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The second-order unification problem is undecidable. While unification procedures, like
Huet’s pre-unification, terminate with success on unifiable problems, they might not terminate
on non-unifiable ones. There are several decidability results for infinitary unification, such as
for monadic second-order problems. These results are based on the regular structure of the
solutions of these problems and by computing minimal unifiers.

Beyond the importance of the knowledge that searching for unifiers of decidable problems
always terminates, one can also use this information in order to optimize unification algorithms,
such as in the case for pattern unification [6].

Nevertheless, being able to prove that the unification problem of a certain class of unification
constraints is decidable is far from easy. Some results were obtained for certain syntactic
restrictions on the problems (see Levy [4] for some results and references) or on the unifiers (see
Schmidt-Schauß [7] and Schmidt-Schauß and Schulz [8, 9] for some results).

Infinitary unification problems, like the ones we are considering, might suggest that known
tools for dealing with the infinite might be useful. One such tool is the regular tree automaton.
The drawback of using regular automata for unification is, of course, their inability to deal
with variables. In this talk we try to overcome this obstacle and describe an on-going work
about using regular tree automata [1] in order to decide more general second-order unification
problems.

The second-order unification problems we will consider are of the form λzn.x0t
.
= λzn.C(x0s)

where C is a context [2] and x0 does not occur in t or s. We will call such problems cyclic
problems. A sufficient condition for the decidability of second-order unification problems was
given by Levy [4]. This condition states that if we can never encounter, when applying Huet’s
pre-unification procedure [3] to a problem, a cyclic equation, then the unification problem is
decidable.

It follows from this result that deciding second-order unification problems depends on the
ability to decide cyclic problems. The rules of Huet’s procedure (PUA) are given in Fig. 1.
Imitation partial bindings and projection partial bindings are defined in [10] and are denoted,
respectively, by PB(f, α) and PB(i, α) where α is a type, Σ a signature f ∈ Σ and 0 < i.

The following technical definitions, taken from our previous work on extending PUA to deal
with some non-termination [5], describe the change in the unification constraints set when we
start with a cyclic problem and execute certain rules of PUA.

Let e be a cyclic equation as above where C = C1 . . . Cm such that for all 0 < i ≤ m,
Ci = fi(r

1
i , . . . , [.], . . . , r

ni
i ) where ni = arity(fi) − 1. Define also, for all m < i, Ci =

fk(y1i−ms, . . . , [.], . . . , y
nk
i−ms) where k = ((i − 1) mod m) + 1 and yji−m for 0 < j ≤ nk are

new variables. We define the progressive context De
i for all 0 ≤ i as De

i = Ci+1 . . . Ci+m.

In the rest of this talk, e will refer to equations of this form and t, s, C,m, k, ni, r
j
i and yji

will refer to the corresponding values in e.
In order to clarify the definitions, we will use the following (non-unifiable) cyclic equation

as an example: x0f(a, a)
.
= f(x0a, f(f(a, a), b)). Note that PUA does not terminate on this

problem.
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S

S ∪ {A .
= A}

(Delete)
S ∪ {λzk.s1

.
= λzk.t1, . . . , λzk.sn

.
= λzk.tn}

S ∪ {λzk.f(sn)
.
= λzk.f(tn)}

(Decomp)

Sσ ∪ {x .
= λzk.t} x 6∈ FV(t) ∧ σ = [λzk.t/x]

S ∪ {λzk.x(zk)
.
= λzk.t}

(Bind)

S ∪ {x .
= u, λzk.x

α(sn)
.
= λzk.f(tm)} u ∈ PB(f, α)

S ∪ {λzk.xα(sn)
.
= λzk.f(tm)}

(Imitate)
1

S ∪ {x .
= u, λzk.x

α(sn)
.
= λzk.a(tm)} 0 < i ≤ k, u = PB(i, α)

S ∪ {λzk.xα(sn)
.
= λzk.a(tm)}

(Project)
2

1. where f ∈ Σ.

2. where either a ∈ Σ or a = zi for some 0 < j ≤ k.

Figure 1: PUA- Huet’s pre-unification procedure

For the example, t = f(a, a), s = a,C = f([.], f(f(a, a), b)),m = 1, k = 1, ni = 1, and
r1i = f(f(a, a), b) for all 0 < i. The progressive contexts for this example are: D0 = C,D1 =
f([.], y1a), D2 = f([], y2a), etc.

Since the only ”don’t know” non-determinism in PUA is due to the choices in the search
between the rules (Imitate) and (Project) [10], we can follow the execution of PUA on the
cyclic equation e using the search tree in Figure 2 and using the following definitions. Given a
cyclic equation e, for all 0 ≤ i, we define I(i), I∗(i) and P(i) inductively as follows:

• P(0) = I(0) = I∗(0) = ∅.

• if 0 < i ≤ m then I∗(i) = I∗(i− 1) ∪ {λzn.yji t
.
= λzn.r

j
i | 1 ≤ j ≤ ni}.

• if m < i then I∗(i) = I∗(i− 1) ∪ {λzn.yji t
.
= λzn.y

j
i−ms | 1 ≤ j ≤ ni}.

• for all 0 < i, I(i) = I∗(i) ∪ {λzn.xit
.
= λzn.D

e
i (xis)}.

• for all 0 < i, P(i) = I∗(i− 1) ∪ {λzn.t
.
= λzn.D

e
i−1(s)}.

e

I(1)

. . .P(2)

(Project),(Bind) (Imitate),(Bind),(Decomp)

P(1)

(Project),(Bind) (Imitate),(Bind),(Decomp)

Figure 2: The ”don’t-know” non-determinism in PUA

From the fact that PUA is complete for higher-order unification [3] and from the fact that e
is a cyclic problem, it follows that e is unifiable iff there is 0 < i such that P(i) is unifiable [5].

For the example, we have P(1) = {f(a, a)
.
= f(f(a, a), b)}, P(2) = {y1f(a, a)

.
=

f(f(a, a), b), f(a, a)
.
= f(a, y1a)}, P(3) = {y1f(a, a)

.
= f(f(a, a), b), y2f(a, a) = y1a, f(a, a)

.
=

f(a, y2a)}, etc.
Let P−(i) ⊆ P(i) be the following set of equations.
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• if 0 < i ≤ m+ 1 then P−(i) = P(i).

• if m+ 1 < i then P−(i) = I∗(m) ∪ {λzn.t
.
= λzn.D

e
i−1(s)}.

and let P∗(i) = P(i) \P−(i).
The corresponding values for our example are P−(1) = P(1),P−(2) = P(2), P−(3) =

{y1f(a, a)
.
= f(f(a, a), b), f(a, a)

.
= f(a, y2a)} and P∗(3) = {y2f(a, a) = y1a}.

Clearly, P(i) is unifiable only if both P−(i) and P∗(i) are (using the same substitution).
In [5] we proved that P−(i) is unifiable only if there is 0 < j ≤ 3m ≤ i such that P−(j) is
unifiable. I.e. that we can always decide if there is an 0 < i such that P−(i) is unifiable.

In the present talk, we will describe how to decide the unification problems of these cycles
under a very strong restriction. We require that the generated sets P− are each finitary unifica-
tion problems, meaning that a complete set of their unifiers cannot be infinite. This condition
can be achieved, for example, if we require these sets to be acyclic. In this case this restriction
holds following the proof of the decidability of acyclic problems [4]. The cyclic problems in our
case are composed of exactly one cycle and we will show that one can decide the unification
problem in this case.

In order to decide if such cyclic equations are unifiable, we will first investigate the equations
in P−(i) and P∗(i) and the relation between them.

Let us consider P(i) for some 0 < i and let us pick an arbitrary equation λzn1 .y
j
kt

.
=

λzn1
.rjk ∈ P−(i) where 0 < k ≤ m and j is some index depending on the arity of the enclosing

function symbol in C. This equation is connected to the following set of equations in P∗(i):
{λzn2 .y

j
k+mt

.
= λzn2 .y

j
ks, λzn3 .y

j
k+2mt

.
= λzn3 .y

j
k+ms, . . . , λznl

.yji−1
m

t
.
= λznl

.yji−1
m −m

s}. The

last occurrence of a variable in this chain is the occurrence of yji−1
m

s in the equation λznl+1
.t
.
=

λznl+1
.De

i−1(s) ∈ P−(i). Call the equations from P−(i) base equations and the ones from P∗(i)
inductive equations. In the following algorithm we will consider first the finitely-many P(j)
problems for 0 < j ≤ 3m and will then consider the problems P(i) such that P−(i) is unifiable
iff P−(j). We will call the infinitely-many such problems P(i) the extensions of P(j).

Since in our example m = 1, there can be only one chain. For P(i) the chain is just the
sequence of equations in P(i).

In the current talk we will consider only the case when there is one chain and renumber the
indices of the y variables with 1, . . . , p. Since the chain and the problem P(i) are the same, we
will consider both the problems P(i) as extensions of P(j) and the (single) chains of P(i) as
extensions to the chain in P(j).

In order to define the algorithm, we need first to define how to construct the regular tree
automaton based on three terms. The first term will be of the form λz.u where u can contains
z but no subterm of the form v, the second term will be v and the third term will be w such
that w contains occurrences of z and has no subterm of the form v. Using these three terms,
we define the following tree automaton A = (Q,Qf ,∆) where Q = {qw, qu}, Qf = {qu} and ∆
is defined as follows:

• λz.u1 → qu(λz.u2) where u1 is obtained from u by replacing each occurrence of z with
qw(xl) where l is a new index for each occurrence. u2 is obtained in the same way but we
replace each occurrence of z with xl.

• w1 → qw(w2) where w1 and w2 are obtained from w in the same way u1 and u2 were
obtained from u,

• v → qw(v).

3



Second-order Unification Using Tree Automata Tomer Libal

• z → qw(z).

We describe this automaton using aut(u, v, w).
The idea behind this construction is that the language accepted by this automaton is exactly

the one containing all the possible mappings for y1 in the chain according to the arbitrarily-
many constraints in the inductive part of the chain and based on a given unifier σ for the base
part of the chain. Given this automaton, we need just to test if σ(y1) is recognized by it. Note
that the base equations contain only occurrences of the variables y1 and yp and therefore, a
unifier for the base part poses no constraints on the values for the variables y2, . . . , yp−1 in
unifiers for the inductive part and we can freely generate all possible substitutions.

We describe next an algorithm for deciding our cyclic problems.

1. given a cyclic problem e.

2. compute the set of unifiers for some P−(j) where 0 < j ≤ 3m.

3. let σ be such a unifier and for the single chain in P−(j) do the following:

(a) let λz.u be obtained from σ(yp) by replacing all occurrences of sσ with z..

(b) let v = sσ.

(c) let w be obtained from tσ by replacing all occurrences of sσ in it with z.

(d) fail if σ(y1) is not recognized by aut(u, v, w).

The algorithm tries to find one unifier of a P−(j) which can be extended in order to unify
some P∗(i) for an arbitrary 0 < i.

The correctness of the above algorithm is based on the following theorem.

Theorem 1. Given a problem e, 0 < j ≤ 3m, a chain in P(j) over variables y1, . . . , yp and a
unifier σ of P−(j), σ(y1) is recognized by aut(u, v, w) as above iff there is an extension P(i) of
P(j) and a substitution θ, such that θ unifies P(i).

Proof. Proof sketch: the automata for the chain and all its extensions are the same.

• if - by induction on the number of the variables y1, . . . , yq in the extension P(i) of P(j).
For the step we need to prove that the first equation in the chain (which is determined
last since the base of the terms in the language are determined by θ(yq)) is unifiable only
if σ(y1) is recognized by the automaton. Since θ extends σ, we have θ(y1) = σ(y1) and by
assuming that θ(y2) is recognized, the rest follows from the definition of the automaton.

• only if - for this direction, we need to choose the extension P(i) and build the substitution
θ. This is computed by considering the accepting sequence of transitions for σ(y1). The
maximal number of nested transitions determines the number of equations in the chain
while the transitions themselves determines the values θ(y2), . . . , θ(yq−1) in the chain. In
addition, θ(y1) = σ(y1) and θ(yq) = σ(yp).

We will now demonstrate this idea on the example. A unifier σ for P−(2) is [y2 7→ λz.z, y1 7→
λz.f(z, b)]. Note that there is no 0 < i such that we can extend this unifier to a unifier of P∗(i).
Let u = λz.z, v = a and w = f(z, z). aut(u, v, w) = (Q,Qf ,∆) where Q = {qw, qu}, Qf = {qu}
and ∆ is defined as follows:
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• λz.qw(x)→ qu(λz.x).

• f(qw(x1), qw(x2))→ qw(f(x, y)).

• a→ qw(a).

• z → qw(z).

Clearly σ(y1) cannot be generated by aut(u, v, w) and therefore we have proved that there is
no possible extension of σ. By doing the same to all unifiers of P−(1),P−(2) and P−(3), we
can prove that the example is not unifiable.

To summarize, we have described a decision algorithm for cyclic second-order unification
problems. The main novelty of the method is its use of tree automata in order to decide
unification problems. At the same time, the exact form of the cycles (beyond the simple
ones discussed here) and the possibility to treat problems with more than one chain are still
investigated.
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