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Abstract

The paper Chu's construction: A proof-theoretic approach
(Bellin 2003) relates the proof-theoretic question about the
meaning of Girard’s long trips condition for proof nets to
research (Hyland and Schalk 2003) on abstract structures with
self-duality related to game-semantics, namely, dialectica
categories (De Paiva 1991) and Chu's construction (Barr
1979). We consider an informal interpretation inspired by htis
result, assuming that the role of player and opponent in a
dialogue may involve different illocutionary forces (question /
answer, assertion/ doubt). We ask how this relates to other
game theoretic or dialogical interpretations.



Simple self-duality and the long trip condition.

The abstract of (Bellin 2003) says:

"The essential interaction between classical and intuitionistic
features in the system of linear logic is best described in the
language of category theory. Given a symmetric monoidal closed
category C with finite products, the category C x C°P can be given
the structure of a x-autonomous category by a special case of the
Chu construction. Girard’s trips induce translations of classical
MLL™ proof net into intuitionistic proof in IMLL™ and these
translations determine the functor from the free x-autonomous
category A on a set of atoms {P1, P»,...} to C x C°, where C is
the free monoidal closed category with products and coproducts on
the set of atoms {P1, P{, P2, P,...} (a pair P, P" in C for each
atom P of A)."



1. CMLL: Classical Multiplicative Linear Logic

Language of CMLL:
in negation normal form: 1+ = 1, (A® B)t = (ALpB'), etc.

AB :=P|PL|1|L|A®B|ApB

F1

one:

identity rules

logical axiom: CEA fut:i_ A
l_ IAL7 A ) )
FTA
logical rules
nil: times: par:
T FILA FAB FT,A B
FT, L FT,AA® B T, ApB

Table: The sequent calculus CMLL.



CMLL™, Classical Multiplicative Linear Logic without units.

L axiom ) \A\ -
A =
“ ™~ cut %
J O
A . _ B A /B/
A | B AKLB

Table: Links of MLL™ proof structures

axiom A AL A At A At
A At cut A AL ApAl

Alternative notation:



Definition
proof-nets A proof structure is a directed graph with at least one
external point where each edge is typed and every node (link) has
one of the forms in Table above.
A Danos-Regnier switching s is a choice of one of the incoming
edges in each par node. The (undirected) D-R graph sR results
from R by disconnecting the edge not chosen by s in each par
node.
A proof-net is a proof-structure such that for any switching s the
D-R graph sR is acyclic and connected.
Girard’s theorem: (Girard 1987) There exists a ‘“context forgetful
map” ()~ from sequent derivations in MLL™ to proof-nets for
with the following properties:

(i) If d is a sequent derivation of - I, then (d)~ is a proof-net

with conclusions I;
(ii) (sequentialization) If R is a proof-net with conclusions ', then

there is a sequent calculus derivation d of F I such that
R=(d)".



LH///—ZZ\\

Table: Example 1: A proof structure and one of its DR-graph



In CMLL without units

» Correctness of proof-nets can be checked in linear time
(Guerrini 1999, Murawski and Ong 2006)

» Proof nets solve the problem of identity of proofs in CMLL™:
two sequent derivations represent the same proof if they are
mapped to the same proof net.

» M.Hyland and L.Ong 1993 gave a full completeness result for
MLL™ with respect to a game semantics with finite, fair
games as formulas and uniform, history free strategies as
proofs.

In CMLL with units, we have an axiom for 1 but the unary link for
L needs to be attached somewhere in the proof structure. Then
attachments can be moved stepwise (rewiring) preserving
correctness of the proof net. In 2014 W.Heijltjes and R.Houston
showed that the equivalence of proof nets for MLL modulo rewiring
is PSPACE-complete. Hence a satisfactory representation of proofs
in MLL with units as proof-nets seems impossible in principle.



2. IMLL%: Intuitionistic MLL with products.

Language: A B = P|1|T|A®B|A—oB|A&B
identity rules
axiom N-A AARB
Ak A rars M
logical rules
axiom 1 =B 1L
F1 ri+-B
r’FA AEB NnABEC
— Y ®R — L
AFA®B AoBrC °
NnAEB rNFA B,AFC
— —0 —o L
rN-A—-oB NA—oB,AFC

Table: The sequent calculus IMLL%.



Sequent calculus IMLL¥ (cont.) additive rules

om T [FA T+8 DATE g1

axiom - A o0 A1 b i

reT “rraes “R Ak b B
for i =0,1.

Table: Rules for products (&) and terminal object (T) in IMLL¥.

The sequent calculi CMLL and IMLLY satisfy cut-elimination. Since
there is no left rule for T, there is no symmetric cut reduction for it But
any permutation of a cut with the T axiom up into a derivation d yields
the cancellation of d:

d axiom T
r-==A AAET reduces to

MAET

axiom T
MMAFT




Categorical semantics of IMLL is given by symmetric monoidal
closed categories (C,®, /)., where

- ® is a bifunctor, associative and symmetric up to natural
isomorphsms « and o,

- | is the identity of ® up to natural isomorphisms X\ and p, and
- a, 0, A and p satisfy coherence axioms.

- C has a closed structure if for every A, the functor B — A® B
has a right adjoint C — A —o C, i.e., if there is a bijection

C(A® B,C)= C(B,A —o C)

natural in B and C.

Categorical semantics of CMLL is given by x-autonomous
categories (Seely 1989);

where a symmetric monoidal closed category C is x-autonomous if
it has a dualizing object L such that writing A* = A —o L, there is
an isomorphism A** = A (Barr 1979).



3. Trip Translation of MLL™ proof-nets into IMLL¥ proofs.

Let the language of MLL™ be based on atoms {P4, P>, ...} and
that of IMLL™ on {Py, Pi, P>, P;,...} (two atoms P;, P! for each
P; in MLL™).

Trip translation algorithm. (Bellin and Scott 1994) Given a
proof structure R with conclusions ', C and a switching s, traverse
sR from C, following the right hand rule:

A

Lax~ o, e N 7 \ ) Vi ; 4
AL A A ‘cut’cA A\\\’/ B A Jeft B A\é)rlghﬁ/B

~ 7 << /—_<\ e
A®EB ApB ApB,




. To a directed edge A of R assign O if the direction of the trip
coincides with that of the edge at the second visit to A, assign
| to A otherwise.

. If some edge has not been visited twice, sR is cyclic or
disconnected, return NO.

. Otherwise, R is given a polarization § : (R,T, C,s) — {I,0}
(see table below) where the polarized conclusions are I}, Co

. Polarization determines a translation ( )° : MLL™ — IMLL™
of the fomulas in R.

. Suppose R is cut-free: Sequentialize R%: this yields an
IMALL™ derivation of I - C9.



Polarization and IMLL™ Translation

Assume that axiom links contain only atomic formulas P;.

axiom 1: axiom 2: cut 1: cut 2:
PL Po P Pa Ao Al Ao A
times 1: times 2: times 3:

Ao Bo Ao B A Bo
(A® B)o (A® B), (A® B)
par 1: par 2: par 3:

A B A Bo Ao B
(ApB) (ApB)o (ApB)o

Table: Polarization.

We have
Po =P P=Po

In the intuitionistic translation of the atoms we let Pg = P and
P, =P



Suppose the proof net is cut free. The translation is defined by
induction of complexity of formulas in the proof net.

o 1 times 1: times 2: times 3:
s M B . A B A B

A wBY Al —o B BS —o AS

o} 0 o} I 0 I

om0 par 1: par 2: par 3:

axiom 2: ; : - i
S As L A B A B

KB A B B — A

Claim: the relabelled proof net R is a representation of a proof in
IMLL™. (cfr. Lamarche's essential nets about 1994).

This is seen by sequentializing R°.

In the case of a cut 1 A Al"° we may have A) # A and
similarly for cut 2. So the representation fails. To cover the case of
cut, we need the functorial trip translation of MLL into IMLL with
products.



Example 1 (cont.) Consider the proof net R with switching s. R
results by the context forgetful map of Girard's theorem from the
following derivation:
F bt b Fal a
Fet,c F b, at,b®a
Fct,c®@bt,at,b®a
Falt,c@bt, ctp(b® a)
Fatp(c® bt), ctp(b® a)
F(atp(c® b)) p (ctp(b® a))




The trip on R induced by the switching s yieds the following
polarization:

L//—?\\

ai bj Co —ax— < bo ao
&1 ®o
/

) |
2.right Q) .. 3.right ©©
i1 Tl Loright o

o
(Lot ®ct)) o (co(b®a)



Applying the trip translation we have:

) \\\ ,///C T \\\ ///a
&y ®o
b
§ £7°b S
©r .. a®(c'wb) _— [@Je)
REa ¢’ —o(b®a)
20

(a®(c’—ob) :HD ¢’ —o(b®a)

After sequentialization, we obtain the following IMLL™ derivation.

bkFb aka
fodl ol b,atkb® a
c,c/ —obakFb®a
a,c’ obkc —o(b®a)
a® (¢’ o b))k —o(b® a)
F(a® (¢ —o b)) —o (¢ —o (b® a))




4. Functorial trip translation and Chu’s construction.

(P)o = P (P atomic) (P ) = Po;
lo=1, 1,=T Li=1 1lo=T,;
(A® B)o = Ao ® Bo (ApB)i = A ® B;
(A ® B)| = (Ao —o B|)&(Bo —0 A|) (ApB)o = (A| —0 Bo)&(B| —0 Ao)

Table: Functorial trip translation, the propositions.

Fr

F1 = k1 Lor = NFT
FT,A M- Ao

LTI rAa 7 1.n A 1t

Table: Functorial trip translation, the proofs for the units.



$0

FP-P = Pol Po

FILA ALY AC
FrAC

cut

FILA FAB
° "FT,AA%B
FI,A FB,A,C
FT,A,A® B, C

FIA B FIL,AB

FPLP = PFPA

MkAo A AFCo

Mk Co cut

N-Ao Ak Bo

-R
I, Al = Ao ® Bo “

MNFAo Bz,AF Go
I,Ao0 — B, A - Co

—o-L

I, (Ao — B)&(Bo — Ai), A= Co

I, Al - Bo M,Ao - B

M+ A —o Bo

FT,ApB FT,ApB

o FABT.C
F ApB,T,C

Mk B — Ao

I+ (A —o Bo)&(A —o Bo)

A, B, T+ Co

-L
AR B, T Co ©

Table: Functorial trip translation, the proofs.

—o-R



Theorem

(Bellin 2003) Let A be the free x-autonomous category on a set of
objects {P, P, ...} and let C be the symmetric monoidal closed
category with products, free on the set of objects

{Po,Pi, Py, Py,...} (a pair Po, Py in C for each P in A).

We can give C x C°P the structure of a x-autonomous category
thus:

(X0, X1) ® (Yo, V1) =ar (Xo ® Yo,(Xo —o 1) x (Yo — Xi)
with unit (1, T) and involution (Xo, Xi)* = (X, Xo)
where 1 is the unit of ® and T the terminal object of C.
Therefore there is a functor F from A to C x C°P sending an
object P to (Po, P).
If w: 1 — () is a morphism of A represented as a proof-net R

with conclusions T, then the morphism (1, T) — (p(T)o, p(M)
encodes all Girard's trips (in a sense specified in Bellin 2003).



Example (i) Writing the IMLL% derivation D given by the
functorial trip translation applied to R is impractical. However the
derivation D has a multiplicative skeleton, which may be
represented by the collection of all IMLL™ derivations given by the
trip translations of (R, s), for all switching s. (As R is cut free,
there is no danger in doing this.) Such skeleton is given by
derivation of the following sequents.

F(a® (' —o b)) —o (' @ (b —o a)) s=(rrr)or(rlr)
F(a® (b —c)) —o ((a—ob)—oc) s=(rrl)or(rll)
F(d®(a—o b)) — (a—o(b®c)) s=(rr)or(lrl)
F(d®(b—od)) —o ((¢—ob)—od) s=(Ir)or(ll)



Example (ii) In intuitionistic IMLL we have the proofs

AFA
N S (1)
AR1FA

representing the fact that in the Symmetric Monoidal Category C
the map p: A® 1 is an isomorphaism In the x-autonomous
category (C,C°P) the unit of the tensor (Ao, Al) ® (Bo, Bi). is

(1, T) where T is the unit of product & and the terminal object of
the category. Thus in (C,C°P) we have isomorphisms

a:Ao®1— Ag <b, C> A — [Ao —0 T]&[l —0 A|] (2)

The following is a derivation corresponding to (b, ¢):

T axiom
AL Ao T AF A
AlFAg o T A1 —A
A| H [AO — T]&[l —0 A|]

Clearly, for no other object X different from T the sequent
Al, Ao F X is a valid axiom in linear logic.




5. " Dialectic” interpretations: making illocutionary forces explicit.
If Chu's construction is an abstract form of game semantics, does
it have natural language interpretations? If yes, how does such an
informal interpretation relate to those of other approaches e.g.,
dialogical logic and ludics?

» A.Blass (Blass 1995) speaks of questions and answers,
evoking different illocutionary forces for the operations of the
opponent and of the player in game semantics.

» J-Y.Girard (Girard 2007, Tome 2, pp.293-4) reinterprets the
functional interpretation by distinguishing between proofs and
tests: a proof of A is a function 6 that passes certain tests 7
for A. E.g., a test 7 for A —o B is a pair (#',7') where ¢’ is a
proof of A and 7/ is a test for B, etc.

» In Judics, consideration of atomic propositions is abandoned:
one can develop a theory of dialogical exchange including acts
which do not require consideration of the propositional
content.



The following is an informal natural language interpretation in
terms of assertions and doubts.

> Let P; express the assertion +p; of the proposition p;. rp; is
justified if conclusive evidence is available that proposition p;
is true.

> Let P/ express a doubt that +p; is justified, i.e., the hypothesis
H —p; that p; may be false. Some evidence that p; may be
false suffices to justify # —p; and is evidence against +p;.

Here we use the illocutionary force operators +and # of a logic for
pragmatics (Bellin 2015). The dual of +pis # —p. The negation
sign may be safely assumed to be classical negation. Now we can
define " dialectic” semantics for MLL™ as a particular
interpretation of Chu's construction.

1. Let the elementary formulas of IMALL be
E={Py,P{, Py, P}, ...}

2. C is the free symmetric monoidal closed cateogory generated
by E.

3. Evidence for ApB is given by a pair of morphism (f, g), where
f transforms evidence against A into evidence-for B and- g



evidence against B into evidence for A.

4. Evidence against ApB is given by evidence against A together
with evidence against B.

5. Evidence for A ® B is evidence for A together with evidence
for B.

6. Evidence against A ® B is given by a pair of morphisms
(f,g), where f transforms evidence for A into evidence
against B and g evidence for B into evidence against A.

7. Evidence for [against] AL is evidence against [for] A;

Then we have an interpretation of MLL™ without units. The
interpretation of the units is more problematic.



The Chu functor acts as follows:
1 — (1,7) 1 — (T,1)

We may regard 1 as an assertion which is always justified and such
that there can be evidence against it; dually, for L. This means
that if T is regarded as an assertion, there is no evidence for it.
How do we interpret this?

Since T is the terminal object on C, for any f : A — B,

tgof =ta:A— T. This basic fact corresponds to the
cancellation property of the T axiom in cut elimination mantioned
above. Similarly in proof search when T occurs in the succedent,
one can simply give up the search for a proof on that branch and
apply the T axiom (the daimon in ludics).

It seems therefore that our assertions / doubts interpretation does
not apply to the T operator and that it should be part of a larger
theory where pragmatic and dialogic operators may not depend on
the propositional content, as in ludics.
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