
Games with Sequential Backtracking
and Complete Game Semantics

for Intuitionistic, EM-1, and
Classical Arithmetic

 Workshop on Logical Dialogue games
Thursday, June 29, 2015, Wien

Stefano Berardi C.S. Dept., Turin University,

http://www.di.unito.it/~stefano

Makoto Tatsuta, National Institute of Informatics, Tokyo

http://research.nii.ac.jp/~tatsuta/

http://www.di.unito.it/~stefano
http://research.nii.ac.jp/~tatsuta/

Abstract of the Talk
1. Starting from any game with possibly turn conflict, we add

the rule of Sequential Backtracking for one player.

2. If we start from Tarski games, we obtain a sound and
complete game semantics for IPA-, Arithmetic with
implication as a primitive connective and EM-1, Excluded
Middle restricted to 1-quantifier formulas.

3. There is a tree isomorphism (a kind of ``Curry Howard''
isomorphism) between: proofs of IPA-, expressed by an
infinitary sequent calculus, and the winning strategies for
games with sequential backtracking. We may ``run’’ proofs
as game strategies.

4. This isomorphism interprets arithmetical sub-classical
proofs as programs which learn by trials and errors. These
results extend to Intuitionistic and Classical Arithmetic.

 2

Comparing with Polarized Games
1. We produce a complete model for EM-1. There is no

obvious way to restrict Polarized games in order to give a
complete semantics of EM-1.

2. Polarized games give a complete game theoretical model of
provability in Classical logic. We produce a complete
model of truth for full Classical Arithmetic.

3. In Polarized games, -terms are in one-to-one with
recursive winning strategies. In our game semantics, -
terms representing different classical proofs may be
interpreted by the same recursive winning strategy.

4. Our interpretation produces a simplified representation of
the classical proof as programs, focused on input/output
behavior, on the way the stack of previous states is used,
and skipping all the rest.

 3

§1. Games with turn conflicts
• There are two players, E (Eloise) and A (Abelard).

• The set of rules for a game G with turn conflicts is a tree
with nodes and edges having the color either of E or of A.
Nodes are positions of the game, edges are moves.

• The play starts at the root of G. At each turn, a player may:
either drop out and lose the game, or move from the
current node along an edge of his color, or wait for his
opponent’s move.

• If both E or A want to move, or both want to wait, we say
there is a turn conflict. In this case, the player having the
color the node succumbs, and must change its choice.

An example of turn conflict
A

A

A

E

Both E or A may move from a node having the color

of A. If both want to move, A waits and E moves. If

both want to wait, A moves and E waits. A is the

player having the color the node, the succumbing

player, therefore he is forced to change its choice.

Winner of a game
• In any leaf of G there are no moves left for both

players: the succumbing player is forced to drop out.

• The player who drops out loses.

• If G is a finite game (all branches of G are finite), we
decide in this way the winner for all plays.

• Otherwise there are infinite plays. In this case, G is
equipped with two disjoint sets of infinite plays: WE
and WA.

• E wins if the infinite play is in WE, and A wins if the
infinite play is in WA. Otherwise both players loses.

6

Games without turn conflict
A

A E E

When all edges have the same color of the initial

node of the edge, we obtain the usual notion of

game, without turn conflicts.

Adding backtracking simplifies strategies

• Winning strategy for a game G are often non-recursive,
even when G is a recursive tree.

• If we allow E to retract finitely many times her move,
many winning strategies for E become recursive. In
fact, winning strategies for E become programs
learning the correct move by trial and error.

• We may extend any game G with conflict with the
possibility for E of retracting any previous move.

• This notion of game is new: we call it G with
Sequential Backtracking or Seq(G). Seq(G) always has
turn conflicts, even if G had no conflicts.

A new notion of game: Seq(G)
• The color of a node in Seq(G) is the same as in G.
• The moves of A in Seq(G) and in G are the same.
• E may move from any position in Seq(G) (of any

color), and has two kinds of possible moves.
1. Explicit Backtracking. E may come back to any

previous node in the history of the play, then E
duplicates it as next move

2. Implicit Backtracking. E may come back to any
previous node in the history of the play from which
E may move, then E produces a move in the original
G from it as next move.

The winner of an infinite play in Seq(G)
• We include here the winning condition for infinite

plays of Seq(G) only in the case G is a finite play. In
this case we ask: all infinite plays in Seq(G) are won by
A.

• Why? In Seq(G), E is allowed to retract finitely many
times her previous move, but only in order to find a
better move by trial-and-error.

• If G is a finite play, a play in Seq(G) is infinite only if E
changes infinitely many times her move from a given
node, just to waste time and to avoid losing the game.

• This behavior is unfair and therefore is penalized: E
loses any infinite play.

Adding Sequential Backtracking
to Tarski games

• We define Classical(A)=Seq(Tarski(A)) the game
obtained adding sequential backtracking to the Tarski
game for A.

• Theorem (Completeness for Tarski games with seq.
back.). E has a winning strategy for Classical(A) if and
only if E has a recursive winning strategy for
Classical(A) if and only if A is true.

• Adding backtracking does not change the winner, but
makes the winning strategy recursive. The winning
strategy is now a program learning the winning moves
by trial-and-error. Any wrong move of E may be
changed, provided we find the right one in finite time.

§2. Proofs as programs which learn.
• In Classical(A), classical proofs of A are interpred as

programs learning the value of a witness for an
existential statement by trial-and-error. This is
possible even when no program computing the
witness exists. We include a toy example with
primitive implication (this is new).

• Assume P is any recursive predicate such that the
predicate y.P(x,y) is not recursive. We claim that E
has a winning strategy from the judgement:

true.EM1 = true.x.(y.P(x,y)  y.P(x,y))
 but E has no recursive winning strategy, unless we

allow backtracking.

A non-recursive winning strategy for
Tarski(EM1)

true.x. (y.P(x,y)y.P(x,y))

true.y.P(a,y)  y.P(a,y)

false.y.P(a,y)
true.y.P(a,y)

false.P(a,b) true.P(a,b)

A moves:

E moves:

If P(a,b) is true, then true.P(a,b) is conjunctive, with the
color of A. A should move, he cannot and he drops out.

true.y.P(a,y)

E moves:

… … … …

A recursive winning strategy for
Classical(EM1)

true.x. (y.P(x,y)y.P(x,y))

true.y.P(a,y)  y.P(a,y)

false.y.P(a,y)
true.y.P(a,y)

false.P(a,b) true.P(a,b)

A moves:

E moves:

If P(a,b) is true, then false. P(a,b) is disjunctive, with the
color of E. E cannot choose a child of false.P(a,b). Thus, E

backtracks, then E chooses P(a,b), which is true, and wins.

true.y.P(a,y) E moves:

A moves:

… … … …

Implementing a restricted form of
Backtracking

• There is a restriction of backtracking we call EM1-
backtracking, in which whenever some positive formulas
are discarded from the history of the play, they are never
restored.

• Theorem (Completeness of EM1-backtracking) EM1-
backtracking validates exactly the theorems of IPA-
(formulas with implication which are intuitionistic
consequences of EM1 and of recursive -rule).

• The interest of this result lies in the possibility of ``running’’
some classical proofs using less memory space and less
memory structure, therefore less time.

• If we restrict backtracking to a positive formula to the last
positive formula, then we obtain Intuit. Arithmetic + -rule.

Conclusion
• The proof/strategy isomorphism provides a way of

describing classical proofs as programs which learn,
alternative to Griffin’s use of continuations.

• With respect to the original isomorphism proposed by H.
Herbelin, we added implication as primitive connective.

• The challenge is now to provide some implementation of
proofs suggested by this new way of looking at proofs.

• The study of game semantics may provide further
information: if we have a proof with a limited use of
classical logic (say, using EM1-logic), its interpretation as
strategy makes a limited use of backtracking, therefore it
has a simpler implementation.

• Differently from Polarized games, our interpretation cannot
be used to represents the -formulation of classical proofs.

Index

• §1. Games with conflicts.

• §2. Proofs as programs which learn.

• Appendix 1. A definition of Tarski games
over judgements.

• Appendix 2. A formulation of Classical
Arithmetic PA + -rule satisfying the
proof/strategy isomorphism (for proofs in a
simplified form)

17

Appendix 1. Tarski games over judgements

• Tarski games are the canonical notion of games
(without turn conflicts) representing the truth of
an arithmetical statement. In order to define Tarski
games, we consider a first order language L: True,
False, , , , , , , with all primitive recursive
predicates and functions.

• We define a relation <1 (immediate subformula) for
closed formulas of L. We set A <1 A and:

A, B <1 AB, AB, AB

A[t/x] <1 x.A, x.A (for all closed terms t)
18

Disjunctive, conjunctive,
positive and negative formulas

• AB, x.A, AB, A are disjunctive formulas.
• AB, x.A are conjunctive formulas.
• A <1 AB, A is a negative subformula. In all other

cases A <1 C is a positive subformula.
• Disjunctive formulas correspond to sending an

output (to the outside), conjunctive formula to
receiving an input (from the outside).

• Negative formulas correspond to questions (both
from us and from outside) and positive formulas to
answers (both from us and from outside).

19

Disjunctive, conjunctive,
positive and negative “judgements”

• Judgements: J = s.A, where either s=true or s=false.
• true.A is a positive judgement. true.A is disjunctive

(conjunctive) iff A disjunctive (conjunctive).
• false.A is a negative judgement. false.A is disjunctive

(conjunctive) iff A conjunctive (disjunctive).
• s.A<1t.B if and only if: A <1 B, and s=t if A is a positive

subformula of B, and st if A is a negative subformula.
• For instance, false.A, true.B <1 true.AB.
• We write a conjunctive judgement J as iIJi for all Ji <1

J, and a disjunctive judgement J as iIJi for all Ji <1 J.

The game Tarski(s.A)
• We write  for the transitive closure of <1. For each

judgement s.A we define Tarski(s.A), the game associated to
the notion of truth for s.A. We write Tarski(A) for
Tarski(true.A).

• The nodes of Tarski(s.A) are all judgements t.B  s.A. The
root is s.A, the child/father relation is t.B <1 u.C.

• Disjunctive formulas and edges from them are colored E,
conjunctive formulas and edges from them are colored A.

• Theorem (Completeness for Tarski games and Truth). E has
an arithmetical winning strategy from Tarski(A) if and only if
A is true. The strategy selects a true immediate
subjudgement if any exists.

Appendix 2. A formulation of PA+-rule
with the proof/strategy isomorphism

22

• The language of PA+-rule are all judgements. Any
judgement is of the form iIJi or iIJi. Say: true.AB
= {false.A,true.B} and false.AB={true.A,
false.B}.

• Sequents of CL are ordered lists of judgements.
Therefore Contraction and Exchange rules are not
built-in in the notion of sequent.

• We explicitly assume Contraction in PA+-rule. We
hyde Exchange rule through the fact that the active
formula, if disjunctive, may be in any position in the
sequent.

• Identity rule is trivially derivable in PA+-rule. Cut rule
is derivable as well, but highly non-trivial.

A formulation of PA+-rule with 3 rules
(in one-side form, with judgements)

, J, , J (contraction with implicit exchange)

 , J, 

, iIJi, Ji (all iI) (conj. with implicit contr.:

 , iIJi for all iI, and recursively in i)

Remark the asymmetry with : we do not have , iIJ,

, iIJi, , Ji (disj. with implicit contraction and

, iIJi,  exchange: for some iI)

Proof/Strategy Isomorphism and
Cut-Elimination Theorem

Theorem. Let A be any closed arithmetical formula.
1. (Soundness and Completeness) A formula A is a

theorem of PA+-rule if and only if E has a recursive
winning strategies on the game Classical(true.A).

2. (Curry-Howard) The recursive winning strategy-trees
for E on Classical(true.A) are tree-isomorphic to the
infinitary recursive cut-free proof-trees of A in PA+-
rule.

3. (Cut-Elimination) It is translated in a game-
theoretical result: “any dialogue between two
terminating strategies for E on Classical(true.A) and
Classical(false.A) is terminating”.

24

Bibliography

 [As1] F. Aschieri. Learning Based Realizability for HA + EM1
and 1-Backtracking Games: Soundness and
Completeness. To appear on APAL.

 [As2] F. Aschieri. Learning, Realizability and Games in
Classical Arithmetic. Ph. D. thesis, Torino, 2011.

[Be1] S. Berardi, T. Coquand, and S. Hayashi. Games with 1-
backtracking. APAL, 2010.

[Be2] S. Berardi and M. Tatsuta. Positive Arithmetic
Without Exchange Is a Subclassical Logic. In Zhong
Shao, editor, APLAS, volume 4807 of Lecture Notes in
Computer Science, pages 271-285. Springer, 2007.

25

Bibliography

[Be3] S. Berardi and Y. Yamagata. A Sequent Calculus for
Limit ComputableMathematics. APAL, 153(1-3):111-
126, 2008.

[Coq] T. Coquand. A Semantics of Evidence for Classical
Arithmetic. JSL, 60(1):325-337, 1995.

[Fel] W. Felscher. Dialogues as a foundation for intuitionistic
logic. In D.M. Gabbay and F. Guenthner, editors, Handbook
of Philosophical Logic. Vol. III, pages 341–372. Dordrecht:
D. Reidel, 1986.

[Her] Hugo Herbelin. A Lambda-Calculus Structure
Isomorphic to Gentzen-Style Sequent Calculus Structure.
CSL 1994: 61-75

26

http://www.informatik.uni-trier.de/~ley/db/conf/csl/csl94.html#Herbelin94
http://www.informatik.uni-trier.de/~ley/db/conf/csl/csl94.html#Herbelin94
http://www.informatik.uni-trier.de/~ley/db/conf/csl/csl94.html#Herbelin94

Bibliography

[Laur1]

O. Laurent: Polarized games. Ann. Pure Appl. Logic 130(1-3)
: 79-123 (2004). In:

http://dblp.uni-trier.de/db/journals/apal/apal130.html#Laurent04

[Laur2]

O. Laurent: Game semantics for first-order logic. Logical
Methods in Computer Science 6(4)

27

http://dblp.uni-trier.de/db/journals/apal/apal130.html#Laurent04
http://dblp.uni-trier.de/db/journals/apal/apal130.html#Laurent04
http://dblp.uni-trier.de/db/journals/apal/apal130.html#Laurent04
http://dblp.uni-trier.de/db/journals/apal/apal130.html#Laurent04
http://dblp.uni-trier.de/db/journals/apal/apal130.html#Laurent04
http://dblp.uni-trier.de/db/journals/apal/apal130.html#Laurent04
http://dblp.uni-trier.de/db/journals/apal/apal130.html#Laurent04
http://dblp.uni-trier.de/db/journals/apal/apal130.html#Laurent04
http://dblp.uni-trier.de/db/journals/apal/apal130.html#Laurent04
http://dblp.uni-trier.de/db/journals/apal/apal130.html#Laurent04
http://dblp.uni-trier.de/db/journals/apal/apal130.html#Laurent04
http://dblp.uni-trier.de/db/journals/apal/apal130.html#Laurent04
http://dblp.uni-trier.de/db/journals/apal/apal130.html#Laurent04
http://dblp.uni-trier.de/db/journals/apal/apal130.html#Laurent04

