Instantiation for Theory Reasoning in Vampire

Giles Reger Martin Riener Vampire Workshop 2018 July 13, Oxford, UK

School of Computer Science, University of Manchester, UK

$$14x \neq x^2 + 49 \lor p(x)$$

Solving it via axioms is hard.

Suppose we guess x = 7:

$$14x \neq x^2 + 49 \lor p(x)$$

Solving it via axioms is hard.

Suppose we guess x = 7:

 $14 \cdot 7 \neq 7^2 + 49 \lor p(7)$

$$14x \neq x^2 + 49 \lor p(x)$$

Solving it via axioms is hard.

Suppose we guess x = 7:

$$14 \cdot 7 \neq 7^2 + 49 \lor p(7)$$

$$\begin{cases} \\ \\ \\ 98 \neq 98 \lor p(7) \end{cases}$$
evaluate

$$14x \neq x^2 + 49 \lor p(x)$$

Solving it via axioms is hard.

Suppose we guess x = 7:

$$\begin{array}{cccc} 14 \cdot 7 \neq 7^2 + 49 \lor p(7) \\ & & & \\ & & \\ 98 \neq 98 \lor p(7) \\ & &$$

- Find instance that makes theory part of a clause false
- Substitute and delete theory part
- Rule

$$\frac{P \lor D}{D\theta} \text{ theory instance}$$

- P pure (all constant symbols have a fixed interpretation)
- $P\theta$ unsatisfiable in the theory

• Why pure?

- Why pure?
 - \Rightarrow We pass $\neg P$ to an SMT solver!

• Why pure?

 \Rightarrow We pass $\neg P$ to an SMT solver!

• $\neg P$ has a model: construct θ from model

•
$$14x = x^2 + 49$$
 has a model for $x = 7$

•
$$\theta = \{x \mapsto 7\}$$

• Why pure?

 \Rightarrow We pass $\neg P$ to an SMT solver!

- $\neg P$ has a model: construct θ from model
 - $14x = x^2 + 49$ has a model for x = 7

•
$$\theta = \{x \mapsto 7\}$$

• Model construction needs purity (for now)

• Suppose we want to resolve

r(14y) $\neg r(x^2 + 49) \lor p(x)$

 \Rightarrow No pure literals

• Suppose we want to resolve

r(14y) $\neg r(x^2 + 49) \lor p(x)$

- \Rightarrow No pure literals
- Abstract to

 $z \neq 14y \lor r(z)$ $u \neq x^2 + 49 \lor \neg r(u) \lor p(x)$

Problems with Abstraction

• Eager application too expensive, fold into unification

Problems with Abstraction

- Eager application too expensive, fold into unification
- Instantiation undoes abstraction:

$$p(1,5)$$

$$\begin{cases} p(1,5) \\ g \\ x \neq 1 \lor y \neq 5 \lor p(x,y) \\ g \\ p(1,5) \end{cases}$$
instantiate

Trivial Literals

- Form: $x \neq t$ (x not in t)
- Pure
- x only occurs in other trivial literals or other non-pure literals

$$\frac{P \lor D}{D\theta}$$
 theory instance

- $P\theta$ unsatisfiable in the theory
- P pure
- $\bullet \ P$ does not contain trivial literals

Improvements to Vampire

SMT-LIB		
Logic	New solutions	Uniquely solved
ALIA	1	0
LIA	14	0
LRA	4	0
UFDTLIA	5	0
UFLIA	28	14
UFNIA	13	4

Ongoing Work

Axioms (universally closed):

- select(store(A, I, E), I) = E
- $I \neq J \rightarrow select(store(A, I, E), J) = select(A, J)$
- $\bullet \ A \neq B \rightarrow select(A, sk(A, B)) \neq select(B, sk(A, B))) \\$

Sorts: A : $array(\alpha, \beta)$ I, J : α E : β select : $array(\alpha, \beta) * \alpha > \beta$ store : $array(\alpha, \beta) * \alpha * \beta > array(\alpha, \beta)$

• Focus on: array[int, int]

- Focus on: array[int, int]
- Example clause:

```
\begin{aligned} select(A,0) \leqslant select(A,1) \lor \\ select(A,1) \leqslant select(A,2) \lor \\ p(A) \end{aligned}
```

- Focus on: array[int, int]
- Example clause:

```
\begin{aligned} select(A,0) \leqslant select(A,1) \lor \\ select(A,1) \leqslant select(A,2) \lor \\ p(A) \end{aligned}
```

• SMT Problem:

 $select(a, 0) > select(a, 1) \land select(a, 1) > select(a, 2)$

CVC4 model (term):

(define-fun a () (Array Int Int) (store (store ((as const (Array Int Int)) 0) 0 1) 2 (- 1))) Z3 model (decision tree): (define-fun a () (Array Int Int) (_ as-array k!0)) (define-fun k!0 ((x!0 Int)) Int (ite (= x!0 2) 7718 (ite (= x!0 1) 7719 (ite (= x!0 0) 7720 7718))))

Decision Tree

Decision Tree

Path to red node: $C_1 \land \neg C_3$

Translations for Decision Trees

• Conditions as guards:

Infer multiple instances together:

$$X \neq 2 \lor select(A, X) \neq 7718 \lor p(A)$$

$$X = 2 \lor X \neq 1 \lor select(A, X) \neq 7719 \lor p(A)$$

$$X = 2 \lor X = 1 \lor X \neq 0 \lor select(A, X) \neq 7719 \lor p(A)$$

(can be simplified here, not clear if possible in general)

Translations for Decision Trees

• Conditional + FOOL:

$$select(A, X) = \$ite(X = 2,7718,\$ite(X = 1,7719,\$ite(X = 0,7720,7718)))$$

Translations for Decision Trees

• Conversion to term:

Same as for CVC4, but trees like

te(X < 0, 0,te(X < 100, 1, 0))

become large.

Guarded Instantiation

• Add guard to rule:

$$\frac{P \lor D}{\neg G \lor D\theta} \text{ theory instance}$$

- $G \wedge P\theta$ unsatisfiable in the theory
- P pure
- P does not contain trivial literals

Conclusion

Conclusion

Summary:

- Instantiation helps for arithmetic reasoning
- Arrays require refinement of the rule
- Guarded instantiation can be used to describe models

Future work:

- Evaluation of array model construction methods
- What about multiple / infinite solutions? e.g. extract solved linear equation system from Z3
- What about uninterpreted symbols? SMT problem now has universal quantifiers

Conclusion

Summary:

- Instantiation helps for arithmetic reasoning
- Arrays require refinement of the rule
- Guarded instantiation can be used to describe models

Future work:

- What about datatypes?
- Other ways to generalize the model? Unsat core, partial models etc.

Thanks!

Uninterpreted constants

• Consider the clause

$$c + X = 0 \lor p(X)$$

• Can be seen as skolemized form of

$$\exists C \forall Y.C + X = 0 \lor p(X)$$

- Pick C + X = 0 for theory instantation and negate
- We obtain $\forall C \exists Y.C + X \neq Y$
- After Skolemization, we look for a (finite) model of: C + sk(C) = 0

The issue with constarr(I)

- A series of store terms describes a finite number of mutations of an array
- $store(\cdots constarr(0)) = constarr(1)$ not solvable in pure theory of arrays
- Might generate lots of unsolvable problems

Partial Function

- Partial functions extended to total functions
- Consider the clause $(1-x) \cdot \frac{1}{(1-x)} \neq 0 \lor p(x)$: $(1-x) \cdot \frac{1}{(1-x)} = 0$ has a z3 model x = 1. We would infer p(1).
- Can be seen as instantation guarded by x ≠ 1. Instance removed by tautology elimination.