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Abstract

Motivated by aspects of reasoning in theories of physics, Robin Giles
defined a characterization of infinite valued  Lukasiewicz logic in terms of
a game that combines Lorenzen-style dialogue rules for logical connectives
with a scheme for betting on results of dispersive experiments for evaluat-
ing atomic propositions. We analyze this game and provide conditions on
payoff functions that allow us to extract many-valued truth functions from
dialogue rules of a quite general form. Besides finite and infinite valued
 Lukasiewicz logics, also Meyer and Slaney’s Abelian logic and Continuous
Hoop Logic turn out to be characterizable in this manner.

1 Introduction and overview

Already in the 1970s Robin Giles [10, 11] combined dialogue rules for the system-
atic reduction of arguments involving logically complex statements to simpler
statements with a scheme for betting on the results of dispersive experiments
and proved that the resulting game is sound and complete for (infinite-valued)
 Lukasiewicz logic. While Giles explicitly referred to Paul Lorenzen’s dialogical
semantics for intuitionistic logic [13, 14], his game arguably should be thought
of as a special form of an evaluation game, rather than a Lorenzen-style game
for characterizing validity: in devising optimal strategies it is essential that the
players know the payoff values associated with atomic statements. On the other
hand, Giles’s game is also not just a variant of Hintikka’s evaluation game for
classical first order logic. Like in Lorenzen’s dialogue game, more than just one
sub-formula of the originally asserted formula has to be considered in general
at any particular state of the game. However, in contrast to Lorenzen’s setup,
no strict regulation on the successions of moves has to be imposed on the two
players. These and a number of other features render Giles’s game an inter-
esting object of study, independently from the renewed interest in  Lukasiewicz
logic in the context of t-norm based fuzzy logics [12, 15].

In [8] and [7] a connection between analytic proofs in so-called hypersequent
calculi for  Lukasiewicz logic and winning strategies for the proponent of a for-
mula in Giles’s game has been investigated. In [3] and [6] it is explained how
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that connection can be generalized to cover also the two other fundamental
t-norm based fuzzy logics, Gödel logic and Product logic. This generalization
however comes at a price: not only does one have to augment the dialogue
rule for implication in a somewhat problematic manner, but one also has to
distinguish between two different types of game states, indicating whether for
the evaluation of final game states a strict (<) or a non-strict comparison (≤)
between the values of atomic formulas is to be used. More importantly from our
current point of view, one also loses the direct correspondence between payoff
values and truth values that one can observe about Giles’s original game.1

Here, we are not interested in the relation between proof theory and game
based semantics for many-valued logics, but ask to what extent the neat inter-
pretation of truth values in  Lukasiewicz logics as payoff values resulting from
optimal dialogue game strategies can be extended to other many-valued logics.
The aim is to stick as closely as possible to the elegant structure of Giles’s game,
while at the same time replacing Giles’s very particular payoff scheme and his
specific rules for (a selection of) logical connectives with general conditions on
viable payoff functions and on the format of dialogue rules. Our results imply
that one can indeed extract a truth functional semantics from any Giles-style
game that satisfies some rather weak conditions; i.e., conditions that are much
more general than Giles’s elaborate story justifying the specific format of his
game let one suppose at a first glance. It also turns out that, in spite of the
generality of the game format, only a rather narrow family of logics can be
characterized in this manner: the only prominent members of this family are,
besides all finite and the infinite valued  Lukasiewiz logics ( L∞,  Ln), Continuous
Hoop Logic CHL [4], and Meyer and Slaney’s Abelian Logic A [16].

The paper is organized as follows. Section 2 describes our base camp: Giles’s
original game for  Lukasiewicz logic. In Section 3 we add rules for so-called
‘strong conjunction’ and isolate the role of a ‘principle of limited liability’. Sec-
tion 4 presents general conditions on suitable payoff functions, while Section 5
introduces a general format for logical dialogue rules, that allows us to lift, in
Section 6, payoffs from final game states to arbitrary ones. In Section 7 we
show how a number of known logics emerge as concrete instances of our general
framework. Section 8 concludes with a brief summary and an outlook on topics
for further investigation.

2 Giles’s game for  Lukasiewicz logic

In [10] and, in more detail, in [11] Robin Giles sets out to determine a logic for
reasoning about physical theories with dispersive experiments, meaning that
repeated trials of the same experiment may yield different results. (The most

1If one is willing to pay the indicated price, however, one obtains a game that corresponds
to a quite remarkable (hypersequent) calculus with uniform rules for all three fundamental
t-norm based fuzzy logics. This proof system enjoys, among other desirable properties, cut
elimination, invertible rules, reduction to atomic axioms, unrestricted permutability of logical
rules, and moreover supports efficient proof search [3, 6].
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familiar example of such a theory certainly is quantum mechanics.) To pro-
vide ‘tangible meaning’ of logical connectives Giles refers to Lorenzen’s dialogue
games for intuitionistic and classical logic [13, 14]. Such games systematically
reduce arguments involving logically complex assertions to arguments about
atomic assertions. To evaluate the latter Giles assigns an dispersive experi-
ments to each atomic proposition and lets the players bet on the corresponding
results. We follow Giles in referring to the players as me and you, respectively.

Let us first review the betting phase of the game, largely ignoring Giles’s
motivation pertaining to the philosophy of science. Each atomic proposition p
is associated with an experiment (test) Ep, which has a fixed probability π(Ep)
of yielding a positive result. Giles identifies this (subjective) probability with
a player’s expectation that a trial of Ep will end positively and cashes out this
interpretation by the following betting scheme. I promise to pay to you a fixed
amount of money, say 1€, for each of my assertions of p, where a corresponding
trial of Ep yields a negative result. Likewise, you have to pay 1€ to me for each
of your assertions that does not pass the associated test. Note that it matters
whether we assert the same proposition just once or more often. A final game
state at which [p1, . . . , pn] is the multiset of atomic assertions made by you and
[q1, . . . , qm] is the multiset of atomic assertions made by me is denoted by

[p1, . . . , pn | q1, . . . , qm] .

Let us define the risk value of p by 〈p〉r = 1 − π(Ep). We can then specify
the expected total amount of money (in €) that I have to pay to you at the
exhibited state by

〈p1, . . . , pn | q1, . . . , qm〉r =
∑

1≤i≤m

〈qi〉r −
∑

1≤j≤n

〈pj〉r .

We call this number briefly my risk associated with that state. Note that the
risk can be negative, i.e., the risk values of the relevant propositions may be
such that I expect a net payment by you to me.

As an example consider the state [p, p | q], where you have asserted p twice
and I have asserted q once. Three trials of experiments are involved in the
corresponding evaluation: two trials of Ep, one for each of your assertions and
one trial of Eq to test my assertion. If 〈p〉r = 0.2, i.e., if the probability that the
experiment Ep yields a positive result is 0.8, and 〈q〉r = 0.5 then 〈p, p | q〉r = 0.1.
This means that my expected loss of money according to our betting scheme is
0.1€. If, on the other hand, 〈p〉r = 〈q〉r = 0.5, then 〈p, p | q〉r = −0.5, which
means that I expect an (average) gain of 0.5€.

In order to evaluate logically complex assertions, Giles defines dialogue rules
for the reduction of disjunctive, conjunctive, implicative, and negated state-
ments to their sub-statements. In Giles’s diction—except for changing gender
and currency—these rules are as follows:

• She who asserts A ∨ B undertakes to assert either A or B at her own
choice.
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• She who asserts A∧B undertakes to assert either A or B at her opponent’s
choice.

• She who asserts A ⊃ B agrees to assert B if her opponent asserts A.

• She who asserts ¬A agrees to pay 1€ if her opponent asserts A.

The last rule mixes reduction of formulas with final evaluation. To retain a
strict separation between the dialogue phase of the game (reducing arguments
involving complex assertions to arguments about simpler assertions) and the
betting phase (evaluation of final game states by reference to dispersive experi-
ments) we introduce the propositional constant ⊥ and stipulate that it refers to
an experiment that always yields a negative result and therefore corresponds to
the (certain) payment of 1€ by any player asserting this formula. By defining
¬A as abbreviation for A ⊃ ⊥ the above negation rule thus becomes redundant.

Giles also considers rules for evaluating quantified formulas. However, these
rules involve some complications that we will not have to deal with since we are
only interested in propositional logic here. At that level, Giles’s main result can
be formulated as follows.

Theorem 1 (Giles). For every assignment of risk values to propositional vari-
ables I have a strategy for avoiding positive expected loss of money in the game
starting with my assertion of a formula F if and only if F is valid in  Lukasiewicz
logic  L∞.

To render this paper self-contained, we still have to formally specify  Lukasiewicz
logic  L∞. Formulas of  L∞ are built up from propositional variables and the
propositional constant ⊥ using the connectives ¬, ∧, ∨, ⊃, and &. The corre-
sponding semantics extends any assignment (valuation) v of values in [0, 1] to
propositional variables to arbitrary formulas as follows:

v(⊥) = 0 v(¬A) = 1− v(A)
v(A ∧B) = min(v(A), v(B)) v(A&B) = max(0, v(A) + v(B)− 1)
v(A ∨B) = max(v(A), v(B)) v(A ⊃ B) = min(1, 1− v(A) + v(B))

A formula F is called valid in  L∞ if v(F ) = 1 for all valuations.
The connection between Giles’s dialogue rules and the valuation function for

the corresponding connective actually is tighter than the above formulation of
Theorem 1 reveals. In fact, the game can be seen as an evaluation game where
risk value assignments correspond to valuations via 〈p〉r = 1 − v(p) for all p:
the minimal risk r at a final state that I can enforce by an optimal strategy for
a game starting with my assertion of F turns out to be 1− v(F ).

3 Strong conjunction and the principle of lim-
ited liability

The attentive reader will have noticed we have included so-called ‘strong con-
junction’ (&) in defining  Lukasiewicz logic  L∞, while this connective is not
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considered by Giles. From the point of view of contemporary mathematical
fuzzy logic [12, 15] the clause v(A&B) = max(0, v(A) + v(B) − 1) is central
indeed, since the latter function is one of three fundamental t-norms—the oth-
ers being min and multiplication—which determine fuzzy logics in a canonical
way.2 However, in fact all connectives of  L∞ can be defined from ⊃ and ⊥
as follows: ¬A =def A ⊃ ⊥, A&B =def ¬(A ⊃ ¬B), A ∧ B =def A&(A ⊃ B),
A ∨B =def ((A ⊃ B) ⊃ B) ∧ ((B ⊃ A) ⊃ A).

Nevertheless, from Giles’s own perspective of providing ‘tangible meaning’
of logical connectives, it is somewhat odd to consider exclusively a dialogue rule
for conjunction, where only one of the conjuncts has to be defended. One might
rather be tempted to add the following rule:

• She who asserts A ∧′ B undertakes to assert both A and B.

However, it is easy to see that this has undesirable effects. E.g., there is no
strategy for avoiding positive risk when initially asserting ⊥ ⊃ (⊥ ∧′ ⊥). More
profoundly, one cannot any longer limit one’s risk associated with asserting a
single formula by 1€. Therefore Giles defends his choice of conjunction rule,
originating with Lorenzen [13], by referring to what he calls the principle of
limited liability.

As pointed out in [8], one can nevertheless formulate a simple rule that is
adequate for strong conjunction & in  L∞:

• She who asserts A&B undertakes to assert either both A and B, or else
to assert ⊥.

Remember that asserting ⊥ obliges one to pay the agreed upon maximal ‘fine’
of 1€ for asserting a statement that cannot be verified by a corresponding trial
of a dispersive experiment (〈⊥〉r = 1). In this sense our rule, too, is motivated
by the principle of limited liability.

With hindsight one can detect yet another form of the principle of limited
liability already at play in Giles’s rule for implication: instead of attacking
A ⊃ B by asserting A to force the opponent to assert B, a player may choose
not to attack A ⊃ B at all. Since the risk associated with A may be higher
than the risk associated with B, the latter choice (no attack) amounts to an
option that limits my risk originating with your assertion of A ⊃ B—a risk
that I would not be able to avoid if the rules of the game required that every
asserted implication is to be attacked. We will return to this issue in Section 7
in connection with Abelian logic A.

For later reference, let us formulate both relevant forms of limiting risk in a
slightly more abstract form:

Limited liability for defense (LLD): A player can always choose to just as-
sert ⊥ in reply to an attack by her opponent.

2A t-norm is a commutative, associative, and monotonic function on [0, 1] with 1 as neutral
element. Following Hájek [12], any continuous t-norm uniquely determines a (fuzzy) logic by
interpreting it as truth function for conjunction and taking its residuum as truth function for
implication. Other connectives can then be added in a systematic manner.

5



Limited liability for attack (LLA): A player can always declare not to at-
tack an occurrence of a formula that has been asserted by her opponent.

From this general perspective on the principle of limited liability, which does not
refer to particular connectives, it might seem unsatisfying to invoke LLD only for
implication and LLA only for strong conjunction. However it is straightforward
to check that the proof of Theorem 1 as presented in [8] remains essentially
unchanged if LLD and LLA are uniformly imposed on all specific dialogue rules.
To understand this fact it suffices to observe that a player can never decrease her
expected loss (risk) by asserting ⊥ in reply to an attack on any statement that
is not a strong conjunction, nor can one’s risk be decreased by not attacking an
opponent’s assertion, except for attacks on implicative statements.

4 General payoff functions

So far we have only dealt with concepts that are closely connected to Giles’s
game for  Lukasiewicz logic  L∞ as presented in [10, 11, 8]. In the following we
aim at a more general framework that, in contrast to the game variants described
in [3] and [6], nevertheless preserves some essential and arguably quite desirable
features of the original game. We will not any longer talk about specific rules
for particular logical connectives. Moreover, we will also look at the evaluation
of final (atomic) game states from a wider perspective that is neither dependent
on philosophical motivations regarding proper forms of reasoning in physics nor
on a specific logical target language.

We will stick to Giles’s convention of referring to the two players as you and
me, respectively.

Definition 1 (Tenet). The tenet Γ of a player (me or you) is the finite multiset
[φ1, . . . , φn] of formulas asserted by that player at a given state of the game. A
tenet is atomic if all formulas in Γ are atomic.

We will denote atomic tenets by lower Greek letters γ, δ, . . . and arbitrary
tenets by upper Greek letters Γ,∆, . . .. Moreover, we write [Γ,∆] to denote the
union of the multisets Γ and ∆ as well as [Γ, φ] instead of [Γ, [φ]], etc.

Definition 2 (Game state). A (game) state [Γ | ∆] consists of two tenets Γ and
∆, where Γ is your tenet and ∆ is my tenet. A game state is atomic if Γ and
∆ are atomic.

Ignoring all specific details of Giles’s story about risky bets on dispersive
experiments, we see that the proposed betting scheme boils down to an ordinary
payoff function (in the game theoretic sense), i.e., an assignment of real numbers
to all final states of the game. Probabilities (‘risk’) and amounts of money to
be paid by either me or you only serve as an—interesting, but in principle
dispensable—interpretation of those real numbers. This observation motivates
the formulation of general principles for assigning payoff values to atomic states.

We will only be interested in my payoff and may thus simply speak of ‘the
payoff’ associated with an atomic state. (More precisely, we can think of your
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payoff for the same state as directly inverse to mine. This is codified in Payoff
Principle 2, below.)

Definition 3 (Payoff). A payoff function assigns a value ∈ R to every atomic
game state. The payoff of the game state [γ | δ] is denoted as 〈γ | δ〉.

Payoff Principle 1 (Context independence). A payoff function 〈· | ·〉 is context
independent if for all atomic tenets γ, δ, γ′, δ′, γ′′, and δ′′ the following holds: If
〈γ′ | δ′〉 = 〈γ′′ | δ′′〉 then 〈γ, γ′ | δ′, δ〉 = 〈γ, γ′′ | δ′′, δ〉.

Context independence entails that the payoff for a state [γ, γ′ | δ, δ′] is solely
determined by the payoffs of its sub-states [γ | δ] and [γ′ | δ′].

Proposition 1. Let 〈· | ·〉 be a context independent payoff function and let
G = [γ, γ′ | δ, δ′] be an atomic game state. Then there exists an associative
and commutative function ⊕ over R such that 〈G〉 = 〈γ | δ〉 ⊕ 〈γ′ | δ′〉.

Proof. Assume that 〈γ | δ〉 = 〈γ′′ | δ′′〉 = x and 〈γ′ | δ′〉 = 〈γ′′′ | δ′′′〉 = y.
Then 〈γ′′, γ′′′ | δ′′, δ′′′〉 = 〈γ, γ′′′ | δ, δ′′′〉 = 〈γ, γ′ | δ, δ′〉 by applying context in-
dependence twice. Thus we may write 〈γ, γ′ | δ, δ′〉 = x ⊕ y. Associativity and
commutativity of ⊕ directly follow from the fact that tenets are multisets.

Remark. We will call ⊕ as specified in Proposition 1 the aggregation function
corresponding to 〈· | ·〉. In Giles’s original game the function ⊕ is ordinary
addition, which motivates our notation.

Payoff Principle 2 (Symmetry). A payoff function 〈· | ·〉 is symmetric if
〈γ | δ〉 = −〈δ | γ〉 for all atomic tenets γ and δ.

If 〈· | ·〉 is context independent and symmetric then the payoff of an arbitrary
atomic game state can be decomposed as follows:

〈p1, . . . , pn | q1, . . . , qm〉
= 〈p1 |〉 ⊕ . . .⊕ 〈pn |〉 ⊕ 〈| q1〉 ⊕ . . . 〈| qm〉
=− 〈| p1〉 ⊕ . . .⊕−〈| pn〉 ⊕ 〈| q1〉 ⊕ . . .⊕ 〈| qm〉 .

Note that symmetry implies that 〈γ | γ〉=0. In other words, the payoff is 0
in an atomic state where your tenet is identical to mine. Also note that every
context independent and symmetric payoff function induces via its aggregation
function an abelian group over (some subset of) the reals with 0 as neutral
element.

Proposition 2. Let 〈· | ·〉 be a context independent and symmetric payoff func-
tion. Then the corresponding aggregation function ⊕ commutes with −, i.e.,
−(x⊕ y) = −x⊕−y holds for all payoff values x and y.
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Proof. Let [γ1 | δ1] and [γ2 | δ2] be two atomic states such that 〈γ1 | δ1〉 = x and
〈γ2 | δ2〉 = y. Then

−(x⊕ y) = −(〈γ1 | δ1〉 ⊕ 〈γ1 | δ2〉) by definition of x, y
= −〈γ1, γ2 | δ1, δ2〉 by Proposition 1
= 〈δ1, δ2 | γ1, γ2〉 by Payoff Principle 1 (symmetry)
= 〈δ1 | γ1〉 ⊕ 〈δ2 | γ2〉 by Proposition 1
= −〈γ1 | δ1〉 ⊕ − 〈γ2 | δ2〉 by Payoff Principle 1 (symmetry)
= −x⊕−y by definition of x, y.

Given Proposition 2 we can rewrite the decomposition of the payoff for an
atomic state [p1, . . . , pn | q1, . . . , qm] as

〈p1, . . . , pn | q1, . . . , qm〉 =
⊕

1≤i≤m

〈| qi〉 −
⊕

1≤j≤n

〈| pi〉 .

Payoff Principle 3 (Monotonicity). A payoff function 〈· | ·〉 is monotone if for
all tenets γ,δ,γ′, δ′, γ′′, and δ′′ the following holds: if 〈γ′ | δ′〉 ≤ 〈γ′′ | δ′′〉 then
〈γ, γ′ | δ′, δ〉 ≤ 〈γ, γ′′ | δ′′, δ〉.

Proposition 3. Let 〈· | ·〉 be a monotone and context independent payoff func-
tion and ⊕ the corresponding aggregation function. Then for all payoff values
x, y, and z:
(i) if y ≤ z then x⊕ y ≤ x⊕ z,
(ii) ⊕ commutes with min and max, i.e., min(x⊕ y, x⊕ z) = x⊕min(y, z) and
max(x⊕ y, x⊕ z) = x⊕max(y, z).

Proof. (i) Let G = [γ | δ] , G′ = [γ′ | δ′], and G′′ = [γ′′ | δ′′] be three atomic
states such that 〈G〉 = x, 〈G′〉 = y, and 〈G′′〉 = z. Then the premise y ≤ z
amounts to 〈γ′ | δ′〉 ≤ 〈γ′′ | δ′′〉 and x ⊕ y ≤ x ⊕ z to 〈γ | δ〉 ⊕ 〈γ′ | δ′〉 ≤
〈γ | δ〉 ⊕ 〈γ′′ | δ′′〉 or, equivalently, to 〈γ, γ′ | δ, δ′〉 ≤ 〈γ, γ′′ | δ, δ′′〉, which is just
an instance of Payoff Principle 3.

(ii) We only consider the equation for min; the argument for max is analo-
gous. Assume that y ≤ z holds. Then, by (i), x⊕ y ≤ x⊕ z holds for all x and
thus also min(x⊕ y, x⊕ z) = x⊕ y = x⊕min(y, z). On the other hand, if z ≤ y
then x⊕ z ≤ x⊕ y and thus also min(x⊕ y, x⊕ z) = x⊕ z = x⊕min(y, z).

Definition 4 (Discriminating). We call a payoff function 〈· | ·〉 discriminating
if it is context independent, symmetric, and monotone.

We will see in Section 6 that under some very general conditions on the form
of logical dialogue rules, to be investigated in the next section, discriminating
payoff functions can be extended to arbitrary game states.

5 A general format of logical dialogue rules

We now turn our attention to the dialogue rules, referring to logical connectives.
Since we strive for full generality, we will not consider conjunction, disjunction,
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implication, etc., separately, but rather specify a generic format of dialogue rules
for arbitrary n-ary connectives (n ≥ 1). It turns out that two simple and gen-
eral ‘dialogue principles’, in combination with discriminating payoff functions,
suffice to guarantee that a truth functional semantics can be extracted from the
corresponding game.

Dialogue Principle 1 (Decomposition). A (dialogue) rule is decomposing if
in any corresponding round of the game exactly one occurrence of a compound
formula �(A1, . . . , An) is removed from the current state and (possibly zero)
occurrences of A1, . . . , An and of propositional constants are added to obtain
the successor state.

The decomposition principle entails that each occurrence of a formula can be
attacked at most once: it is simply removed from the state in the corresponding
round of the game. Moreover, an attack may or may not involve sub-formulas of
the attacked formula occurrence (and/or propositional constants) to be asserted
by the attacking player. For example, in Giles’s original game attacking A ⊃ B
requires the attacker to assert A (see Section 2). We require the reply to any
attack to follow at once. In our example of an attack to A ⊃ B in Giles’s
original game this means that an assertion of B will be added to the tenet of
the attacked player. In general, the attacking player may choose between one
of several available forms of attacking a particular formula, as witnessed by the
rule for (weak) conjunction in the original game. Likewise, as exemplified in
Giles’s rule for disjunction, a rule may also involve a choice on the side of the
defending player. Consequently, every round of the game may be thought of as
consisting of a sequence of three consecutive moves (we only consider the case
where you attack one of the formulas asserted by me, the other case is dual):

1. You pick an occurrence of a compound formula �(A1, . . . , An) from my
current tenet for attack (or possibly for dismissal, see below).

2. You choose the form of attack (if there is more than one form available).

3. I choose the way in which I want to reply to the given attack on the
indicated occurrence of �(A1, . . . An) (if such a choice is possible).

The corresponding rule may be depicted as shown in Figure 1. That there
is a forest rather than a single tree rooted in [Γ | ∆, �(A1, . . . , An)] reflects the
fact that you may choose between different forms of attack for formulas of the
form �(A1, . . . , An). In contrast, the branching in the trees corresponds to my
possible choices in defending against your particular attack.

To illustrate this dialogue rule format by a concrete example, consider the
case of your attack on my assertion of A ⊃ B in a variant of Giles’s game where
both forms of the principle of limited liability, LLD and LLA, are imposed (see
Section 3). The resulting version of the implication rule is depicted in Figure 2.
The right (degenerate) tree in Figure 2 corresponds to your declaration not to
attack the exhibited occurrence of A ⊃ B at all. We treat this case as a special
form of attack, where the ‘attacked’ formula occurrence is simply removed to
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[Γ | ∆, �(A1, . . . , An)]

[
Γ, X1

1 | ∆, Y 1
1

] [
Γ, X1

k1
| ∆, Y 1

k1

] · · · · · ·
[Γ | ∆, �(A1, . . . , An)]

[Γ, Xm
1 | ∆, Y m1 ]

[
Γ, Xm

kn
| ∆, Y mkm

]
where Xi

j and Y ij , for 1 ≤ j ≤ ki, 1 ≤ i ≤ m, are multisets of zero or more
occurrences of the formulas A1, . . . , An and of propositional constants.

Figure 1: Generic dialogue rule for your attack of my assertion of �(A1, . . . , An)

[Γ | ∆, A ⊃ B]

[Γ, A | ∆, B] [Γ | ∆,⊥]

[Γ | ∆, A ⊃ B]

[Γ | ∆]

Figure 2: Implication rule (your attack) with two-fold principle of limited lia-
bility

obtain the successor state. The first tree indicates a choice by me (i.e., the
defending player): I may either according to LLD assert ⊥ in reply to your
attack or else assert B in exchange for your assertion of A.

The second principle that we want to maintain in generalizing Giles’s game
is player neutrality, i.e., role duality: you and me have the very same obligations
and rights in attacking or defending a particular type of formula.

Dialogue Principle 2 (Duality). A rule δ� for my (your) assertion of a formula
of the form �(A1, . . . , An) is called dual to the rule δ′� for your (my) assertion
of �(A1, . . . , An), if δ� is obtained from δ′� by just switching the roles of the
players.

We will say that a dialogue game has dual rules if for every dialogue rule of
the game there is dual rule.

Figure 3 depicts the generic dialogue that is dual to that in Figure 1. Note
that now I am the one who, in attacking your assertion of �(A1, . . . , An), is free
to pick a tree of the forest, whereas the branching in the tree now refers to your
choices when defending against my attack.

[Γ, �(A1, . . . , An) | ∆]

[
Γ, Y 1

1 | ∆, X1
1

] [
Γ, Y 1

k1
| ∆, X1

k1

] · · · · · ·
[Γ, �(A1, . . . , An) | ∆]

[Γ, Y m1 | ∆, Xm
1 ]

[
Γ, Y mkn | ∆, X

m
km

]
where m, ki, X

i
j , and Y ij are defined in Figure 1.

Figure 3: Generic dialogue rule dual to that in Figure 1

Note that since the format of decomposing rules allows for a choice between
different types of attacks as well as corresponding replies, we may speak without
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loss of generality of the dialogue rule for a connective � if the game has dual
rules.

6 Lifting payoffs to valuations of general states

Following a well-known game theoretic principle, the maximal payoff value that
I can enforce at a game state S—for short: my enforcible payoff at S—amounts
to the minimum of enforcible payoffs at the successor states of S if it is your turn
to move at S as well as to the maximum of enforcible payoffs at the successor
states if it is my turn to move at S. Correspondingly, the function 〈· | ·〉 that
denotes my enforcible payoff at an arbitrary state in our dialogue games (where
a round involves a move by both of us in turn) is induced by the corresponding
payoff function for atomic game states and by the following min-max conditions
for non-atomic game states:

〈Γ | �(A1, . . . An),∆〉 = min
1≤i≤m

max
1≤j≤ki

〈
Γ, Xi

j | ∆, Y ij
〉

(1)

〈�(A1, . . . An),Γ | ∆〉 = max
1≤i≤m

min
1≤j≤ki

〈
Γ, Y ij | ∆, Xi

j

〉
(2)

where m, ki, X
i
j , and Y ij are defined as in Figure 1. We call this function the

extended payoff function.3

In Section 4 we have defined context independence, symmetry, and mono-
tonicity for payoff functions which, by definition, refer only to atomic game
states. However, by inspecting Definitions 1, 2, and 3 it is obvious that nei-
ther these properties, nor those expressed in Propositions 1, 2, and 3 depend
on the atomicity of the formulas in a corresponding tenet. Therefore we can
speak without ambiguity of context independence, symmetry, and monotonicity
for arbitrary functions from general states to real numbers, not just for proper
payoff functions.

Theorem 2. Let a be a dialogue game with a discriminating payoff function
and decomposing dual rules. Then the extended payoff function denoting my
enforcible payoff is context independent, symmetric, and monotone.

Proof. Given a discriminating payoff function 〈· | ·〉 with corresponding aggre-
gation function ⊕, we define a function v from (arbitrary) game states to the

3It can easily be checked that the above min-max conditions define a unique extension of
any discriminating payoff function to arbitrary game states if the dialogue rules are dual and
discriminating. As pointed out in [8] (for Giles’s game) this fact implies that the order of
rule applications is irrelevant: we arrive at the same enforcible payoff, independently of the
specific formula occurrence that is picked by you or me for attack at any given state.
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real numbers inductively as follows:

(a) v([| p]) = 〈| p〉

(b) v([| ∆]) =
⊕

B∈∆
v([| B]))

(c) v([Γ | ∆]) = v([| ∆])⊕−v([| Γ])

(d) v([| �(A1, . . . An)]) = min
1≤i≤m

max
1≤j≤ki

v(
[
Xi
j | Y ij

]
)

where m, ki, X
i
j , and Y ij are defined as in Figure 1.

We prove that v indeed calculates my enforcible payoff, i.e., it coincides with
〈· | ·〉 on atomic states and fulfills the min-max conditions. Moreover we show
that it is context independent, symmetric, and monotone.

It is straightforward to check that v([γ | δ]) indeed coincides with 〈γ | δ〉 for
all atomic states [γ | δ]. Taking our clue from this observation we will from now
on usually write 〈Γ | ∆〉 instead of v([Γ | ∆]), even if the tenets Γ and ∆ are not
atomic.

The symmetry of v([· | ·] immediately follows from its definition, where—
here as well as further on—we freely exploit the commutativity and associativity
of ⊕.

(−v([Γ | ∆] =)− 〈Γ | ∆〉= −(〈| ∆〉 ⊕ − 〈| Γ〉) by definition of v (c)
= −〈| ∆〉 ⊕ 〈| Γ〉 by Proposition 2(i)
= 〈∆ | Γ〉 by definition of v (c)

Note that the definition of v directly entails that, just like the payoff at
atomic states, also the enforcible payoff at arbitrary states can be obtained from
the enforcible payoffs for sub-states by applying ⊕: we will refer to merging of
and partitioning, respectively. More precisely:

〈Γ,Γ′ | ∆′,∆〉= 〈| ∆′,∆〉 ⊕ − 〈| Γ,Γ′〉 by definition of v (c)
= (〈| ∆′〉 ⊕ 〈| ∆〉)⊕−(〈| Γ′〉 ⊕ 〈| Γ〉) by definition of v (b)
= 〈| ∆′〉 ⊕ 〈| ∆〉 ⊕ − 〈| Γ′〉 ⊕ − 〈| Γ〉 by Proposition 2
= 〈Γ′ | ∆′〉 ⊕ 〈Γ | ∆〉 by definition of v (c).

Given this fact, it is easy to see that 〈· | ·〉 is context independent. Let
[Γ′ | ∆′], [Γ′′ | ∆′′] be two game states such that 〈Γ′ | ∆′〉 = 〈Γ′′ | ∆′′〉. Then for
arbitrary tenets Γ and ∆

〈Γ,Γ′ | ∆′,∆〉= 〈Γ′ | ∆′〉 ⊕ 〈Γ | ∆〉 by partitioning
= 〈Γ′′ | ∆′′〉 ⊕ 〈Γ | ∆〉 by assumption
= 〈Γ,Γ′′ | ∆′′,∆〉 by merging.

Monotonicity also straightforwardly carries over from atomic to arbitrary
game states. Let [Γ′ | ∆′], [Γ′′ | ∆′′] be two game states such that 〈Γ′ | ∆′〉 ≤
〈Γ′′ | ∆′′〉. Then for arbitrary tenets Γ and ∆

〈Γ,Γ′ | ∆′,∆〉= 〈Γ′ | ∆′〉 ⊕ 〈Γ | ∆〉 by partitioning
≤ 〈Γ′′ | ∆′′〉 ⊕ 〈Γ | ∆〉 by assumption and Proposition 3(i)
= 〈Γ,Γ′′ | ∆,∆′′〉 by merging.
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It remains to check that the min-max conditions are satisfied. For states of
the form [Γ | ∆, �(A1, . . . An)] we obtain min-max condition (1) as follows:

〈Γ | ∆, �(A1, . . . An)〉
= 〈Γ | ∆〉 ⊕ 〈| �(A1, . . . An)〉 by partitioning
= 〈Γ | ∆〉 ⊕min1≤i≤m max1≤j≤ki

(〈
Xi
j | Y ij

〉)
by definition of v (d)

= min1≤i≤m max1≤j≤ki
(
〈Γ | ∆〉 ⊕

〈
Xi
j | Y ij

〉)
by Proposition 3(ii)

= min1≤i≤m max1≤j≤ki
(〈

Γ, Xi
j | Y ij ,∆

〉)
by merging.

The dual min-max condition (2) exploits the symmetry of 〈· | ·〉:

〈Γ, �(A1, . . . An) | ∆〉
=−〈∆ | Γ, �(A1, . . . An)〉 by symmetry
=−min1≤i≤m max1≤j≤ki

(〈
∆, Xi

j | Y ij ,Γ
〉)

by min-max condition (1)
= max1≤i≤m min1≤j≤ki

(
−
〈
∆, Xi

j | Y ij ,Γ
〉)

by Proposition 3(ii)
= max1≤i≤min1≤j≤ki

(〈
Y ij ,Γ | ∆, Xi

j

〉)
by symmetry,

where m, ki, X
i
j , and Y ij are defined as in Figure 1.

Remark. The duality of dialogue rules is used only indirectly in the above proof:
it is reflected in the corresponding duality of the two min-max conditions and
in the symmetry of the extended payoff function.

Corollary 1. Let a be a game with discriminating payoff function and de-
composing dual rules. Then for each connective � there is a function f� such
that 〈| �(A1, . . . An)〉 = f� (〈| A1〉 , . . . , 〈| An〉) for all formulas A1, . . . , An, where
〈· | ·〉 denotes the extended payoff function of Theorem 2.

Proof. Applying min-max condition (1) as well as context independence and
symmetry, we obtain

〈| �(A1, . . . , An)〉
= min1≤i≤m max1≤j≤ki

〈
Xi
j | Y ij

〉
= min1≤i≤m max1≤j≤ki

(〈
| Y ij

〉
⊕
〈
Xi
j |
〉)

= min1≤i≤m max1≤j≤ki
(〈
| Y ij

〉
⊕−

〈
| Xi

j

〉)
= min

1≤i≤m
max

1≤j≤ki

(⊕
Y ∈Y i

j
〈| Y 〉 ⊕ −

⊕
X∈Xi

j
〈| X〉

)
,

where ⊕ is the aggregation function corresponding to 〈· | ·〉; m, ki, Y
i
j , and

Xi
j obviously again refer to the dialogue rule for �(A1, . . . An) as exhibited in

Figure 1. Note that the Xi
js and Y ij s are multisets containing only the for-

mulas A1, . . . , An and propositional constants, which of course are evaluated
to constant real numbers. Therefore that last expression defines the required
function f�.

To emphasize that f� is of type Rn 7→ R it can be rewritten as

f�(x1, . . . , xm) = min
1≤i≤n

max
1≤j≤ki

⊕
y∈Y i

j

y ⊕−
⊕
x∈Xi

j

x,

13



where Y ij is a multiset of real numbers defined with respect to the multiset of

formulas Y ij as follows: Y ij = {A | A ∈ Y ij }, where A = xi when A = Ai for

1 ≤ i ≤ n and A = 〈| A〉 if A is a propositional constant.
The duality of the rules entails 〈�(A1, . . . An) |〉 = −〈| �(A1, . . . An)〉 =

−f� (〈| A1〉 , . . . , 〈| An〉). By identifying payoff values with truth values we may
thus claim to have extracted a unique truth function for � from a given payoff
function and any decomposing dialogue rule for �. However, as we will see in
the next section, standard truth functions for many affected logics usually are
based on different sets of truth values. To obtain those truth functions from an
appropriate game we have to use certain bijections between payoff values and
truth values, as explained in Section 7.

7 Which logics are captured?

Revisiting Giles’s game

To illustrate the emergence of concrete logics as instances of the general frame-
work for games presented in Sections 4 to 6 we should first check whether Giles’s
original game for  Lukasiewicz logic is indeed covered. While the assignment of
risk 〈· | ·〉r to atomic states, as defined in Section 2, amounts to a discriminating
payoff function (according to Definition 4), the connection to the standard truth
functional semantics for  L∞ becomes clearer when we convert risk, that is to
be minimized, to payoff, that is to be maximized, and set

〈p1, . . . , pn | q1, . . . , qm〉 = −〈p1, . . . , pn | q1, . . . , qm〉r

= −
∑

1≤i≤m

〈qi〉r +
∑

1≤j≤n

〈pj〉r

= −
∑

1≤i≤m

−〈| qi〉+
∑

1≤j≤n

−〈| pj〉

=
∑

1≤i≤m

〈| qi〉 −
∑

1≤j≤n

〈| pj〉 .

Clearly, the aggregation function corresponding to 〈· | ·〉 is ordinary addition.
Figure 4 presents the dialogue rules in the format defined in Section 5. Because
of duality—which is obvious from Giles’s generic presentation of the rules—we
only have to consider your attacks on my assertions explicitly.

Note that discriminating payoff functions have 0 as neutral element. If we
want to match the functions f⊃, f&, f∧, and f∨ extracted from these dialogue
rules according to Corollary 1 with standard truth functions over [0, 1] we still
have to add 1 to the payoff. It is straightforward to check that, modulo that
transformation, the functions extracted from the rules in Figure 4 indeed coin-
cide with the standard truth functions for  L∞, reviewed in Section 2. We only
illustrate the case for implication. From the rule for my assertion of A ⊃ B,
which gives you a choice between asserting A to force me to assert A or else
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[Γ | ∆, A ⊃ B]

[Γ, A | ∆, B]

[Γ | ∆, A ⊃ B]

[Γ | ∆]

(a) Implication

[Γ | ∆, A&B]

[Γ | ∆, A,B] [Γ | ∆,⊥]

(b) Strong Conjunction

[Γ | ∆, A ∧B]

[Γ | ∆, A]

[Γ | ∆, A ∧B]

[Γ | ∆, B]

(c) Conjunction

[Γ | ∆, A ∨B]

[Γ | ∆, A] [Γ | ∆, B]

(d) Disjunction

Figure 4: Giles’s game with strong conjunction (your attack/my defense)

to declare that you will not attack this assertion at all, we obtain the following
instance of min-max condition (1):

〈| A ⊃ B〉 = min(〈A | B〉 , 〈|〉) = min(0, 〈| B〉 − 〈| A〉).

Adding 1 yields the truth function v(A ⊃ B) = 1 + 〈| A ⊃ B〉 = min(1, 1 +
〈| B〉 + 1 − (〈| A〉 + 1)) = min(1, 1 − v(A) + v(B)). The truth function for the
other connectives are obtained in the same manner.

Finite valued  Lukasiwicz logics

Instead of considering arbitrary risk (and therefore also arbitrary truth values)
from [0, 1], one may restrict the set of permissible risk values (equivalently: truth
values) to Vn = { i

n−1 | 1 ≤ i < n}, for some n ≥ 2. Since Vn is closed with
respect to addition, subtraction, as well as min and max, truth functions for all
finite valued  Lukasiewicz logics  Ln are obtained just like those for  L∞.

Note that by this observation we have also covered classical logic, which co-
incides with  L2. This means that classical logic can be modeled by a version of
Giles’s game where the experiments that determine the payoffs are not disper-
sive: every atomic proposition p is simply true or false, entailing a determinate
payment of 1€ for every assertion of p in case it is false. For every assignment
of risk values 0 or 1 to atomic formulas I have a strategy for avoiding (net)
payment in a game starting with my assertion of a formula A, if A is true under
that assignment; on the other hand, if A is false, my best strategy limits my
payment to you to 1€.

Continuous hoop logic

A more interesting case is continuous hoop logic CHL [4]. The truth value
set of CHL is (0, 1]; correspondingly the propositional constant ⊥, along with
negation (¬) is removed from the language. The truth functions for implication
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and strong conjunction are given as

v(A&B) = v(A) · v(B) v(A ⊃ B) =

{
v(A)
v(B) if v(A) ≥ v(B)

1 else.

At first sight it is unclear how to obtain these truth functions from dialogue
rules in our framework. However remember that in the game for  Lukasiewicz
logics—assuming that Giles’s “risk values” have already been translated into
payoff values by multiplying with −1—we still had to shift payoff values by 1 to
obtain the standard truth function �̃ from the function ⊕� that can be extracted
from the dialogue rule for the connective �. It will be helpful to visualize the
general form of this relation, as follows:

Vpayoff

f�−→ Vpayoff

µ↑ ↓σ
Vtruth

�̃−→ Vtruth

In the case of  L∞ we have Vtruth = [0, 1], Vpayoff = [−1, 0], µ(x) = x − 1, and
σ(x) = x + 1. In CHL we have Vtruth = (0, 1]. If we set µ(x) = log(x) and
accordingly Vpayoff = (−∞, 0] and ρ(x) = exp(x), then the implication rule of
Giles’s game (see Figure 4) yields the truth function for implication in CHL.
In the same manner addition (+) over (−∞, 0] maps into multiplication (·)
over (0, 1]. However, the function f& extracted from the dialogue rule for & of
Giles’s game (with risk inverted into payoff) is &(x, y) = max(−1, x−1 +y−1)
rather than the required +. (Note that the  Lukasiewicz t-norm that models &
in the standard semantics for  L∞ is obtained by adding +1. i.e. by applying
σ, as explained above.) To obtain a dialogue rule for & such that f& = +, we
have to drop the option to reply to an attack on A&B by asserting ⊥, instead
of asserting A and B. In other words we simply drop the principle of limited
liability LLD from the original rule for strong conjunction.

Abelian logic

So far we have only considered logics where the set of truth values is a proper
subset of R and where we had to explicitly transform payoff values into truth
values and vice versa. But there is an interesting and well studied logic, namely
Slaney and Meyer’s Abelian logic A [16, 17, 9] which coincides with one of
Casari’s logics for modeling comparative reasoning in natural language [1, 2],
where arbitrary real valued payoffs in a Giles-style game can be directly in-
terpreted as truth values. The truth value set of A indeed is R. The truth
functions for implication (⊃) is subtraction and the truth function for strong
conjunction (&) is addition over R. In addition, max and min serve as truth
functions for disjunction (∨) and weak conjunction (∧), respectively.

The game based characterization of A is particularly simple: just drop both
forms of the principle of limited liability, LLA and LLD, from Giles’s game. In
other words: every assertion made by the opposing player, including those of the
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form A ⊃ B, has to be attacked, moreover the only permissible reply to attack
an A&B is to assert both A and B. (The latter rule has already been used for
CHL, above.) The functions that can be extracted from the resulting dialogue
rules according to Corollary 1 are precisely those mentioned above: f⊃ = −,
f& = +, f∧ = min, and f∨ = max.

Alternative aggregation functions

In all the above examples, the aggregation function ⊕ corresponding to the
respective payoff function has been addition (+). This raises the question,
whether in fact ⊕ always has to be +. This question is of some interest, since
every truth function that can be directly extracted from a Giles-style game is
built up from ⊕, −, min, max, and constant real numbers corresponding to
propositional constants. (By ‘directly extracted’ we mean: disregarding further
transformations—like +1 for  L∞, and exp for CHL—that we may want to
apply to map payoffs into standard truth values for particular logics.)

To settle this question in the negative it suffices to check that for any as-
signment v of reals to atomic propositions

〈γ | δ〉 = 3

√∑
q∈δ

v(q)3 − 3

√∑
p∈Γ

v(p)3

is a discriminating payoff function with ⊕(x, y) = 3
√
x3 + y3 as corresponding

aggregation function. However, we do not know of any many-valued logic in
the literature where definitions of truth functions involve this or other possible
aggregation functions different from +.

8 Conclusion

Taking Giles’s characterization of  Lukasiewicz logic  L∞ in terms of a dialogue
game with final betting scheme as a starting point, we have defined a general con-
cept of ‘Giles-style’ dialogue games for many-valued logics. We have shown that
quite general conditions on payoff functions (context independence, symmetry,
and monotonicity) and on the format of logical dialogue rules (decomposition
and duality) guarantee that a truth functional semantics for a corresponding
logic can be extracted from the game. It can easily be checked by providing
simple counter examples, that in fact the three mentioned payoff principles and
the two mentioned dialogue principles are not only (jointly) sufficient, but (in-
dividually) necessary for the extraction of truth functions.

We emphasize that the inverse of Corollary 1 does not hold: many, if not
most interesting logics with a truth functional semantics defined over (a sub-
set of) the real numbers as set of truth values cannot be characterized by a
Giles-style game in the sense of this paper. This throws interesting light on
the alternative generalizations of Giles’s original game that have been presented
in [3], and explored in more detail in [6] and [5]. There, in order to arrive at
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a characterization of Gödel logic as well as Product logic, we considered two
different types of states that may occur in a given game. These types of states
correspond to strict and non-strict comparison of real numbers (</≤), respec-
tively. The results of the current paper can be interpreted as demonstrating
that such deviations are unavoidable, at least when other desirable features of
Giles’s game are kept in place.

These observations trigger a host of questions for further investigation: Can
the range of logics that are extractable from a Giles-style game be characterized
concisely? What kind of extensions and variations of the game are needed to
characterize other important many-valued logics in a similar manner? Can the
correspondence between payoff values and truth values be maintained even if
the truth functions are not continuous (like for  L∞, CHL, A) or result from
continuous functions by restriction to finite subsets of R (like for  Ln)? Perhaps
most interestingly: can the translation of Giles’s dialogue rules into logical rules
of a cut-free (hypersequent) calculus, described in [8], be generalized to other
variants and types of games?
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