contraction, weak regularity is preserved. Since the heights of both cuts is decreased, we may apply the induction hypothesis twice to obtain the desired LK_{skc}-proof. \(\square \)
We may now state the main theorem of this section:

Theorem 2. Let \(\pi \) be a regular, proper \(\text{LK}_{skc} \)-proof of \(S \) such that there exists an \(\mathcal{R}_a \)-refutation of \(\text{CS}(\pi) \). Then there an \(\text{LK}_{sk} \)-proof of \(S \).

Proof. By Lemma 2 and Lemma 3, there exists a restricted \(\text{LK}_{skc} \)-proof of \(S \). By Lemma 4, there exists an \(\text{LK}_{sk} \)-proof of \(S \). \(\square \)

To see that CERES\(^{\omega} \) is a cut-elimination method for \(\text{LK} \), we will show in the next section that \(\text{LK}_{sk} \)-proofs can be translated to cut-free \(\text{LK} \)-proofs.

7. Soundness of \(\text{LK}_{sk} \)

This section will be devoted to proving that weak regularity suffices for soundness of \(\text{LK}_{sk} \)-proofs.

Definition 17. Let \(\pi \) be an \(\text{LK}_{sk} \)-tree, and \(\rho \) an inference in \(\pi \). Define the height of \(\rho \), \(\text{height}(\rho) \), as the maximal number of sequents between \(\rho \) and an axiom in \(\pi \).

Lemma 5. Let \(T \) be a Skolem term and \(\pi \) be a \(\text{LK}_{sk} \)-tree of \(S \) such that \(\pi \) does not contain a source inference of \(T \). Let \(X \) be a variable not occurring in \(\pi \), then there exists an \(\text{LK}_{sk} \)-tree \(\pi[T \leftarrow X] \) of \(S[T \leftarrow X] \). Furthermore, if \(\pi \) is weakly regular (proper) then \(\pi[T \leftarrow X] \) is weakly regular (proper).

Proof. Let \(\sigma = [T \leftarrow X] \), and let \(\rho \) be an inference in \(\pi \) with conclusion \(S \). By induction on \(\text{height}(\rho) \), we construct \(\text{LK}_{sk} \)-trees \(\pi_\rho \) of \(S_\sigma \).

1. \(\rho \) is an axiom \(\langle A \rangle^{\ell_1} \vdash \langle A \rangle^{\ell_2} \). Take for \(\pi_\rho \) the axiom \(\langle A_\sigma \rangle^{\ell_1 \sigma} \vdash \langle A_\sigma \rangle^{\ell_2 \sigma} \).
2. \(\rho \) is a \(\forall_{sk} : r \) inference

 \[
 \begin{align*}
 \Gamma \vdash \Delta, \langle FR \rangle^\ell & \quad \forall_{sk} : r \\
 \Gamma \vdash \Delta, \langle F \rangle^\ell & \quad \forall_{sk} : r
 \end{align*}
 \]
 where \(R \) is the Skolem term of \(\rho \). By (IH) we have a \(\text{LK}_{sk} \)-tree \(\psi \) of \(\Gamma_\sigma \vdash \Delta_\sigma, \langle FR_\sigma \rangle^{\ell_\sigma} \). Note that \(FR_\sigma =_\beta F_\sigma R_\sigma \). Hence we may take for \(\pi_\rho \)

 \[
 \begin{align*}
 (\psi) & \\
 \Gamma_\sigma \vdash \Delta_\sigma, \langle F_\sigma R_\sigma \rangle^{\ell_\sigma} & \quad \forall_{sk} : r
 \end{align*}
 \]

3. \(\rho \) is a \(\forall_{sk} : l \) inference

 \[
 \begin{align*}
 \langle FR \rangle^{\ell, R}, \Gamma \vdash \Delta & \\
 \langle F \rangle^{\ell}, \Gamma \vdash \Delta & \quad \forall_{sk} : l
 \end{align*}
 \]

By (IH) we have an \(\text{LK}_{sk} \)-tree \(\psi \) of \(\langle FR_\sigma \rangle^{\ell, R_\sigma}, \Gamma_\sigma \vdash \Delta_\sigma \). By the soundness assumption for Skolem terms from [17], \(T \) does not contain variables bound in \(F \), hence \(FR_\sigma =_\beta F_\sigma R_\sigma \). Therefore we may take as \(\pi_\rho \).
Lemma 6. Let \(\rho \) be a structural or propositional inference. As in the previous cases, we simply apply the rule to the tree(s) obtained by hypothesis to obtain \(\pi_{\rho} \).

Let \(\rho \) be the last inference in \(\pi \); then we set \(\pi \sigma = \pi_{\rho} \). It remains to show that weak regularity is preserved. As we apply \(\sigma \) on the whole tree, every path \(\mu \) in \(\pi \sigma \) induces a path \(\nu \) in \(\pi \) such that \(\mu = \nu \sigma \). Hence homomorphisms of downwards paths are preserved. □

Example 10. Consider the following \(\text{LK}_{\text{sk}} \)-tree \(\pi \), where \(s \in \mathcal{K}_i \) and \(f \in \mathcal{K}_{i,\iota} \):

\[
\begin{align*}
\langle R(s, f(s), s) \rangle^{f(s)} & \vdash \langle R(s, f(s), s) \rangle^s \quad \forall_{sk} : r \\
\langle R(s, f(s), s) \rangle^{f(s)} & \vdash \langle (\forall x)R(s, x, s) \rangle^s \quad \exists_{sk} : r \\
\langle R(s, f(s), s) \rangle^{f(s)} & \vdash \langle (\exists y)(\forall x)R(s, x, y) \rangle^s \quad \forall_{sk} : l
\end{align*}
\]

Then \(\pi [s \leftarrow z] \):

\[
\begin{align*}
\langle R(z, f(z), z) \rangle^{f(z)} & \vdash \langle R(s, f(s), s) \rangle^z \quad \forall_{sk} : r \\
\langle R(z, f(z), z) \rangle^{f(z)} & \vdash \langle (\forall x)R(z, x, z) \rangle^z \quad \exists_{sk} : r \\
\langle R(z, f(z), z) \rangle^{f(z)} & \vdash \langle (\exists y)(\forall x)R(z, x, y) \rangle^z \quad \forall_{sk} : l
\end{align*}
\]

is an \(\text{LK}_{\text{sk}} \)-tree.

Lemma 6. Let \(\rho, \rho' \) be homomorphic inferences, and \(c \) their uniting contraction. Let \(\rho_1, \ldots, \rho_n \) and \(\rho'_1, \ldots, \rho'_n \) be the logical inferences operating on descendants of the auxiliary formulas of \(\rho, \rho' \) above \(c \). Then \(n = m \) and for all \(1 \leq i \leq n \), \(\rho_i \) and \(\rho'_i \) are homomorphic.

Proof. By induction on \(n \). \(n = 0 \) is trivial. For the induction step, let \(\mu, \mu' \) be the homomorphic downwards paths from \(\rho, \rho' \) respectively to \(c \). Consider \(\rho_1 \). As it is a logical inference, its auxiliary formula is different from its main formula. As \(F(\mu) = F(\mu') \), there exists the logical inference \(\rho'_1 \) of the same type (and even with the same substitution or Skolem term, if applicable), and the downwards paths from \(\rho_1, \rho'_1 \) respectively to \(c \) exist and are homomorphic. Hence \(\rho_1, \rho'_1 \) are homomorphic and we may conclude with the induction hypothesis. □

7.1. Sequential Pruning

To show soundness of \(\text{LK}_{\text{sk}} \), we will transform \(\text{LK}_{\text{sk}} \)-proofs into \(\text{LK} \)-proofs. Roughly, this will be accomplished by permuting inferences and substituting eigenvariables for Skolem terms. In \(\text{LK}_{\text{sk}} \)-proofs, a certain kind of redundancy
may be present: namely, it may be the case that two strong labelled inferences on a common branch use the same Skolem term. This will prevent an eigenterm condition from holding, and hence in this situation we cannot substitute an eigenvariable for the Skolem term. This subsection is devoted to showing how to eliminate this redundancy.

Definition 18 (Sequential pruning). Let π be an LK_{sk}-tree and ρ, ρ' inferences in π. Then ρ, ρ' are called *sequential* if they are on a common branch in π. We define the set of *sequential homomorphic pairs* as

$$\text{SHP}(\pi) = \{\langle \rho, \rho' \rangle \mid \rho, \rho' \text{ homomorphic in } \pi \text{ and } \rho, \rho' \text{ sequential}\}.$$

We say that π is *sequentially pruned* if $\text{SHP}(\pi) = \emptyset$.

Towards pruning sequential homomorphic pairs, we analyze the permutation of contraction inferences over independent inferences:

Definition 19. Let ρ be an inference above an inference σ. Then ρ and σ are *independent* if the auxiliary formula of σ is not a descendant of the main formula of ρ.

Definition 20 (The relation \triangleright_c). We will now define the rewrite relation \triangleright_c for LK_{sk}-trees π, π', where we assume the inferences $\text{contr}:*$ and σ to be independent:

1. If π is

$$\frac{\Pi, \Pi, \Gamma \vdash \Delta, \Lambda, A}{\Pi, \Gamma \vdash \Delta, \Lambda} \text{ contr: } *$$

and π' is

$$\frac{\Pi, \Pi, \Gamma \vdash \Delta, \Lambda, A}{\Pi, \Gamma' \vdash \Delta', \Lambda} \sigma$$

then $\pi \triangleright_c^1 \pi'$.

2. If π is

$$\frac{\Pi, \Pi, \Gamma \vdash \Delta, \Lambda, A}{\Pi, \Gamma \vdash \Delta, \Lambda} \text{ contr: } * \quad \frac{\Sigma \vdash \Theta}{\Pi, \Gamma' \vdash \Delta', \Lambda} \sigma$$

and π' is

$$\frac{\Pi, \Pi, \Gamma \vdash \Delta, \Lambda, A}{\Pi, \Pi, \Gamma' \vdash \Delta', \Lambda, A} \Sigma \vdash \Theta \sigma$$

$$\frac{\Pi, \Pi, \Gamma' \vdash \Delta', \Lambda, A}{\Pi, \Gamma' \vdash \Delta', \Lambda} \text{ contr: } *$$
then $\pi \triangleright^1 \pi'$.

3. If π is

$$\Sigma \vdash \Theta \quad \frac{\Pi, \Pi, \Gamma \vdash \Delta, \Lambda, \Lambda}{\Pi, \Gamma \vdash \Delta, \Lambda} \quad \text{contr: *} \quad \frac{\Pi, \Gamma' \vdash \Delta', \Lambda}{\Pi, \Gamma' \vdash \Delta', \Lambda}$$

and π' is

$$\Sigma \vdash \Theta \quad \frac{\Pi, \Pi, \Gamma \vdash \Delta, \Lambda, \Lambda}{\Pi, \Pi, \Gamma' \vdash \Delta', \Lambda, \Lambda} \quad \text{contr: *} \quad \frac{\Pi, \Gamma' \vdash \Delta', \Lambda}{\Pi, \Gamma' \vdash \Delta', \Lambda}$$

then $\pi \triangleright^1 \pi'$.

The \triangleright_c relation is then defined as the transitive and reflexive closure of the compatible closure of the \triangleright^1_c relation.

Lemma 7. Let π be a weakly regular LK_sk-tree of S. If $\pi \triangleright_c \psi$ then ψ is a weakly regular LK_sk-tree of S.

Proof. By induction on the length of the \triangleright_c-rewrite sequence. The case of $\pi = \psi$ is trivial, so assume there exists a subtree φ of π such that $\varphi \triangleright^1_c, \varphi'$ and ψ is obtained from π by replacing φ by φ'. Then the end-sequent of ψ is the same as that of π. Also weak regularity is preserved: The paths in ψ and π are the same modulo some repetitions. \hfill \square

Lemma 8. Let π be a LK_sk-tree with end-sequent S such that π is not sequentially pruned. Then there exists a LK_sk-tree π' with end-sequent S such that

$$|\text{SHP}(\pi')| < |\text{SHP}(\pi)|$$

Furthermore, if π is weakly regular, so is π'.

Proof. Consider a sequential homomorphic pair in π with uniting contraction c. By Lemma 6, there exists a sequential homomorphic pair ρ, ρ' with uniting contraction c such that no logical inference operates on descendents of the auxiliary formulas of ρ, ρ' above c (ρ, ρ' are the lowermost ρ_i, ρ'_i of Lemma 6, respectively). W.l.o.g. assume that ρ is above ρ'. As no logical inference operates on descendents ω of the auxiliary formula of ρ on the path to c, we can permute all contraction inferences operating on such ω below ρ' using \triangleright_c. By Lemma 7 the resulting tree is weakly regular and its end-sequent is S. Clearly the number of sequential homomorphic pairs stays the same.

For example, if there are two such contractions inferences between ρ and ρ', the situation is
\[\rho \\
\vdots \\
\text{contr: } l \\
\vdots \\
\text{contr: } l \\
\vdots \\
\rho' \]

which is transformed to

\[\rho \\
\vdots \\
\rho' \\
\text{contr: } l \\
\text{contr: } l \]

Hence we may assume that no inference operates on descendents of the auxiliary formula of \(\rho \) between \(\rho, \rho' \). Now distinguish the cases

1. \(\rho \) is a unary inference. W.l.o.g. assume that the auxiliary and main formulas of \(\rho \) occur on the right. Then the situation is:

\[
\frac{
\Gamma \vdash \Delta, \langle F \rangle^{f_1} \\
\Gamma \vdash \Delta, \langle G \rangle^{f_2} \quad \rho
}{
\Gamma \vdash \Delta, \langle G \rangle^{f_2} \quad \rho'
}
\]

We replace this subtree by

\[
\frac{
\Gamma \vdash \Delta, \langle F \rangle^{f_1} \\
\vdots \\
\Gamma' \vdash \Delta', \langle F \rangle^{f_1}, \langle F \rangle^{f_1} \quad c
}{
\Gamma' \vdash \Delta', \langle F \rangle^{f_1} \quad c
}
\]

\[
\frac{
\Gamma' \vdash \Delta', \langle G \rangle^{f_2} \quad \rho'
}{
\Gamma' \vdash \Delta', \langle G \rangle^{f_2} \quad \rho'
}
\]

\[
\vdots \\
\Gamma^* \vdash \Delta^*, \langle G \rangle^{f_2}
\]

2. \(\rho \) is a \(\lor \) inference. W.l.o.g. the situation is
\[
\begin{array}{l}
\frac{\langle F \rangle^\rho, \Gamma \vdash \Delta}{\langle F \rangle^\rho, \Gamma, \Pi \vdash \Lambda}
\end{array}
\]
\[
\frac{\langle G \rangle^\rho, \Pi \vdash \Lambda}{\langle F \vee G \rangle^\rho, \Gamma \vdash \Delta, \Lambda}
\]

\[
\vdots
\]

\[
\frac{\langle F \rangle^\rho, (F \vee G)^\rho, \Gamma^* \vdash \Delta^*}{(F \vee G)^\rho, (F \vee G)^\rho, \Gamma^*, \Pi^* \vdash \Delta^*, \Lambda^*}
\]

\[
\frac{\langle G \rangle^\rho, \Pi^* \vdash \Lambda^*}{\langle F \vee G \rangle^\rho, \Gamma^*, \Pi^* \vdash \Delta^*, \Lambda^*}
\]

\[
\vdots
\]

\[
\frac{\langle F \vee G \rangle^\rho, \Gamma^+ \vdash \Delta^+}{\langle F \vee G \rangle^\rho, \Gamma^+, \Pi^+ \vdash \Delta^+, \Lambda^*}
\]

This is transformed to

\[
\begin{array}{l}
\frac{\langle F \rangle^\rho, \Gamma \vdash \Delta}{\langle F \rangle^\rho, \Gamma, \Pi \vdash \Lambda, \text{weak: } *}
\end{array}
\]

\[
\vdots
\]

\[
\frac{\langle F \rangle^\rho, \Gamma^* \vdash \Delta^*}{\langle F \rangle^\rho, \Gamma^*, \Pi^* \vdash \Delta^*, \Lambda^*}
\]

\[
\frac{\langle G \rangle^\rho, \Pi^* \vdash \Lambda^*}{\langle F \vee G \rangle^\rho, \Gamma^*, \Pi^* \vdash \Delta^*, \Lambda^*}
\]

\[
\vdots
\]

\[
\frac{\langle F \vee G \rangle^\rho, \Gamma^+ \vdash \Delta^+}{\langle F \vee G \rangle^\rho, \Gamma^+, \Pi^+ \vdash \Delta^+}
\]

As we only permute contractions and delete inferences, weak regularity is preserved by this transformation. Furthermore, consider a sequential homomorphic pair \(\langle \sigma, \sigma' \rangle\) in \(\pi'\) (w.l.o.g. we consider the case that \(\rho \) is \(\vee : l\)). Clearly \(\sigma, \sigma'\) also exist in \(\pi\) and \(\langle \sigma, \sigma' \rangle\) is a homomorphic pair in \(\pi\) (if its uniting contraction in \(\pi'\) is \(c\) in the second figure, then the \(c\) in the first figure is its uniting contraction in \(\pi\)). It is sequential since we have not changed the branching structure of the tree (except for deleting a subtree from \(\pi\) to obtain \(\pi'\)).

Hence the number of sequentially homomorphic pairs is reduced, which was to show.

\[\square\]

Lemma 9 (Sequential Pruning). Let \(\pi\) be a \(\text{LK}_{sk}\)-tree of \(S\), then there exists \(\text{LK}_{sk}\)-tree \(\pi'\) of \(S\) s.t. \(\pi'\) is sequentially pruned. Furthermore, if \(\pi\) is weakly regular, so is \(\pi'\).

Proof. Repeated application of Lemma 8 does the job.

\[\square\]

Example 11. Consider the \(\text{LK}_{sk}\)-tree \(\pi\):
7.2. Translating \(\mathbf{LK}_{sk} \) to \(\mathbf{LK} \)

The main result of this subsection will be to show that \(\mathbf{LK}_{sk} \)-proofs can be translated into \(\mathbf{LK} \)-proofs. The proof will be effective, and will be based on permuting inferences and pruning. To this end, we will analyze the permutation of inferences in \(\mathbf{LK}_{sk} \)-trees. Such an analysis is often useful, see for example [20] for the case of a first-order sequent calculus. In \(\mathbf{LK}_{sk} \), we have more freedom in
the permutation of inferences since we do not have to consider an eigenvariable condition, although we will want to preserve weak regularity.

To ease the following case distinctions, we introduce the following notation:

\[\Gamma, A^1 = \Gamma, A \]
\[\Gamma, A^0 = \Gamma \]

and let \(i, i_1, \ldots, i_4 \in \{0, 1\} \), \(\bar{x} = |x - 1| \). In the following transformations, we do not display the labels of the labelled formula occurrences since we always leave them unchanged (what this means exactly will be clear from the context).

Definition 21 (The relation \(\triangleright_u \)). This definition shows how to permute down a unary logical inference \(\rho \) over an inference \(\sigma \), assuming that \(\rho \) and \(\sigma \) are independent. We do not write down the cases involving \(\land: r, \rightarrow: l, \rightarrow: r \) inferences, since they are analogous. In case 1, \(\sigma \) is a unary logical inference, in case 2 \(\sigma \) is a weakening inference, in case 3 \(\sigma \) is a contraction inference, and in cases 4–5 \(\sigma \) is a \(\lor: l \) inference. We define a relation \(\triangleright_u^1 \) between \(\text{LK}_{\text{sk}} \)-trees \(\pi \) and \(\pi' \):

1. If \(\pi \) is

\[
\begin{align*}
F^{i_1}, G^{i_2}, \Gamma &\vdash \Delta, G^{i_2}, F^{i_1} \\
M^{i_2}, G^{i_2}, \Gamma &\vdash \Delta, G^{i_2}, M^{i_3} \\
\sigma
\end{align*}
\]

and \(\pi' \) is

\[
\begin{align*}
F^{i_1}, G^{i_2}, \Gamma &\vdash \Delta, G^{i_2}, F^{i_1} \\
F^{i_1}, N^{i_4}, \Gamma &\vdash \Delta, N^{i_4}, F^{i_1} \\
\rho \\
M^{i_3}, N^{i_4}, \Gamma &\vdash \Delta, N^{i_4}, M^{i_3}
\end{align*}
\]

then \(\pi \triangleright_u^1 \pi' \).

2. If \(\pi \) is

\[
\begin{align*}
F^{i_1}, \Gamma &\vdash \Delta, F^{i_1} \\
M^{i_2}, \Gamma &\vdash \Delta, M^{i_2} \\
\sigma \quad \text{(weak: *)}
\end{align*}
\]

and \(\pi' \) is

\[
\begin{align*}
F^{i_1}, \Gamma &\vdash \Delta, F^{i_1} \\
N^{i_3}, F^{i_1}, \Gamma &\vdash \Delta, F^{i_1}, N^{i_3} \\
\rho \quad \text{(weak: *)}
\end{align*}
\]

then \(\pi \triangleright_u^1 \pi' \).

3. If \(\pi \) is

\[
\begin{align*}
F^{i_1}, G^{i_2}, G^{i_2}, \Gamma &\vdash \Delta, G^{i_2}, G^{i_2}, F^{i_1} \\
M^{i_3}, G^{i_2}, G^{i_2}, \Gamma &\vdash \Delta, G^{i_2}, G^{i_2}, M^{i_3} \\
\sigma \quad \text{(contr: *)}
\end{align*}
\]

\[
\begin{align*}
M^{i_3}, G^{i_2}, \Gamma &\vdash \Delta, G^{i_2}, M^{i_3}
\end{align*}
\]

31
and π' is

$$\frac{F^i_1, G^i_2, G^i_2, \Gamma \vdash \Delta, G^\bar{i}_2, G^\bar{i}_2, F^\bar{i}_1}{M^\bar{i}_3, G^i_2, \Gamma \vdash \Delta, G^\bar{i}_2, F^\bar{i}_1} \sigma \quad (\text{contr: } \ast)$$

then $\pi \succ^1 u \pi'$.

4. If π is

$$\frac{F^i_1, G_1, \Gamma \vdash \Delta, F^i_1}{M^i_2, G_1, \Gamma \vdash \Delta, M^i_2} \rho \frac{G_2, \Pi \vdash \Lambda}{\sigma}$$

and π' is

$$\frac{F^i_1, G_1, \Gamma \vdash \Delta, F^i_1}{G_1 \lor G_2, M^i_2, \Gamma, \Pi \vdash \Delta, \Lambda, M^i_2} \sigma$$

then $\pi \succ^1 u \pi'$.

5. If π is

$$\frac{G_1, \Gamma \vdash \Delta, F^i_1}{M^i_2, G_2, \Pi \vdash \Lambda} \rho \frac{G_1, \Gamma \vdash \Delta, F^i_1}{G_1 \lor G_2, M^i_2, \Gamma, \Pi \vdash \Delta, \Lambda, M^i_2} \sigma$$

and π' is

$$\frac{G_1, \Gamma \vdash \Delta, F^i_1}{G_1 \lor G_2, F^i_1, \Gamma, \Pi \vdash \Delta, \Lambda, F^i_1} \rho \frac{G_1, \Gamma \vdash \Delta, F^i_1}{G_1 \lor G_2, M^i_2, \Gamma, \Pi \vdash \Delta, \Lambda, M^i_2} \sigma$$

then $\pi \succ^1 u \pi'$.

Finally, we define the $\succ u$ relation as the transitive and reflexive closure of the compatible closure of the $\succ^1 u$ relation.

Lemma 10. Let π be a weakly regular \mathbf{LK}_{sk}-tree of S. If $\pi \succ u \psi$ then ψ is a weakly regular \mathbf{LK}_{sk}-tree of S.

Proof. By induction on the length of the $\succ u$-rewrite sequence. The case of $\pi = \psi$ is trivial, so assume there exists a subtree φ of π such that $\varphi \succ^1 u \varphi'$ and ψ is obtained from π by replacing φ by φ'. Then the end-sequent of ψ is the same as that of π. Also weak regularity is preserved since the paths in ψ and π are the same modulo some repetitions. \qed
Definition 22 (The relation \vdash_b). This definition shows how to permute down a $\lor: l$ inference ρ (the cases for $\land: r, \to: l$ are analogous), together with some contractions the auxiliary formulas of which come from both premises of ρ. In the prooftrees, the indicated occurrences of F_1 and F_2 will be the auxiliary occurrences of ρ. Again, we leave out the cases involving $\land: r, \to: l$ since they are analogous. We will now define the rewrite relation \vdash_b on LK$_{\omega}$-trees, where we assume ρ and σ to be independent. Cases 1–3 treat the case of σ being a unary logical inference, in case 4 σ is a weakening inference, in cases 5–6 σ is a contraction inference, and in cases 7–9 σ is a $\lor: l$.

1. If π is

$$\begin{align*}
F_1, \Pi, \Gamma_1, G^{\iota_1} \vdash \Delta_1, G^{\iota_1}, \Lambda & \quad F_2, \Pi, \Gamma_2 \vdash \Delta_2, \Lambda \\
F_1 \lor F_2, \Pi, \Pi, \Gamma_1, \Gamma_2, G^{\iota_1} \vdash \Delta_1, G^{\iota_1}, \Delta_2, \Lambda, \Lambda & \quad \text{contr: *} \\
G^{\iota_1}, F_1 \lor F_2, \Pi, \Pi, \Gamma_1, \Gamma_2 \vdash \Delta_1, \Delta_2, \Lambda, G^{\iota_1} & \\
M^{\iota_2} \lor F_1 \lor F_2, \Pi, \Pi, \Gamma_1, \Gamma_2 \vdash \Delta_1, \Delta_2, \Lambda, M^{\iota_2} & \quad \sigma
\end{align*}$$

and π' is

$$\begin{align*}
G^{\iota_1}, F_1, \Pi, \Gamma_1 \vdash \Delta_1, \Lambda, G^{\iota_1} & \\
M^{\iota_2} \lor F_1, \Pi, \Gamma_1 \vdash \Delta_1, \Lambda, F_1, M^{\iota_2} & \\
F_1 \lor F_2, M^{\iota_2}, \Pi, \Pi, \Gamma_1, \Gamma_2 \vdash \Delta_1, \Delta_2, \Lambda, M^{\iota_2} & \quad \sigma
\end{align*}$$

then $\pi \vdash_b \downarrow \pi'$.

2. If π is

$$\begin{align*}
F_1, \Pi, \Gamma_1 \vdash \Delta_1, \Lambda & \quad F_2, \Pi, \Gamma_2, G^{\iota_1} \vdash \Delta_2, \Lambda, G^{\iota_1} \\
F_1 \lor F_2, \Pi, \Pi, \Gamma_1, \Gamma_2, G^{\iota_1} \vdash \Delta_1, \Delta_2, \Lambda, \Lambda, G^{\iota_1} & \quad \rho \\
G^{\iota_1}, F_1 \lor F_2, \Pi, \Pi, \Gamma_1, \Gamma_2 \vdash \Delta_1, \Delta_2, \Lambda, G^{\iota_1} & \quad \text{contr: *} \\
M^{\iota_2} \lor F_1 \lor F_2, \Pi, \Pi, \Gamma_1, \Gamma_2 \vdash \Delta_1, \Delta_2, \Lambda, M^{\iota_2} & \quad \sigma
\end{align*}$$

and π' is

$$\begin{align*}
G^{\iota_1}, F_2, \Pi, \Gamma_2 \vdash \Delta_2, \Lambda, G^{\iota_1} & \\
M^{\iota_2} \lor F_2, \Pi, \Gamma_2 \vdash \Delta_2, \Lambda, M^{\iota_2} & \\
F_1 \lor F_2, M^{\iota_2}, \Pi, \Pi, \Gamma_1, \Gamma_2 \vdash \Delta_1, \Delta_2, \Lambda, M^{\iota_2} & \quad \rho
\end{align*}$$

then $\pi \vdash_b \downarrow \pi'$.

3. If π is

$$\begin{align*}
F_1, \Pi, G^{\iota_1}, \Gamma_1 \vdash \Delta_1, \Lambda, G^{\iota_1} & \quad F_2, \Pi, G^{\iota_1}, \Gamma_2 \vdash \Delta_2, \Lambda, G^{\iota_1} \\
F_1 \lor F_2, \Pi, G^{\iota_1}, \Pi, \Pi, \Gamma_1, \Gamma_2 \vdash \Delta_1, \Delta_2, \Lambda, G^{\iota_1}, \Lambda, G^{\iota_1} & \quad \rho \\
G^{\iota_1}, F_1 \lor F_2, \Pi, \Pi, \Gamma_1, \Gamma_2 \vdash \Delta_1, \Delta_2, \Lambda, G^{\iota_1} & \quad \text{contr: *} \\
M^{\iota_2} \lor F_1 \lor F_2, \Pi, \Pi, \Gamma_1, \Gamma_2 \vdash \Delta_1, \Delta_2, \Lambda, M^{\iota_2} & \quad \sigma
\end{align*}$$

33
and \(\pi' \) is

\[
\frac{G^{i_1}, F_1, \Pi, \Gamma_1 \vdash \Delta_1, \Lambda, G^{i_2}}{M^{i_2}, F_1, \Pi, \Gamma_1 \vdash \Delta_1, \Lambda, M^{i_2}} \quad \frac{G^{i_1}, F_2, \Pi, \Gamma_2 \vdash \Delta_2, \Lambda, G^{i_2}}{M^{i_2}, F_2, \Pi, \Gamma_2 \vdash \Delta_2, \Lambda, M^{i_2}} \quad \frac{G^{i_1}, F_2, \Pi, \Gamma_2 \vdash \Delta_2, \Lambda, M^{i_2}}{\text{contr: } *}
\]

then \(\pi \triangleright \frac{1}{b} \pi' \).

4. If \(\pi \) is

\[
\frac{F_1, \Pi, \Gamma_1 \vdash \Delta_1, \Lambda}{\sigma} \quad \frac{F_1 \lor F_2, \Pi, \Pi, \Gamma_1, \Gamma_2 \vdash \Delta_1, \Delta_2, \Lambda, \Lambda}{\text{contr: } *} \quad \frac{M^{i}, F_1 \lor F_2, \Pi, \Gamma_1, \Gamma_2 \vdash \Delta_1, \Delta_2, \Lambda, M^{i}}{\text{weak: } *}
\]

and \(\pi' \) is

\[
\frac{F_{1, \Pi, \Gamma_1} \vdash \Delta_1, \Lambda}{\sigma \text{ (weak: *)}} \quad \frac{F_{2, \Pi, \Gamma_2} \vdash \Delta_2, \Lambda}{\text{contr: *}} \quad \frac{M^{i}, F_{1, \Pi, \Gamma_1, \Gamma_2} \vdash \Delta_1, \Delta_2, \Lambda, M^{i}}{\text{weak: *}}
\]

then \(\pi \triangleright \frac{1}{b} \pi' \).

5. If \(\pi \) is

\[
\frac{F_{1, \Pi, \Gamma_1} \vdash \Delta_1, \Lambda, G^{i}, G^{i}}{\text{weak: *}} \quad \frac{F_{2, \Pi, \Gamma_2} \vdash \Delta_2, \Lambda, G^{i}, G^{i}}{\text{contr: *}} \quad \frac{G^{i}, F_{1} \lor F_{2}, \Pi, \Gamma_1, \Gamma_2 \vdash \Delta_1, \Delta_2, \Lambda, G^{i}, G^{i}}{\text{weak: *}} \quad \frac{G^{i}, F_{1} \lor F_{2}, \Pi, \Gamma_1, \Gamma_2 \vdash \Delta_1, \Delta_2, \Lambda, G^{i}}{\text{contr: *}}
\]

and \(\pi' \) is

\[
\frac{F_{1, \Pi, \Gamma_1} \vdash \Delta_1, \Lambda, G^{i}, G^{i}}{\sigma \text{ (contr: *)}} \quad \frac{F_{2, \Pi, \Gamma_2} \vdash \Delta_2, \Lambda, G^{i}, G^{i}}{\text{contr: *}} \quad \frac{G^{i}, F_{1} \lor F_{2}, \Pi, \Gamma_1, \Gamma_2 \vdash \Delta_1, \Delta_2, \Lambda, G^{i}}{\text{weak: *}} \quad \frac{G^{i}, F_{1} \lor F_{2}, \Pi, \Gamma_1, \Gamma_2 \vdash \Delta_1, \Delta_2, \Lambda, G^{i}}{\text{contr: *}}
\]

then \(\pi \triangleright \frac{1}{b} \pi' \).

6. If \(\pi \) is

\[
\frac{F_{1, \Pi, \Gamma_1} \vdash \Delta_1, \Lambda}{\text{weak: *}} \quad \frac{F_{2, \Pi, \Gamma_2} \vdash \Delta_2, \Lambda, G^{i}, G^{i}}{\text{contr: *}} \quad \frac{G^{i}, F_{1} \lor F_{2}, \Pi, \Gamma_1, \Gamma_2 \vdash \Delta_1, \Delta_2, \Lambda, G^{i}, G^{i}}{\text{weak: *}} \quad \frac{G^{i}, F_{1} \lor F_{2}, \Pi, \Gamma_1, \Gamma_2 \vdash \Delta_1, \Delta_2, \Lambda, G^{i}}{\text{contr: *}}
\]

\[
\text{then } \pi \triangleright \frac{1}{b} \pi'.
\]

34
and π' is
\[
\frac{F_1, \Pi, \Gamma_1 \vdash \Delta_1, \Lambda \quad F_2, \Pi, \Gamma_2 \vdash \Delta_2, \Lambda}{F_1 \lor F_2, \Pi, \Gamma_1, \Gamma_2 \vdash \Delta_1, \Delta_2, \Lambda} \quad \text{contr: *}
\]
\[
\frac{F_1, \Pi, \Gamma_1, \Gamma_2 \vdash \Delta_1, \Lambda}{G^i, \Pi \lor F_2, \Pi, \Gamma_1, \Gamma_2 \vdash \Delta_1, \Delta_2, \Lambda} \quad \text{contr: *}
\]
then $\pi \vdash_0 \pi'$.
7. If π is
\[
\frac{F_1, \Pi, \Gamma_1, G_1 \vdash \Delta_1, \Lambda \quad F_2, \Pi, \Gamma_2 \vdash \Delta_2, \Lambda}{G_1 \lor G_2, F_1 \lor F_2, \Pi, \Gamma_1, \Gamma_2 \vdash \Delta_1, \Delta_2, \Lambda} \quad \text{contr: *}
\]
and π' is
\[
\frac{G_1 \lor G_2, F_1 \lor F_2, \Pi, \Gamma_1, \Gamma_2 \vdash \Delta_1, \Delta_2, \Lambda}{G_2, \Sigma \vdash \Theta} \quad \text{contr: *}
\]
then $\pi \vdash_0 \pi'$.
8. If π is
\[
\frac{F_1, \Pi, \Gamma_1 \vdash \Delta_1, \Lambda \quad F_2, \Pi, \Gamma_2, G_1 \vdash \Delta_2, \Lambda}{G_1 \lor G_2, F_1 \lor F_2, \Pi, \Gamma_1, \Gamma_2 \vdash \Delta_1, \Delta_2, \Lambda} \quad \text{contr: *}
\]
and π' is
\[
\frac{G_1 \lor G_2, F_1 \lor F_2, \Pi, \Gamma_1, \Gamma_2 \vdash \Delta_1, \Delta_2, \Lambda}{G_2, \Sigma \vdash \Theta} \quad \text{contr: *}
\]
then $\pi \vdash_0 \pi'$.
9. If π is
\[
\frac{F_1, \Pi, \Gamma_1, G_1 \vdash \Delta_1, \Lambda \quad F_2, \Pi, G_1, \Gamma_2 \vdash \Delta_2, \Lambda}{G_1 \lor G_2, F_1 \lor F_2, \Pi, \Gamma_1, \Gamma_2 \vdash \Delta_1, \Delta_2, \Lambda} \quad \text{contr: *}
\]
\[
\frac{G_1 \lor G_2, F_1 \lor F_2, \Pi, \Gamma_1, \Gamma_2 \vdash \Delta_1, \Delta_2, \Lambda}{G_2, \Sigma \vdash \Theta} \quad \text{contr: *}
\]

and \(\pi' \) is

\[
\frac{G_1, F_1, \Pi, \Gamma_1 \vdash \Delta_1, \Lambda}{G_1 \lor G_2, F_1, \Pi, \Gamma_1, \Sigma \vdash \Theta, \Delta_1, \Lambda} \quad \frac{G_1, F_2, \Pi, \Gamma_2 \vdash \Delta_2, \Lambda}{G_1 \lor G_2, F_2, \Pi, \Gamma_2, \Sigma \vdash \Theta, \Delta_2, \Lambda} \quad \frac{G_1, F_1, \Pi, \Gamma_1, \Sigma \vdash \Theta}{F_1 \lor F_2, G_1 \lor G_2, \Pi, \Gamma_1, \Sigma \vdash \Theta, \Delta_1, \Delta_2, \Lambda} \quad \text{contr: *}
\]

then \(\pi \vDash b \pi' \).

Finally, we define the \(\vDash b \) relation as the transitive and reflexive closure of the compatible closure of the \(\vDash b \) relation.

Lemma 11. Let \(\pi \) be a weakly regular \(\text{LK}_{sk} \)-tree of \(S \). If \(\pi \vDash b \psi \) then \(\psi \) is a weakly regular \(\text{LK}_{sk} \)-tree of \(S \).

Proof. By induction on the length of the \(\vDash b \)-rewrite sequence. The case of \(\pi = \psi \) is trivial, so assume there exists a subtree \(\varphi \) of \(\pi \) such that \(\varphi \vDash b \varphi' \) and \(\psi \) is obtained from \(\pi \) by replacing \(\varphi \) by \(\varphi' \). Then the end-sequent of \(\psi \) is the same as that of \(\pi \). Also weak regularity is preserved:

1. In cases 1, 2 and 4–8 of Definition 22, the paths in \(\psi \) and \(\pi \) are the same modulo some repetitions.
2. In case 3, the paths in \(\psi \) and \(\pi \) are the same modulo some repetitions, but a new copy of \(\sigma \) is introduced. Note that the two copies are homomorphic, so we may conclude by Proposition 8.
3. In case 9, \(\sigma \) is duplicated together with the subtree ending in \(\Sigma \vdash \Theta \).

Observe that all the descendents of the two copies of \(\Sigma \vdash \Theta \) are contracted, and hence all the duplicated inferences are homomorphic. Therefore we may again conclude by Proposition 8. \(\Box \)

Summarizing, we obtain

Lemma 12. Let \(\pi \) be a weakly regular \(\text{LK}_{sk} \)-tree of \(S \). If \(\pi \vDash b \psi, \pi \vDash u \psi, \) or \(\pi \vDash u \psi', \) then \(\psi \) is a weakly regular \(\text{LK}_{sk} \)-tree of \(S \).

Proof. By Lemmas 11, 10, and 7. \(\Box \)

The following definitions will be used in the algorithm translating \(\text{LK}_{sk} \)-proofs into such \(\text{LK}_{sk} \)-proofs which fulfil an eigtenterm condition.

Definition 23. Let \(\pi \) be a \(\text{LK}_{sk} \)-tree, and let \(\xi \) be a branch in \(\pi \). Let \(\sigma, \rho \) be inferences on \(\xi \) and w.l.o.g. let \(\sigma \) be above \(\rho \). Let \(\xi_1, \ldots, \xi_n \) be the binary inferences between \(\sigma \) and \(\rho \). For \(1 \leq i \leq n \), let \(\lambda_i \) be the subproofs ending in a premise sequent of \(\xi_i \) such that \(\lambda_i \) do not contain \(\sigma \). Then \(\lambda_1, \ldots, \lambda_n \) are called the parallel trees between \(\sigma \) and \(\rho \).

Definition 24. Let \(\sigma \) be a strong labelled quantifier inference in \(\pi \) with Skolem term \(S \), and \(\rho \) be a weak labelled quantifier inference in \(\pi \) with substitution term \(T \). We say that \(\rho \) blocks \(\sigma \) if \(\rho \) is below \(\sigma \) and \(T \) contains \(S \). We call \(\sigma \) correctly placed if no weak labelled quantifier inference in \(\pi \) blocks \(\sigma \).
Example 12. Consider the LK_{sk}-proof π:

$$
\frac{(P(c))^r \vdash P(c)}{(\forall x)P(x) \vdash \forall x)P(x)}^{\forall sk}: r
$$

Here, the $^{\forall sk}: r$ inference blocks the $^{\forall sk}: r$ inference.

As indicated before, we will rearrange the quantifier inferences in an LK_{sk}-proof π in such a way that there are no eigenterm violations: this will allow us to convert the LK_{ak}-proof into an LK proof. During this rearranging, we may have to permute binary inferences, causing duplication of subproofs. This is bad for showing termination of the rearranging algorithm because our termination measure will be based on the number of inferences in π. As Example 11 shows, sequential pruning may severely reduce the number of inferences in an LK_{sk}-proof (especially when pruning binary inferences). In fact, this pruning will be sufficient to show termination of the rearranging procedure in the subsequent proof (especially when pruning binary inferences). For the termination argument, we will use the notion of lexicographic order:

Definition 25 (Lexicographic order). Let X_1, \ldots, X_n be sets and for $i \leq n$ let \leq_i be a partial order on X_i. Then the lexicographic order on $X_1 \times \ldots \times X_n$: \leq_{LEX} is defined by

$$(x_1, \ldots, x_n) \leq_{\text{LEX}} (x'_1, \ldots, x'_n) \iff (\exists m > 0)(\forall i < m)(x_i = x'_i) \land (x_m <_m x'_m)$$

Lemma 13. Let π be a LK_{sk}-proof of S. Then there exists an LK_{sk}-proof π' of S such that all strong labelled quantifier inferences in π' are correctly placed.

Proof. We introduce some notations that will be useful. Let π be an LK_{sk}-tree, ρ be a strong labelled quantifier inference in π with Skolem term S. Define Q_ρ as the number of inferences blocking ρ. Then define $\text{BLOCK}_\pi(S) = \sum_\sigma Q_\sigma$ where σ ranges over all strong labelled quantifier inferences in π with Skolem term S. If S, T are expressions, define $S \prec T$ if S occurs in T.

Define SK_π as the set of Skolem terms occurring in π. Let $|\text{SK}_\pi| = n$, then denote the elements of SK_π by S_1, \ldots, S_n s.t. for all $1 \leq i \leq n$ and all $j < i$: either $S_i \prec S_j$ or $S_j \prec S_i$ are incomparable w.r.t. \prec. Then define the n-tupel $\alpha_\pi = \langle \text{BLOCK}_\pi(S_1), \ldots, \text{BLOCK}_\pi(S_n) \rangle$.

We show that there exists an LK_{sk}-proof π' of S such that $\alpha_{\pi'} = (0, \ldots, 0)$, which implies that there are no blocking inferences in π'.

We may assume that some member of α_π is not 0. We will transform π into an LK_{sk}-proof π' of S such that $\alpha_{\pi'} \leq_{\text{LEX}} \alpha_\pi$ — existence of the desired LK_{sk}-proof then follows by induction. Let k be the least integer such that $\text{BLOCK}_\pi(S_k) > 0$. Then there exists a lowermost strong labelled quantifier inference σ with Skolem term S_k such that there is a weak labelled quantifier inference ρ blocking σ. Observe that σ does not operate on a descendent of the main formula of ρ: Assume it does, then by Proposition 4, S_k properly contains
the substitution term of σ and, by the definition of blocking, therefore properly contains itself!

Let σ, ξ be inferences in π. Then define $RR(\pi, \xi, \sigma) = \sum_{\mu} Q_{\mu}$ where μ ranges over the inferences homomorphic to ρ in the parallel trees between ξ and σ. Define $BR(\pi, \xi, \sigma) = BLOCK_{\pi}(S_k) - RR(\pi, \xi, \sigma)$. The intuitive idea is: When we permute down inferences, new subtrees can be created which contain inferences homomorphic to ρ. $RR(\pi, \xi, \sigma)$ counts the number of “blockings” created by these inferences. The point then is that these inferences will eventually be deleted, and then $BR(\pi, \xi, \sigma) = BLOCK_{\pi}(S_k)$ and therefore $BLOCK_{\pi}(S_k)$ will properly decrease by permuting ρ below σ.

Formally, let R_n, \ldots, R_1 be the inferences between ρ and σ (excluding ρ and σ) operating on descendents of the main formula of ρ, i.e.:

$$\Gamma \vdash \Delta$$

$$\Gamma_n \vdash \Delta_n \quad R_n$$

$$\vdots$$

$$\Gamma_1 \vdash \Delta_1 \quad R_1$$

$$\vdots$$

$$\Pi \vdash \Lambda$$

$$\sigma$$

We construct by induction LK_{sk}-proofs π_1, \ldots, π_l where one of the inferences is permuted down below σ. The induction invariant is: $\forall j < k(BLOCK_{\pi_{l+1}}(S_j) = 0) \land BR(\pi_l, \rho, \sigma) \geq BR(\pi_{l+1}, \rho, \sigma)$. Assume l inferences have been shifted, that is
Depending on whether R_{l+1} is a unary, binary, or contraction inference, we use \triangleright_u, \triangleright_b, or \triangleright_c respectively to permute it below σ, obtaining π_{l+1}. By Lemma 12, π_{l+1} is an \textbf{LK}_{sk}-proof of S. We verify the induction invariant by distinguishing what kind of inference R_{l+1} is:

1. R_{l+1} is a $\forall_{sk}: r$ inference. Permuting down a $\forall_{sk}: r$ inference cannot create any blocking inferences and does not change the number of homomorphic inferences in the parallel trees, so the invariant holds. For example, we permute R_{l+1} below a $\forall_{sk}: l$ inference:

$$
\begin{align*}
\Gamma \vdash \Delta^\rho \\
\vdots \\
\Gamma_n \vdash \Delta_n R_n \\
\vdots \\
\Gamma_{l+1} \vdash \Delta_{l+1} R_{l+1} \\
\vdots \\
\Pi' \vdash \Lambda'^\sigma \\
\vdots \\
\Gamma'_l \vdash \Delta'_l R_l \\
\vdots \\
\Pi \vdash \Lambda R_1
\end{align*}
$$

is transformed into

$$
\begin{align*}
\langle \psi \rangle \\
\langle \textbf{GT}_{f_1,t}, \Gamma \vdash \Delta, \langle \textbf{FS} \rangle_{f_2} \rangle R_{l+1} \\
\langle \textbf{GT}_{f_1,t}, \Gamma \vdash \Delta, \langle \textbf{VF} \rangle_{f_2} \rangle \forall_{sk}: l
\end{align*}
$$

2. R_{l+1} is a $\forall_{sk}: l$ inference with substitution term T. As R_{l+1} operates on a descendent of ρ, by Proposition 4, $T \prec S_k$. Therefore S_k properly contains any Skolem term R contained in T, so $R = S_j$ for some $j > k$. Therefore $\textbf{BLOCK}_{\pi_k}(S_p) \geq \textbf{BLOCK}_{\pi_{l+1}}(S_p)$ for all $p \leq k$. The parallel trees are untouched, so the invariant holds.
3. \(R_{t+1} \) is an \(\exists^k : l \) or an \(\exists^k : r \) inference: analogous to the previous case.
4. \(R_{t+1} \) is a unary propositional inference. The invariant trivially holds.
5. \(R_{t+1} \) is an \(\vee : l \) inference. To verify the induction invariant, we perform a case distinction depending on the inference below \(R_{t+1} \). We only consider the interesting cases:

(a) \(R_{t+1} \) is permuted over a \(\forall^k : l \) inference \(\xi \). At most one copy \(\xi' \) of \(\xi \) is created in \(\pi_{t+1} \), and there is no branch containing both \(\xi \) and \(\xi' \). So for all \(\forall^k : r \) inferences above \(R_{t+1} \), there is still at most one of \(\xi, \xi' \) below them, so \(\text{BLOCK}_{\pi_{t+i}}(S_i) \leq \text{BLOCK}_{\pi_i}(S_i) \) for all \(i \in \{1, \ldots, k\} \).

For example, consider the case

\[
\begin{align*}
(\psi) & \quad F_1, \Pi, (\langle GT \rangle^T, \Gamma_1 \vdash \Delta_1, \Lambda) \quad F_2, \Pi, (\langle GT \rangle^T, \Gamma_2 \vdash \Delta_2, \Lambda) \quad R_{t+1} \\
(\psi') & \quad (\langle GT \rangle^T, F_1 \vee F_2, \Pi, \Gamma_1, \Gamma_2 \vdash \Delta_1, \Delta_2, \Lambda) & \text{contr: *}
\end{align*}
\]

which is transformed to

\[
\begin{align*}
(\psi) & \quad (\langle GT \rangle^T, F_1, \Pi, \Gamma_1 \vdash \Delta_1, \Lambda) & \quad \xi \quad (\langle GT \rangle^T, F_2, \Pi, \Gamma_2 \vdash \Delta_2, \Lambda) \quad \xi' \\
(\psi') & \quad (\langle GT \rangle^T, F_1 \vee F_2, \Pi, \Gamma_1, \Gamma_2 \vdash \Delta_1, \Delta_2, \Lambda) & \text{contr: *}
\end{align*}
\]

So for all \(\forall^k : r \) inferences in \(\psi, \psi' \) there is still only one copy of \(\xi \) below them, and hence \(\text{BLOCK}_{\pi_{t+i}}(S_i) \leq \text{BLOCK}_{\pi_i}(S_i) \).

(b) \(R_{t+1} \) is permuted over a \(\forall^k : r \) inference \(\xi \) with Skolem term \(S_p \). If \(p < k \), then \(\text{BLOCK}_{\pi_i}(S_p) = 0 \) and therefore duplicating \(\xi \) still gives \(\text{BLOCK}_{\pi_{t+i}}(S_p) = 0 \). \(p = k \) does not hold, as we chose a lowermost blocked \(\forall^k : r \) inference \(\rho \).

(c) \(R_{t+1} \) is permuted over a binary inference \(\xi \) such that one of the auxiliary formulas of \(\xi \) is contracted; then the situation in \(\pi_{t+i} \) is

\[
\begin{align*}
(\psi) & \quad F_1, \Pi, G_1, \Gamma_1 \vdash \Delta_1, \Lambda \quad F_2, \Pi, G_1, \Gamma_2 \vdash \Delta_2, \Lambda \quad R_{t+1} \\
(\phi) & \quad (\langle GT \rangle^T, F_1 \vee F_2, \Pi, \Gamma_1, \Gamma_2 \vdash \Delta_1, \Delta_2, \Lambda) & \text{contr: *}
\end{align*}
\]

which is transformed to
As $\text{BLOCK}_{\pi_{i+1}}(S_p) = 0$ for $p < k$, $\text{BLOCK}_{\pi_{i+1}}(S_p) = 0$ even when duplicating a subtree. Hence we only have to consider S_k. Assume $\text{BLOCK}_{\pi_{i+1}}(S_k) > \text{BLOCK}_{\pi_i}(S_k)$, then there exists a $\forall^k: r$ inference ρ' in the duplicated tree φ with Skolem term S_k. As ρ' was created by copying a inference ρ^* that was, by weak regularity, homomorphic to ρ, also ρ' will be homomorphic to ρ due to the applications of contractions $\text{contr}: *$ on $\Sigma, \Theta, G_1 \vee G_2$. Therefore the inferences blocking ρ' in the copy of φ are counted in $\text{RR}(\pi_{i+1}, \rho, \sigma)$. Let z be the number of inferences blocking inferences ρ' copied in this way, then $\text{RR}(\pi_{i+1}, \rho, \sigma) = \text{RR}(\pi_{i}, \rho, \sigma) + z$ and $\text{BLOCK}_{\pi_{i+1}}(S_p) = \text{BLOCK}_{\pi_i}(S_p) + z$ and hence $\text{BR}(\pi_{i+1}, \rho, \sigma) \leq \text{BR}(\pi_{i}, \rho, \sigma)$.

6. R_{i+1} is another binary inference: analogous to the previous case.

This completes the case distinction. Let ω be the inference directly above ρ, then $\text{RR}(\pi_{m}, \rho, \sigma) = \text{RR}(\pi_{m}, \omega, \sigma)$. Permute ρ down over σ in the same way as above and apply Lemma 9 to the resulting proof. This yields a proof π'_{m} such that $\text{RR}(\pi'_{m}, \omega, \sigma) = 0$ and, because ρ is now below σ, $\text{BLOCK}_{\pi'_{m}}(S_k) < \text{BLOCK}_{\pi}(S_k)$.

Theorem 3 (Soundness). Let π be a LK_{sk}-proof of S. Then there exists a cut-free LK-proof of S.

Proof. We apply Lemma 9 and Lemma 13 to obtain a sequentially pruned LK_{sk}-proof π' of S where all inferences are correctly placed.

For the rest of this proof, we allow $\forall: r$ and $\exists: l$ inferences in LK_{sk}-proofs (with the usual variable eliminatiable condition). By induction on the number of strong labelled quantifier inferences in π', we construct sequentially pruned LK_{sk}-proofs π'' where all inferences are correctly placed, containing strictly less strong labelled quantifer inferences than π'.

Let ρ

$$
\begin{array}{c}
(\psi) \\
\Gamma \vdash \Delta, (\text{FS})^\ell \\
\Gamma \vdash \Delta, (\forall^k: r)
\end{array}
$$

be a $\forall^k: r$ inference in π' such that S is a $\exists^k: l$ inference in π' (the case for ρ being an $\exists^k: l$ inference is analogous).

Assume that S occurs in $\Gamma \cup \Delta \cup \ell$. As π' is an LK_{sk}-proof, S does not contain Skolem symbols and so a descendent of S must be eliminated by a labelled quantifier inference σ below ρ. Distinguish:
1. \(\sigma \) is a strong labelled quantifier inference. As \(\pi' \) is sequentially pruned and weakly regular, the Skolem term \(T \) of \(\sigma \) fulfills \(S \neq T \). Therefore \(S < T \), which contradicts the assumption of \(> \)-maximality of \(S \! \! \).

2. \(\sigma \) is a weak labelled quantifier inference. Then \(\rho \) is not correctly placed!

Hence \(S \) does not occur in \(\Gamma \cup \Delta \cup \ell \). Applying Lemma 5, we obtain \(\psi[S \leftarrow Y] \). We replace \(\rho \) in \(\pi' \) by

\[
(\psi[S \leftarrow Y])
\]

\[
\frac{\Gamma \vdash \Delta, (FY)^\ell}{\Gamma \vdash \Delta, (F)^\epsilon, \forall \; r}
\]

We perform this procedure on all source inferences of \(S \) at once. As \(\pi' \) is sequentially pruned, all such inferences are parallel and the substitutions do not interfere with each other. As \(Y \) is new, it does not cause eigenvariable violations in \(\psi[S \leftarrow Y] \). As we apply the same replacement on the homomorphic paths, weak regularity is preserved.

Finally, we obtain a tree consisting of \(\text{LK}_{sk} \) inferences which does not contain \(\forall^{sk} : r \) and \(\exists^{sk} : l \) inferences, but contains \(\forall : r \) and \(\exists : l \) inferences obeying the eigenvariable condition. We replace the \(\text{LK}_{sk} \) inferences by the respective \(\text{LK} \) inferences to obtain the desired \(\text{LK} \)-proof.

We can now extend the main theorem on CERES\(^c \):

Theorem 4. Let \(\pi \) be a regular, proper \(\text{LK}_{skc} \)-proof of \(S \) such that there exists an \(\mathcal{R}_{al} \)-refutation of \(\text{CS}(\pi) \). Then there a cut-free \(\text{LK} \)-proof of \(S \).

Proof. By Theorem 2, there exists an \(\text{LK}_{sk} \)-proof of \(S \). By Theorem 3, there exists a cut-free \(\text{LK} \)-proof of \(S \).

Completeness of \(\mathcal{R}_{al} \) implies completeness of the cut-elimination method:

Theorem 5. Assume completeness of \(\mathcal{R}_{al} \). Let \(\pi \) be an \(\text{LK} \)-proof of a proper sequent \(S \). Then there exists a cut-free \(\text{LK} \)-proof of \(S \).

Proof. \(\pi \) can be transformed into a regular \(\text{LK} \)-proof of \(S \). By Lemma 1, there exists a regular \(\text{LK}_{sk} \)-proof of \(S \). Let \(\text{CS}_R(\pi) \) be the reduct of \(\text{CS}(\pi) \). By Proposition 10, Proposition 1, and Theorem 1, there exists an \(\mathcal{R} \)-refutation \(\gamma \) of \(F(\text{CS}_R(\pi)) \). By deleting some \(\rightarrow^T \), \(\lor^T \) and \(\land^F \) inferences from \(\gamma \), we obtain an \(\mathcal{R} \)-refutation of \(\text{CS}_R(\pi) \). By completeness of \(\mathcal{R}_{al} \), we may apply Theorem 4.

Of course, cut-elimination implies consistency. Hence by Gödel’s second incompleteness theorem, at some point in the proof of the theorem above we must use assumptions which can not be proven in type theory. This strength is to be found in the proof of Theorem 1.

The following subsection will be devoted to investigating the relative completeness of \(\mathcal{R}_{al} \).
8. Relative completeness of \mathcal{R}_{al}

So far, we have not been able to prove relative completeness of \mathcal{R}_{al}. We state the following:

Conjecture. Relative Completeness of \mathcal{R}_{al} holds.

This subsection will present results which indicate that the conjecture can indeed be resolved positively by studying whether the \mathcal{R} calculus can be sufficiently restricted.

8.1. Restricting \mathcal{R} (towards \mathcal{R}_{al})

In this section, we will consider the following calculus:

Definition 26 (Resolution calculus \mathcal{R}_a). We define the calculus \mathcal{R}_a analogously to the calculus \mathcal{R}_{al}; it consists of the propositional rules of \mathcal{R}_a where all labels are empty, together with the following rules:

\[
\begin{align*}
\Gamma \vdash \Delta, \forall A &\quad \forall A, \Gamma \vdash \Delta \quad \forall F \quad S \quad S[X \leftarrow T] & \text{Sub} \\
\Gamma \vdash \Delta, A, \ldots, A, A, \ldots, A, \Pi \vdash \Lambda & \quad \Gamma, \Pi \vdash \Delta, \Lambda & \text{mCut}
\end{align*}
\]

where in $\forall F$, X_1, \ldots, X_n are all the free variables occurring in A, and if $\tau(X_i) = t_i$ for $1 \leq i \leq n$ and $\tau(A) = t \rightarrow o$, then $f \in K_{t_1, \ldots, t_n, t}$. In mCut, A is atomic.

Note that \mathcal{R}_a is “in-between” Andrews’ \mathcal{R} from [2] and \mathcal{R}_{al}: it does not have the SimT, SimF rules of \mathcal{R}, but the $\forall F$ and $\forall T$ rules work as they do in \mathcal{R}. In this section, we are interested in the question whether \mathcal{R}_a is still complete (with respect to \mathcal{R}). The answer will be positive for a fragment of \mathcal{R}:

Definition 27. Let γ be an \mathcal{R}-deduction such that all Skolem terms of $\forall F$ inferences in γ are constants. Then γ is called an \mathcal{R}_{c}-deduction.

The aim of this section is to prove the following result:

Theorem 6. Let γ be an \mathcal{R}_{c}-refutation of \mathcal{C}. Then there exists an \mathcal{R}_a-refutation of \mathcal{C}.

Let γ be an \mathcal{R}-deduction, and ρ_1, ρ_2 inferences in γ. Then we say that ρ_1 is a direct ancestor of ρ_2 if the conclusion of ρ_1 is a premise of ρ_2. ρ_2 is a direct descendent of ρ_1 if ρ_1 is a direct ancestor of ρ_2. Similarly, if S_1, S_2 are sequent occurrences in γ then S_1 is a direct ancestor of S_2 if there exists an inference with premise S_1 and conclusion S_2 in γ, and then S_2 is a direct descendent of S_1. The proper ancestor (descendent) relations are the transitive closures of the direct ancestor (direct descendent) relations. The ancestor (descendent) relations are the reflexive closures of the proper ancestor (descendent) relations. If S_1 is a descendent of S_2 then we also say that S_1 depends on S_2. Furthermore, we say that an inference ρ operates on a formula occurrence ω if ω is an auxiliary
or main formula of ρ (note that the Sub rule does not operate on any formula occurrences).

For notational convenience we will refer to SimT and SimF inferences simply as Sim inferences.

Definition 28. We say that a Sim inference ρ in an \mathcal{R}-deduction γ is locked if all the direct descendents of ρ operate on the main formula of ρ. Let ω be a formula occurrence in γ. Then a sequence of sequents S_1, \ldots, S_n is a path starting at ω if S_1 contains ω and for all $1 \leq i < n$, S_i is a direct ancestor of S_{i+1}. A path p starting at ω is called uninterrupted if no inference on ρ operates on a descendent of ω.

Proposition 13. Let ω be the occurrence of F in the sequent $\Gamma \vdash \Delta, F$ ($F, \Gamma \vdash \Delta$) in an \mathcal{R}-deduction γ, and let p be an uninterrupted path starting at ω. Then all sequents in p are of the form $\Pi \vdash \Lambda, F \sigma$ ($F \sigma, \Pi \vdash \Lambda$) for some Π, Λ and substitution σ.

Proof. By induction on the length of p. σ is determined by the Sub inferences on p. \square

Proposition 14. Let γ be an \mathcal{R}-refutation of \mathcal{C}. Then there exists an \mathcal{R}-refutation ψ of \mathcal{C} such that all Sim inferences in ψ are locked and such that the Skolem terms occurring in γ are exactly those occurring in ψ.

Proof. We may assume that there exists a Sim inference ρ in γ that is not locked. W.l.o.g. assume that ρ is a SimT inference. We construct an \mathcal{R}-refutation γ' of \mathcal{C} such that γ' contains strictly less non-locked Sim inferences than γ, and conclude by induction.

Let $\gamma = S_1, \ldots, S_k$. As γ is an \mathcal{R}-refutation, S_k does not contain formula occurrences and hence (1) every formula occurrence ω has a descendent which is an auxiliary formula. Let ω be the main formula of ρ, let $S_1 = \Gamma \vdash \Delta, A, A$ be the premise of ρ (where the A’s are the auxiliary formulas of ρ), and let $S_j = \Gamma \vdash \Delta, A$ be the conclusion of ρ. As ρ is not locked and by (1), there exist non-trivial uninterrupted paths p_1, \ldots, p_n from ω to some auxiliary formulas occurring in sequents T_i ($1 \leq i \leq n$). Define $\psi = \Sigma_1, \ldots, \Sigma_{j-1}, \Sigma_{j+1}, \Sigma_k$ where

1. if S_i occurs on some p_i, then by Proposition 13, S_i is of the form $\Pi \vdash \Lambda, A \sigma$ and we define $\Sigma_i = \Pi \vdash \Lambda, A \sigma, A \sigma$,
2. if S_i is inferred from some T_j then $\Sigma_i = T_j, S_i$,
3. otherwise $\Sigma_i = S_i$.

ψ is an \mathcal{R}-refutation of \mathcal{C}: W.l.o.g. we treat the case of S_i being inferred in ψ by a unary inference. In case (1) if S_i is inferred from S_j in γ then we can infer Σ_i from $\Sigma_j = S_i$ in ψ. Otherwise it is inferred from some S_m for which also case (1) holds, and we can infer Σ_i from Σ_m. In case (2), we can infer T_j from Σ_j by SimT and S_i from T_j as in γ. In case (3) if S_i was inferred from S_m in γ then Σ_m ends in S_m and we can infer S_i from Σ_m just as S_i was inferred from S_m in γ.

44
Note that we have only introduced locked Sim inferences, and have removed one non-locked Sim inference. Hence ψ contains strictly less non-locked Sim inferences than γ, which concludes the proof. □

Example 13. Consider the \mathcal{R}-deduction γ:

$$
\begin{array}{c}
1. \quad P_x \lor Q_x, P_x \lor Q_x \vdash \forall y R_y \\
2. \quad P_x \lor Q_x \vdash \forall y R_y \quad \text{Sim}^F : 1 \\
3. \quad P_x \lor Q_x \vdash R_z \quad \forall F : 2 \\
4. \quad P_z \lor Q_z \vdash R_z \quad \text{Sub} : 3 \\
5. \quad P_z \vdash R_z \quad \forall F : 4 \\
6. \quad P_c \lor Q_c \vdash R_c \quad \text{Sub} : 4 \\
7. \quad Q_c \vdash R_c \quad \forall F : 6 \\
\end{array}
$$

Applying Proposition 14 to γ yields the \mathcal{R}-deduction

$$
\begin{array}{c}
1. \quad P_x \lor Q_x, P_x \lor Q_x \vdash \forall y R_y \\
2. \quad P_x \lor Q_x, P_x \lor Q_x \vdash R_z \quad \forall F : 1 \\
3. \quad P_z \lor Q_z, P_z \lor Q_z \vdash R_z \quad \text{Sub} : 2 \\
4. \quad P_z \vdash R_z \quad \forall F : 4 \\
5. \quad P_c \lor Q_c \vdash R_c \quad \text{Sub} : 3 \\
6. \quad P_c \lor Q_c \vdash R_c \quad \forall F : 6 \\
\end{array}
$$

Hence from now on we will focus on the following set of rules:

Definition 29 (Rules for \mathcal{R}_a').

$$
\begin{array}{c}
\frac{\Gamma \vdash \Delta, \neg A, \ldots, \neg A}{A, \Gamma \vdash \Delta} \quad \neg T \\
\frac{\neg A, \ldots, \neg A, \Gamma \vdash \Delta}{A, \Gamma \vdash \Delta} \quad \neg F \\
\frac{\Gamma \vdash \Delta, A \lor B, \ldots, A \lor B}{A \lor B, \Gamma \vdash \Delta} \quad \lor T \\
\frac{A \lor B, \ldots, A \lor B, \Gamma \vdash \Delta}{A \lor B, \Gamma \vdash \Delta} \quad \lor F \\
\frac{\Gamma \vdash \Delta, \forall A, \ldots, \forall A}{\Gamma \vdash \Delta, \forall X} \quad \forall T \\
\frac{\forall A, \ldots, \forall A, \Gamma \vdash \Delta}{\forall A(iX_1 \ldots X_n), \Gamma \vdash \Delta} \quad \forall F \\
\frac{\Gamma \vdash \Delta, A \lor \ldots \lor A, A \lor \ldots \lor A, \Pi \vdash \Lambda}{\Gamma, \Pi \vdash \Delta, \Lambda} \quad \text{mCut}
\end{array}
$$

with conditions on mCut, $\forall F$ as in Definition 26 (rules of \mathcal{R}_a). Rules for the connectives $\rightarrow, \land, \exists$ are defined analogously. An inference is called *singular* if it has at most one auxiliary formula.

Hence the following follows immediately from Proposition 14:

Proposition 15. Let γ be an \mathcal{R}-refutation of \mathcal{C}. Then there exists an \mathcal{R}_a'-refutation ψ of \mathcal{C} such that the Skolem terms occurring in γ are exactly those occurring in ψ. 45
Note that an \mathcal{R}'_a-deduction γ is an \mathcal{R}_a-deduction iff all inferences in γ except mCut are singular. We introduce some notions regarding the status of inferences in \mathcal{R}'_a deductions:

Definition 30. An inference is called relevant if it is not an mCut, $\forall F$, or $\exists T$ inference. Let ρ be an $\forall F$ or $\exists T$ inference. ρ is called prefinished if all inferences operating on a proper ancestor of an auxiliary formula of ρ are singular. ρ is called finished if it is prefinished and singular.

Example 14. Consider the \mathcal{R}'_a-deduction

$$
\begin{array}{c}
1. A \lor \forall x Px, A \lor \forall x Px \vdash \\
2. \forall x Px \vdash \\
3. Ps \vdash
\end{array}
$$

Then inference 3 is not prefinished since inference 2 operates on a proper ancestor of the auxiliary formula of 3, and 2 is not singular. Now consider

$$
\begin{array}{c}
1. A \lor \forall x Px, A \lor \forall x Px \vdash \\
2. A \lor \forall x Px, \forall x Px \vdash \\
3. \forall x Px, \forall x Px \vdash \\
4. Ps \vdash
\end{array}
$$

Here, inference 4 is prefinished but not finished since it is not singular.

Definition 31. Let $S = F_1, \ldots, F_n \vdash G_1, \ldots, G_m$ be a sequent. If there exist $k_1, \ldots, k_n, \ell_1, \ldots, \ell_m \in \mathbb{N}$ such that $S' = k_1 \times F_1, \ldots, k_n \times F_n \vdash \ell_1 \times G_1, \ldots, \ell_m \times G_m$, then S' is a multiple of S, where the notation $k_i \times F_i$ means “k_i occurrences of F_i”. Abusing notation, we write $F_1, \ldots, F_n \vdash^m G_1, \ldots, G_m$ for S' if S' is a multiple of S.

If all relevant inferences in an \mathcal{R}'_a-deduction γ are singular, then we say that γ is singular. We define $\text{NF}(\gamma)$ to be the number of $\forall F$ and $\exists T$ inferences in γ which are not finished (i.e. not prefinished or not singular).

Proposition 16. Let γ be an \mathcal{R}'_a-deduction of $\vdash \Gamma$ from C. Then there exists an \mathcal{R}'_a-deduction ψ of $\vdash^m \Gamma$ from C such that ψ is singular.

Furthermore, the Skolem terms occurring in ψ are the same as those occurring in γ, and $\text{NF}(\gamma) = \text{NF}(\psi)$.

Proof. Assume γ is not singular. Let $\gamma = S_1, \ldots, S_n$, and let i be the least such that S_i is inferred by a relevant inference ρ such that ρ is not singular. We will construct an \mathcal{R}'_a-deduction $\psi = S_1, \ldots, S_{i-1}, \Sigma, S'_{i+1}, \ldots, S'_n$ from C such that (1) if μ is an inference in ψ with conclusion in $S_1, \ldots, S_{i-1}, \Sigma$, then μ is singular and furthermore, (2) a sequent in ψ is inferred by an $\forall F$ ($\exists T$) inference μ iff its corresponding sequent in γ is inferred by an $\forall F$ ($\exists T$) inference μ', and

46
\(\mu \) is not finished iff \(\mu' \) is. We may then conclude by induction on \(n - i \), where \(i \) is defined as above.

\(S_1, \ldots, S_{i-1} \) are inferred in \(\psi \) as they were in \(\gamma \). By assumption, all these inferences are singular if they are relevant. \(\Sigma \) is defined as follows: We treat the case of \(\rho \) being an \(\forall T \) inference. The other cases are analogous. Let \(\Gamma \vdash \Delta, A \lor B, \ldots, A \lor B \) be the premise of \(\rho \), and let \(\Gamma \vdash \Delta, A, B \) be the conclusion.

Then \(\Sigma \) is the sequence of sequents starting with \(\Gamma \vdash \Delta, A, B, \ldots, A, B, A, B \) and ending with \(\Gamma \vdash \Delta, A, B, \ldots, A, B \), such that every sequent in \(\Sigma \) is inferred from the previous one by the singular version of \(\rho \). The first sequent in \(\Sigma \) can be inferred from the same \(S_j \), \(j < i \), as it was in \(\gamma \), using the singular version of \(\rho \). By construction, (1) holds. For (2), note that by assumption \(\rho \) cannot be \(\forall F \) or \(\exists T \), as \(\rho \) is relevant. All other inferences are as they were in \(\gamma \), so (2) holds for this part of \(\psi \).

Now, define \(S_j' \) for \(i < j \leq n \). Let \(\omega \) be the main formula of \(\rho \), and let \(S_j = \Gamma, \Delta \) where \(\Delta \) are all the descendents of \(\omega \) in \(S_j \) in \(\gamma \). Define \(S_j' = \Gamma, \Delta, \ldots, \Delta \) if there exists an uninterrupted path starting at \(\omega \) and ending at \(S_j \) in \(\gamma \) (for some suitable number of copies of \(\Delta \)), and \(S_j' = S_j \) otherwise. \(S_j' \) can be derived in \(\psi \):

1. If \(S_j \) was derived in \(\gamma \) from \(S_k \) with \(k < i \), then \(\Delta \) is empty and we can derive \(S_j' = S_j \) from \(S_k \).
2. If \(S_j \) was derived from \(S_i \) in \(\gamma \), we can derive \(S_j' \) from the last element of \(\Sigma \).
3. If \(S_j \) was derived from \(S_k \) with \(k > i \), in \(\gamma \) then again we can derive \(S_j' \) from \(S_k' \) in \(\psi \). If the inference with conclusion \(S_j \) is the first inference operating on a descendent of \(\omega \) in \(\gamma \), we have to increase the number of auxiliary formulas to derive the correct sequent in \(\psi \). For example, if \(S_k = \Gamma \vdash \Delta, A \lor B \) and \(S_j = \Gamma \vdash \Delta, A, B \) is derived by \(\forall T \), then \(S_k' = \Gamma \vdash \Delta, A \lor B, \ldots, A \lor B \) and we derive \(S_j' = S_j \) from \(S_k' \) by \(\forall T \) in \(\psi \).

For (2), it is clear by construction that \(S_j' \) is inferred by \(\forall F \) if \(S_j \) is. Note that inferences from \(\gamma \) are changed iff they operate on descendents of \(\omega \), in which case they are not prefinished if they are instances of \(\forall F \) in both \(\gamma \) and \(\psi \). \(\square \)

The second \(R'_a \)-deduction in Example 14 is obtained from the first by applying Proposition 16.

Proposition 17. Let \(\rho_1, \rho_2 \) be \(\forall F \) or \(\exists T \) inferences in an \(R'_a \)-deduction such that \(\rho_1 \) operates on an ancestor of the main formula of \(\rho_2 \). Then if \(\rho_1 \) is not finished, \(\rho_2 \) is not finished.

Proof. As \(\rho_1 \) is not finished, an inference operating on an ancestor of the main formula \(\omega \) of \(\rho_1 \) is not singular. By assumption \(\omega \) is an ancestor of the main formula of \(\rho_2 \), so \(\rho_2 \) is not prefinished and hence not finished. \(\square \)

For the final results, we will allow the rule of weakening in \(R'_a \)-deductions to ease the presentation of the proofs:

\[
\frac{\Gamma \vdash \Delta}{\Gamma, \Pi \vdash \Delta, \Lambda} \text{ weak}
\]
Proposition 18. Let γ be an \mathcal{R}_a'-refutation of \mathcal{C} using weakening. Then there exists an \mathcal{R}_a'-refutation ψ of \mathcal{C} without weakening such that $\text{NF}(\psi) \leq \text{NF}(\gamma)$.

PROOF. By deleting formula occurrences, sequents and inferences. \square

Proposition 19. Let γ be an \mathcal{R}_a'-refutation of \mathcal{C} such that all Skolem terms of $\forall F$ and $\exists T$ inferences in γ are constants. Then there exists an \mathcal{R}_a-refutation of \mathcal{C}.

PROOF. Note that if γ is singular and $\text{NF}(\gamma) = 0$, γ is the desired \mathcal{R}_a-refutation.

By Proposition 16, we may assume that γ is singular. We proceed by induction on $\text{NF}(\gamma)$, showing that if γ is a singular \mathcal{R}_a'-deduction of S from \mathcal{C}, then there exists a singular \mathcal{R}_a'-deduction ψ of S from \mathcal{C} with $\text{NF}(\psi) = 0$.

If $\text{NF}(\gamma) = 0$, we may take $\psi = \gamma$. Hence assume as inductive hypothesis that for all \mathcal{R}_a'-deductions λ of S from \mathcal{C} with $\text{NF}(\lambda) < \text{NF}(\gamma)$, there exists an \mathcal{R}_a'-deduction λ' of S from \mathcal{C} with $\text{NF}(\lambda') = 0$.

We say that an $\forall F$ or $\exists T$ inference ρ is uppermost if all $\forall F$ or $\exists T$ inferences operating on a proper ancestor of the auxiliary formula of ρ are prefinished. By assumption, there exists an $\forall F$ or $\exists T$ inference in γ that is not finished. Then there exists an uppermost such inference ρ in γ that is not finished. Observe that ρ is prefinished and not singular, as it is uppermost and all relevant inferences are singular. W.l.o.g. let ρ be an $\forall F$ inference.

Let $\gamma = S_1, \ldots, S_n$, and let the premise of ρ be $S_j = \forall a, \ldots, \forall a, \Gamma \vdash \Delta$ (containing $k + 1 \geq 2$ auxiliary formulas), the conclusion be $S_j = Ac, \Gamma \vdash \Delta$, and denote the main formula of S_j by ω. Note that S_n is the empty sequent since γ is an \mathcal{R}_a'-refutation. If S_n does not depend on S_j, then clearly we can simply remove S_j and the sequents that depend on it from γ to obtain a singular \mathcal{R}_a'-deduction of S_n from \mathcal{C} containing strictly less $\forall F$ and $\exists T$ inferences which are not finished, and we may conclude by the inductive hypothesis. Hence assume S_n depends on S_j. Note that a does not contain free variables since c is a constant. Let c_1, \ldots, c_k be fresh Skolem constants.

For $1 \leq q \leq k$, we will construct singular \mathcal{R}_a'-deductions.

1. ψ_0 of $(\Gamma \vdash \Delta) \circ (Ac_1, \ldots, Ac_k \vdash_m)$ from \mathcal{C}, and
2. ψ_q of $(\Gamma \vdash \Delta) \circ (Ac_{q+1}, \ldots, Ac_k \vdash_m)$ from $\mathcal{C} \cup \{(\Gamma \vdash \Delta) \circ (Ac_{q}, \ldots, Ac_k \vdash_m)\}$.

such that for $0 \leq p \leq k$, $\text{NF}(\psi_p) < \text{NF}(\gamma)$. We may then apply the inductive hypothesis to ψ_p to obtain singular \mathcal{R}_a'-deductions ψ_p' with $\text{NF}(\psi_p') = 0$. Hence all inferences except mCut are singular in ψ_p'. We may then rename the Skolem symbols of the ψ_p' such that their sets of Skolem symbols are pairwise disjoint. Then clearly $\psi = \psi_0, \ldots, \psi_k'$ has $\text{NF}(\psi) = 0$ and is therefore the desired \mathcal{R}_a'-refutation.

We start by defining ψ_0. For $j + 1 \leq r \leq n$, if S_r does not depend on S_j then $S_r' = S_r$, and otherwise $S_r' = S_r \circ (Ac_1, \ldots, Ac_k \vdash_m)$. Note that $S_n' = Ac_1, \ldots, Ac_k \vdash_m$. So let

$$\psi_0 = S_1, \ldots, S_{j-1}, \Sigma, S_{j+1}', \ldots, S_n', (\Gamma \vdash \Delta) \circ (Ac_1, \ldots, Ac_k \vdash_m),$$

48
where Σ is a sequence of sequents deriving $\textbf{Ac}, \textbf{Ac}_1, \ldots, \textbf{Ac}_k, \Gamma \vdash \Delta$ from S_i using only singular \forall^F. Clearly S_1, \ldots, S_{j-1} can be derived from C as they were in γ. Since ρ is prefinished, all the \forall^F inferences introduced in deriving Σ are finished. Letting S'_j be the last sequent in Σ, we show that S'_r can be derived in ψ_0 for $j < r \leq n$. Distinguish:

1. If S_r does not depend on S_j, then neither do its premise(s) S_p (S_q). Hence $S'_r = S_r$ and $S'_p = S_p$ (and $S'_q = S_q$) and S'_r can be inferred from S'_p (S'_q) just as it was in γ.

2. If S_r depends on S_j and was inferred by a unary inference μ from S_p, then $p \geq j$ and hence we can infer S'_r from S'_p by the same unary inference. If μ is Sub, remember that A is closed and hence not affected by the substitution.

3. If S_r depends on S_j and was inferred by mCut from S_p and S_t, then at least one of the premises depends on S_j. Hence we may infer S'_r from S'_p and S'_t by mCut. Note that if both premises depend on S_j, the multiplicities of the \textbf{Ac}_q increase.

Note that $S'_n = (\textbf{Ac}_1, \ldots, \textbf{Ac}_k \vdash_m)$, so the last sequent of ψ_0 can be derived from S'_n by weakening. By construction, for every $\forall^F (\exists^T)$ inference in ψ_0 that is not finished there exists a unique $\forall^F (\exists^T)$ inference in γ that is not finished, hence $\text{NF}(\psi_0) < \text{NF}(\gamma)$ (because ρ induces only finished inferences in ψ_0). Since all relevant inferences in γ are singular, this is also the case for ψ_0. Hence ψ_0 is as desired.

We turn to the construction of ψ_q for $1 \leq q \leq k$. Let

$$\psi'_q = (\Gamma \vdash \Delta) \circ (\textbf{Ac}_q, \ldots, \textbf{Ac}_k \vdash_m), S_1, q, \ldots, S_j, q, S_{j+1}, q, \ldots, S_n, q$$

where $S_{r,q}$ is defined in the following way:

1. If S_r does not depend on S_j, then $S_{r,q} = S_r [c \leftarrow c_q]$.
2. If S_r depends on S_j, denote the inference whose conclusion S_r is by ρ.
 Distinguish:
 (a) If no inference in γ on the path from ω to S_r operates on a descendent of ω, then S_r is of the form $\textbf{Ac}, \Pi \vdash \Lambda$. Then let $S_{r,q} = (\Pi \vdash \Lambda) \circ (\textbf{Ac}_q, \ldots, \textbf{Ac}_k \vdash_m)$.
 (b) ρ is the first inference operating on a descendent of ω. We treat the case where ρ is \forall^T, the other cases are similar. So if $S_r = \Pi \vdash \Lambda, B, C$ is inferred from $S_t = \Pi \vdash \Lambda, B \lor C$ then $S_{r,q} = (\Pi \vdash \Lambda, B \lor C, \ldots, B \lor C) \circ (\textbf{Ac}_q, \ldots, \textbf{Ac}_k \vdash_m)$ by the previous case (note that by assumption $\textbf{Ac}_q = B \lor C$). Then let $S_{r,q} = (\Pi \vdash \Lambda, B, C) \circ (\textbf{Ac}_q, \ldots, \textbf{Ac}_k \vdash_m)$.
 (c) Otherwise, $S_{r,q} = S_r \circ (\textbf{Ac}_q, \ldots, \textbf{Ac}_k \vdash_m)$.

For $r \in \{1, \ldots, j - 1, j + 1, \ldots, n\}$, we show that $S_{r,q}$ can be derived in ψ'_q by distinguishing how S_r is derived in γ:

1. $S_r \in C$. Then S_r does not contain c and does not depend on S_j, hence $S_{r,q} \in C$.

49
2. If \(S_r \) is inferred by Sub with \([X \leftarrow T[c \leftarrow c_\varnothing]] \) from \(S_p \), then we may use Sub with \([X \leftarrow T] \) to derive \(S_{r,q} \) from \(S_{p,q} \), again noting that \(A \) is closed.

3. \(S_r \) is derived from \(S_p \) by a CNF inference. We may use the same inference to infer \(S_{r,q} \) from \(S_{p,q} \) (in case \(S_{r,q} \) is constructed in case 2(b) above, the number of auxiliary formulas of the inference increases).

4. \(S_r \) is derived from \(S_p \) and \(S_t \) by an \(m \)Cut. We may derive \(S_{r,q} \) from \(S_{p,q} \) and \(S_{t,q} \) using \(m \)Cut. Again if \(S_{r,q} \) is constructed in case 2(b) above, the number of auxiliary formulas of the inference increases. Also, note again that if both premises depend on \(S_j \), then the multiplicities of the \(Ac_i \) increase.

By construction, for every \(\forall F(\exists T) \) inference in \(\psi' \) that is not finished there exists a unique \(\forall F(\exists T) \) inference in \(\gamma \) that is not finished, hence \(NF(\psi''_q) < NF(\gamma) \) (because \(\rho \) does not induce an \(\forall F \) inference in \(\psi' \)). Note that due to 2(b), also the \(\forall F(\exists T) \) inferences operating on descendents of \(Ac_q \) are not finished, but their corresponding inferences in \(\gamma \) operante on descendents of \(\omega \) and are hence not finished, too.

Set \(\psi''_q = \psi'_q, (\Gamma \vdash \Delta) \circ (Ac_{q+1}, \ldots, Ac_k \vdash_m) \). Note that the last sequent of \(\psi'_q \) is \(S_{n,q} = Ac_{q+1}, \ldots, Ac_k \vdash_m \), hence the last sequent of \(\psi''_q \) can again be derived by weakening. Finally, we may apply Proposition 16 to \(\psi''_q \) to obtain a singular \(\psi_q \) such that \(NF(\psi_q) = NF(\psi''_q) < NF(\gamma) \). Hence \(\psi_q \) is as desired. Finally, we apply Proposition 18 to \(\psi \), which completes the proof. \(\Box \)

Example 15. Consider the \(R'^a \)-refutation of \(\{\forall x(Px \lor \neg Px), \forall x(Px \lor \neg Px) \vdash\} \):

<table>
<thead>
<tr>
<th>Step</th>
<th>Formula</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(\forall x(Px \lor \neg Px), \forall x(Px \lor \neg Px) \vdash)</td>
<td>(\forall F : 1)</td>
</tr>
<tr>
<td>2</td>
<td>(P \lor \neg P \vdash)</td>
<td>(\forall F : 2)</td>
</tr>
<tr>
<td>3</td>
<td>(P \vdash)</td>
<td>(\forall F : 2)</td>
</tr>
<tr>
<td>4</td>
<td>(\neg P \vdash)</td>
<td>(\forall F : 4)</td>
</tr>
<tr>
<td>5</td>
<td>(\vdash)</td>
<td>(\vdash F : 4)</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>(m)Cut : 5, 3</td>
</tr>
</tbody>
</table>

In the proof of Proposition 19 we obtain \(\psi_0 \)

<table>
<thead>
<tr>
<th>Step</th>
<th>Formula</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(\forall x(Px \lor \neg Px), \forall x(Px \lor \neg Px) \vdash)</td>
<td>(\forall F : 1)</td>
</tr>
<tr>
<td>2</td>
<td>(\forall x(Px \lor \neg Px), P \lor \neg P \vdash)</td>
<td>(\forall F : 2)</td>
</tr>
<tr>
<td>3</td>
<td>(P \lor \neg P \vdash)</td>
<td>(\forall F : 3)</td>
</tr>
<tr>
<td>4</td>
<td>(P \vdash)</td>
<td>(\forall F : 3)</td>
</tr>
<tr>
<td>5</td>
<td>(\vdash)</td>
<td>(\vdash F : 5)</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>(m)Cut : 6, 4</td>
</tr>
</tbody>
</table>

and \(\psi'_1 \)

<table>
<thead>
<tr>
<th>Step</th>
<th>Formula</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>(P \lor \neg P, P \lor \neg P \vdash)</td>
<td>(\forall F : 8)</td>
</tr>
<tr>
<td>9</td>
<td>(P \vdash)</td>
<td>(\forall F : 8)</td>
</tr>
<tr>
<td>10</td>
<td>(\vdash)</td>
<td>(\vdash F : 10)</td>
</tr>
<tr>
<td>11</td>
<td>(P \vdash)</td>
<td>(\vdash F : 10)</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>(m)Cut : 9, 11</td>
</tr>
</tbody>
</table>
ψ'$_1$ is not singular, but after application of Proposition 16 we obtain the singular
ψ

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>$P_{s1} \lor \neg P_{s1}, P_{s1} \lor \neg P_{s1}$</td>
<td>\vdash</td>
</tr>
<tr>
<td>9</td>
<td>$P_{s1} \lor \neg P_{s1}, P_{s1}$</td>
<td>\vdash</td>
</tr>
<tr>
<td>10</td>
<td>P_{s1}, P_{s1}</td>
<td>\vdash</td>
</tr>
<tr>
<td>11</td>
<td>$P_{s1} \lor \neg P_{s1}, \neg P_{s1}$</td>
<td>\vdash</td>
</tr>
<tr>
<td>12</td>
<td>$\neg P_{s1}, \neg P_{s1}$</td>
<td>\vdash</td>
</tr>
<tr>
<td>13</td>
<td>$\neg P_{s1}$</td>
<td>\vdash</td>
</tr>
<tr>
<td>14</td>
<td>P_{s1}, P_{s1}</td>
<td>\vdash</td>
</tr>
<tr>
<td>15</td>
<td>\vdash</td>
<td>$\text{mCut} : 10, 14$</td>
</tr>
</tbody>
</table>

Clearly $\psi = \psi_0, \psi_1$ is the desired \mathcal{R}_a-refutation of $\{ \forall x (P x \lor \neg P x), \forall x (P x \lor \neg P x) \vdash \}$.

Finally, observe that Theorem 6 follows from Propositions 15 and 19.

9. An example application of CERES$^\omega$

In this section, we apply the method introduced in Section 3 to the analysis of a concrete proof π. π is based on a mathematical proof which consists of two parts: in part (1) we prove that the induction principle IND follows from the least number principle LNP. Part (2) uses IND for proving the sentence A that every number greater than one has a prime divisor. Connecting the two proofs by a cut on the sentence IND results in the proof π which shows that A follows from LNP. By applying cut-elimination on π we obtain a direct proof of A via LNP. This way cut-elimination transforms a proof of A from IND into another one using LNP.

The proof uses usual axioms of arithmetic for 0, 1, \ast, $<$, $>$ and the predecessor function p. We also define $=$ (of type $\iota \rightarrow \iota \rightarrow o$) via Leibniz equality. Table 1 lists the symbols we use, along with their types, and the definitions used in the proof. s_0, \ldots, s_3 are Skolem symbols.

The shape of π is

\[
\frac{(\pi_1)}{LNP \vdash \text{IND}}
\frac{(\pi_2)}{LNP \vdash \forall y \exists w (y > 1 \rightarrow PD(w, y))}
\frac{\forall^s k : l \lambda y. \exists w (y > 1 \land PD(w, y))}{\vdash \forall y \exists w (y > 1 \rightarrow PD(w, y))}
\]

We indicate which Skolem symbols correspond to which quantifier in the end-sequent of π (with expanded definitions):

\[
\forall X (\exists y X(y) \rightarrow \exists y (\forall z (z < y \rightarrow \neg X(z)) \land X(y))) \\
\forall y \exists w (y > 1 \rightarrow (w > 1 \land \forall z (\exists q z * q = w \rightarrow (z = 1 \lor z = w))) \land \exists q w * q = y)
\]

As labels of formulas that do not contain free higher-order variables or quantifiers do not play a role in the machinery of Section 3, we do not write down
such labels in the rest of this paper for readability. The characteristic sequent
set of π is\(^3\)

\[
\text{CS}(\pi) = \{ \\
C_1 : \langle z_0 < s_0(\lambda x. \neg X_0(x)) \rangle^{\lambda x. \neg X_0(x)}, z_0 \vdash \langle X_0(y_0) \rangle^{\lambda x. \neg X_0(x)}, y_0, \\
\langle X_0(z_0) \rangle^{\lambda x. \neg X_0(x)}, z_0 ; \\
C_2 : \langle X_0(s_0(\lambda x. \neg X_0(x))) \rangle^{\lambda x. \neg X_0(x)} \vdash \langle X_0(y_0) \rangle^{\lambda x. \neg X_0(x)}, y_0 ; \\
C_3 : \vdash y_0 * 1 = y_0 ; \\
C_4 : z_0 * z_1 = y_0 \vdash z_0 = 1, z_0 = y_0, z_0 < y_0 ; \\
C_5 : z_0 * z_1 = y_0, y_0 > 1 \vdash z_0 = 1, z_0 > 1 ; \\
C_6 : \vdash w_0 * (z_1 * z_2) = (w_0 * z_1) * z_2 ; \\
C_7 : \vdash s_3 > 1 ; \\
C_8 : x_0 > 1, x_0 * y_0 = s_3 \vdash s_2(x_0) * s_1(x_0) = x_0 ; \\
C_9 : x_0 > 1, s_2(x_0) = 1, x_0 * y_0 = s_3 \vdash ; \\
C_{10} : x_0 > 1, s_2(x_0) = x_0, x_0 * y_0 = s_3 \vdash \\
\} \\
\]

The refutation γ of CS(π) is based on the idea to prove that, from the number
s\(_3\), we can obtain an infinite strictly decreasing chain of divisors of s\(_3\), which is
inductively unsound. Indeed this property can be derived using essentially the
clauses C\(_7\),...C\(_{10}\) in CS(π). Formally this argument is realized by replacing

\(^3\)π was formalized using HLK [http://www.logic.at/hlk] and CS(π) was extracted using
the GAPT framework [http://code.google.com/p/gapt/]. The source code for π can be found
at http://www.logic.at/ceres/examples/primediv.html.
the second-order variable X_0 by $\lambda x. F(x)$ for

$$F(x) \equiv \exists z(D(z, s_3) \land z + x < s_3 \land z > 1).$$

Indeed, by $\vdash s_3 > 1$ we can derive (using C_8, C_9, C_{10}):

$$\vdash s_2(s_3) * s_1(s_3) = s_3; \quad \vdash s_2(s_3) < s_3; \quad \vdash s_2(s_3) > 1$$

and so $\vdash D(s_2(s_3), s_3) \land s_2(s_3) < s_3 \land s_2(s_3) > 1$. Assume now we have already derived

$$(*): \quad \vdash D(c, s_3) \land c + x < s_3 \land c > 1.$$

Then using $\vdash c > 1$ instead of $\vdash s_3 > 1$ we derive

$$\vdash s_2(c) * s_1(c) = c; \quad \vdash s_2(c) < c; \quad \vdash s_2(c) > 1$$

so replacing c by $s_2(c)$ we get $\vdash D(s_2(c), s_3) \land s_2(c) + (x + 1) < s_3 \land s_2(c) > 1$. (*) for all x leads to a contradiction for $x < s_3$.

The proof by LNP obtained via γ can be described informally as follows: We show $\text{LNP} \vdash \forall y \exists w(y > 1 \rightarrow PD(w, y))$. Assume $\neg \forall y \exists w(y > 1 \rightarrow PD(w, y))$, which is equivalent to $\exists y \forall w(y > 1 \rightarrow \neg PD(w, y))$, and assume k is the smallest number s.t. $\forall w(k > 1 \land \neg PD(w, k))$. Using the arguments of γ we get $s_2(k) > 1$, $s_2(k) < k$, $D(s_2(k), k)$. Hence $\exists wPD(w, s_2(k))$, so let q be a prime divisor of $s_2(k)$. But then also $D(q, k)$ and so q is a prime divisor of k, contradiction.

We would like to mention a specific proof-theoretic property of this refutation γ: the proof obtained from γ cannot be obtained via the reductive Gentzen method. In fact, in Gentzen’s method, X_0 would be replaced by the predicate

$$P: \lambda y. \exists w(y > 1 \rightarrow PD(w, y))$$

which corresponds to the “straightforward” argument. Of course, also this kind of cut-elimination can be obtained by refuting $CS(\pi)$ via the substitution $X_0 \leftarrow P$. This shows that, by its high flexibility, the CERES method can reveal interesting mathematical arguments unattainable by reductive methods.

References

