System Feature Description: Importing Refutations into the GAPT Framework
PxTP Workshop, Manchester

Cvetan Dunchev, Alexander Leitsch, Tomer Libal, Martin Riener, Mikheil Rukhaia, Daniel Weller and Bruno Woltzenlogel-Paleo

June 30, 2012
1 Introduction

2 The TAP Prover

3 Replaying

4 Example

5 Conclusion
Context: GAPT Framework

GAPT = General Architecture for Proofs and Theorems

provides (in different stages of development):

- Languages
 (Typed Lambda Calculus, First Order Logic, Higher Order Logic)
- Calculi (various Sequent Calculi, Resolution)
- Algorithms (Unification, Matching, ...)
- Interactive theorem prover (TAP)
- Proof Transformations
 (Proof Skolemization, Cut-elimination by Resolution, Herbrand Sequent Extraction)
Short overview of the CERES method

- Preprocessing of the input Sequent Calculus proof (Skolemization, Regularization)
- Extraction of the characteristic clause set
- Refutation of the characteristic clause set by an external resolution theorem prover
- Constructing proof projections to clauses from the characteristic clause set
- Constructing a proof in atomic-cut normal form from the refutation and the projections
Problems with Proof Parsing

- Variable renaming
- Substitutions not given
- Variety of inference rules
- Contraction of several inferences into one
- Incomplete or outdated documentation of the inference rules
Example

Clause set: \[
\{ \vdash P(a); P(x) \vdash P(f(x)); \vdash f(x) = g(x); P(g(a)) \vdash \} \]

Refutation:

\[
\begin{align*}
\vdash P(a) & \quad P(x) \vdash P(f(x)) \\
\vdash P(f(a)) & \quad Res \; \sigma = \{x \mapsto a\} \\
\vdash f(x) = g(x) & \quad Para \; \sigma = \{x \mapsto a\} \\
\vdash P(g(a)) & \quad P(g(a)) \vdash \\
\end{align*}
\]
Example

Prover9:

1. $f(x) = g(x)$. [assumption].
2. $-P(x) \mid P(f(x))$. [assumption].
3. $-P(x) \mid P(g(x))$. [copy(2), rewrite([1(2)])].
4. $P(a)$. [assumption].
5. $-P(g(a))$. [assumption].
6. $P(g(a))$. [hyper(3,a,4,a)].
7. F. [resolve(6,a,5,a)].
Example

SPASS:

1[0:Inp] || -> equal(g(U),f(U))*
2[0:Inp] P(U) || -> P(f(U))*
3[0:Inp] || -> P(a)*
4[0:Inp] || P(g(a))* -> .
5[0:Rew:1.0,4.0] || P(f(a))* -> .
7[0:Res:2.1,5.0] P(a) || -> .
8[0:SSi:7.0,3.0] || -> .
Example

Vampire:

7. $false (1:0) [subsumption resolution 6,3]
3. ’P’(a) (0:2) [input]
6. ~’P’(a) (1:2) [resolution 5,4]
4. ~’P’(g(a)) (0:3) [input]
5. ’P’(g(X0)) | ~’P’(X0) (0:5) [definition unfolding 2,1]
1. f(X0) = g(X0) (0:5) [input]
2. ’P’(f(X0)) | ~’P’(X0) (0:5) [input]
Example

Vampire TPTP output:

```prolog
fof(f7,plain,($false),
   inference(subsumption_resolution,[],[f6,f3])).
fof(f3,axiom,('P'(a)),
   file('simple.tptp',unknown)).
fof(f6,plain,(~'P'(a)),
   inference(resolution,[],[f5,f4])).
fof(f4,axiom,(~'P'(g(a))),
   file('simple.tptp',unknown)).
fof(f5,plain,(( ! [X0] : ('P'(g(X0)) | ~'P'(X0)) )),
   inference(definition_unfolding,[],[f2,f1])).
fof(f1,axiom,(( ! [X0] : (f(X0) = g(X0)) )),
   file('simple.tptp',unknown)).
fof(f2,axiom,(( ! [X0] : ('P'(f(X0)) | ~'P'(X0)) )),
   file('simple.tptp',unknown)).
```
Common Structure

- Inference label by: clause id, premise ids, clause, rule name
Problem

- Parse proof of an external resolution prover
- Fill in missing information
- Normalize proof to use only resolution and paramodulation

Approach

- Extract premises and target clause from proof step
- Use internal prover TAP to reprove each single step (forward resolution)
- Construct full refutation from the steps
The TAP Prover

- Simple resolution prover
- Intended for interactive use and experiments
- Commands based
Configuration: State + Commands Queue + Data
State: clause set + guidance map
Command: Function from configuration to list of successor states (possibly empty)
Data: information passed only to following command, not stored in state
Commands for original use (interactive theorem prover)

- Resolve
- Paramodulation
- Factor
- Variants
- DeterministicAnd

- SetStream
- SetTargetClause
- InsertResolvent
- RefutationReached
Changes for Replaying

Changes

- Store resolution proofs instead of clauses
- Add new commands: Prover9Init, Replay, guidance commands

Prover9Init

- Pass clause set to theorem prover and parse result
- Schedule InsertResolvent and AddGuidedInitialClause command for each assumption
- Schedule Factor command for each factoring inference
- Schedule Replay command for every other inference step
Replay

- Create new TAP instance
- Get proofs for premise clauses from guidance map
- Schedule SetClauseWithProof command for the premise clauses
- Schedule SetTargetClause command for the target clause
- Initialize prover to use Resolution and Paramodulation for proof search
- Start proof search
- Add proof found to guidance map and schedule InsertResolvent command for proof of target clause
Changes for Replaying

Guidance Map Management

- setClauseWithProof
- addGuidedInitialClause
- addGuidedClauses
- getGuidedClauses
- isGuidedNotFound
Example

Command Queue after Prover9Init

AddGuidedInitialClause(1, List(\(= (f(x), g(x))\)))
InsertResolvent
AddGuidedInitialClause(2, List(\(\neg P(x), P(f(x))\)))
InsertResolvent
Replay(List(0, 2, 1))
AddGuidedInitialClause(4, List(\(P(a)\)))
InsertResolvent
AddGuidedInitialClause(5, List(\(\neg P(g(a))\)))
InsertResolvent
Replay(List(0, 3, 4))
Replay(List(0, 6, 5))
Replayed Example

\[
\begin{align*}
& \vdash f(x) = g(x) \quad \text{Variant} \\
& \vdash f(x_6) = g(x_6) \\
& \vdash P(a) \\
\end{align*}
\]

\[
\begin{align*}
& P(x_5) \vdash P(f(x_5)) \\
& \vdash P(a) \\
& \vdash P(g(a)) \\
\end{align*}
\]

\[
\begin{align*}
& P(x_6) \vdash P(g(x_5)) \quad \text{Variant} \\
& P(x_{10}) \vdash P(g(x_{10})) \quad \text{Variant} \\
& \vdash P(a) \\
& \vdash P(g(a)) \quad Res \\
\end{align*}
\]

Para \(\sigma = \{ x_6 \mapsto x_5 \} \)

Res \(\sigma = \{ x_{10} \mapsto a \} \)

Cvetan Dunchev, Alexander Leitsch, TomSystem Feature Description: Importing R
Pitfalls

- Forward reasoning prevents some strategies
 - Factorization can not only be applied after an inference step
 - No reflexivity rule: add reflexivity axiom or unfold rule
 - Equations might get flipped
 - Expectation that a single inference is provable in few steps not met
Conclusion and Future Work

- Normalized proof with instantiations needed for cut-elimination and Herbrand sequent extraction
- Replay of Prover9 proofs works for small examples, performance issues for larger ones
- Macro rules with large numbers of premises need specialized handling (necessary for Vampire/SPASS/E/... integration)
Thanks for the attention!