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Instantiation



Instantiation in a Nutshell

Consider the clause:

14x ‰ x2 ` 49_ ppxq

Solving it via axioms is hard.

Suppose we guess x “ 7:

14 ¨ 7 ‰ 72 ` 49_ pp7q

ù

evaluate

98 ‰ 98_ pp7q

ù

remove trivial inequality

pp7q
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Instantiation

• Find instance that makes theory part of a clause false

• Substitute and delete theory part

• Rule
P _D
Dθ

theory instance

• P pure (all constant symbols have a fixed interpretation)

• Pθ unsatisfiable in the theory
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Instantiation

• Why pure?

ñ We pass  P to an SMT solver!

•  P has a model: construct θ from model

• 14x “ x2 ` 49 has a model for x “ 7

• θ “ tx ÞÑ 7u

• Model construction needs purity (for now)
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Abstraction

• Suppose we want to resolve

rp14yq

 rpx2 ` 49q _ ppxq

ñ No pure literals

• Abstract to

z ‰ 14y _ rpzq

u ‰ x2 ` 49_ rpuq _ ppxq
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Problems with Abstraction

• Eager application too expensive, fold into unification

• Instantiation undoes abstraction:

pp1, 5q

ù

abstract

x ‰ 1_ y ‰ 5_ ppx, yq

ù

instantiate

pp1, 5q
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Trivial Literals

• Form: x ‰ t (x not in t)

• Pure

• x only occurs in other trivial literals or other non-pure literals
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Updated Rule

P _D
Dθ

theory instance

• Pθ unsatisfiable in the theory

• P pure

• P does not contain trivial literals
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Improvements to Vampire

SMT-LIB

Logic New solutions Uniquely solved

ALIA 1 0

LIA 14 0

LRA 4 0

UFDTLIA 5 0

UFLIA 28 14

UFNIA 13 4
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Ongoing Work



Theory Instantiation for Arrays

Axioms (universally closed):

• selectpstorepA, I,Eq, Iq “ E

• I ‰ J Ñ selectpstorepA, I,Eq, Jq “ selectpA, Jq

• A ‰ B Ñ selectpA, skpA,Bqq ‰ selectpB, skpA,Bqqq

Sorts:
A : arraypα, βq

I, J : α

E : β

select : arraypα, βq ˚ α ą β

store : arraypα, βq ˚ α ˚ β ą arraypα, βq
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Theory Instantiation for Arrays

• Focus on: arrayrint, ints

• Example clause:

selectpA, 0q ď selectpA, 1q_

selectpA, 1q ď selectpA, 2q_

ppAq

• SMT Problem:

selectpa, 0q ą selectpa, 1q ^ selectpa, 1q ą selectpa, 2q
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Theory Instantiation for Arrays

CVC4 model (term):

(define-fun a () (Array Int Int)

(store (store ((as const (Array Int Int)) 0) 0 1) 2 (- 1)))

Clause substitution:

A “ storepstorepconstarrp0q, 0, 1q, 2,´1q

Theory instantiation:

ppstorepstorepconstarrp0q, 0, 1q, 2,´1qq

New axiom?

selectpconstarrpIq, Jq “ I

11



Theory Instantiation for Arrays

Z3 model (decision tree):

(define-fun a () (Array Int Int)

( as-array k!0))

(define-fun k!0 ((x!0 Int)) Int

(ite (= x!0 2) 7718

(ite (= x!0 1) 7719

(ite (= x!0 0) 7720

7718))))
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Decision Tree

 C1

 C2 C2

C1

 C3 C3

...
...

...
...

Path to red node: C1 ^ C3
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Translations for Decision Trees

• Conditions as guards:

Infer multiple instances together:

X ‰ 2_ selectpA,Xq ‰ 7718_ ppAq

X “ 2_X ‰ 1_ selectpA,Xq ‰ 7719_ ppAq

X “ 2_X “ 1_X ‰ 0_ selectpA,Xq ‰ 7719_ ppAq

(can be simplified here, not clear if possible in general)
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Translations for Decision Trees

• Conditional + FOOL:

selectpA,Xq “ $itepX “ 2, 7718,

$itepX “ 1, 7719,

$itepX “ 0, 7720, 7718qqq
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Translations for Decision Trees

• Conversion to term:

Same as for CVC4, but trees like

$itepX ă 0, 0,

$itepX ă 100, 1, 0qq

become large.
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Guarded Instantiation

• Add guard to rule:

P _D
 G_Dθ

theory instance

• G^ Pθ unsatisfiable in the theory

• P pure

• P does not contain trivial literals
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Conclusion



Conclusion

Summary:

• Instantiation helps for arithmetic reasoning

• Arrays require refinement of the rule

• Guarded instantiation can be used to describe models

Future work:

• Evaluation of array model construction methods

• What about multiple / infinite solutions?

e.g. extract solved linear equation system from Z3

• What about uninterpreted symbols?

SMT problem now has universal quantifiers
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Conclusion

Summary:

• Instantiation helps for arithmetic reasoning

• Arrays require refinement of the rule

• Guarded instantiation can be used to describe models

Future work:

• What about datatypes?

• Other ways to generalize the model?

Unsat core, partial models etc.

Thanks!
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Bonus Slides



Uninterpreted constants

• Consider the clause

c`X “ 0_ ppXq

• Can be seen as skolemized form of

DC@Y.C `X “ 0_ ppXq

• Pick C `X “ 0 for theory instantation and negate

• We obtain @CDY.C `X ‰ Y

• After Skolemization, we look for a (finite) model of:

C ` skpCq “ 0
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The issue with constarr(I)

• A series of store terms describes a finite number of mutations

of an array

• storep¨ ¨ ¨ constarrp0qq “ constarrp1q not solvable in pure

theory of arrays

• Might generate lots of unsolvable problems
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Partial Function

• Partial functions extended to total functions

• Consider the clause p1´ xq ¨ 1
p1´xq ‰ 0_ ppxq:

p1´xq ¨ 1
p1´xq “ 0 has a z3 model x “ 1. We would infer pp1q.

• Can be seen as instantation guarded by x ‰ 1.

Instance removed by tautology elimination.
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