Dialogue Games for Fuzzy Logics

Giles’s Game

Overview & Motivation

- dialogue game introduced by Robin Giles in the 1970s
- models reasoning in physical theories
- asserting a proposition means committing oneself to pay a certain amount of money if the associated experiment(s) fail(s)
- separates evaluation of atomic formulas from decomposing compound formulas

Betraying Positive Results:

- each atomic proposition is associated with a binary (yes/no) experiment
- experiments may be probabilistic, i.e. show dispersion
- for each assertion of an atomic proposition an experiment is made
- each player places bets on positive outcomes of experiments corresponding to his claims

Decomposing Compound Formulas:

- arguments about complex formulas are systematically reduced to arguments about less complex formulas
- dialogue rules have already been introduced by Lorenzen for Intuitionistic Logic
- these rules characterize the meaning of logical connectives, independently of the underlying betting scheme

An Example Dialogue

I assert \(a \rightarrow (b \lor c) \).

You say: “I challenge your assertion by claiming \(a \) myself. Do you still claim that \(b \lor c \)?”

I say: “Yes, and it suffices for me to assert \(c \) to defend \(b \lor c \).

Then we end up with my claim of \(a \) against your claim of \(c \). Let’s make corresponding experiments \(t \) and \(e \).”

Rules

Atomic Evaluation: Let \(a \) be an atomic proposition. He who asserts \(a \) agrees to pay his opponent \(e \) if a trial of the experiment associated with \(a \) yields the outcome “no”.

Implication: He who asserts \(A \rightarrow B \) agrees to assert \(A \) if his opponent will assert \(B \) where \(A \) is associated with an experiment that always evaluates to “no”.

Negation: He who asserts \(\neg A \) agrees to assert \(A \) if his opponent will assert \(A \) where \(A \) is associated with an experiment that always evaluates to “no”.

Disjunction: He who asserts \(A \lor B \) commits himself to assert either \(A \) or \(B \) at his own choice.

Conjunction: He who asserts \(A \land B \) commits himself to assert both \(A \) and \(B \) at his opponent’s choice.

Strong conjunction: He who asserts \(A \\bar{\land} B \) commits himself either to assert both \(A \) and \(B \) or to admit falsity by asserting \(\bot \).

After being attacked, a formula is being deleted from the game.

Łukasiewicz Logic

T-Norm Based Fuzzy Logics

- many valued logics: \(\mathcal{O} \) stands for absolute falsity, \(\top \) for truth, but infinitely many intermediate degrees of truth between \(\mathcal{O} \) and \(\top \)
- truth function for (strong) conjunction \(\land \) is a continuous t-norm
- a t-norm is a commutative, associative function \(x \ast y = \min(x, y) \) with unit 1 which is order preserving
- truth function for implication – is the residuum of a t-norm
- the residuum \(\Rightarrow \) of a t-norm \(\ast \) is determined by \(x \Rightarrow y = \max(0, 1 - x \ast y) \)
- other connectives \(\lor, \rightarrow \) are derived from \(\Rightarrow \)

Łukasiewicz Logic

- one of three fundamental t-norm based fuzzy logics
- originally \(\mathcal{L} \) Łukasiewicz defined a three-valued logic for modelling future contingents, which has later been extended to infinitely many truth values
- \(\mathcal{L} \) Łukasiewicz t-norm: \(x \ast y = \max(0, 1 - x + y) \)
- associated residuum: \(x \Rightarrow y = \max(0, 1 - x + y) \)
- the unique fuzzy logic where all truth functions are continuous
- all connectives can be derived from \(\land \) and \(\Rightarrow \)

Other Fuzzy Logics

Gödel Logic

- also known as Intuitionistic Fuzzy Logic
- based on the Gödel t-norm \(x \ast y = \min(x, y) \)
- associated residuum: \(x \Rightarrow y = \min(1, 1 - x + y) \)
- Product Logic

- introduced in 1996 by Hajek, Godo, and Esteva
- based on the Product t-norm \(x \ast y = x \cdot y \)
- associated residuum: \(x \Rightarrow y = x/y \) if \(x > y \), and is \(1 \) otherwise

Adequateness of Giles’s Game

- Already proved by Giles in the 1970s:
 - A formula \(\mathcal{F} \) is valid in Łukasiewicz Logic iff I have a strategy to avoid risk (expected loss) in a game starting with me asserting \(\mathcal{F} \) for any assignment of probability values to experiments.
 - Moreover: given a fixed interpretation, my expected loss of money from asserting a formula in the game directly corresponds to a valuation in Łukasiewicz Logic.

For Łukasiewicz Logic

- Variants of Giles’s Game presented by Fermüller recently
- alternative betting schemes: selecting representatives (Gödel Logic) and joint bets (Product Logic)
- dialogue rule for implication has to be extended as well
- dialogue rules correspond to the logical rules of an analytic proof system based on relational hypersequents.

For Gödel & Product Logic

- Presented in this thesis
- another way to adapt the dialogue rule for implication for Gödel Logic and Product Logic.
- game gets simpler compared to the other approach
- connection to the hypersequent calculus is lost.

Alternative Dialogue Rules

- Small Haskell program to display game trees of Giles’s game
- given a formula, computes a game tree of the corresponding game and outputs the tree as a .dot-Graph specification

Accompanying Implementation

Webgame

- Web-based application which allows playing Giles’s Game interactively
- simulates evaluation by dispersive experiments
- see http://logic.us/people/roschger/theses/ogamegame

Giles

- Small Haskell program to display game trees of Giles’s game
- given a formula, computes a game tree of the corresponding game and outputs the tree as a .dot-Graph specification

Hypseq

- Utility to find derivations of hypersequents in the relational hypersequent calculus \(\mathcal{H} \), computes all possible derivations and outputs the one with the smallest height.

TCGame

- Utility to find a winning strategy for the propositional \(P \) in a Truth Comparison Game
- for Gödel Logic
- winning strategy for P can be seen as a proof of the starting formula.

Contact: roschger@logic.at