Advanced Proof Viewing in PROOFTOOL UITP 2014

Tomer Libal, Martin Riener, Mikheil Rukhaia

July 17, 2014

Martin Riener

Advanced Proof Viewing in PROOFTOO

Jul 17, 2014 1 / 22

2 Requirements for a complimentary viewer

Martin Riener

Advanced Proof Viewing in PROOFTOO

Context

- Full sequent calculus formalizations of mathematical proofs are large
- Often defined schematically i.e. contains structural regularities
- Proof analysis applies several transformations:
 - e.g.: skolemization, cut-elimination, Herbrand formula extraction

Question occurring during analysis

- Are there easily removable cuts?
- Which strong quantifier rule is related to which skolem symbol?
- How do skolem symbols propagate through the proof?
- How do we identify individual inferences from the specification after several proof transformations?

Approach

- Proof visualization helps to answer these questions
- Original Gentzen notation alone is insufficient
- Use a second view (Sunburst Tree) to compensate the drawbacks
- Implementation for GUI Prooftool

Pros of the Gentzen notation

- Detailed low-level view
- Directly reflects the calculus
- Widespread & easy to understand

Cons of the Gentzen notation

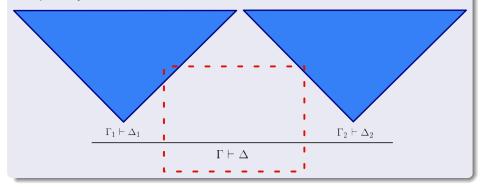
- Focus on single inferences
- Large contexts obscure the inference information
- $\bullet\,$ Layout grows mainly horizontally (empirically width:height $\approx\,10{:}1)$
- Locating / tracing inferences is hard

Commutativity

- Axioms: 0 + 1 = 1, 1 + 0 = 1, x + (y + z) = (x + y) + z
- We prove: x + y = y + x
- 3 instances of Induction schema in antecedent of end-sequent IND: $S(0) \land \forall x(S(x) \rightarrow S(x+1)) \rightarrow \forall xS(x)$
- ca. 70 inferences, mostly equational reasoning, 1 cut

Drawbacks of the Gentzen notation (1)

Wide proofs leading into binary rules prevent display of auxiliary formulas and primary formulas on the same screen



Problem Description

Drawbacks of the Gentzen notation (2)

Context causes wide horizontal gaps in binary rules

 $(x3 + (1 + y2)) = ((1 + y2) + x3) \vdash (x3)$

 $\begin{array}{c} (x00+1)=(1+x00)\vdash(x00+1)=(1+x00)\\ \hline (\forall x)((x+1)=(1+x))\vdash(x00+1)=(1+x00)\\ \hline (\forall x)((x+1)=(1+x))\vdash(\forall x)((x+1)=(1+x)) \end{array}$

 $\vdash ((x3 + 1) + y2) = (x3 + (1 + y2))$

 $\frac{((((0+1) = (1+0)) \land (\forall x)(((x+1) = (1+x)) \supset (((x+1)+1) = (1+(x+1))))) \supset (\forall x)((x+1) = (1+x))), (\forall y)((x3+y) = (y+x))}{((((0+1) = (1+0)) \land (\forall x)(((x+1) = (1+x)) \supset (((x+1)+1) = (1+(x+1))))) \supset (\forall x)((x+1) = (1+x))), (\forall y)((x3+y) = (y+x))}{((((0+1) = (1+0)) \land (\forall x)(((x+1) = (1+x)) \supset (((x+1)+1) = (1+(x+1)))))) \supset (\forall x)((x+1) = (1+x))) \vdash ((\forall y)((x3+y) = (y+x))} \\ \frac{((((0+1) = (1+0)) \land (\forall x)(((x+1) = (1+x)) \supset (((x+1)+1) = (1+(x+1)))))) \supset (\forall x)((x+1) = (1+x))) \vdash ((\forall y)((x3+y) = (y+x))}{((((0+1) = (1+0)) \land (\forall x)(((x+1) = (1+x)) \supset (((x+1)+1) = (1+(x+1)))))) \supset (\forall x)((x+1) = (1+x))) \vdash (\forall x)((\forall y)((x+y) = (y+x)) \supset (\forall y)(((x+1)+y) = (y+(x+1)))))} \\ + y) = (y+0) \land (\forall x)((\forall y)((x+y) = (y+x)) \supset (\forall y)(((x+1)+y) = (y+(x+1))))) \supset (\forall x)(\forall y)((x+y) = (y+x))) \vdash (\forall x)(\forall y)((x+y) = (y+x)))$

• • • • • • • • • • • • • •

Drawbacks of the Gentzen notation (3)

"Pseudo-linear" reasoning (trivial chains of $(\to: I)$ or (=: I)/(=: r)) grows to the side

Advanced Proof Viewing in PROOFTOO

Jul 17, 2014

э.

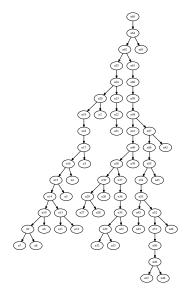
10 / 22

イロト イ押ト イヨト イヨト

Criteria

- Displaying of large proofs
- Distinguishing between different kinds of rules
- Easy navigation
- Traceable formula ancestors
- Focus on different aspects of the proof
- Draw information from the structural shape of the proof

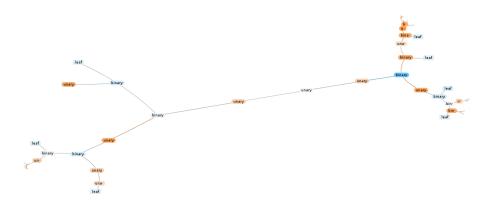
Alternatives: GraphViz



Jul 17, 2014 12 / 22

æ

Alternatives: Hyperbolic Tree

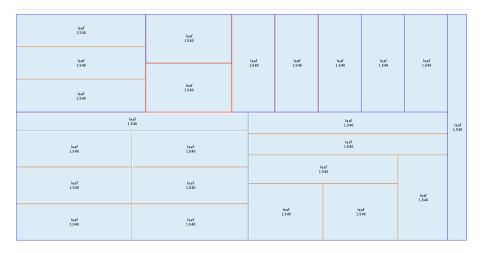


Advanced Proof Viewing in PROOFTOO

Jul 17, 2014

13 / 22

Alternatives: Rectangular Treemap



Advanced Proof Viewing in PROOFTOO

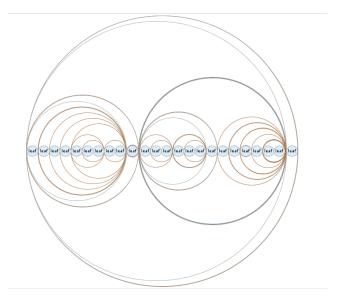
Jul 17, 2014

3

14 / 22

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Alternatives: Circular Treemap

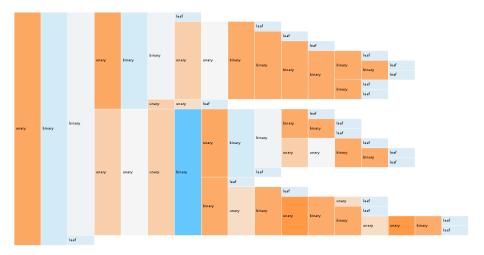


Jul 17, 2014 15 / 22

∃ >

æ

Alternatives: Icicle Tree



Martin Riener

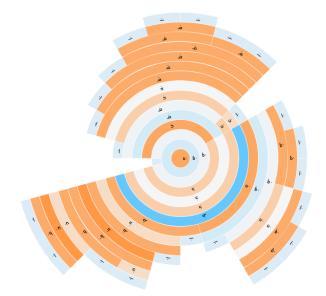
Advanced Proof Viewing in PROOFTOO

Jul 17, 2014

16 / 22

æ

Alternatives: Sunburst



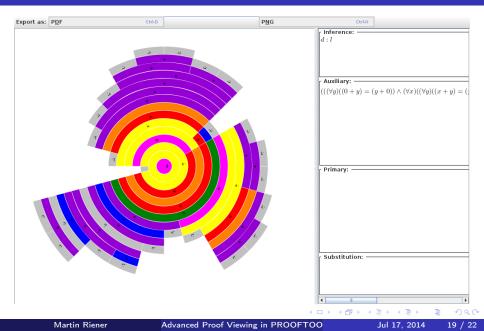
Advanced Proof Viewing in PROOFTOO

Jul 17, 2014 17/22

Inference View

- Necessary because sequents are invisible in Sunburst View
- Shows primary and auxiliary formulas
- Room for additional information (quantifier instantiations, etc.)

Sunburst within GAPT



Conclusion

- The Gentzen layout needs supporting viewers to handle large proofs better
- Sunburst Trees + Single inference information can provide complementary information

Open Questions

- Criteria definition is empirical what other requirements are there in different contexts?
- Sunburst View works well with trees what about DAGs? Degenerative example: refutation of {⊢ P(0); P(fⁿ(y)) ⊢; P(z) ⊢ P(f(z))}
- How do we improve navigation in face of information loss by transformations?

Thanks for your attention!

Martin Riener

Advanced Proof Viewing in PROOFTOO

Jul 17, 2014 22 / 22

э