

Masterstudium Computational Intelligence Diplomarbeitspräsentationen der Fakultät für Informatik

Dialogue Games for Fuzzy Logics

Christoph Roschger

Technische Universität Wien Institut für Computersprachen Arbeitsbereich: Theoretische Informatik und Logik Betreuer: Ao.Prof. Dipl.Ing. Dr.techn. Christian G. Fermüller

Giles's Game

Overview & Motivation

Rules

- dialogue game introduced by Robin Giles in the 1970s
- models reasoning in physical theories
- asserting a proposition means committing oneself to pay a certain amount of money if the associated experiment(s) fail(s)

Atomic Evaluation: Let a be an atomic proposition. He who asserts a agrees to pay his opponent \in 1 if a trial of the experiment associated with a yields the outcome "no".

Implication: He who asserts $A \rightarrow B$ agrees to assert B if his opponent will assert A.

Łukasiewicz Logic

T-Norm Based Fuzzy Logics

Łukasiewicz Logic

logic for modelling future contingents, which has

later been extended to infinitely many truth values

• many valued logics: 0 stands for absolute falsity, 1 • one of three *fundamental* t-norm based fuzzy logfor truth, but inifinitely many intermediate degrees ics of truth between 0 and 1 • originally J. Łukasiewicz defined a three-valued

• truth function for (strong) conjunction & is a continuous t-norm

• a t-norm is a commutative, associative function *: • Łukasiewicz t-norm: $x *_{L} y = max(0, x + y - 1)$

- seperates evaluation of atomic formulas from decomposing compound formulas
- **Betting for Positive Results:**
- each atomic proposition α is associated with a binary (yes/no) experiment E_a
- experiments may be probabilistic, i.e. show dispersion
- for each assertion of an atomic proposition an experiment is made
- each player places bets on positive outcomes of experiments corresponding to his claims

Decomposing Compound Formulas:

- arguments about complex formulas are systematically reduced to arguments about less complex formulas
- dialogue rules have already been introduced by Lorenzen for Intuitionistic Logic
- these rules characterize the meaning of logibetting scheme

- **Negation:** *He who asserts* $\neg A$ *agrees to assert* \perp if his opponent will assert A where \perp is associated with an experiment that always evaluates to "no".
- **Disjunction:** *He who asserts* A \lor B *commits him*self to assert either A or B at his own choice.
- **Conjunction:** *He who asserts* $A \land B$ *commits him*self to assert either A or B at his opponent's choice.
- **Strong conjunction:** *He who asserts* A&B *com*mits himself either to assert both A and B or to admit falsity by asserting \perp .

After being attacked, a formula is being deleted from the game.

- $[0,1]^2 \rightarrow [0,1]$ with unit 1 which is order preserving • associated residuum: $x \Rightarrow_{L} y = \min(1, 1 - x + y)$ \bullet truth function for implication \rightarrow is the residuum of • the *unique* fuzzy logic where all truth functions a t-norm are continuous
- the residuum \Rightarrow_* of a t-norm * is determined by • all connectives can be derived from \rightarrow and \perp $\mathbf{x} \Rightarrow_* \mathbf{y} := \sup\{z \mid \mathbf{x} * z \leqslant \mathbf{y}\}$
- other connectives \land , \lor , and \neg are derived from &, \rightarrow , and \perp

Łukasiewicz t-Norm *

Residuum $\Rightarrow_{\rm L}$

• Moreover: given a fixed interpretation, my expected loss of • dialogue rules correspond to the logical rules of an analytic proof • connection to the hypersequent calculus is lost. money from asserting a formula in the game directly corresponds system based on relational hypersequents. to a valuation in Łukasiewicz Logic.

Accompanying Implementation

Webgame	Giles	Hypseq	TCGame
---------	-------	--------	--------

• Web-based application which allows playing • Small Haskell-program to display game trees of • Utility to find derivations of hypersequents in the • Utility to find a winning strategy for the propo-Giles's Game interactively, relational hypersequent calculus **rH**, nent **P** in a Truth Comparison Game, Giles's game, • given a formula, computes a game tree of the • computes all possible derivations and outputs • for Gödel Logic, • simulates evaluation by dispersive experiments. corresponding game and outputs the tree as a the one with the smallest height. • winning strategy for **P** can be seen as a proof of • See http://logic.at/people/roschger/thesis/webgame dot-Graph specification.

the starting formula.

Contact: roschger@logic.at