Games with Sequential Backtracking and Complete Game Semantics for Intuitionistic, EM-1, and Classical Arithmetic Workshop on Logical Dialogue games Thursday, June 29, 2015, Wien

Stefano Berardi C.S. Dept., Turin University, <u>http://www.di.unito.it/~stefano</u> Makoto Tatsuta, National Institute of Informatics, Tokyo <u>http://research.nii.ac.jp/~tatsuta/</u>

Abstract of the Talk

- 1. Starting from any game with possibly turn conflict, we add the rule of **Sequential Backtracking** for one player.
- If we start from Tarski games, we obtain a sound and complete game semantics for IPA⁻, Arithmetic with implication as a primitive connective and EM-1, Excluded Middle restricted to 1-quantifier formulas.
- 3. There is a tree isomorphism (a kind of ``Curry Howard'' isomorphism) between: proofs of IPA⁻, expressed by an infinitary sequent calculus, and the winning strategies for games with sequential backtracking. We may ``run'' proofs as game strategies.
- 4. This isomorphism interprets arithmetical sub-classical proofs as programs which learn by trials and errors. These results extend to Intuitionistic and Classical Arithmetic.

Comparing with Polarized Games

- 1. We produce a complete model for EM-1. There is no obvious way to restrict Polarized games in order to give a complete semantics of EM-1.
- 2. Polarized games give a complete game theoretical model of **provability in Classical logic**. We produce a complete model of **truth for full Classical Arithmetic**.
- 3. In Polarized games, $\lambda\mu$ -terms are in one-to-one with recursive winning strategies. In our game semantics, $\lambda\mu$ -**terms representing different classical proofs** may be interpreted by the same recursive winning strategy.
- 4. Our interpretation produces a simplified representation of the classical proof as programs, focused on input/output behavior, on the way the stack of previous states is used, and skipping all the rest.

§1. Games with turn conflicts

- There are two players, **£** (Eloise) and **A** (Abelard).
- The set of rules for a game G with turn conflicts is a tree with nodes and edges having the color either of *£* or of *A*.
 Nodes are positions of the game, edges are moves.
- The play starts at the root of G. At each turn, a player may: either **drop out** and lose the game, or move from the current node **along an edge of his color**, or **wait** for his opponent's move.
- If both £ or ¾ want to move, or both want to wait, we say there is a turn conflict. In this case, the player having the color the node succumbs, and must change its choice.

An example of turn conflict

Both \mathfrak{X} or \mathfrak{A} may move from a node having the color of \mathfrak{A} . If both want to move, \mathfrak{A} waits and \mathfrak{X} moves. If both want to wait, \mathfrak{A} moves and \mathfrak{X} waits. \mathfrak{A} is the player having the color the node, the **succumbing player**, therefore he is forced to **change its choice**.

Winner of a game

- In any **leaf** of G there are no moves left for both players: the succumbing player is **forced to drop out**.
- The player who drops out loses.
- If G is a finite game (all branches of G are finite), we decide in this way the winner for all plays.
- Otherwise there are infinite plays. In this case, G is equipped with two disjoint sets of infinite plays: W_f and W_f.
- \mathfrak{F} wins if the infinite play is in $W_{\mathfrak{F}}$, and \mathfrak{F} wins if the infinite play is in $W_{\mathfrak{F}}$. Otherwise both players loses.

Games without turn conflict

When all edges have the same color of the initial node of the edge, we obtain the usual notion of game, without turn conflicts.

Adding backtracking simplifies strategies

- Winning strategy for a game G are often non-recursive, even when G is a recursive tree.
- If we allow £ to retract finitely many times her move, many winning strategies for £ become recursive. In fact, winning strategies for £ become programs learning the correct move by trial and error.
- We may extend any game **G** with conflict with the possibility for **£** of retracting any previous move.
- This notion of game is new: we call it G with Sequential Backtracking or Seq(G). Seq(G) always has turn conflicts, even if G had no conflicts.

A new notion of game: Seq(G)

- The color of a node in Seq(G) is the same as in G.
- The moves of *F* in Seq(G) and in G are the same.
- from any position in Seq(G) (of any color), and has two kinds of possible moves.
- Explicit Backtracking. £ may come back to any previous node in the history of the play, then £ duplicates it as next move
- 2. Implicit Backtracking. ₤ may come back to any previous node in the history of the play from which ₤ may move, then ₤ produces a move in the original G from it as next move.

The winner of an infinite play in Seq(G)

- We include here the winning condition for infinite plays of Seq(G) only in the case G is a finite play. In this case we ask: all infinite plays in Seq(G) are won by *A*.
- Why? In Seq(G), *£* is allowed to retract finitely many times her previous move, but only in order to find a better move by trial-and-error.
- If G is a finite play, a play in Seq(G) is infinite only if *f* changes infinitely many times her move from a given node, just to waste time and to avoid losing the game.
- This behavior is unfair and therefore is penalized: *£* loses any infinite play.

Adding Sequential Backtracking to Tarski games

- We define Classical(A)=Seq(Tarski(A)) the game obtained adding sequential backtracking to the Tarski game for A.
- Adding backtracking does not change the winner, but makes the winning strategy recursive. The winning strategy is now a program learning the winning moves by trial-and-error. Any wrong move of *£* may be changed, provided we find the right one in finite time.

§2. Proofs as programs which learn.

- In Classical(A), classical proofs of A are interpred as programs learning the value of a witness for an existential statement by trial-and-error. This is possible even when no program computing the witness exists. We include a toy example with primitive implication (this is new).
- Assume P is any recursive predicate such that the predicate ∃y.P(x,y) is <u>not</u> recursive. We claim that *𝔅* has a winning strategy from the judgement:

true.EM₁ = true. $\forall x.(\exists y.P(x,y) \rightarrow \perp \lor \exists y.P(x,y))$ but \mathfrak{X} has no recursive winning strategy, unless we

allow backtracking.

If P(a,b) is true, then true.P(a,b) is conjunctive, with the color of \mathcal{A} . \mathcal{A} should move, he cannot and he drops out.

Implementing a restricted form of Backtracking

- There is a restriction of backtracking we call EM₁backtracking, in which whenever some positive formulas are discarded from the history of the play, they are never restored.
- Theorem (Completeness of EM₁-backtracking) EM₁-backtracking validates exactly the theorems of IPA⁻ (formulas with implication which are intuitionistic consequences of EM₁ and of recursive ω-rule).
- The interest of this result lies in the possibility of ``running'' some classical proofs using less memory space and less memory structure, therefore less time.
- If we restrict backtracking to a positive formula to **the last positive formula**, then we obtain Intuit. Arithmetic + ω -rule.

Conclusion

- The proof/strategy isomorphism provides a way of describing classical proofs as programs which learn, alternative to Griffin's use of continuations.
- With respect to the original isomorphism proposed by H. Herbelin, we added implication as primitive connective.
- The challenge is now to provide some **implementation** of proofs suggested by this new way of looking at proofs.
- The study of game semantics may provide further information: if we have a proof with a limited use of classical logic (say, using EM₁-logic), its interpretation as strategy makes a limited use of backtracking, therefore it has a simpler implementation.
- Differently from Polarized games, our interpretation cannot be used to represents the $\lambda\mu$ -formulation of classical proofs.

Index

- §1. Games with conflicts.
- §2. Proofs as programs which learn.
- **Appendix 1.** A definition of Tarski games over judgements.
- Appendix 2. A formulation of Classical Arithmetic PA + ω-rule satisfying the proof/strategy isomorphism (for proofs in a simplified form)

Appendix 1. Tarski games over judgements

- Tarski games are the canonical notion of games (without turn conflicts) representing the truth of an arithmetical statement. In order to define Tarski games, we consider a first order language L: True, False, ∨, ∧, ¬, →, ∀, ∃, with all primitive recursive predicates and functions.
- We define a relation <1 (immediate subformula) for closed formulas of L. We set A <1 ¬A and:

A, B <₁ A \lor B, A \land B, A \rightarrow B

 $A[t/x] <_1 \forall x.A, \exists x.A$ (for all closed terms t)

Disjunctive, conjunctive, positive and negative formulas

- $A \lor B$, $\exists x.A$, $A \rightarrow B$, $\neg A$ are **disjunctive** formulas.
- A \land B, \forall x.A are **conjunctive** formulas.
- A <₁ A→B, ¬A is a negative subformula. In all other cases A <₁ C is a positive subformula.
- Disjunctive formulas correspond to sending an output (to the outside), conjunctive formula to receiving an input (from the outside).
- Negative formulas correspond to questions (both from us and from outside) and positive formulas to answers (both from us and from outside).

Disjunctive, conjunctive, positive and negative "judgements"

- Judgements: J = s.A, where either s=true or s=false.
- true.A is a positive judgement. true.A is disjunctive (conjunctive) iff A disjunctive (conjunctive).
- false.A is a negative judgement. false.A is disjunctive (conjunctive) iff A conjunctive (disjunctive).
- s.A<₁t.B if and only if: A <₁ B, and s=t if A is a positive subformula of B, and s≠t if A is a negative subformula.
- For instance, **false.A**, **true.B** <₁ **true.A**→**B**.
- We write a conjunctive judgement J as ∧_{i∈I}J_i for all J_i <₁
 J, and a disjunctive judgement J as ∨_{i∈I}J_i for all J_i <₁J.

The game Tarski(s.A)

- We write ≤ for the transitive closure of <₁. For each judgement s.A we define Tarski(s.A), the game associated to the notion of truth for s.A. We write Tarski(A) for Tarski(true.A).
- The nodes of Tarski(s.A) are all judgements t.B ≤ s.A. The root is s.A, the child/father relation is t.B <₁ u.C.
- Disjunctive formulas and edges from them are colored £, conjunctive formulas and edges from them are colored A.
- Theorem (Completeness for Tarski games and Truth). 乏 has an arithmetical winning strategy from Tarski(A) if and only if A is true. The strategy selects a true immediate subjudgement if any exists.

Appendix 2. A formulation of PA+ω-rule with the proof/strategy isomorphism

- The language of $PA+\omega$ -rule are all judgements. Any judgement is of the form $\bigvee_{i \in I} J_i$ or $\bigwedge_{i \in I} J_i$. Say: true.A $\rightarrow B$ = \bigvee {false.A,true.B} and false.A $\rightarrow B=\land$ {true.A, false.B}.
- Sequents of CL_ω are ordered lists of judgements. Therefore Contraction and Exchange rules are not built-in in the notion of sequent.
- We explicitly assume Contraction in $PA+\omega$ -rule. We hyde Exchange rule through the fact that the active formula, if disjunctive, may be in any position in the sequent.
- Identity rule is trivially derivable in PA+ω-rule. Cut rule is derivable as well, but highly non-trivial.

A formulation of PA+ω-rule with 3 rules (in one-side form, with judgements)

$\begin{array}{ll} \underline{\Gamma, \wedge_{i \in I} J_{\underline{i}}, J_{\underline{i}}} & (all \ i \in I) \\ \Gamma, \wedge_{i \in I} J_{\underline{i}} & for \ all \ i \in I, \ and \ \underline{recursively} \ in \ i) \end{array}$

Remark the asymmetry with \vee : we do <u>not</u> have $\Gamma, \wedge_{i \in I} J, \Delta$

(contraction with implicit exchange)

Proof/Strategy Isomorphism and Cut-Elimination Theorem

Theorem. Let A be any closed arithmetical formula.

- (Soundness and Completeness) A formula A is a theorem of PA+ω-rule if and only if £ has a recursive winning strategies on the game Classical(true.A).
- 2. (Curry-Howard) The recursive winning strategy-trees for \mathfrak{X} on Classical(true.A) are tree-isomorphic to the infinitary recursive cut-free proof-trees of A in PA+ ω -rule.
- **3.** (*Cut-Elimination*) It is translated in a gametheoretical result: "any dialogue between two terminating strategies for *£* on Classical(true.A) and Classical(false.A) is **terminating**".

Bibliography

[As1] F. Aschieri. Learning Based Realizability for HA + EM1 and 1-Backtracking Games: Soundness and Completeness. To appear on APAL.

- [As2] F. Aschieri. *Learning, Realizability and Games in Classical Arithmetic.* Ph. D. thesis, Torino, 2011.
- [Be1] S. Berardi, T. Coquand, and S. Hayashi. *Games with 1backtracking.* APAL, 2010.

[Be2] S. Berardi and M. Tatsuta. Positive Arithmetic Without Exchange Is a Subclassical Logic. In Zhong Shao, editor, APLAS, volume 4807 of Lecture Notes in Computer Science, pages 271-285. Springer, 2007.

Bibliography

- [Be3] S. Berardi and Y. Yamagata. A Sequent Calculus for Limit ComputableMathematics. APAL, 153(1-3):111-126, 2008.
- [Coq] T. Coquand. A Semantics of Evidence for Classical Arithmetic. JSL, 60(1):325-337, 1995.
- [Fel] W. Felscher. *Dialogues as a foundation for intuitionistic logic.* In D.M. Gabbay and F. Guenthner, editors, Handbook of Philosophical Logic. Vol. III, pages 341–372. Dordrecht: D. Reidel, 1986.
- [Her] Hugo Herbelin. A Lambda-Calculus Structure Isomorphic to Gentzen-Style Sequent Calculus Structure. <u>CSL 1994</u>: 61-75

Bibliography

[Laur1]

O. Laurent: *Polarized games*. Ann. Pure Appl. Logic 130(1-3) : 79-123 (2004). In:

http://dblp.uni-trier.de/db/journals/apal/apal130.html#Laurent04
[Laur2]

O. Laurent: *Game semantics for first-order logic*. Logical Methods in Computer Science 6(4)