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Abstract. Unifiability algorithms for higher-order logic are algorithms
which decide the unification problem for sub-classes of higher-order logic
by providing a witness. They contrast with unification procedures by
deciding unification problems of infinitary nature, which might have in-
finitely many most general unifiers. Unification procedures for these sub-
classes return a complete set of these unifiers and do not terminate.
The common practice in automated deduction for higher-order logic is
to utilize unification procedures and to force their termination by re-
stricting the size of the generated unifiers. The unifiability algorithms,
which are complete for certain sub-classes, allow us to have a more se-
mantical approach. In this paper we claim that the standard resolution
calculi for higher-order automated deduction do not take full advantage
of the strengths of these algorithms and suggest a new calculus. We prove
that this calculus can have an exponential speed-up over the traditional
calculi.

1 Introduction

When one needs to refute higher-order formulas, the constrained resolution cal-
culus [8] is normally preferred. Since there are possibly infinitely-many most-
general unifiers, one can either eagerly compute a finite number or postpone
the application of the unification rules. Another problem is the undecidability
of the unifiability problem of higher-order terms [6]. The two common solutions
to this problem are to either restrict the depth and size of the searched-for uni-
fiers or again, to postpone the application of the unification rules and decrease
the chances of non-termination. There also exist algorithms which decide the
unifiability question for sub-classes of higher-order logic, such as for free groups
[15] and semi-groups [14], monadic second-order [4] and bounded higher-order
[20]. The main reasons these algorithms are not used in practice in automated
deduction is the NP-hardness of the problems they solve and the absence of
specialized calculi which can take advantage of their special feature, which is
to decide the unifiability problem by giving a finite set of witnesses. Although
the problems they solve are NP-hard, it was shown that at least with regard to
most of the above problems, they are in fact in NP [12] which might imply their



usability in automated deduction in practice. Naive uses of the constrained reso-
lution calculus can run into one of the following two problems: If the algorithms
are used just for trimming non-unifiable branches by deciding if there exists a
unifier, then we face serious efficiency problems as the sets of constraints keep
growing. On the other hand, an eager computation of the finite set of witnesses
suffers from the ”locality” property - the order of choosing clauses to resolve
upon, even if all are required for the refutation, greatly affects the efficiency
of the search. In this paper we introduce a specialized form of the constrained
resolution calculus for utilizing efficiently these unifiability algorithms and for
eliminating the ”locality” property. Although we were not been able to show
that the ”locality” property actually harms the completeness of the search for a
refutation, we have been able to show an exponential speed-up of the presented
resolution calculus.

This paper is organized as follows. In the first section we introduce the ab-
stract notions of unification and unifiability algorithms and the traditional cal-
culus which utilizes higher-order pre-unification, the constrained resolution cal-
culus. The second section is used for the presentation of the hybrid resolution
calculus. We prove in this section its relative completeness with regard to the
constrained resolution calculus. In the last section we present an infinite sequence
of sets of clauses, on which the hybrid resolution calculus finds a refutation ex-
ponentially faster than the constrained resolution calculus.

2 Preliminaries

2.1 Higher-order Unification

In this section we will define the general form of unification and unifiability
algorithms. We assume our language to be the simply typed lambda calculus [3]
whose type set contains at least the type o over a signature containing at least the
logical symbols T, F, ¬, ∨ and Πα for each type α with types o, o, o→ o, o→ o→
o and (α→ o)→ o respectively and the equality symbol

.
=α of type α→ α→ o

for each type α. The equality symbol = denotes syntactic equality between terms.
variables are denoted by the symbols x, y, z while constant symbols are denoted
by the rest of the lowercase Latin letters. Both might occur with sub or super-
scripts. The notions of free and bound variables are defined as usual. The head
of a term is its topmost symbol which is not a λ-binder. A term whose head
is a variable is called a flex term while a term whose head is a constant or a
bound variable is called a rigid term. A formula is any term in the language
which is of type o. A literal is a formula labeled by an intended truth value and
is denoted by [f ]v where f is a formula and v ∈ {T, F}. A clause is a disjunction
L1∨. . .∨Ln of literals with ∨ having the usual properties (associativity, etc.), [T]F

and [F]T are the identity elements and [T]T and [F]F are the absorbing elements.
Except for the above-mentioned terms, the rest of the terms will be denoted
in polish notation. A substitution is a mapping σ of variables to terms of the
same type such that for some finite set of variables S, σ(y) = y for all y 6∈ S.
We extend the notion of substitutions to apply also to arbitrary terms as usual.



The composition of substitutions is defined as usual and is denoted by ◦. The
substitutions mentioned in this paper are all normalized [22]. We assume all
terms to be β-normalized and in η-expanded form unless otherwise stated (see
for example [21]).

Definition 1 (Unification constraints). A unification constraint is a literal
of the form [t

.
=α s]

F where t and s are terms of type α.

Since the type α of the symbol
.
=α can be derived from the types of its

arguments, we will omit the subscript α from this symbol in the rest of the
paper.

Definition 2 (Unification problems). A unification problem is a disjunction
of unification constraints. Given any clause, the unification problem associated
with it is the disjunction of unification constraints in this clause.

Example 1. The unification problem associated with the clause [x(b)]T ∨ [xa
.
=

fgb]F ∨ [a
.
= y]F is [xa

.
= fgb]F ∨ [a

.
= y]F.

Definition 3 (Solved forms). A unification constraint in η-normal form [x
.
=

t]F is in solved form in a unification problem S if x does not occur elsewhere in
S or in t. A unification problem P is in solved form if it contains only solved
unification constraints. For a unification problem P in solved form, we denote
by σP the substitution [t/x | [x .

= t]F ∈ P ]. A unification problem is in pre-solved
form if it contains only solved constraints or constraints of the form t

.
= s where

both t and s are flex terms. The substitution σP in this case is σP ′ ◦ηP where P ′

is the sub-problem containing all solved constraints and ηP is a fixed substitution
mapping all variables in the problem to fixed terms according to the types of the
variables [9].

Example 2. The problem [x
.
= fa]F ∨ [y(ga)

.
= zb]F is in pre-solved form while

[x
.
= fa]F is in solved form.

Definition 4 (Unifiers). Given a unification constraint [t
.
= s]F, a substitution

σ is called a unifier for it if σ(t) = σ(s). Let the relation =v extends = such that
t =v s if either t = s or both t and s are flex terms, then a substitution σ is called
a pre-unifier of the unification constraint if σ(t) =v σ(s). A substitution is called
a (pre-)unifier of a unification problem if it (pre-)unifies all the constraints in
it.

Definition 5 (Most general unifiers). A substitution σ is more general than
a substitution θ, denoted σ ≤ θ if there is a substitution δ, such that σ ◦ δ = θ. A
unifier for a unification problem is called most general if there is no other unifier
of the problem, up to renaming of free variables, which is more general.

Example 3. The substitution [fy/x] is a most general unifier of the problem
[gxa

.
= g(fy)a]F. Another, less general unifier, is [a/y, fa/x].



Definition 6 (Complete sets of unifiers). Given a unification problem P ,
we denote by unifiers(P ) the set of all its unifiers. The set Q is called a
complete set of unifiers for P if Q ⊆ unifiers(P ) and for every substitution
σ ∈ unifiers(P ), there exists a substitution θ ∈ Q such that θ ≤ σ.

Definition 7 (Unification transformations). A unification transformation
is a rule of the form

C ∨D
σ(C ∨D′)

where D and D′ are unification problems and C is a clause without unification
constraints, σ is a substitution such that unifiers(σ(C ∨D′)) ⊆ unifiers(C ∨
D).

Definition 8 (Unification procedures). A unification procedure for a class
of problems S is any set of unification transformations T such that for every
unification problem P ∈ S and unifier σ ∈ unifiers(P ), there is a sequence of
transformations from T on P resulting in a solved problem P ′ such that σP ′ ≤ σ.
A pre-unification procedure is defined similarly where P ′ is a problem in pre-
solved form.

The most famous higher-order pre-unification procedure is Huet’s [9]. In gen-
eral Higher-order unification procedures do not terminate. Nevertheless, there
are procedures for restricted classes, such as for problems with unifiers of re-
stricted depth, which terminate.

Definition 9 (Unifiability algorithms). A unifiability algorithm for a class
of problems S is any set of unification transformations T together with a function
Π from problems in S to well-founded measures such that for every unification
problems P, P ′ ∈ S such that P ′ is obtained from P using a rule in T , Π(P ′) <
Π(P ) and such that if P is unifiable, we can obtain a problem P ′ in solved form.
We will refer to this function, when the unifiability algorithm is given, just as
Π.

Definition 10 (Measure’s bound). Given a function Π as above, we define
its bound for a given problem P as the maximal number of steps which can be
taken before the measure Π(P ) reaches its minimal element. We will denote this
value by bound(Π(P )).

Note that a unifiability algorithm effectively decides the unifiability of a
unification problem in its class.

The most well-known unifiability algorithm is for string unification [14].
Other algorithms are for monadic second-order unification [4] and several algo-
rithms for context [5, 19], distributive [18], linear [11] and bounded higher-order
unification [20, 13].



2.2 Huet’s Constrained Resolution Calculus

In this section we will introduce the constrained resolution calculus [8].
An important aspect of clause normalization is Skolemization. We will use

the Skolem terms defined in [17]

Definition 11 (Skolemization). Given a clause C, let xα1
1 , .., xαn

n be the set of
all free variables occurring in C where αi is the type of variable xi for 0 < i ≤ n,
then a Skolem term of type α for C, which will be denoted by sα is the term
f(x1, .., xn) for f a new function symbol of type α1 → ..→ αn → α.

The constrained resolution calculus is based on literals and clauses. Therefore,
it is necessary to have rules for the normalization of terms into clauses.

Definition 12 (Simplification rules). The set of simplification rules, which
are used for normalizing terms into clauses, is given in Fig. 1.

C ∨ [¬D]T

C ∨ [D]F
(¬T )

C ∨ [¬D]F

C ∨ [D]T
(¬F )

C ∨ [D1 ∨D2]T

C ∨ [D1]T ∨ [D2]T
(∨T )

C ∨ [D1 ∨D2]F

C ∨ [D1]F
(∨Fl )

C ∨ [D1 ∨D2]F

C ∨ [D2]F
(∨Fr )

C ∨ [ΠαA]T

C ∨ [Axα]T
(ΠT )1

C ∨ [ΠαA]F

C ∨ [Asα]T
(ΠF )2

1. x is a new variable not occurring in A or C
2. sα is a new Skolem term of type α

Fig. 1. Simplification Rules

The resolution and factorization rules, given next, correspond to cuts and
contractions over terms which are not syntactically equal and their correctness
is based on the unifiability of the added unification constraint.

Definition 13 (Resolution and factorization rules). The resolution and
factorization rules are given in Fig. 2.

[A]p ∨ C [B]¬p ∨D
C ∨D ∨ [A

.
= B]F

(Resolve)
[A]p ∨ [B]p ∨ C

[A]p ∨ C ∨ [A
.
= B]F

(Factor)

Fig. 2. Resolution and factorization rules

Since the simplification rules eliminate logical constants, such symbols cannot
occur inside unification constraints. Therefore, a search for unifiers containing



logical symbols will always fail. Huet’s solution to the problem was to add split-
tings rules which try to instantiate set variables with different terms that contain
logical symbols.

Definition 14 (Splitting rules). The set of splitting rules is given in Fig. 3
where Y, Z and z are new variables and sα a new Skolem term.

C ∨ [X(tn)]T

C ∨ [Y ]T ∨ [Z]T ∨ [X(tn)
.
= (Y ∨ Z)]F

(ST∨ )
C ∨ [X(tn)p

C ∨ [Y ]¬p ∨ [X(tn)
.
= ¬Y )]F

(STF¬ )

C ∨ [X(tn)]F

C ∨ [Y ]F ∨ [X(tn)
.
= (Y ∨ Z)]F

(S
Fl
∨ )

C ∨ [X(tn)]F

C ∨ [Z]F ∨ [X(tn)
.
= (Y ∨ Z)]F

(SFr
∨ )

C ∨ [X(tn)]T

C ∨ [Y zα]T ∨ [X(tn)
.
= ΠαY ]F

(STΠ)
C ∨ [X(tn)]F

C ∨ [Y sα]F ∨ [X(tn)
.
= ΠαY ]F

(SFΠ)

Fig. 3. Splitting Rules

Definition 15 (Variants). Let C be a clause, V the set of all free variables in
C and σ a substitution mapping each variable in V to a new variable, then Cσ
is a variant of C.

Definition 16 (Constrained resolution calculus). The constrained resolu-
tion calculus contains the rules given in figures 1, 2 and 3 as well as the rules
of a unification or a unifiability algorithm.

Definition 17 (Search strategies). Given a set of clauses to choose from and
a set of rules to apply, a search strategy chooses one rule and one or more clauses
such that the rule can be applied to the chosen clauses.

Definition 18 (Derivations). Given a set of initial clauses and a search strat-
egy, a derivation in the constrained resolution calculus is a sequence of clauses
such that each clause is obtained, using a rule from the calculus, from variants
of clauses occurring earlier in the sequence or from variants of initial clauses
while respecting the search strategy at each step.

Example 4. Fig. 4 shows a derivation of the empty clause from the following
clause set using a standard first-order unification algorithm.

{[Pa]T, [Px]F ∨ [Pfx]T, [Pffa]F} (1)

The following lemma will be used later in the paper.

Lemma 1. If a clause set S is refutable using the constrained resolution calcu-
lus, then we can obtain a refutation of S containing a clause C, such that above
it we have only rule applications from figures 1, 2 and 3 and below it we have
only unification rules.



[Pa]T [Px1]F ∨ [Pfx1]T

[Px]F ∨ [Pfx]T

[Pfx1]T ∨ [Pa
.
= Px1]F

[Pfa]T [Px2]F ∨ [Pfx2]T

[Pfx2]T ∨ [Pfa
.
= Px2]F

[Pffa]T [Pffa]F

[Pffa
.
= Pffa]F

�

Fig. 4. A derivation of the empty clause for clause set 1

Proof. We need to show that no rule among the ones from figures 1, 2 and 3
depends on a substitution generated by the unification rules. For the splitting
rules it is clear as if they are applicable after a substitution is applied they are
also applicable before. For the simplification rules, we might generate a literal
by applying a substitution and then apply simplification rules. But, in this case
we can apply splitting on the same variable and allow unification (later) to
decompose the term. With regard to (Resolve) and (Factor), if they can be
applied before they can always be applied (using splittings if necessary) also
afterwards.

Remark 1. The constrained resolution calculus can be applied in a fully lazy
mode by postponing the application of the unification rules. The above lemma
shows that when applied in this mode, the simplification rules are not required
for completeness.

Theorem 1 ([8]). A finite set of formulas is unsatisfiable with regard to Henkin’s
semantics [7] if and only if it is refutable by the constrained resolution calculus
using a pre-unification procedure for the simply typed lambda calculus.

Remark 2. For the above theorem to be correct, it was shown [2] that infinitely-
many extensionality initial clauses must be added.



3 The Hybrid Resolution Calculus

Our main goal in this paper is to describe a resolution calculs which utilizes
unifiability algorithms instead of unification procedures. The motivation for that
is clear: unifiability algorithms terminate on much larger and more interesting
classes of problems than unification procedures. A trivial example is the following
string unification problem [10].

x1bx2b . . . bxn = x2x2x2bx3x3x3b . . . bxnxnxnbaaa (2)

which has a unique unifier σ such that σ(x1) = a3
n

. This problem is clearly
not included in any unification class with a terminating algorithm - the depth
of terms we need to search for cannot be smaller than 3n, but the size of the
problem is only 6n− 2. But, on the other hand, a unifiability algorithm for this
problem exists [14].

The hybrid resolution calculus described in this section will use two different
unification approaches in parallel. The first will be to apply the unifiability
algorithms eagerly in order to find a witness for the unifiability of the current
set of constraints. The second will be to keep track of the global search for a
refutation.

This will allow us to backtrack, once the witness we have found does not
suffice, to the same unification problem again but this time compute a witness
based, not on the local Π of the problem, but on the Π of the problem that
was not unifiable by the original witness. In this way we are assured that our
unifiability algorithms always compute the ”correct” witnesses required for a
refutation.

In order to keep track of the search, we will use search graphs.

Definition 19 (Search graphs). Given a clause set S, a search graph for S is
a directed graph, with a one-to-one labeling function lbl from nodes to clauses
such that:

– for all clauses in S, there are nodes bearing them as labels.
– if there is an edge from node v1 to node v2 then the clause lbl(v2) can be ob-

tained from clause lbl(v1) using one rule from the sets defined in definitions
12, 13 and 14.

A full search graph is a search graph that in addition satisfies:

– if there are nodes v and v1 and lbl(v) is obtained from lbl(v1) and some
clause c by a binary rule, then there is a node v2 such that lbl(v2) = c and
there is an edge from v2 to v. We will consider only full search graphs from
now on.

Note that since we might have many ways to derive each clause using the allowed
rules, we might also have many edges coming into each node in the search graph.

Example 5. Fig. 5 shows a possible search graph for the search from Ex. 4. As
can be seen, the main role of the graphs is to factor out the unification rules.



[Pa]T [Px1]F ∨ [Pfx1]T

[Px]F ∨ [Pfx]T

[Pfx1]T ∨ [Pa
.
= Px1]F [Px2]F ∨ [Pfx2]T

[Pfx2]T ∨ [Pa
.
= Px1]F ∨ [Pfx1

.
= Px2]F [Pffa]F

[Pfx2
.
= Pffa]F ∨ [Pa

.
= Px1]F ∨ [Pfx1

.
= Px2]F

Fig. 5. Some search graph for the refutation in Ex. 4.

We will also define the following function on nodes in search graphs.

Definition 20 (Maximal descendant). Given a node v, its maximal descen-
dant is the node whose label has the maximal Π-value for the associated unifica-
tion problem of all nodes which are descendants of v.

We can now define the hybrid calculus.

Definition 21 (Dynamic Π). Given a function Π, a clause C and an on-
going search for a refutation denoted by the search graph G and let n be the
node corresponding to C, then the dynamic Π, denoted by ΠG, computes for C
the value Π(P ′) where P ′ is the unification problem in the clause labeling the
maximal descendant of n in G.

Definition 22 (Hybrid resolution calculus). The hybrid resolution calculus
is identical to the constrained resolution calculus but utlizes the dynamic ΠG

when applying the unification rules where G is the current search graph.

The correctness of the calculus will be proved with regard to the constrained
resolution calculus. In order to prove the above theorem, we need some more
technical terms.

Definition 23 (Skeletons). A skeleton of a derivation D in the constrained
resolution calculus together with a unifiability algorithm is a sequence of clauses
skeleton(D) created recursively on D as follows:

– if D is an initial clause then skeleton(D) = D.
– if D is a clause obtained using a rule ρ applied to previous clauses D1, .., Dn:
• if ρ is from figures 12, 13 and 14, then skeleton(D) is obtained from
skeleton(D1), .., skeleton(Dn) using ρ.

• else ρ must be a unifiability rule and therefore n = 1. In this case we
take skeleton(D) = skeleton(D1).



Example 6. The skeleton of the refutation in Ex. 4 is identical (when denoted as
an acyclic graph) to the graph in Fig. 5. Note that in general the search graphs
might be very complex and we chose a simple search graph for the matter of
demonstration only.

Lemma 2. For any derivation D of a clause C which is obtained using the
constrained resolution calculus without any unifiability rules, if the unification
problem associated with C belongs to the class S of unification problems and is
unifiable, then there is a unifier σ of C such that we can obtain a derivation of
the clause Cσ using the hybrid resolution calculus and a unifiability algorithm
for class S.

Proof. Let G be the current search graph, we prove by induction on the structure
of skeleton(D). Let Sk be the last clause in skeleton(D).

– if Sk is an initial clause, we can derive it also using the hybrid calculus.

– if Sk is obtained by a rule application which does not introduce new unifica-
tion constraints then we can apply the same rule using the hybrid calculus.

– otherwise, Sk is obtained by a rule ρ which introduces unification constraints.
Since we do not apply substitutions in D, these unification constraints occur
also in C. Let P be the unification problem associated with C. Since P is
contained in the class S of unification problems, it is also unifiable by some
unifier σ which can be obtained by applying the unifiability algorithm on
P using the measure Π(P ). Let C1, . . . , Cn be the clauses generating Sk.
Clearly, the unification problems associated with them are subsets of P and
since C is either the maximal descendant of C1, . . . , Cn or has the same Π-
value as the maximal descendant, there are substitutions σ1, . . . , σn, which
unify them respectively (using ΠG) such that there is a substitution θ such
that σ = σ1 ◦ . . . ◦ σn ◦ θ. Therefore, according to the induction hypthesis
(and note that G does not change), there are derivations of C1σ1, . . . , Cnσn
using the hybrid calculus and we can apply ρ and unification rules of the
unifiability algorithm in order to obtain Cσ.

Theorem 2 (Relative-completeness). Given a finite set of formulas S, if S
is refutable using the constraint resolution calculus with a unifiability algorithm
A and function Π, then it is refutable using the hybrid resolution calculus with
A and Π.

Proof. Since S is refutable using the constraint resolution calculus, we can apply
Lemma 1 and obtain a derivation of a clause C containing no unification rule
and which is unifiable by σ. Since σ can be computed by A using Π, we can use
Lemma 2 in order to obtain a derivation of Cσ in the hybrid resoluton calculus.
But, since C contains only unification constraints, Cσ is the empty clause and
we have obtained a refutation.



4 A Speed-up Result

In order to demonstrate how the hybrid calculus takes advantage of the special
attributes of the unifiability algorithms, we will define in this section a scheme
of clause sets on which the hybrid resolution calculus performs better.

We first need to define a search strategy to be used by both calculi in order to
choose the next clauses and literals to process as well as an evaluation function
which can be applied to each calculus and be used in order to compare their
performances.

Definition 24 (The search strategy). Given a set of clauses to choose from
and a set of rules to apply, the search strategy chooses clauses and the next rule
to apply as follows:

– choose shortest clauses according to the number of characters.
– choose shallowest literals, where the depth of a literal is the maximal depth

of a term in it.
– compute first unifiers mapping variables to terms of minimal depth.
– choose a unification transformation first if possible, otherwise, choose a trans-

formation respecting the previous rules.

The first two rules in the above strategy are normally used in the search for
refutations as they increase the probability for a shorter refutation and simpler
unification. The third rule is a consequence of most unification and unifiability
procedures which apply unification rules on one symbol at a time and therefore
compute minimal unifiers first.

Here is the place to discuss why we force both calculi to apply unification
transformations before other transformations. The first reason is, of course, that
if we postpone the application of the unification rules to the end, the hybrid
calculus will perform in an identical way to the constrained resolution calculus.
In fact, this is exactly the meaning of the word hybrid in the calculus name,
namely, to combine the lazy and eager approaches. The reason why we would
like to apply unification eagerly is clear: with the lazy approach we might traverse
paths in the search which cannot be unifiable. Therefore, the search space grows
much faster. In general, the size of the search space is a major bottle neck for
the efficiency of the search [1].

Definition 25 (Evaluation function for derivations). Given a resolution
calculus R, a unifiability algorithm A , a search strategy S and a clause set
C, the evaluation function Ψ for R, A, S and C is computed as follows: let
D be the refutation obtained using R, A and S on C and let σ1, . . . , σn be all
the substitutions computed in D, then Ψ(R,A, S,C) = Σn

i=1Σx∈Vid(σi(x)) where
Vi contains all the higher-order variables in the domain of substitution σi for
0 < i ≤ n and d computes the depth of a term. If there is no refutation obtainable
then Ψ(R,A, S,C) is undefined.

The motivation for this measure is that we will need only unification rules
and rules from Def. 13 in order to refute the clause set below and the number



of applications of the rules from Def. 13 will be much smaller than the number
of application of unification rules. We ignore the size of the terms mapped to
first-order variables in the measure as their computation requires normally one
step and does not depend on the depth of the terms. With regard to the ap-
plication rules themselves, although we have abstracted over the concrete rules
in this paper, in all the unifiability algorithms mentioned, the size of the terms
mapped to higher-order variables indeed determines the overall complexity of
the algorithms.

Our choice of the clause set will be based on the search strategy defined
above. When a search for a refutation is applied to the chosen clause set, the
unifiers computed using the non-dynamic Π will not suffice for the resolution of
later clauses and we will have to choose different clauses. The dynamic Π will
allows us to proceed with the search without regard to the clauses chosen and
therefore to have a significant speedup.

Definition 26 (The clause set). Let n > 0,m > 0 and for a given unifiability
algorithm and a function Π let:

– Γ (n) = [P1(zc)]T ∨ .. ∨ [Pn(zc)]T ∨ [Q(zc)]T

– ∆(i,m) = [Pi(

m︷︸︸︷
a..a yi)]

F for all 0 < i ≤ n

– Λ(m) = [Q(

v+1︷︸︸︷
a..a x)]F where v = bound(Π(P1(zc)

.
= P1(

m︷︸︸︷
a..a y1)))

where the types of the predicates Pi and Q is ι → o for 0 < i ≤ n, z and a are
of type ι → ι and the rest of the terms are of type ι. The clause set Ξ(n,m) is
defined to be:

Ξ(n,m) = {Γ (n), ∆(1,m), . . . ,∆(n,m), Λ(m)} (3)

We abbreviate the constrained resolution calculus as CRC, the hybrid resolu-
tion calculus as HRC and the search strategy as STG.

Lemma 3. Given a unifiability algorithm A with a function Π, the constrained
resolution calculus is evaluated, when running on Ξ(n,m), to
Ψ(CRC, A, STG, Ξ(n,m)) = 2n(Σv

i=mΣ
i
j=1i) + v + 1.

Proof. The only possible resolution step can take place when starting with the
clause Γ (n). We resolve it with one of the ∆s in order, after the elimination of

all unification constraints, to obtain a unifier mapping z to λu.

m︷︸︸︷
a..a u. We keep

resolving the rest of the ∆s until we are left with the Λ clause only. Clearly the
substitution found so far does not suffice to allow us to add Λ to the derivation
and we backtrack to the first step in order to compute a unifier mapping z

to λu.

m+1︷︸︸︷
a..a u. We continue in this way until reaching a unifier mapping z to

λu.

v︷︸︸︷
a..a u which is the largest unifier which can be computed by A (see Def. 10).

Since the size of the term in the Λ clause is defined to be larger than the depth



of v (see Def. 10, 26), we cannot find a substitution that will allow us to resolve
Γ and Λ and must choose another derivation. We note that each derivation
which will start by resolving Γ with one of the ∆s will not suffice and will add
to the measure Σv

i=mΣ
i
j=1i. We note as well that we have 2n possibilities to

choose a subset of the ∆s until the empty subset will be chosen according to our
search strategy and as the last run which completes the refutation chooses the
clause Λ first and the substitution computed adds v + 1 to the total evaluation,
Ψ(CRC, A, STG, Ξ(n,m)) = 2n(Σv

i=mΣ
i
j=1i) + v + 1.

Lemma 4. Given a unifiability algorithm and a function Π, the hybrid resolu-
tion calculus is evaluated, when running on the clause set,
to Ψ(HRC, A, STG, Ξ(n.m)) = Σv+1

i=mΣ
i
j=1i.

Proof. We have a similar execution but since we are using a dynamic Π, upon
reaching the clause Λ and backtracking, we can compute the right substitution.
Therefore, no attempt to choose different clauses is made. The evaluation is
computed by taking into account the backtracking only and is
Ψ(CRC, A, STG, Ξ(n,m)) = Σv+1

i=mΣ
i
j=1i.

Corollary 1. There exists a search strategy and an infinite sequence of clause
sets such that refuting them is exponentially faster when using the hybrid reso-
lution calculus over the constrained resolution calculus.

Proof. Since v does not depend on n and since Σv
i=mΣ

i
j=1i < (v−m)(v(v+1)

2 ) <

v3, we get that by using our clause set, starting with n ≥ v, there is an expo-
nential speed-up by using the hybrid calculus.

Remark 3. When comparing the running time of the two calculi, denoted by
our measure Ψ , we can also encounter examples where the hybrid calculus will
perform worse. Such cases will happen when we expand a path in the search
which is not unifiable at some point as the dynamic Π will allow us to try
larger substitutions than the non-dynamic one and therefore to have a decrease
in performance.

5 Conclusion

There are only a few examples where interesting arithmetical problems could be
proved using a fully-automated theorem prover [16]. The main reason for that
is that arithmetical problems are normally better denoted in second-order logic.
Higher-order automated deduction is not so practical due to the added complex-
ity of higher-order unification and the undecidability of the unification problem.
Syntactical restrictions on unifiers, such as restricting the depth of terms, are
commonly used in order to get around this problem. These restrictions perform
well on some examples but poorly on others. The power of more semantical
unification procedures, which are complete with regard to specific unification
problems, did not reach, as far as the author is aware, the automated deduction



field. A first step towards their integration is to design a calculus which can
take advantage of their benefits. Such a calculus was introduced in this paper
and we have shown that this calculus can perform exponentially better when
dealing with unifiability algorithms. We intend in the future to investigate the
completeness of the two calculi with regard to eager applications of unifiability
algorithms as we believe the ”locality” property might harm the completeness
of the constrained resolution calculus. This open problem can be phrased in the
following way: is there a unifiability algorithm for an interesting class S and a
refutable (with respect to S) set of clauses such that no refutation of this set
exists when using the constrained resolution calculus with the search strategy
defined in the previous section? From the relative completeness result in Thm.
2, we know this is not the case with the hybrid resolution calculus.

Another extension of the results in this paper is to test this calculus in
practice. The relationship between some unifiability algorithms and arithmetics
hints that such a calculus might indeed be of use in practice. An example for
this relationship is the bounded higher-order case, where the bound corresponds
to set operations.
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