
Coalescing: Syntactic Abstraction for Reasoning in

First-Order Modal Logics ∗

Damien Doligez1, Jael Kriener2, Leslie Lamport3,
Tomer Libal2, and Stephan Merz4

1 Inria, Paris, France
2 MSR-Inria Joint Centre, Saclay, France

3 Microsoft Research, Mountain View, CA, U.S.A.
4 Inria, Villers-lès-Nancy, France

Abstract

We present a syntactic abstraction method to reason about first-order modal logics by
using theorem provers for standard first-order logic and for propositional modal logic.

1 Introduction

Verification of distributed and concurrent systems requires reasoning about temporal behaviors.
A common approach is to express the properties to be proved in a modal logic having one or
more temporal modalities. For verifying real-world systems, a proof language must also include
equality, quantification, and local definitions. It must therefore encompass FOML (F irst Order
M odal Logic) and support operator definitions. One such language is TLA+ [8], based on
the logic TLA that has two temporal modalities: the usual 2 (always) operator of linear-time
temporal logic and a restricted next-state operator represented by priming. (The syntax does
not permit priming of an expression containing a modal operator.)

A common way to prove an FOML theorem Γ |= ϕ (ϕ holds in context Γ) is to translate
it to a semantically equivalent FOL theorem Γ∗ |=FOL ϕ

∗ and to prove this FOL theorem. For
some FOMLs, this method is semantically complete—that is, Γ |= ϕ is valid iff Γ∗ |=FOL ϕ

∗

is [10]. This approach has been followed for embedding FOML in SPASS [7], Saturate [6], and
other theorem provers.

Such a semantic translation may be appropriate for completely automatic provers. However,
we are very far from being able to automatically prove a formula that expresses a correctness
property of a non-trivial system. A person must break the proof into smaller steps that we call
proof obligations, usually by interacting with the prover. Requiring the user to interactively
prove the semantic translation of the FOML formula destroys the whole purpose of using modal
logic, which is to allow her to think in terms of the simpler FOML abstraction of the theorem.
The user should therefore decompose the FOML proof into FOML proof obligations.

In this paper we describe a method called coalescing that handles many FOML proof obli-
gations by soundly abstracting them into formulas of either FOL or propositional modal logic
(ML). The resulting formulas are dealt with by existing theorem provers for these logics. Al-
though the basic idea of coalescing is simple, some care has to be taken in the presence of
equality and bound variables. The translation becomes trickier in the presence of defined op-
erators.

∗This work has been partially funded by the Microsoft Research-Inria Joint Centre, France. It has also been
supported by the European Union Seventh Framework Programme under grant agreement no. 295261 (MEALS)
and by the French BGLE Project ADN4SE.

1

Outline of this Paper. Section 2 motivates our proposal by its application within the TLA+

Proof System TLAPS where coalescing can be complete over a fragment of proofs involving
temporal logic. Section 3 formally introduces FOML and its two fragments, FOL and ML.
Sections 4 and 5 present coalescing for modal and first-order expressions respectively, proving
their soundness. Section 6 extends the results to languages containing local definitions. In
Section 7 we prove the completeness of coalescing for proving safety properties. Section 8
discusses semantic translation vs. coalescing and suggests some optimizations and future work.

2 A Motivating Example

Our motivation comes from designing the TLAPS proof system [4] for TLA+, which can check
correctness proofs of complex, real-world algorithms [9]. The essence of TLA proofs is to
decompose proofs of temporal logic formulas so that most of the obligations contain no modal
operator except prime. Figure 1 contains the outline of the proof of a simple safety property in
TLAPS that illustrates this decomposition. The system specification is formula Spec, defined to
equal Init ∧2[Step]v . In this formula, Init is a state predicate that describes the possible initial
states, and Step is an action predicate that describes possible state transitions. Syntactically:
Init is a FOL formula containing state (a.k.a. flexible) variables; Step is a formula containing
state variables, FOL operators, and the prime operator; and v is a tuple of all state variables
in the specification. The formula [Step]v is a shorthand for Step ∨ (v ′ = v), and 2 is the
usual “always” operator of temporal logic. We wish to prove that a state formula Safe(p) is
true throughout any behavior described by Spec, for every process p ∈ Proc. The definitions
of these formulas, and the reason for writing 2[Step]v instead of 2Step, are irrelevant for
understanding the proof.

The right-hand side of Figure 1 shows the assertion and proof of the theorem. The first
step in the proof is purely first-order: it introduces a fresh constant p, assumes p ∈ Proc, and
reduces the overall proof to showing the implication Spec ⇒ 2Safe(p). Step 〈1〉1 asserts that
the initial condition implies Safe(p). This formula does not contain any modal operators. Step
〈1〉2 shows that Safe(p) is preserved by every transition (as specified by [Step]v). The proof
of this step is essentially first-order, although TLAPS must handle the prime modality. The
basic idea is to distribute primes inward in expressions using rules such as (x + y)′ = x ′ + y ′,
and then to replace the remaining primed expressions by new atoms. For this example, we are
assuming that the specification is so simple that, after the definitions of Init , Next , v , and Safe
have been expanded, the FOL proof obligations generated for these two steps can be discharged

Init
∆
= . . .

Step
∆
= . . .

v
∆
= . . .

Spec
∆
= Init ∧2[Step]v

Safe(p)
∆
= . . .

theorem Spec ⇒ ∀ p ∈ Proc : 2Safe(p)
〈1〉. suffices assume new p ∈ Proc

prove Spec ⇒ 2Safe(p)
obvious

〈1〉1. Init ⇒ Safe(p)
by def Init , Safe
〈1〉2. Safe(p) ∧ [Step]v ⇒ Safe(p)′

by def Safe, Step, v
〈1〉3. qed
by 〈1〉1, 〈1〉2, PTL def Spec

Figure 1: Proof of a safety property in TLAPS.

2

by a theorem prover.
Step 〈1〉3 concludes the proof. It is justified by propositional temporal reasoning, in partic-

ular the principle
P ∧A⇒ P ′

P ∧2A⇒ 2P

The PTL in the step’s proof tells TLAPS to invoke a PTL decision procedure, which it does
after replacing Spec by its definition and the formulas Init , Safe(p) and [Next]v by fresh atoms.
This effectively hides all operators other than those of propositional logic, 2, and prime.

We call the process of replacing expressions by atoms coalescing. It is similar to the intro-
duction of names for subformulas that theorem provers apply during pre-processing steps such
as CNF transformation. However, it has a different purpose: the fresh names hide complex
formulas that are meaningless to a proof backend for a fragment of the original logic. As ex-
plained in the example above, TLAPS uses coalescing in its translations to invoke FOL and
PTL backend provers, where the first do not support the modal operators 2 and prime, and
the second do not support first-order constructs such as quantification, equality or terms.

Coalescing cannot in itself be semantically complete because it cannot support proof steps
that rely on the interplay of the sublogics. For example, separate FOL and PTL provers
cannot prove rules that distribute quantifiers over temporal modalities. Similarly, proofs of
liveness properties via well-founded orderings essentially mix quantification and temporal logic.
However, we need very few such proof steps in actual proofs, and we can handle them using a
more traditional backend that relies on a FOL translation of temporal modalities. Coalescing
is complete for a subclass of temporal logic properties that includes safety properties, which
can be established by propositional temporal logic from action-level hypotheses. For these
applications, we have found coalescing to be more flexible and more powerful in practice than
a more traditional FOL translation. In particular, proofs need not follow the simple schema
of the proof shown in Figure 1 but can invoke auxiliary invariants or lemmas. The inductive
reasoning underlying much of temporal logic is embedded in PTL decision procedures but would
be difficult to automate in a FOL prover. On the other hand, the prime modality by itself is
simple enough so that it can be handled by a pre-processing step applied before passing the
proof obligation to a FOL prover.

We believe that translation by coalescing will be useful for proofs in modal logics other than
TLA+. We therefore present its fundamental principles here using a simpler FOML containing
a single modal operator 2. Corresponding to the translations we have implemented in TLAPS,
we give two translations of FOML obligations, one into FOL and the other into ML, and we
prove their soundness.

The idea underlying coalescing is very simple: abstract away a class of operators by intro-
ducing a fresh atom in place of a subformula whose principal operator is in that class. However,
doing this in a sound way in the presence of equality is not trivial because of the Leibniz prin-
ciple, which asserts (d = e) ⇒ (P(d) = P(e)) for any expressions d and e and operator P .
The Leibniz principle is valid in FOL but not FOML, which makes translating from FOML
obligations to FOL obligations tricky [5].

For example, the formula (v = 0) ⇒ 2(v = 0) is not valid in TLA+ or more generally
in FOML when v is flexible. A naive application of standard FOL provers could propagate
the equality in the antecedent by substituting 0 for v throughout this formula, effectively
applying the instance ((v = 0) = true) ⇒ (2(v = 0) = 2true) of the Leibniz principle, and
consequently prove the formula using the axiom 2true. Such an approach is clearly unsound.
The standard translation of FOML into predicate logic [10] avoids this problem by making
explicit the states at which formulas are evaluated, but at the price of adding complexity to the

3

formula. Moreover, one typically assumes specific properties about the accessibility relation(s)
underlying modal logics. Incorporating these into first-order reasoning may not be easy. For
example, in TLA+ the 2 modality corresponds to the transitive closure of the prime modality,
and this is not first-order axiomatizable. Of course, whether this is an issue or not depends
on the particular modal logic one is interested in: semantic translation works very well in
applications such as [2] that are based on a modal logic whose frame conditions are first-order
axiomatizable.

Our approach is to coalesce expressions and formulas that are outside the scope of a given

theorem prover. For the example above, coalescing to FOL yields (v = 0) ⇒ 2(v = 0) where

2(v = 0) is a new 0-ary predicate symbol, and this formula is clearly not provable. Similarly,

coalescing to ML yields v = 0 ⇒ 2 v = 0 of propositional modal logic, and again, this

formula is not provable. We give a detailed description of how to derive a new symbol exp

for an arbitrary expression exp. Care has to be taken when the coalesced expression contains
bound variables. For example, a naive coalescing of the expression {a, a} in the valid formula

∀ a : {a, a} = {a} would yield ∀ a : {a, a} = {a}, from which we can deduce {a, a} = {1}

and {a, a} = {2}, proving 1 = 2. A correct coalescing yields ∀ a : {a, a} (a) = {a}.

Operator Definitions. Coalescing is trickier for a language with operator definitions like

P(x , y)
∆
= exp , where exp does not contain free variables other than x and y . Definitions

are necessary for structuring specifications and for managing the complexity of proofs through
lemmas about the defined operators. We therefore do not want to systematically expand all
defined operators in order to obtain formulas of basic FOML. The Leibniz principle may not
hold for an expression P(a, b) if the operator P is defined in terms of modal operators—that
is, (a = c) ∧ (b = d) need not imply P(a, b) = P(c, d). It would therefore be unsound to
encode P as an uninterpreted predicate symbol in first-order logic. We show how soundness

is preserved by replacing an expression P(a, b) with P , ε1, ε2 (a, b), for suitable expressions ε1

and ε2, where P , ε1, ε2 can be defined so it satisfies the Leibniz principle and also satisfies

P , ε1, ε2 (a, b) = P(a, b)

in suitably extended models of FOML, ensuring equisatisfiability of the original and the coa-

lesced formula. Since it satisfies the Leibniz principle, P , ε1, ε2 can be taken to be an uninter-

preted predicate symbol by a first-order theorem prover. Our construction extends to the case
of definitions of second-order operators, which are allowed in TLA+.

3 First-Order Modal Logic

3.1 Syntax.

We introduce a language of first-order modal logic whose modal operator we denote by ∇ in
order to avoid confusion with the 2 of TLA+. The language omits the customary distinction
between function and predicate symbols, and hence between terms and formulas. This simplifies
notation and allows our results to apply to TLA+ as well as to a conventional language that
does distinguish terms and formulas—the conventional language just having a smaller set of
legal formulas.

4

We assume a first-order signature consisting of non-empty distinct denumerable sets X of
rigid variables, V of flexible variables, and O of operator symbols. Operator symbols have
arities in N and generalize both function and predicate symbols. Expressions e of FOML are
then inductively defined by the following grammar:

e ::= x | v | op(e, . . . , e) | e = e | false | e ⇒ e | ∀ x : e | ∇e

where x ∈ X , v ∈ V, op ∈ O, and arities are respected (empty parentheses are omitted for
0-ary symbols). We do not allow quantification over flexible variables, so our flexible variables
are really “flexible function symbols of arity 0”. While TLA+ allows quantification over flexible
variables, it can be considered as another modal operator for the purposes of coalescing.

The notions of free and bound (rigid) variables are the usual ones. We say that an expression
is rigid iff it contains neither flexible variables nor subexpressions of the form ∇e. The standard
propositional (true, ¬, ∧, ∨, ≡) and first-order (∃) connectives are defined in the usual way.
The dual modality ∆ is introduced by defining ∆e as ¬∇¬e. The extension to a multi-modal
language is straightforward.

3.2 Semantics.

A Kripke model M for FOML is a 6-tuple (I, ξ,W,R, ζ,∇M), where:

• I is a standard first-order interpretation consisting of a universe |I| and, for every operator
symbol op, an interpretation I(op) : |I|n → |I| where n agrees with the arity of op. We
assume that the universe |I| contains two distinguished, distinct values tt and ff.

• ξ : X → |I| is a valuation of the rigid variables.

• W is a non-empty set of states, and R ⊆ W ×W is the accessibility relation.

• ζ : V ×W → |I| is a valuation of the flexible variables at the different states of the model.

• ∇M : 2|I| → |I| is a function such that ∇M(S) = tt iff S ⊆ {tt}.

Note that we assume a constant universe, independent of the states of the model, and we also
assume that all operators in O are rigid—i.e., interpreted independently of the states.

We inductively define the interpretations of expressions [[e]]Mw at state w of modelM. When
the model M is understood from the context, we drop it from the notation.

• [[x]]Mw =def ξ(x) for x ∈ X
• [[v]]Mw =def ζ(v ,w) for v ∈ V
• [[op(e1, . . . , en)]]Mw =def I(op)([[e1]]Mw , . . . , [[en]]Mw) for op ∈ O

• [[e1 = e2]]Mw =def

{
tt if [[e1]]Mw = [[e2]]Mw
ff otherwise

• [[false]]Mw =def ff

• [[ϕ⇒ ψ]]Mw =def

{
tt if [[ϕ]]Mw 6= tt or [[ψ]]Mw = tt
ff otherwise

• [[∀ x : ϕ]]Mw =def

 tt if [[ϕ]]M
′

w = tt for all M′ = (I, ξ′,W,R, ζ) such that
ξ′(y) = ξ(y) for all y ∈ X different from x

ff otherwise

• [[∇ϕ]]Mw =def ∇M({[[ϕ]]Mw ′ : (w ,w ′) ∈ R})

5

We write M,w |= ϕ instead of [[ϕ]]Mw = tt. We say that ϕ is valid iff M,w |= ϕ holds for all
M and w , and that it is satisfiable iff M,w |= ϕ for some M and w . We define a consequence
relation |= as follows (where Γ is a set of formulas): Γ |= ϕ iff for all M, if M,w |= ψ for all
ψ ∈ Γ and w ∈ W, then M,w |= ϕ for all w ∈ W.

Our definition of the semantics is a straightforward extension of the standard Kripke se-
mantics to our setting, where ∇e need not denote a truth value. The condition on the function
∇M used for interpreting the modality ensures that M,w |= ∇ϕ iff M,w ′ |= ϕ for all w ′ such
that (w ,w ′) ∈ R as in the standard Kripke semantics. Because we assume a constant domain
of interpretation, both Barcan formulas are valid—that is, we have validity of

(∀x : ∇ϕ) ≡ ∇(∀x : ϕ). (1)

Moreover, since all operator symbols have rigid interpretations, it is easy to prove by induction
on the complexity of expressions that [[e]]w = [[e]]w ′ holds for all states w ,w ′ whenever e is a
rigid expression. It follows that implications of the form ϕ ⇒ ∇ϕ are valid for rigid ϕ—for
example:

∀ x , y : (x = y)⇒ ∇(x = y). (2)

3.3 FOL and ML fragments of FOML

Two natural sublogics of FOML are first-order logic (FOL) and propositional modal logic (ML).
FOL does not have flexible variables V or expressions ∇e. A first-order structure (I, ξ)

consists of an interpretation I as above and a valuation ξ of the (rigid) variables. The inductive
definition of the semantics consists of the relevant clauses of the one given above for FOML,
and the notions of first-order validity |=FOL ϕ, satisfiability, and consequence carry over in the
usual way.

ML does not have rigid variables, quantifiers, operator symbols or equality. A (propositional)
Kripke model for ML is given as K = (W,R, ζ) where the set of states W and the accessibility
relation R are as for FOML, and the valuation ζ : V × W → {tt, ff} assigns truth values to
flexible variables at every state. The inductive definition of [[e]]Kw ∈ {tt, ff} specializes to the
following clauses:

• [[v]]Mw = ζ(v ,w) for v ∈ V
• [[false]]Mw = ff

• [[ϕ⇒ ψ]]Mw = tt iff [[ϕ]]Mw = ff or [[ψ]]Mw = tt

• [[∇ϕ]]Mw = tt iff [[ϕ]]Mw ′ = tt for all w ′ ∈W such that (w ,w ′) ∈ R

The notions of validity |=ML ϕ, satisfiability, and consequence carry over as usual.

4 Coalescing Modal Expressions

4.1 Definition of the abstraction eFOL

One of our objectives is to apply standard first-order theorem provers for proving theorems
of FOML that are instances of first-order reasoning. Since the operator ∇ is not available in
first-order logic, we must translate FOML formulas ψ to purely first-order formulas ψFOL such
that the consequence ΓFOL |=FOL ϕFOL entails Γ |= ϕ. A naive but unsound approach would
be to replace the modal operator ∇ by a fresh monadic operator symbol Nec. As explained in
Section 2, this approach would allow one to prove the invalid formula (v = 0) ⇒ ∇(v = 0).

6

(The formula is not valid because it is false at a state w of a model in which ζ(v ,w) = I(0),
but ζ(v ,w ′) 6= I(0) for some state w ′ accessible from w .) As we observed, a sound approach
is to define ϕFOL by using the well-known standard translation from modal logic to first-order
logic [3, 10] that makes explicit the FOML semantics. However, that translation introduces
additional complexity—complexity that is unnecessary for proof obligations that follow from
ordinary first-order reasoning.

Instead, we define ϕFOL to be a syntactic first-order abstraction of ϕ in which modal subex-
pressions are coalesced—that is, replaced by fresh operators. If ϕ is (v = 0)⇒ ∇(v = 0), then

ϕFOL is (v = 0)⇒ ∇(v = 0) , where ∇(v = 0) is a new 0-ary operator symbol. The variable

v is considered a free variable in ϕFOL.

We want to ensure that subexpressions appearing more than once are abstracted by the
same operators, allowing for instances of first-order theorems to remain valid. This requires
some care for expressions that contain bound variables. For example, we expect to prove

(∃ x , z : ∇(v = x)) ≡ (∃ y : ∇(v = y)) (3)

The fresh operator symbols ∇e are therefore defined as λ-abstractions over the bound variables
occurring in e, and these are identified modulo α-equivalence. Formally, we let eFOL = eε

FOL

where, for a list ~y of rigid variables, the first-order expression e~y
FOL over the extended set of

variables X ∪ V is defined inductively as follows.

• x~y
FOL =def x for x ∈ X a rigid variable,

• v~y
FOL =def v for v ∈ V a flexible variable,

• (op(e1, . . . , en))~yFOL =def op((e1)~yFOL, . . . , (en)~yFOL) for op ∈ O,

• (e1 = e2)~yFOL =def (e1)~yFOL = (e2)~yFOL,

• false~yFOL =def false

• (e1 ⇒ e2)~yFOL =def (e1)~yFOL ⇒ (e1)~yFOL,

• (∀ x : e)~yFOL =def ∀ x : ex ,~y
FOL,

• (∇e)~yFOL =def λ~z : ∇e (~z) where ~z is the subsequence of rigid variables in ~y that appear

free in e. (If z is the empty sequence, this is simply ∇e .)

With these definitions, the formula (3) is coalesced as

(∃ x , z : λx : ∇(v = x) (x)) ≡ (∃ y : λy : ∇(v = y) (y)) (4)

which is an instance of the valid first-order equivalence

(∃ x , z : P(x)) ≡ (∃ y : P(y))

In particular, the two operator symbols occurring in (4) are identified because the two λ-
expressions are α-equivalent. Identification of coalesced formulas modulo α-equivalence ensures
that the translation is insensitive to the names of bound (rigid) variables. Section 8 discusses
techniques for abstracting from less superficial differences in first-order expressions, such as
between λx , y and λy , x and between a = b and b = a.

7

4.2 Soundness of coalescing to FOL

For a set Γ of FOML formulas, we denote by ΓFOL the set of all formulas ψFOL, for ψ ∈ Γ. We
now show the soundness of the abstraction.

Theorem 1. For any set Γ of FOML formulas and any FOML formula ϕ, if ΓFOL |=FOL ϕFOL

then Γ |= ϕ.

Proof (sketch). Assume that Γ 6|= ϕ, so M = (I, ξ,W,R, ζ,∇M) is a Kripke model such
that M,w ′ |= ψ for all ψ ∈ Γ and w ′ ∈ W, but that M,w 6|= ϕ for some w ∈ W.

For the extended set of variables X ∪ V, define the first-order structure S = (I ′, ξ′) where
I ′ agrees with I for all operator symbols that appear in Γ or ϕ, and where the valuation ξ′ is
defined by ξ′(x) = ξ(x) for x ∈ X and ξ′(v) = ζ(w , v) for v ∈ V. For the additional operator
symbols introduced in ΓFOL and ϕFOL, we define

I ′(λ~z : ∇e)(d1, . . . , dn) = [[∇e]]M
′

w

where M′ agrees with M except for the valuation ξ′ that assigns the i th variable of ~z to di .
This interpretation is well-defined: if ∇e1 and ∇e2 are two expressions in Γ or ϕ that give
rise to the same operator symbol, then (λ~z1 : ∇e1) and (λ~z2 : ∇e2) must be α-equivalent, and

therefore I ′(λ~z1 : ∇e1)(d1, . . . , dn) = I ′(λ~z2 : ∇e2)(d1, . . . , dn).

It is straightforward to prove that [[eFOL]]S = [[e]]Mw holds for all expressions eFOL that appear
in ΓFOL or ϕFOL. In particular, it follows that S |=FOL ψFOL for all ψ ∈ Γ and S 6|=FOL ϕFOL.
This shows that ΓFOL 6|=FOL ϕFOL and concludes the proof. q.e.d.

5 Coalescing First-Order Expressions

We now define an abstraction ϕML of FOML formulas to formulas of propositional modal logic.
Again, we require for soundness that Γ |= ϕ whenever ΓML |=ML ϕML—that is, consequence
between abstracted formulas implies consequence between the original ones. In this way, we can
use theorem provers for propositional modal logic to carry out FOML proofs that are instances
of propositional modal reasoning. The abstraction ϕML replaces all first-order subexpressions

e of ϕ by new (propositional) flexible variables e , where variables ∀ x : e are once again
identified modulo α-equivalence. Formally, the translation is defined as follows.

• xML =def x for x ∈ X a rigid variable,

• vML =def v for v ∈ V a flexible variable,

• (op(t1, . . . , tn))ML =def op(t1, . . . , tn) for op ∈ O,

• (e1 = e2)ML =def e1 = e2 ,

• falseML =def false,

• (e1 ⇒ e2)ML =def (e1)ML ⇒ (e2)ML,

• (∀ x : e)ML =def ∀ x : e ,

• (∇e)ML =def ∇eML.

As an example, coalescing the formula

(x = y) ∧ ∇∆true ⇒ ∇∆(x = y)

8

yields the ML-formula
x = y ∧ ∇∆true ⇒ ∇∆ x = y (5)

The implication (5) is not ML-valid. However, for rigid variables x and y , it follows from the
hypothesis x = y ⇒ ∇ x = y , which is justified by the FOML law (2).

For a set Γ of FOML formulas, we denote by ΓML the set of modal abstractions ψML, for
all ψ ∈ Γ. Moreover, we define the set H(Γ) to consist of all formulas of the form e ⇒ ∇ e ,

for all flexible variables e introduced in ΓML that correspond to rigid expressions e in Γ.

Theorem 2. Assume that Γ is a set of FOML formulas and that ϕ is a FOML formula. If
ΓML,H(Γ ∪ {ϕ}) |=ML ϕML then Γ |= ϕ.

Proof (sketch). As in Theorem 1, we prove the contra-positive. Assume that M =
(I, ξ,W,R, ζ,∇M) is a Kripke model such that M,w ′ |= ψ for all ψ ∈ Γ and w ′ ∈ W, but
M,w 6|= ϕ for a certain w ∈ W.

Define the propositional Kripke model K = (W,R, ζ ′) where ζ ′ assigns truth values in {tt, ff}
to all states w ′ ∈ W and flexible variables in ΓML or ϕML:

ζ ′(w ′, v) = tt iff ζ(w ′, v) = tt for v ∈ V
ζ ′(w ′, x) = tt iff ξ(x) = tt for x ∈ X
ζ ′(w ′, op(t1, . . . , tn)) = tt iff [[op(t1, . . . , tn)]]Mw ′ = tt

ζ ′(w ′, e1 = e2) = tt iff [[e1]]Mw ′ = [[e2]]Mw ′

ζ ′(w ′, ∀ x : e) = tt iff M,w ′ |= ∀ x : e

Again, ζ ′ is well-defined. It is easy to prove, for all w ′ ∈ W and all e such that eML appears in
ΓML or ϕML, that K,w ′ |= eML iff [[e]]Mw ′ = tt. In particular, it follows that K,w ′ |= ψML for all
ψ ∈ Γ and that K,w 6|=ML ϕML.

Furthermore, the definition of K ensures that K,w ′ |= ψ holds for all ψ ∈ H(Γ ∪ {ϕ})
because [[e]]Mw ′ = [[e]]Mw ′′ holds for all rigid expressions e and all states w ′,w ′′ ∈ W.

In summary, it follows that ΓML,H(Γ ∪ {ϕ}) 6|=ML ϕML, which concludes the proof. q.e.d.

6 Coalescing in the presence of operator definitions

6.1 Operator definitions

We now extend our language to allow definitions of the form

d(x1, . . . , xn)
∆
= e

where d is a fresh symbol, x1, . . . , xn are pairwise distinct rigid variables, and e is an expression
whose free rigid variables are among x1, . . . , xn .

For an operator d defined as above and expressions e1, . . . , en , the application d(e1, . . . , en)
is a well-formed expression whose semantics is given by:

[[d(e1, . . . , en)]]Mw = [[e[e1/x1, . . . , en/xn]]]Mw

In other words, the defining expression is evaluated when the arguments have been substituted
for the variables. However, when reasoning about expressions containing defined operators, one

9

does not wish to systematically expand definitions. If the precise definition is unimportant, it
is better to leave the operator unexpanded in order to keep the formulas small. We now extend
the coalescing techniques introduced in the preceding sections to handle expressions that may
contain defined operators.

It is easy to see that the algorithm introduced in Section 5 for abstracting first-order subex-
pressions remains sound if we handle defined operators like operators in O. In particular, two
expressions d(~e1) and d(~e2) are abstracted by the same flexible variable only if they are syntacti-
cally equal up to α-equivalence. However, this simple approach does not work for the algorithm
of Section 4 that abstracts modal subexpressions. As an example, consider the definition

cst(x)
∆
= ∃ y : ∇(x = y) (6)

and the formula
(v = w) ⇒ (cst(v) ≡ cst(w)) (7)

where v and w are flexible variables. An expression e satisfies cst(e) at state w iff the value of
e is the same at all reachable states w ′. Hence, formula (7) is obviously not valid. If cst were
treated like an operator in O, the algorithm of Section 4 leaves (7) unchanged. However, v and
w would be considered ordinary (rigid) variables and cst would be considered an uninterpreted
operator symbol, so (7), seen as a FOL formula, would be provable. Thus, it would be unsound
to simply treat defined operators like operators in O in our algorithm for coalescing modal
subexpressions.

6.2 Rigid arguments and Leibniz positions

The example above shows that in the presence of definitions, FOML formulas without any
visible modal operators may violate the Leibniz principle that substituting equals for equals
should yield equal results. However, a first observation shows that the Leibniz principle still
holds for rigid arguments.

Lemma 3. For any defined n-ary operator d, expressions e1, . . . , en with ei rigid (for some
i ∈ 1..n), Kripke model M, state w, and rigid variable x that does not occur free in any ej , we
have

[[d(e1, . . . , en)]]Mw = [[d(e1, . . . , ei−1, x , ei+1, . . . , en)]]M
′

w

whereM′ agrees withM except for the valuation ξ′ of rigid variables, which is like ξ but assigns
x to [[ei]]

M
w .

Proof (sketch). Since ei is rigid, the value of [[ei]]
M
w ′ , for any w ′ ∈W , is independent of the

state w ′. The assertion is then proved by induction on the defining expression for operator d .
q.e.d.

For a non-rigid argument of a defined operator, the Leibniz principle is preserved when the
argument does not appear in a modal context in the defining expression. We inductively define
which argument positions of an FOML operator or connective are Leibniz (satisfy the Leibniz
principle).

Definition 4 (Leibniz argument positions).

• All argument positions of the operators in O and of all FOML connectives except ∇ are
Leibniz. The single argument position of ∇ is not Leibniz.

• For an operator defined by d(x1, . . . , xn)
∆
= e, the i th argument position of d is Leibniz iff

xi does not occur within a non-Leibniz argument position in e.

10

In other words, the i th argument position of a defined operator is Leibniz iff the i th parameter
does not appear in the scope of any occurrence of ∇ in the full expansion of the defining
expression.

Lemma 5. Assume that d is a defined n-ary operator whose i th argument position is Leibniz.
For any expressions e1, . . . , en , i ∈ 1..n, Kripke model M, state w and rigid variable x that
does not occur free in any ei , we have

[[d(e1, . . . , en)]]Mw = [[d(e1, . . . , ei−1, x , ei+1, . . . , en)]]M
′

w

whereM′ agrees withM except for the valuation ξ′ of rigid variables, which is like ξ but assigns
x to [[ei]]

M
w .

Proof (sketch). Induction on the syntax of the defining expression for d . q.e.d. It follows

from Lemmas 3 and 5 that the implication

(ei = f) ⇒ (d(e1, . . . , en) = d(e1, . . . , ei−1, f , ei+1, . . . , en))

is valid when ei and f are rigid expressions or when the i th argument position of d is Leibniz.

6.3 Coalescing for defined operators

The definition of the syntactic abstraction eFOL for the extended language is now completed
by defining

• (d(e1, . . . , en))~yFOL =def d , ε1, . . . , εn ((e1)~yFOL, . . . , (en)~yFOL) for a defined n-ary operator

d where

εi = ∗ if the i th position of d is Leibniz or ei is a rigid expression,
εi = ei otherwise.

With these definitions, the single argument position of operator cst introduced by (6) is not
Leibniz, and coalescing formula (7) yields

(v = w) ⇒ (cst , v (v) ≡ cst ,w (w))

for two distinct fresh operators cst , v and cst ,w . As expected, this formula cannot be proved.

However, the formula ∀ x , y : (x = y) ⇒ (cst(x) ≡ cst(y)) is coalesced as ∀ x , y : (x = y) ⇒
(cst , ∗ (x) ≡ cst , ∗ (y)) and is valid.

Theorem 6. Theorem 1 remains valid for FOML formulas in the presence of defined operator
symbols.

Proof (sketch). Extending the proof of Theorem 1, we define the interpretation of the fresh
operator symbols as follows:

I ′(d , ε1, . . . , εn)(d1, . . . , dn) = [[d(α1, . . . , αn)]]M
′

w

where αi =

{
ei if εi = ei
xi if εi = ∗

In this definition, w is the state fixed in the proof and M′ agrees with M except for the
valuation ξ′ that assigns the variables xi to di .

11

Again, one proves that [[eFOL]]S = [[e]]Mw for all expressions eFOL that appear in ΓFOL

or ϕFOL. For the expressions corresponding to applications of defined operators, the proof
is obvious for those arguments where εi = ei , and it makes use of Lemmas 3 and 5 when
εi = ∗. q.e.d.

7 Proving Safety Properties by Coalescing in TLA

In Section 2 we gave an example of using coalescing to prove a safety property in TLA and we
claimed that it is always possible to do so. In this section we will give an informal argument to
support that claim.

We start with the definition of safety property: a safety property is a property that holds
for every prefix of a sequence of states if and only if it holds for the whole sequence.

The standard form of a TLA specification is INIT∧2[NEXT]v . Given a specification INIT0∧
2[NEXT0]v0

and a safety property P0, we want to prove the assertion INIT0 ∧2[NEXT0]v0
⇒ P0.

The first step is to reformulate it as an invariant assertion, i.e. an assertion of the form
INIT1 ∧2[NEXT1]v1

⇒ 2P1 equivalent to our initial assertion, where P1 is a state predicate.
This is done by adding to INIT0 ∧2[NEXT0]v0 a history variable that records all past states.

By the definition of safety properties, P0 holds for a sequence of states if and only if it holds
for every prefix of it. We construct P1 so it is true for the history variable of the last state of
a prefix if and only if P0 is true for the prefix.

The second step is to turn the invariant P1 into an inductive invariant: a state predicate
P2 such that INIT1 ∧2[NEXT1]v1

⇒ 2P1 is a theorem if and only if the following are theorems:

1. INIT⇒ P2

2. NEXT ∧ P2 ⇒ P ′2
3. P2 ⇒ P1

This invariant exists under standard assumptions on the expressiveness of the language of state
predicates. The statement of these standard assumptions (which are satisfied by TLA+) and
the proof that this transformation is always possible is essentially the same as in [1].

Once we have the inductive invariant P2, we can easily prove the validity of the above
equivalence: by coalescing first-order expressions we get a simple ML theorem that automatic
tools handle without problems. This allows us not only to apply the above induction rule,
but also to extend our toolset to include variations of this rule (for example by splitting the
invariant into several mutually-inductive formulas), and in fact arbitrary ML theorems. This
eases the proving of safety properties, and also enables us to prove some (but not all) liveness
properties.

It is important to note that a ML prover will have no problem proving the above FOML
induction theorem with the aid of coalescing because temporal induction is built into such
provers. On the other hand, a standard FOL prover would have a very hard time with a FOL
translation of the FOML formula because that involves induction over the naturals.

We can summarize the results obtained so far by stating that the validity of any safety
property is equivalent to the validity of the three expressions 1, 2 and 3 above, two of which are
states predicates and one is an action predicate.

We then argue that coalescing is complete for action predicates and therefore that coalescing
gives a sound and complete method for proving safety properties.

Given an action predicate A, we first eliminate all defined operators by expanding their
definitions. This yields an action predicate B , equivalent to A, whose operators are all built-in
TLA operators.

12

Then we use the fact that prime distributes over all built-in TLA operators to push the
primes downward as far as possible. This yields an action predicate C , equivalent to B and A,
where prime is only applied to flexible variables.

We then show that coalescing is complete for such action predicates, i.e. that if C is valid in
TLA, then CFOL must be valid in the first-order fragment of TLA. This is done by contradiction:
assuming a counter-model of CFOL and building a counter-model of C .

This concludes our sequence of transformations, starting from any safety property, and
ending with a ML formula and a few FOL formulas such that the safety property is true if and
only if this handful of formulas are all true.

We have thus shown that the two kinds of coalescing presented in this paper are sufficient for
proving safety properties, whose traditional FOL translations is usually beyond the capabilities
of FOL provers.

8 Conclusion

We have found that our techniques for coalescing FOML formulas to FOL and ML are useful
for verifying temporal logic properties of TLA+ specifications. In particular, the overwhelming
majority of proof obligations that arise during TLA+ proofs contain only the prime modal
operator. For this fragment, rewriting by the valid equality op(e1, . . . , en)′ = op(e ′1, . . . , e

′
n),

for operators op ∈ O, followed by coalescing to FOL is complete. Many of the proof obligations
that involve the 2 modality of TLA+ are instances of propositional temporal reasoning, and
these can be handled by coalescing to ML and invoking a decision procedure for propositional
temporal logic.

Coalescing to FOL eschews semantic translation of FOML formulas [10] in favor of replacing
a subformula whose principal operator is modal by a fresh operator symbol. The resulting
formulas are simpler than those obtained by semantic translation, and they can readily be
understood in terms of the original FOML formulation of the problem. The price to pay is
a loss of completeness. For example, the valid Barcan formula (1) cannot be proved using
only our two translations. TLA proofs contain only a small number of such proof obligations,
and we expect TLAPS to be able to handle them easily with a semantic translation to FOL.
For applications other than TLA+ theorem proving that require first-order modal reasoning,
the trade-off in choosing between semantic translation and coalescing will depend upon how
effective one expects semantic translation and standard first-order theorem proving to work in
practice. One recent experiment [2] found this technique entirely satisfactory, but it used a
modal logic too weak to handle the applications that concern us. The validity problem for the
first-order temporal logic we use is Π1

1-complete, and semantic translation cannot be expected
to work satisfactorily due to the need for inductive reasoning over natural numbers. An FOL
prover applied to a semantic translation would probably not be able to prove obligations that
a propositional temporal logic decision procedure easily handles with our ML translation.

The definition of coalescing to FOL presented in Section 4 identifies modal subformulas
such as (3) that are identical up to the names of bound rigid variables that they contain. This
definition can be refined to identify formulas that differ in less superficial ways. For example,
it may be desirable to reorder bound variables according to their appearance in coalesced
subformulas. This would allow us to coalesce the formula

(∃ y ∀ x : 2P(x , y))⇒ (∀ x ∃ y : 2P(x , y))

13

to the valid FOL formula

(∃ y ∀ x : λx , y : 2P(x , y) (x , y))⇒ (∀ x ∃ y : λx , y : 2P(x , y) (x , y))

rather than the formula

(∃ y ∀ x : λy , x : 2P(x , y) (y , x))⇒ (∀ x ∃ y : λx , y : 2P(x , y) (x , y))

obtained according to the definition given in Section 4, which results in the two fresh operators
being distinct. In general, we would like coalesced versions of different expressions to use the
same atomic symbol wherever that would be valid. For example, e1 = e2 and e2 = e1 could
be the same symbol.

Rewriting a formula before coalescing can also make the translated obligation easier to
prove. For example, the formula 2e for a rigid expression e can be replaced by 2false ∨ e.

In a modal logic whose 2 modality is reflexive, the disjunct 2false is not necessary. This
allows the formula

∀ x , y : 2(x = y)⇒ 2(f (x) = f (y))

for f ∈ O to be proved directly by translating with coalescing to FOL instead of requiring two
steps, the first proving (x = y) => (f (x) = f (y)) with FOL and the second being translated to
ML. Another such rewriting is distributing TLA’s modal prime operator over rigid operators
used by TLAPS when translating to FOL.

We don’t know yet if optimizations of the translations beyond those we have already imple-
mented in TLAPS will be useful in practice. So far, we have proved only safety properties for
realistic algorithms, which in TLA requires little temporal reasoning. We have begun writing
formal liveness proofs, but TLAPS will not completely check them until we have a translation
that can handle formulas which, like the Barcan formula, inextricably mix quantifiers and modal
operators. We also have not yet implemented coalescing of non-Leibniz defined operators, but
we expect to do that before we prepare the final version of this paper.

References

[1] Krzysztof R. Apt. Ten years of Hoare’s logic: A survey—part I. ACM Trans. Program. Lang.
Syst., 3(4):431–483, October 1981.

[2] Christoph Benzmüller and Bruno Woltzenlogel Paleo. Gödel’s God on the computer. In Stephan
Schulz, Geoff Sutcliffe, and Boris Konev, editors, 10th Intl. Workshop Implementation of Logics,
EPiC Series. EasyChair, 2013.

[3] Torben Braüner and Silvio Ghilardi. First order modal logic. In Patrick Blackburn, Johan van
Benthem, and Frank Wolter, editors, Handbook of Modal Logic, pages 549–620. Elsevier, 2007.

[4] Denis Cousineau, Damien Doligez, Leslie Lamport, Stephan Merz, Daniel Ricketts, and Hernán
Vanzetto. TLA+ proofs. In Dimitra Giannakopoulou and Dominique Méry, editors, 18th Intl.
Symp. Formal Methods (FM 2012), volume 7436 of LNCS, pages 147–154, Paris, France, 2012.
Springer.

[5] Melvin Fitting and Richard L. Mendelsohn. First-Order Modal Logic. Synthese Library. Springer,
1998.

[6] Harald Ganzinger, Robert Nieuwenhuis, and Pilar Nivela. The Saturate system, 1998. http:

//www.mpi-inf.mpg.de/SATURATE/doc/Saturate/Saturate.html.

[7] Ullrich Hustadt and Renate A. Schmidt. MSPASS: Modal reasoning by translation and first-order
resolution. In Roy Dyckhoff, editor, TABLEAUX, volume 1847 of LNCS, pages 67–71. Springer,
2000.

14

[8] Leslie Lamport. Specifying Systems, The TLA+ Language and Tools for Hardware and Software
Engineers. Addison-Wesley, 2002.

[9] Leslie Lamport. Byzantizing Paxos by refinement. In David Peleg, editor, Distributed Computing:
25th Intl. Symp. (DISC 2011), pages 211–224. Springer-Verlag, 2011.

[10] Hans Jürgen Ohlbach. Semantics-based translation methods for modal logics. J. Log. Comput.,
1(5):691–746, 1991.

15

	Introduction
	A Motivating Example
	First-Order Modal Logic
	Syntax.
	Semantics.
	FOL and ML fragments of FOML

	Coalescing Modal Expressions
	Definition of the abstraction eFOL
	Soundness of coalescing to FOL

	Coalescing First-Order Expressions
	Coalescing in the presence of operator definitions
	Operator definitions
	Rigid arguments and Leibniz positions
	Coalescing for defined operators

	Proving Safety Properties by Coalescing in TLA
	Conclusion

