
Applications of Higher-Order
Cut-Elimination

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doctor of Technical Sciences

within the

Vienna PhD School of Informatics

by

Martin Riener
Registration Number 9927068

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Univ.-Prof. Dr. Alexander Leitsch

External reviewers:
PD Dr. Christoph Benzmüller
Prof. Dr. Michael Kohlhase

Wien, 20.07.2017
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien ‚ Karlsplatz 13 ‚ Tel. +43-1-58801-0 ‚ www.tuwien.ac.at

Declaration of Authorship

Martin Riener
Ernst Melchior Gasse 11/3/5, 1020 Wien

I hereby declare that I have written this Doctoral Thesis independently, that I have com-
pletely specified the utilized sources and resources and that I have definitely marked all parts of
the work - including tables, maps and figures - which belong to other works or to the internet,
literally or extracted, by referencing the source as borrowed.

(Place, Date) (Signature of Author)

i

Acknowledgements

Out of the long list of people making this thesis possible, my deepest gratitude goes to my
advisor Alex Leitsch. His wide knowledge, guidance and patience has been the foundation
on which I could explore the winded paths of logic where, as he once said in a little different
context, “everything else is just a practical problem”.

I am equally grateful to my wonderful colleagues from Vienna with whom I shared the
experience: Cvetan Dunchev, David Cerna, Gabriel Ebner, Stefan Hetzl, Tomer Libal, Giselle
Reis, Christoph Roschger, Mikheil Rukhaia and Bruno Woltzenlogel-Paleo. Also without my
incredible current team in Nancy, this thesis would not have happend. The discussions with
Jasmin Blanchette, Damien Doligez, Pascal Fontaine, Stephan Merz and Simon Cruanes were
invaluable and gave me essential insights from completely different points of view. A thousand
thanks go also to my reviewers Christoph Benzmüller and Michael Kohlhase for fighting through
this highly technical and exhausting material.

Finally, my thanks go to my family and friends, especially to my parents Krista and Alfons,
my sister Ingrid, to Tamás Schmidt and Mani Esmaeili. A special place in my heart is occupied
by Sylwia Polberg, with whom I am happy to share my feelings as well as my thoughts, even
when they are as obscure as proof theory.

iii

Abstract

The method of Cut-Elimination by Resolution (CERES) [7,8] bridges the fields of proof theory
and automated theorem proving. Its proof theoretic value lies in the extraction of information
from a theorem beyond its mere truth while its contribution to the automated theorem proving
community lies in the generation of hard problems for which, at least in theory, a proof can
always be found. An example for such a successful analysis in first-order logic was the formal-
ization of Fürstenberg’s proof of the infinity of primes [5].

So far, CERESω, the extension of CERES to higher-order logic was missing an applica-
tion of equivalent complexity. This thesis develops the CERESω method further, improving
the interplay with automated higher-order theorem provers. Furthermore we explore the use of
expansion proofs as a concise representation of witness terms for weak quantifiers, the essential
information generated by CERES. Moreover, we introduce CERESω“, a variant which targets
the fragment of functional quantification with first-order equality and definition rules. Finally,
we introduce LLK, a LATEX inspired proof input language and Sunburst trees, a global visualiza-
tion of sequent calculus proofs and the implementation of these proof analysis techniques in the
GAPT system.

As a case study, we formalize the infinite pigeon hole principle and extract functions enu-
merating arbitrary many pigeons in the infinite-sized hole. We compare our results to those of
Ratiu and Trifonov which were found via A-translation and modified Realizability [79]. Simul-
taneously, we explore the gradient of solvable problems for higher-order provers, identifying
possible directions for future development.

v

Kurzfassung

Die Methode der Schnittelimination mittels Resolution (CERES) verbindet die Gebiete der Be-
weistheorie und des automatischen Beweisens. Einerseits erlaubt sie, Aussagen zu einem Be-
weis zu treffen, die über die reine Gültigkeit des Satzes hinausgehen, andererseits liegen die
dabei entstehenden Teilprobleme an der Grenze der Kapazitäten aktueller Theorembeweiser. Da
sie aufgrund ihrer Konstruktion lösbar sind, tragen sie so zu deren Weiterentwicklung bei. In
der Prädikatenlogik erster Stufe ließ sich bereits mittels CERES zeigen, dass sich die topol-
ogischen Argumente in einer Formalisierung von Fürstenbergs Beweis der Existenz unendlich
vieler Primzahlen direkt auf die zahlentheoretischen Argumente Euklids zurückführen lassen.
Für CERESω, die Erweiterung von CERES für die Prädikatenlogik höherer Stufe, fehlt solch
eine experimentelle Anwendung noch.

Diese Dissertation behandelt die Anpassung von CERESω an Fragmente der Logik höherer
Stufe, die an die Fähigkeiten entsprechender Theorembeweiser angepasst sind. Die CERESω“
genannte Variante der Methode beschränkt sich zwar auf Quantoren über Funktionen anstatt
auch solche über Prädikate zuzulassen. Dafür erlauben zusätzliche Regeln für Definitionen und
Gleichheitsersetzungen von Termen erster Ordnung eine natürlichere Formulierung mathema-
tischer Beweise. Ein weiteres Thema ist die Erkenntnis, dass Millers Expansionsbeweise die
für unsere Analyse notwendigen Informationen in Form von Quantoreninstantiierungen enthal-
ten. Ihre Verwendung erlaubt es, mehrere aufwändige Transformationen von Beweisen im Se-
quenzenkalkül auszulassen. Alle genannten Methoden sind im System GAPT implementiert,
das nun auch neben der klassischen Baumdarstellung eine kreisförmige Gesamtübersicht über
Sequenzenkalkül-artige Beweise erlaubt.

Als Anwendungsbeispiel dient eine Formalisierung des unendlichen Schubfachprinzips, welch-
es in ähnlicher Form schon von Ratiu und Trifonov für deren Experimente zur Programmextrak-
tion mittels A-Übersetzung und modifizierter Realisierbarkeit herangezogen wurde. Die mittels
CERESω“ gewonnenen Funktionsterme werden den extrahierten Programmen gegenübergestellt
und erlauben einen Einblick, wie aus klassischen Beweisen stammende Programme aussehen
können. Die bei der Analyse entstandenen Probleme für Theorembeweiser gaben den Anlass,
die TPTP Bibliothek um einfache Syntheseaufgaben für Funktionen zu erweitern und könnten
Impulse für die Weiterentwicklung von automatischen Beweisern geben.

vii

Contents

1 Introduction 1
1.1 Methodology . 2

2 State of the Art 4
2.1 Simply Typed Lambda Calculus and Elementary Type Theory 4

2.1.1 Expressivity of Simply Typed Lambda Calculus 7
2.1.2 Skolem Terms in Elementary Type Theory 7

2.2 Sequent Calculus LK . 8
2.2.1 Formula Occurrences and Paths . 10

2.3 Expansion Proofs . 10
2.3.1 Extracting Expansion Proofs from LK 14
2.3.2 Skolem Expansion Proofs . 16

2.4 Reductive Cut-Elimination . 16
2.5 CERES . 21
2.6 CERESω . 25

2.6.1 The Sequent Calculi LKsk and LKskc 26
2.6.2 Proof Projections . 29
2.6.3 The Resolution Calculus Ral . 31
2.6.4 CERESω . 33

From Projections and an Ral refutation to an LKskc Proof 33
From LKskc PCNFs to LKsk . 38
From LKsk to LK . 39

2.6.5 Soundness and Completeness Results 42
2.7 Automated Higher-Order Theorem Proving 43

2.7.1 Higher-Order Unification . 43
2.7.2 Cut-simulation . 44
2.7.3 Leo II . 44

3 Proof Formalization Techniques 46
3.1 CERESω“ . 46

3.1.1 General observations on labels . 47
3.1.2 Without Labels . 48
3.1.3 LKsk with labels . 49
3.1.4 Simulating Equality rules in Ral . 49

ix

The CSS and the Projections . 49
Simulating an equality rule . 50

3.1.5 Simulating first order equality proofs 51
3.1.6 CERESω can produce quantified cuts 52
3.1.7 A failed translation . 53
3.1.8 Relative completeness . 53

3.2 Unary versus Binary Equality Rules in CERES 54
3.2.1 The CS and Projection for Unary Equality Rules 55
3.2.2 GAPT Integration . 57

3.3 Some Properties of Skolem Expansion Trees 58
3.4 Extracting Expansion Proofs from LKsk Proofs 61
3.5 Extracting Expansion Proofs from LK Proofs with Propositional Cuts 70
3.6 Definition Elimination . 73
3.7 Encoding Computations in Arithmetic . 77

3.7.1 Conditionals (If-then-else) . 77
3.7.2 Recursion . 78

3.8 Reducing the characteristic sequent set during construction 78
3.9 A simple First Order Embedding . 79
3.10 A CERES based LK conversion of Resolution Proofs 80
3.11 Implementation of the techniques in GAPT and PROOFTOOL 82
3.12 The LLK Input Format . 86
3.13 Using Sunburst Trees to navigate large proofs 92

3.13.1 Criteria for Visualizing Sequent Calculus Proofs 93
3.13.2 Choosing the proper tree visualization 94
3.13.3 Integration in PROOFTOOL . 95
3.13.4 Further Directions . 99

4 Case Study: A proof of the n-occurrences pigeon hole principle 101
4.1 Practical Aspects of the Analysis Process . 101
4.2 Choosing a Problem . 102
4.3 The Infinite Pigeon Hole Principle . 103
4.4 The n-occurrences Pigeon Hole Principle . 103
4.5 Formalization . 105
4.6 Expectations . 105

4.6.1 Axioms . 106
4.6.2 Definitions . 107
4.6.3 General Input Proof Structure . 108

4.7 Version 1 . 110
4.8 Version 2 . 111

4.8.1 Characteristic Sequent Set . 112
4.8.2 Analysis . 113
4.8.3 Running the Experiments in GAPT 116

4.9 Version 3 . 117

x

4.9.1 Analysis . 119
4.9.2 Running the Experiments in GAPT 121

4.10 Version 4 . 121
4.10.1 Analysis . 123
4.10.2 Running the Experiments in GAPT 123

4.11 Version 5 . 123
4.11.1 Running the Experiments in GAPT 125

4.12 Experiments with the If-then-else axiomatization 125
4.12.1 Running the Experiments in GAPT 126

4.13 Comparison to A-Translation with modified Realizability 127
4.13.1 The method . 127
4.13.2 Formulation of the Infinite Pigeonhole Principle 129
4.13.3 Proof and Extracted Programs . 129

4.14 Comparison . 130
4.15 Discussion . 131

5 Conclusion 133
5.1 Summary . 133
5.2 Future Work . 134

5.2.1 Open Problems . 134
5.2.2 Beyond CERESω“ . 135

Bibliography 137

A The n-Tape Input Proof, version 3 147
A.1 Type Declarations . 147
A.2 Definitions . 148
A.3 Theory Axioms . 148

B Resolution refutations of the CSS 154
B.1 Version 2, Prover 9 refutation . 154
B.2 Version 3, Prover 9 refutation . 155

C Full resolution simulation example for chapter 156

D LLK LATEXStyle 159

E GAPT Proof Analysis Script 164

xi

CHAPTER 1

Introduction

A fascinating field of proof theory is proof mining, where we extract information from a formal
proof which goes beyond the truth of the theorem. For instance, proving that there exists an
infinite series of (different) prime numbers is already a reward by itself. However when we
investigate Euclid’s famous proof of this theorem, we can actually obtain more information
from each prefix p1, . . . , pn of the series: we know that the term p1 ¨ . . . ¨pn`1 used in the proof
is either a prime itself or has a divisor which is not contained in the prefix. Therefore the term
is a rough upper bound for prime gaps i.e. the distance between consecutive primes.

One way to obtain this term is by formalizing this argumentation as a proof of @xDypPrimepxq Ñ
px ă y ^ Primepyqqq in Sequent Calculus. After cut-elimination, the rules introducing the
quantifier Dy contain the term above as witness. In general, different proofs of the same state-
ment have different witnesses. Therefore the instantiation terms can be seen as characteristic for
the mathematical argumentation behind the proof. Herbrand’s theorem justifies this procedure
in a general setting. In a simplified form, it states that the prenex formula DxF rxs is true exactly
when there exists a finite number of terms t1, . . . , tn such that F rt1s_. . ._F rtns is true. Since a
Herbrand disjunction is purely propositional and checking its validity is decidable, the quantifier
instantiations contribute significantly to the truth of the theorem.

In the context of cut-elimination by resolution (CERES), the analysis via Herbrand sequents
– the generalization of Herbrand disjunctions to non-prenex formulas and sequents – was applied
[49] to a proof showing the equivalence of three axiomatizations L1-L3 of lattices by proving L3
from L1 and L2 from L3. After cut-elimination, the Herbrand sequent of the proof of L2 from
L1 alone provided the instantiations necessary to construct an independent direct proof which is
even simple enough to allow a formulation in mathematical prose.

Since whenever a method works well, it is applied to harder problems, the same holds for
proof analysis via cut-elimination. In this case this means investigating proofs in higher-order
logic. There matters become more complicated: the most obvious obstacle is the loss of com-
pleteness and compactness. Likewise, important properties for automated reasoning are im-
paired: first-order style skolemization is unsound and the unification is of infinitary type. Fur-
thermore the high expressivity often surpasses human intuition. For example, Girard showed
that the inductive definition of the natural numbers in second-order arithmetic makes the in-
duction axiom superfluous by relativizing each quantified variable to be in the natural num-
bers. [40, p178-180]. Even the notion of cut becomes fuzzy, since the formula @XpX Ñ Xq
can be used to simulate the cut-rule. Benzmüller et. al. [10] showed that the same holds for
Leibniz’ axiomatization of equality and the axioms for extensionality.

When we want to interpret instantiation terms, the formula language becomes even more

1

important. Simply typed lambda calculus is an excellent choice: on one hand its computation
model is easy to treat, since β-reduction terminates. On the other hand, it is sufficiently ex-
pressive to form the foundation of Simple Type Theory, when it is extended with the rules of
generalization and modus ponens and Hilbert-style axioms. On the other hand, the choice of the
axiomatization and restrictions of the proof calculus like eigenvariables constrain the expressiv-
ity of functions written in simply typed lambda calculus.

Nonetheless the relation of lambda terms to functional programs is so close, that it is tempt-
ing to interpret them this way. Since we can prove the existence of uncomputable functions it
is obvious that this interpretation is impossible in the general case. Still, it is unclear where this
additional expressiveness is hidden.

Therefore the first group of research questions we seek to answer is:

How do instantiation terms look like when we transfer the methods we developed for first-
order logic to higher-order logic? How do these terms interact with the logical layer? Can we
interpret them as functional programs - if not why?

Naturally, we are convinced that the methods we developed over the last years are helpful for
proof mining. Foremost, this involves the development of extraction of Herbrand disjunctions for
CERESω [48, 111], the higher-order counterpart to CERES [7, 8]. The proposed data-structure
to represent Herbrand-instances are the more general expansion trees. An expansion tree can
hold the instantiations of higher-order quantifiers and is not restricted to prenex formulas. There
is also a variant with skolem terms instead of eigenvariables. Since CERESω contains the
refutation of a higher-order formula as its central step, it is directly bound to the capabilities
of higher-order automated theorem provers like Leo II and Satallax or alternatively to a human
found refutation. The previous experiments with Fürstenberg’s topological proof of the infinity
of primes exceeded the limits of both. Therefore we were looking for possible restrictions which
ease the burden of the ATPs, in particular by removing higher-order substitutions from the logical
layer. We also believe that the adaption of first-order theorem provers as back-ends provides an
efficient handling of first-order equality in higher-order provers and want to integrate equational
reasoning on individuals into CERESω.

This leads us the second set of questions for this thesis:

Are expansion trees useful for proof mining via cut-elimination by CERESω? Can we find
an interesting theorem as a case study for the method? Does a restriction to function quantifiers
and first-order equality create problem sets which ATPs handle well?

1.1 Methodology

The thesis has two parts: one is purely deductive and develops the CERESω method into the
direction of better integration with theorem provers. Another focus lies on methods for proof
formalization: extending the calculi with rules for first-order equality, definitions and macros ne-
cessitates the introduction of proof transformations for their elimination. These transformations
are shown to be sound and, if possible, complete.

The second part of the thesis concerns itself with the experimental evaluation of the extended
method. The variations of mathematical proofs - in fact even the varying formalizations of a sin-

2

gle proof - are so numerous that the use of quantitative investigation is severely limited. Proof
collections like the TSTP Solution Library [100, 102], the Mizar Mathematical Library [107] or
the Archive of Formal Proofs [58] exist, but these proofs require considerable effort to translate
to Sequent Calculus without introducing additional cuts. For this reason we investigate the in-
finite pigeon hole principle as a case study. It has already been studied using program extraction
via the refined A-Translation and Gödel’s Dialectica interpretation [79] which allows a compar-
ison with the results obtained by cut-elimination. To make matters more challenging, we use a
purely classical proof1 of the finite pigeon hole principle as a lemma without an embedding in
intuitionistic logic.

Experiments also call for an implementation. Since the General Architecture for Proof The-
ory (GAPT) [33] was designed for proof mining, it is natural to extend it with the methods
described here. On one hand, this is centered around classical software-engineering problems
like interfacing with various external software. This includes writing parsers and converters of
the output of theorem provers, designing an input language for the new calculi and continue
Daniel Weller’s implementation of CERESω. On the other hand, the proof objects we are in-
vestigating can easily have thousands of inferences. Therefore the implementation also contains
work on graphical user interfaces for proof exploration.

The structure of the thesis is as follows: chapter 2 introduces the logic and calculi used
in the thesis and recapitulates the results and algorithms for expansion proofs, reductive cut-
elimination and CERESω which will be adapted later on. Chapter 3 shows how expansion
proofs can significantly shorten the analysis process of CERESω and introduces CERESω“ for
the fragment of functional quantification extended by definitions and first-order equality. It also
discusses the methods used to formalize a proof, to make the extracted sequents sets tractable
for automated theorem provers, global visualization methods and the implementation in GAPT.
Chapter 4 presents the case study of our formulation of the infinite pigeon hole principle and
compares our results with those obtained by modified Realizability. The conlusion in chapter 5
wraps the thesis up, investigates some of the lessons learned and identifies future directions.

1The proof inherently relies on the law of excluded middle and cannot be proved in intutitionistic logic without
a double-negation translation.

3

CHAPTER 2

State of the Art

2.1 Simply Typed Lambda Calculus and Elementary Type Theory

Even though the major proof assistants Isabelle and Coq use more expressive systems, elemen-
tary type theory is already sufficient to naturally express mathematical problems. Since we also
rely on the communication with external theorem provers, staying in a a subset of simple type
theory and therefore within THF0 [14], the core TPTP fragment for higher-order logic and the
best supported is also desirable.

Following the presentation of elementary type theory [24] given by Benzmüller and Miller
[12] and Miller [71, 72], we will start with Church’s simply typed lambda calculus. We call
the primitive type of booleans o and the primitive type of individuals ι. Complex types are
inductively constructed from simple types and basic types via the type application ą which is
considered as right-associative.

We denote the type α of constants and variables as subscript to their name and call the
corresponding (infinite) sets Σα and Vα. The sets Σ and V then denote the union of all sets of
constants and variables for each simple type. If the type is not relevant, it will be omitted. If not
noted otherwise, the sets ta, b, c, du and ti, . . . ,mu Y tx, . . . , zu will be used for constants and
variables of type ι, the sets tP, . . . , Su and tX,Y, Zu will be used for constants and variables of
type α1 ą . . . ą αn ą o (predicates) and the sets tf, gu and thu will be used for constants and
variables of other types; if more names are necessary, we will add indices to the names. Terms
are built from constants and variables by lambda abstraction and application:

Definition 2.1.1 (Terms of Simply Typed Lambda Calculus).

• A constant cα and a variable xα are terms of type α.

• If xα is a variable and tβ is a term, then λx.t is a term of type α ą β.

• If sαąβ and tα are terms, then s t is a term of type β.

For readability purposes we will write P pfpxq, xq for P pf xq x, i.e. an application
spt1, . . . , tnq stands for p. . . pst1q . . . tnq.

We consider a variable x as free in a term t if it occurs outside the context of a corresponding
binder λx . . . in t. We consider x as bound in t if it occurs inside such a binder. The set FV ptq
denotes all free variables occurring in t. A variable may occur bound and free in the same term
(e.g. in pλx xq x) and it may be overbound (e.g. in λxpλx xq where the variable x is bound by
the inner λx but not by the outer one).

4

A substitution is a mapping of finitely many variables xα to terms tα. Applying a substitution
σ “ txÐ tu to a term s is written in post-fix notation sσ. It is performed by replacing all free
occurrences of x in s by t, provided that no variable y P FV ptq becomes bound (is captured).

Simply typed lambda calculus then is an equational theory over simply typed terms with the
reflexive-transitive closure of the following rules:

Definition 2.1.2 (α-conversion, β-reduction and β-expansion).

• α-conversion: if the term t results from the term s by replacing all occurrences of a bound
variable xγ by a a bound variable yγ , then s alpha-converts to t.

• β-reduction: the term pλxsq t beta-reduces to the term s txÐ tu, where all free occur-
rences of x in s are substituted by the term t.

• β-expansion: conversely, the term s txÐ tu beta-expands to the term pλxsq t.
Alpha-conversion is implicitly performed whenever necessary. In particular it may be re-

quired during substitution to prevent overbinding: evaluating pλx yq ty Ð xu requires a renam-
ing of x in the binder. Therefore it is equal to λz x but not to λx x.

Beta-reduction is a strongly normalizing rewrite rule which produces unique normal-forms.
To decide the β-equality of two terms s and t, it is therefore sufficient to compare their normal
forms sÓβ and tÓβ .

To prepare for the introduction of logical operators ,_,^,Ñ,@, D, we define an atom
formula as a variable of type o, a constant of type o or an application s t of type o where s is
a constant or variable different from the logical operators. A formula then is an atom formula
or a term F , F ^ G, F _ G, F Ñ G, @x F or Dx F of type o where F and G are formulas
and x is a variable of arbitrary type. Given this definition the term pλX XqXo is not atomic but
its β-normal form Xo is. For this reason we will often implicitly normalize a term, in particular
when used in calculi. It is also noteworthy that atomicity is not closed under substitution. For
instance X tX Ð pY Ñ Y qu evaluates to Y Ñ Y which is clearly not atomic.

We will regularly encounter the notion of polarity and weak / strong quantifiers. The intu-
ition is that a strong quantifier becomes universal when the formula is transformed into prenex
normal-form and a weak quantifier becomes existential after such a transformation. Since shift-
ing negation over a quantifier inverts the polarity, the polarity of a formula propagates to its
immediate sub-formulas as follows: if F is a positive (negative) occurrence then F is a neg-
ative (positive) occurrence. If A Ñ B is a positive (negative) occurrence then A is a negative
(positive) occurrence and B is a positive (negative) occurrence. If A ^ B, A _ B, @F or DF
is a positive (negative) occurrence then A, B and F are positive (negative) occurrences. If the
formula @F (DF) occurs positively (negatively), then it is called a strong quantifier. If it occurs
negatively (positively) then it is called a weak quantifier occurrence.

Elementary type theory (ETT) which is also called Church’s T 1 is a Hilbert style deduction
system. We will use , _ and @ as basic operators and have the usual abbreviations with @xαFo

1 We will usually write ETT since Gödel’s system T plays a role in our comparison with alternative approaches
in section 4.13.

5

for @αąopλxF q, DxF for @x F , P ^ Q for p P _ Qq and P Ñ Q for P _ Q. The
axioms of ETT are:

1. Propositionial Axioms:

• P _ P Ñ P

• P Ñ P _Q
• P _QÑ pQ_ P q
• P Ñ QÑ ppR_ P q Ñ pR_Qqq

2. for each simple type α: @pαąoqąoFαąo Ñ Fαąopxαq
3. for each simple type α: @Xαppo _ FαąopXqq Ñ pp_ @pαąoqąoF q

The inference rules of ETT are:

1. One step of α-conversion, β-reduction or β-expansion

2. Substitution: from FαąopXαq infer F pAαq if X is not free in A.

3. Modus Ponens: from P and P Ñ Q infer Q

4. Generalization: from FαąoXo infer @pαąoqąoF if X is not free in F .

Simple Type Theory (STT) is built on top of Elementary Type Theory. It adds an equality
symbol for each type to the language and axioms for Leibniz Equality, Church Numerals, In-
finity, Description, Functional and Boolean Extensionality, the Axiom of Choice and an axiom
ensuring the existence of two individuals to the inference system.

There are multiple reasons for us to stick to ETT. Foremost, we are interested in the interplay
of different proof calculi which share the same logic. The triplet of Sequent Calculus (as defined
by Miller [71]2), Expansion Proofs (also defined by Miller [71, 72]) and ETT was shown to be
relatively equivalent by Miller [71, 72]. Also Andrews’ Resolution Calculus R is refutationally
complete to ETT in the sense that if a finite set of sentences S derives falsum in ETT, then there
is also a refutation of S inR [2].

Furthermore, most of the additional axioms (Leibniz Equality, Choice, Extensionality) of
STT are cut-strong [10], which means that they may simulate a cut-rule, effectively forcing an
automated theorem prover to find the instantiation of a weak quantifier without any guidance.
This effect is hard to control since the input proofs for the CERES method are usually inter-
actively generated but during cut-elimination, an ATP is required to refute the characteristic
sequent set generated from that input proof. Since the formulas in the sequent set come from
the introduction rules of the proof, a cut-strong axiom in the end-sequent does not necessarily
pose a problem. For instance, if the induction axiom is instantiated with a first-order invariant,
its corresponding formulas in the CSS will also be first-order and therefore unable to simulate

2 Similar presentations were done by Takeuti [104], Schütte [91]. According to Andrews [2], these are slightly
weaker than ETT since in the latter “for all types α and β there is a type β ą α“.

6

the cut rule. Nevertheless, the exact instantiations necessary become only visible during proof
formalization. Some cut-strong formulas in the CSS can be avoided by reorganising the proof
but naturally this cannot always work. The case study even shows an example (see section 4.12)
where the characteristic sequent set becomes cut-strong by proving a weaker result3.

2.1.1 Expressivity of Simply Typed Lambda Calculus

Since simply typed lambda-terms will be used to express instantiation terms of quantifiers, we
are interested which kind of functions we can express. A foundational result [98] of Statman
(later reproved by Mairson [66]) states that deciding the equality of two terms in simply typed
lambda calculus is non-elementary. Using Knuth’s up-arrow notation, the bound is 2 ÒÒ Opnq.
The underlying reason is that computing the normal-form of a simply typed lambda term can
cause a non-elementary blow-up in term size [95]. 4

Using Church numerals, Schwichtenberg showed [88] that functions of simply typed lambda-
calculus coincide with the extended polynomials: a numeral n is a term λα.αn of type num “
pι ą ιq ą pι ą ιq with the term αn “ λx.αp...pαpxqq having n iterations of α. Then addition
is expressed as plus “ λmnumλnnumλxιąιλuι.pmxqppnxquq5 and multiplication is expressed
as mul “ λmnumλnnumλuιąι.mpnuq. A constant function n is expressed as λx.αn and a case
distinction dpn,m, 0q “ n, dpn,m, iq for 0 ‰ i as λmnumλnnumλeλuιąιλxι.epλyι.pmuqxqppnuqxq.

2.1.2 Skolem Terms in Elementary Type Theory

Since both Skolem Expansion Proofs (see section 2.3) and LKskc (see section 2.6.1) will intro-
duce skolem terms we repeat the definitions of Miller [71] which introduce skolem functions,
skolem terms and ETT extended by skolem terms.

Definition 2.1.3. The list σ “ xα, β1, . . . , βpy where α, β1, . . . , βp are simple types (p ě 0) is
called the signature of a skolem function. For each signature σ, let Kσ be a denumerable infinite
set of function symbols of type β1 ą . . . ą βp ą α which are not in the formulation of ETT and
such that for different signatures σ1 and σ2 the sets Kσ1 and Kσ2 are disjoint. If f P Kσ then
f is called a skolem function of signature σ with arity p. Let ETT ˚ be the formulation of ETT
with skolem functions added.

Now we define the Herbrand Universe U as union of universes Uα for each type α of terms
of ETT ˚. This also includes skolem terms, which are skolem functions that are applied to at
least their arity number of arguments.

Definition 2.1.4. Let U be the smallest set of formulas of ETT ˚ such that

• All variables and constants (which are no skolem functions) are in U .

3The reason is that the if-then-else conditional is skolemized in the induction proof of the general statement.
Proving a specific instance works without induction and chases the ATP off to find arbitrary conditionals.

4Examples for this behavior are contained in the book as exercises 3.20-3.22.
5The original formulation uses function composition instead of explicitly using u.

7

• If p ě 0, ti P Uβi for 1 ď i ă p and the skolem function f has signature xα, β1, . . . , βpy,
then ft1, . . . , tp P Uα. The term ft1, . . . , tp is called a skolem term. Since f may have
more than p arguments, the terms t1, . . . , tp are called the necessary arguments of f .

• If s P Uαąβ and t P Uα then st P Uβ .

• If s P Uα and x is a variable of type β which is not free in any necessary arguments of any
skolem function occurrence, then pλx sq P Uβąα.

2.2 Sequent Calculus LK

Sequent calculus was originally developed by Gentzen to prove the completeness of natural
deduction via cut-elimination [39]. Even though there are sequent calculi for simple type theory,
we will restrict ourselves to one for elementary type theory, given by Weller [48, 111]. It is
essentially the same as Miller’s LKH [71, 72] with the common modification that a sequent
consists of multisets instead of lists of formulas, making the exchange rule6 superfluous.

Also the λ-rule applying β-normalization is replaced by an implicit normalization of each
formula. LKH again differs from Gentzen’s LK only by using simply typed lambda calculus as
term language which leads to more expressive quantifier rules and the addition of the λ-rules.

We use Gentzen’s original definition of a sequent:

Definition 2.2.1 (Sequent). A sequent S is a pair ptF1, . . . , Fnu, tG1, . . . , Gmuq of (possibly
empty) lists of formulas written as F1, . . . , Fn $ G1, . . . , Gm. The formulas F1, . . . , Fn are
called the antecedent of the sequent and the formulas G1, . . . , Gm are called the succedent of
the sequent. The logical interpretation of S is the formula F1 ^ . . . ^ Fn Ñ G1 _ . . . _ Gm.
An empty antecedent corresponds to J, an empty succedent to K (the respective unit elements
of conjunction and disjunction).

A clause can be seen as a sequent of atom formulas where the negative literals occur in the
antecedent and the positive literals occur in the succedent. Since the CERES method combines
resolution and sequent calculus, will use sequent notation for clauses throughout this text.

Then the rules of LK used here are as follows:

Definition 2.2.2 (Rules of LK).

Propositional rules:

F $ F
ax

Γ $ ∆, F

 F,Γ $ ∆
 : l

F,Γ $ ∆

Γ $ ∆, F
 : r

F,Γ $ ∆ G,Π $ Λ

F _G,Γ,Π $ ∆,Λ
_ : l

Γ $ ∆, F

Γ $ ∆, F _G _ : r1
Γ $ ∆, G

Γ $ ∆, F _G _ : r2

Γ $ ∆, F Π $ Λ, G

Γ,Π $ ∆,Λ, F ^G
^ : r

F,Γ $ ∆

F ^G,Γ $ ∆ ^ : l1
G,Γ $ ∆

F ^G,Γ $ ∆ ^ : l2

Γ $ ∆, F G,Π $ Λ

F Ñ G,Γ,Π $ ∆,Λ
Ñ : l

F,Γ $ ∆, G

Γ $ ∆, F Ñ G
Ñ : r

6In Miller’s terminology it is called interchange.

8

Structural rules:
Γ $ ∆, F, F

Γ $ ∆, F
contr : r

F, F,Γ $ ∆

F,Γ $ ∆
contr : l

Γ $ ∆

F,Γ $ ∆
weak: l

Γ $ ∆

Γ $ ∆, F
weak: r

Γ $ ∆, F F,Π $ Λ

Γ,Π $ ∆,Λ
cut

Quantifier rules:

RT,Γ $ ∆

@R,Γ $ ∆
@ : l

Γ $ ∆, RX

Γ $ ∆,@R
@ : r

Γ $ ∆, RT

Γ $ ∆, DR
D : r

RX,Γ $ ∆

DR,Γ $ ∆
D : l

The eigenvariable X of the @ : r and D : l rules does not occur in R,Γ and ∆. In contrast to
Gentzen’s version, the primary and auxiliary formulas need not occur at the end of the antecedent
or the beginning of the succedent, removing the need for an exchange rule.

Miller showed the equivalence of LKH to Expansion Proofs7 which are equivalent to ETT.
Since we will formally introduce Expansion Proofs in section 2.3, we will state the correspond-
ing theorems there.

We restrict this presentation of LK to tautological axioms F $ F because CERESω relies
on the presence of the partner formula in the axiom to infer the Skolemization context. In
sections independent of CERESω we will allow arbitrary introduction rules.

Even though higher-order quantifier instantiations do not have the sub-formula property8.
But even though, strictly speaking, this higher-order sequent calculus is not analytic, the empty
sequent $ (i.e. falsum) cannot be derived from tautological axioms without cut. If we allow
non-tautological introduction rules, we can speak of a refutation as a cut-free derivation of the
empty sequent. More precisely, if S is a set of sequents, then an LK-refutation of S is an LK-
tree π where the end-sequent of π is the empty sequent, and the leaves of π are either tautological
axioms F $ F or sequents in S. In section 3.10 we will transform first order derivations of
such a proof into one with the end-sequent S1, . . . , Sn $ where S1, . . . , Sn are closed formulas
corresponding to elements of S. The CERESω method for cut-elimination (see section 2.6)
investigated here is also closely related.

For the first-order case earlier work already added binary equality rules [4] to the sequent
calculus for the CERES method.

Definition 2.2.3 (Binary Equality Rules (first-order)).
Γ1 $s “ t,∆1 Γ2 $F rss,∆2

“: r
Γ $F rts,∆

Γ1 $s “ t,∆1 Γ2, F rss $∆2
“: r

Γ, F rts $∆

In section 3.2 will discuss the benefits of unary equality rules as an alternative and also add
the binary rules to the calculi of the CERESω method (see section 3.1).

7Theorems 4.1 and 4.2 in the journal version [72].
8For instance, if we infer DXpXpaq ^Xpbqq from pP paq Ñ Qq ^ pP pbq Ñ Qq, neither P nor Q appear in the

conclusion. Already in first-order logic, we would need to speak of sub-formulas modulo term-instantiation, but in
higher-order logic, not even the logical structure needs to be preserved in the conclusion. Nevertheless, the cut rule
is the only inference where a premise formula does not have a successor in the conclusion.

9

2.2.1 Formula Occurrences and Paths

Sometimes we want to distinguish between multiple occurrences of the same formula in a se-
quent. For instance, when we trace the first occurrence of DxP pxq in the end-sequent (marked
with ˚) of the proof

P psq $P psq
D : r

P psq $DxP pxq
w : r

P psq $DxP pxq

P ptq $P ptq
D : r

P ptq $DxP pxq
w : r

P ptq $DxP pxq
_ : l

P psq _ P ptq $DxP pxq˚, DxP pxq

to its ancestors, the witness term for it is s. But when we trace the second occurrence, we
reach the witness term t. Moreover, if the second occurrence were introduced by weakening,
there would be no witness at all. In this text, we can mark an occurrence like above. For the
implementation in GAPT we use the following definition:

Definition 2.2.4 (Formula Occurrence). Let ρ be an inference in a proof ϕ with end-sequent S
and let i be the index of a formula F occurring in the antecedent/succedent of S. Then a formula
occurrence is defined as the quadruple pϕ, ρ, ced, iq where ced P tAnt, Succu.

We also make the notion of tracing more explicit by defining ancestors and successors of a
formula occurrence which then form upwards and downwards paths.

Definition 2.2.5 (Ancestors and Descendants). In an inference rule, each auxiliary formula is an
immediate ancestor of the primary formula. Likewise, each primary formula is the immediate
descendant of its rule’s auxiliary formulas. The ancestor and successor relations are the reflexive,
transitive closure of the immediate ancestor and successor relations.

Definition 2.2.6 (Paths). A sequence µ1, . . . , µn of formula occurrences is called a downwards
path, if each µi is an immediate ancestor of µi`1 with 1 ď i ă n. It is maximal, if µn is a
formula in the end-sequent.
A sequence µ1, . . . , µn of formula occurrences is called an upwards path, if each µi is an imme-
diate descendant of µi`1 with 1 ď i ă n. It is maximal, if µn is an axiom formula.

2.3 Expansion Proofs

Expansion proofs were introduced by Miller [72] as a generalization of Herbrand disjunctions
to Elementary Type Theory. Containing (at least) all the necessary quantifier instantiations of
a valid formula, they are concise representations for proofs. At the same time, there is a close
connection to higher-order sequent calculus defined in section 2.2 and consequently also LKskc,
the variant used for CERESω2.6.1. The main observation here is that only the quantifier rules
of such a calculus are not analytic. The rules for the other logical operators still introduce
the conclusion from some of its sub-formulas. Therefore, when reasoning backwards from an

10

end-sequent formula towards the axioms, the outermost logical operator determines the rule(s)9

applied until a quantifier instantiation happens. Even then, only the instantiation of a predicate
quantifier introduces new logical content. Therefore, the branching structure of the proofs of two
instances of a formula agrees up to the outermost quantifiers and may only differ afterwards. In
contrast to a Herbrand disjunction, an expansion tree represents this shared structure only once
and collects the instantiations as sub-trees of a weak quantifier node. This tree structure can be
directly extracted from a sequent calculus proof.

We will first define expansion trees, which do not necessarily correspond to a sequent calcu-
lus proof and then introduce the conditions which make them expansion proofs. Since expansion
trees are similar to term trees, it is possible to define two mappings from expansion trees to for-
mulas. The shallow mapping leaves quantifiers intact, whereas the deep mapping uses the term
annotations to expand quantifier nodes. Depending on the polarity and type of the quantifier, the
quantifier is replaced by a conjunction or disjunction of instantiations of the deep formulas of
the child nodes, where the annotated term is substituted for the bound variable. The relation be-
tween the shallow and deep formula of an expansion tree is similar to a formula and its Herbrand
disjunction. In fact, the deep formula is a compressed form of a Herbrand disjunction, where the
shared term structure is not repeated.

Definition 2.3.1 (Expansion Tree). An expansion tree is a tree where inner nodes are labeled by
logical operators, leaf nodes are labeled by formulas and edges may be labeled by terms. An
expansion tree T is inductively defined by the following rules:

• Axiom node: if A is an atom formula or of the form @F , then T is an axiom node labeled
with A. We define ShpT q “ DppT q “ A.

• Unary Logical node: if T1 is an expansion tree, then T “ T1, is an expansion tree. We
define ShpT q “ ShpT1q and DppT q “ DppT q.

• Binary Logical node: if T1 and T2 are expansion trees which do not share selected vari-
ables, then T “ T1 ˝ T2 is an expansion tree, where ˝ P t^,_,Ñu. We define ShpT q “
ShpT1q ˝ ShpT2q and DppT q “ DppT1q ˝DppT2q.

• Strong Quantifier node: Let T1 be an expansion tree where ShpT1q is equal to the β-
normal form of the formula F pxq, F itself is also β-normal and x is not selected in T1.
Then T “ Q F `x T1 is an expansion tree with ShpT q “ Q F where Q P t@, Du and
DppT q “ DppT1q. We call x a selected variable in T .

• Weak Quantifier node: Let Ti be expansion trees with 1 ď i ď n where each ti is a β-
normal term for which there exists a formula F pxq, such that ShpTiq is the β-normal form
of F ptiq.

9In our version of LK, the _ : r and ^ : l are not invertible because they infer A 8B from only one sub-formula.
Therefore, during backwards reasoning we need to first apply contraction and apply the rule on each copy to obtain
both possible contributors. If we were using the invertible version with two auxiliary formulasA andB, each operator
would directly correspond to one rule application.

11

Then T “ Q F `t1 T1 ` . . . `tn Tn is an expansion tree with Q P t@, Du. We define
ShpT q “ Qx F pxq. If Q “ @, we define DppT q “ DppT1q ^ . . .^DppTnq. Otherwise,
Q “ D and we define DppT q “ DppT1q_ . . ._DppTnq. We call t1, . . . , tn the expansion
terms of T .

The names for strong and weak quantifier nodes already mirror those of the LK rules they
correspond to. Similarly to formulas, we can also define positive and negative occurrences of
sub-trees. In fact, the polarity of a node T 1 an expansion tree T coincides with the polarity of
the sub-formula DppT 1q in DppT q.
Definition 2.3.2 (Polarity of Expansion Trees). Let T1, T2 be expansion trees.

• An axiom tree of an atom A may have positive and negative polarity. An axiom tree of a
quantified formula @F only occurs in negative polarity.

• If the tree T1 has positive (negative) polarity, then T1 has negative (positive) polarity.

• If the tree T1 ^ T2 resp. T1 _ T2 has positive (negative) polarity, then T1 and T2 have
positive (negative) polarity.

• If the tree T1 Ñ T2 has positive (negative) polarity, then T1 has negative (positive) and T2

has positive (negative) polarity.

• The tree Q F `y T1 with Q P t@, Du only occurs in positive polarity. Its sub-tree T1 also
has positive polarity.

• The tree Q F `t1 T1 ` . . . `tn Tn with Q P t@, Du only occurs in negative polarity. Its
sub-trees T1, . . . , Tn also have negative polarity.

Since not every expansion tree represents a proof we need to further analyze the interplay
between selected quantifiers. We define ST as the set of all selected variables in T and ΘT

as the set of all expansion terms in T . Furthermore we say that a node dominates each node
of its sub-trees. Then, given an expansion tree T we define the relation ă0

T between terms
s, t P ΘT such that t ă0

T s if there exists a variable which is selected for a node dominated
by the (weak quantifier) node of t and which is free in s. We call the transitive closure of ă0

T

the dependency relation ăT of T . Soundness (defined below) together with the dependency
relation has a function similar to the eigenvariable condition in strong quantifier rules of LK.
The first disallows the occurrence of an eigenvariable in the context and the second ensures that
instantiation terms can be ordered in a way that does not invalidate the eigenvariable condition.

Since the definition of an axiom node also allows a formula having a weak quantifier as head
we call an expansion tree grounded if it does not have an axiom node of this kind. Now we have
all the means to define an expansion proof and substitutions for expansion trees:

Definition 2.3.3 (Expansion Proof). An expansion tree T is sound if the free variables of ShpT q
are not selected in T . An expansion tree T is an expansion tree for the formula A if ShpT q is the
β-normal form of A and T is sound. An expansion tree T where its dependency relation ăT is
acyclic and where DppT q is a tautology is called an expansion proof.

12

Definition 2.3.4 (Expansion Tree Substitution). By overloading the notation for terms, we write
the substitution σ of an expansion tree T by txα Ð tαu provided that x is not selected in T .
Then Tσ is defined by replacing each term t of each node in T with the β-normal form of tσ.
If T is an expansion tree and ShpTσqÓβ “ ShpTσÓβq and DppTσqÓβ “ DppTσÓβq then Tσ is
an expansion tree.

When talking about equivalence of (cut-free)LK proofs to Expansion Proofs it is convenient
to extend the notion of sequents to Expansion Trees. To be more descriptive, we use the name
expansion sequent for what Miller calls a q-sequent.

Definition 2.3.5 (Expansion Sequent). An expansion sequent E is a pair of (possibly empty)
lists of expansion trees. We will write it as S1, . . . , Sn $ET T1, . . . , Tm where S1, . . . , Sn are
expansion trees of negative polarity and T1, . . . , Tm are expansion trees of positive polarity. An
expansion sequent is equivalent to the expansion tree S1^ . . .^Sn Ñ T1_ . . ._Tm. The deep
sequent of E is the sequent DpS1, . . . ,DpSn $ DpT1, . . . ,DpTm.

Through the interpretation as an expansion tree the notions of soundness, acyclicity, substi-
tution and proof may also be used for expansion sequents. We can now state the equivalence
results to LK [72]:

Theorem 2.3.6. If A is a formula with a grounded expansion proof, then there exists an LK
proof of the sequent $ A .

Theorem 2.3.7. If the sequent Γ $ ∆ has an LK proof, there is a grounded expansion sequent
Λ $ Π such that Γ “ ShpΛq and ∆ “ ShpΠq. Thus, if A has an LK proof, it has a grounded
expansion proof.

The reason for requiring a grounded expansion proof in theorem 2.3.6 is that a corresponding
LK proof can be constructed without proof search. Since by definition the deep formula of an
expansion proof is valid, it is always possible to find the necessary instantiations. Besides, the-
orem 2.3.7 is more relevant to our analysis process since our main interest lies in the extraction
of (Skolem) expansion proofs from LK proofs. For example, the LK proof π

P pz, aq Ñ P pz, bq $P pz, aq Ñ P pz, bq
@ : lp@XpXpaq Ñ Xpbqqq $pP pz, aq Ñ P pz, bqq

P pa, zq Ñ P pb, zq $P pa, zq Ñ P pb, zq
@ : lp@XpXpaq Ñ Xpbqqq $P pa, zq Ñ P pb, zq
^ : rp@XpXpaq Ñ Xpbqqq, p@XpXpaq Ñ Xpbqqq $pP pz, aq Ñ P pz, bqq ^ pP pa, zq Ñ P pb, zqq

c : lp@XpXpaq Ñ Xpbqqq $pP pz, aq Ñ P pz, bqq ^ pP pa, zq Ñ P pb, zqq
@ : rp@XpXpaq Ñ Xpbqqq $p@ypP pz, aq Ñ P py, bqq ^ pP pa, yq Ñ P pb, yqqq

pπq

13

is equivalent to the expansion sequent T1 $ T2 with

T1 “ @XpXpaq Ñ Xpbqq
`λxP px,zqpP pa, zq Ñ P pb, zqq
`λxP pz,xqpP pz, aq Ñ P pz, bqq

T2 “ @yppP py, aq Ñ P py, bqq ^ pP pa, yq Ñ P pb, yqqq
`zppP pz, aq Ñ P pz, bqq Ñ pP pa, zq Ñ P pb, zqqq

which has the deep formulas DppT1q “ DppT2q “ pP pz, aq Ñ P pz, bqq^pP pa, zq Ñ P pb, zqq,
making DppT1q Ñ DppT2q true. The instantiation terms λxP px, zq and λxP pz, xq in T1 have
one free variable, but it is not selected in any of its sub-node. Therefore, the dependency relation
is trivially acyclic, which makes T1 $ T2 an expansion proof.

2.3.1 Extracting Expansion Proofs from LK

We will now describe the extraction algorithm for expansion trees from LK proofs used by
Miller to prove theorem 2.3.6 in more detail. In section 3.5 we will extend this algorithm to
provide expansion proofs from LKskc proofs with propositional cuts and so called passive cuts,
where ancestors of the cut-formula never occur as the primary formula of an inference.

The logical rules can be directly represented by introducing a corresponding expansion tree
node but contraction is a bit more challenging. In principle we are given two expansion trees
Ta, Tb which have the same shallow formula ShpTaq “ ShpTbq but might differ on the deep
formula. Since the two trees structurally agree on their shallow part, the merge operation joins
the quantifier instantiations in the respective nodes.

Definition 2.3.8 (Merge of expansion trees). Let Ta and Tb be expansion trees with ShpTaq is
α-equal to ShpTbq. We define mergepTa, Tbq by distinguishing pTa, Tbq on their (identical) root
node:

• Atom: then both atoms are identical and mergepTa, Tbq “ Ta

• Negation p T 1a, T 1bq: then mergepTa, Tbq “ mergepT 1a, T 1bq.
• Binary Connective pT1l˝T1r, T2l˝T2rq: thenmergepTa, Tbq “ mergepT1l, T2lq˝mergepT1r, T2rq
• Strong Quantifier pQ F`xT 1a, Q F`xT 1bq: thenmergepTa, Tbq “ Q F`xpmergepT 1a, T 1bqq

with Q P t@, Du.
• Weak Quantifier pQ F `ta1 Ta1 ` . . . `tan Tan, Q F `tb1 Tb1 ` . . . `tbm Tbmq: then
mergepTa, Tbq “ Q F `ta1 Ta1` . . .`tan Tan`tb1 Tb1` . . .`tbm Tbm with Q P t@, Du.

Having the merge operation available, we can now sketch the extraction of an expansion
sequent from an LK proof: given the expansion sequent Λ $ TA, T

1
A,Π for the proof π in the

contraction inference

14

pπq
Γ $A,A,∆

c : r
Γ $A,∆

then we use the expansion sequent Λ $ mergepTA, T 1Aq,Π . Furthermore, given the expan-
sion sequent Λ $ Π for the proof π in weakening inference

pπq
Γ $∆

w : r
Γ $A,∆

and any expansion tree10 T with ShpT q “ A, then we use the expansion sequent Λ $ Π .
The handling of logical rules all work in a similar fashion: suppose Λ $ TA, TB,Π is the

expansion sequent corresponding to the sub-proof π in the inference

pπq
Γ $A,∆

_ : r
Γ $A_B,∆

then we use Λ $ TA _ TB,Π as the expansion sequent for the conclusion. Likewise,
given the expansion sequent Λ1 $ TA,Π2 for the sub-proof π1 and the expansion sequent
Λ2 $ TB,Π2 for the sub-proof π2 in the inference

pπ1q
Γ1 $A,∆1

pπ2q
Γ2 $B,∆2

^ : r
Γ $A^B,∆

then we use Λ1,Λ2 $ TA^TB,Π2 as the expansion sequent for the conclusion. In all cases,
if the parent sequents are grounded expansion proofs, so is the inferred expansion sequent.

Now we turn our focus to soundness and completeness results relative to ETT. Miller pro-
vides both results as theorem 2.4.37 and 2.5.42 of his PhD thesis [71]:

Theorem 2.3.9. If the formula A has an expansion proof, then $T A.

Theorem 2.3.10. If A is a formula such that $T A, then A has a grounded expansion proof.

10There is always an expansion tree reflecting the shallow structure of the formula with quantifiers formulas at
the leaves.

15

2.3.2 Skolem Expansion Proofs

In his PhD thesis [71], Miller also describes a variant of expansion proofs which replaces strong
quantifier nodes containing selected variables with skolem quantifier nodes containing skolem
terms (as defined in section 2.1.2).

Definition 2.3.11. A Skolem expansion tree is defined like an expansion tree except as follows:
Instead of a strong quantifier node Q F `x T we use a Skolem quantifier node Q F `ft1...tp T
where ft1 . . . tp P U is a skolem term with the skolem function f of arity p.

Each skolem expansion tree must fulfill two global requirements:

• Each skolem quantifier node introduces a unique skolem function f .

• The path from the root to a skolem quantifier node contains exactly p weak quantifier
nodes with expansion terms t1 to tp (in that order).

The definitions of the shallow formula, the deep formula and skolem expansions proof prop-
erty are adapted accordingly.

The global restrictions are necessary to preserve soundness. For instance, the axiom of
choice applied to functions, written as @xιDyιP px, yq Ñ Dfιąι@zιP pz, fpzqq, suddenly be-
comes the provable formula @xP px, gpxqq Ñ DfP phpfq, fphpfqqq after skolemization: instan-
tiating f with λx gpxq and x with hpλx gpxqq leads to P phpλx gpxqq, gphpλx gpxqqqq Ñ
P phpλx gpxqq, gphpλx gpxqqqq. The latter is clearly a tautology but the axiom of choice is not.

Miller shows [72] the following equivalence results (as theorem 6.8 and 6.12 in the paper):

Theorem 2.3.12. If A has an expansion proof, it has a skolem expansion proof.

Theorem 2.3.13. If A has a skolem expansion proof, it has an expansion proof.

2.4 Reductive Cut-Elimination

The traditional cut-elimination methods defined by Gentzen [39] and Schütte / Tait [103] can
both be characterized as rewrite systems on LK proofs. As a general term for cut-elimination by
step-wise proof rewriting, Baaz and Leitsch introduced the term reductive cut-elimination [61,
p.105]. Since CERESω first converts a proof with arbitrary cuts into one on passive cuts, where
no rule operates on the cut formula and then uses the Gentzen method to remove those passive
cuts entirely, we will repeat the rewrite rules here. We distinguish two kinds of rules, those
which reduce the grade – that is the number of connectives – of the upper-most cut formula and
those which reduce the rank – that is the longest distance of the cut formula to one of the axioms
introducing it – of the cut inference.

Definition 2.4.1 (Grade and Rank). Let ρ be a cut-inference on the formula C of the form

pϕ1q
Γ1 $∆1

pϕ2q
Γ2 $∆2

cut
Γ1,Γ2̊ $∆1̊ ,∆1

pπq
16

Then gradepρq “ complpAq with

complpAq “
$

&

%

1 if C is an atom
1` complpAq if C is of the form A,@x.A, Dx.A
1`maxpcomplpAq, complpBqq if C is of the form A^B,A_B,AÑ B

.
Let L (R) be the set of upwards paths of occurrences of C in Γ2̊ (∆1̊) in the end-sequent of

π. Then rankpρq “ 2 `maxptlenplq|l P Luq `maxptlenprq|r P Ruq where lenppq denotes
the length of the path p.

To show termination, Gentzen introduced a macro-rule called mix which integrates contrac-
tion inferences:

Definition 2.4.2 (Mix rule).
The mix rule on the formulaA has at least one auxiliary occurrence ofA in the succedent(antecedent)
of the left(right) parent occurrence and no primary formula. It is translated to the following pat-
tern ending in a cut:

Γ1 $A, . . . , A,∆1 Γ2, A, . . . , A $∆2
mix

Γ1,Γ2 $∆1,∆2

Γ1 $A, . . . , A,∆1

c : r
Γ1 $A,∆1

Γ2, A, . . . , A $∆2
c : l

Γ2, A $∆2
cut

Γ1,Γ2 $∆1,∆2

To show termination with cut instead of mix, the traditional lexical ordering on the pair
pgradepπq, rankpπqq needs to ignore the sequence of contractions immediately preceding the
cut rule for computing the rank of a cut-formula [110]. Apart from the translation to cut, we fol-
low the presentation of Borisavljević [19] and distinguish between trivial cases, rank reduction,
grade reduction and cuts on contracted formulas:

Definition 2.4.3 (Reductive cut-elimination).

1. The cut formula appears in the antecedent of the left parent proof:

pπ1q
Γ1, A $A,∆1

pπ2q
Γ2, A $∆2

cut
Γ1,Γ2, A $∆1,∆2

pπ2q
Γ2, A $∆2

w : l
Γ1,Γ2, A $∆2

w : r
Γ1,Γ2, A $∆1,∆2

This case covers the introduction rule A $ A , where Γ1 and ∆1 are empty. If A $ A
appears as a subsequent in the right parent, the situation is symmetrical.

2. The cut formula is introduced by weakening:

pπ1q
Γ1 $∆, F

pπ2q
Γ2 $∆2

w : l
F,Γ2 $∆2

cut
Γ1,Γ2 $∆1,∆2

pπ2q
Γ2 $∆2

w : l
Γ1,Γ2 $∆2

w : r
Γ1,Γ2 $∆1,∆2

3. Grade reduction:
All cases assume that the cut formula is the primary formula in both parent inferences.
We distinguish on the kind of this rule:

17

a) The cut formula is introduced by negation:
pπ1q

Γ1, A $∆1
 : r

Γ1 $∆1, A

pπ2q
Γ2 $A,∆2

 : l
Γ2, A $∆2

cut
Γ1,Γ2 $∆1,∆2

pπ1q

Γ2 $∆2, A

pπ2q
Γ1, A $∆1

cut
Γ1,Γ2 $∆1,∆2

b) The cut formula is introduced by conjunction:
pπ1q

Γ1 $∆1, A

pπ2q
Γ2 $∆2, B

^ : r
Γ1,Γ2 $∆1,∆2, A^B

pπ3q
Γ3, A $∆3

^ : l
Γ3, A^B $∆3

cut
Γ1,Γ2,Γ3 $∆1,∆2,Γ3

pπ1q

Γ1 $∆1, A

pπ3q
Γ3, A $∆3

cut
Γ1,Γ3 $∆1,∆3

w : ˚
Γ1,Γ2,Γ3 $∆1,∆2,∆3

c) The cut formula is introduced by disjunction/implication:
Similar to the conjunction/negation case.

d) The cut formula is introduced by universal quantification:
pπ1pαqq

Γ1 $∆1, P pαq
@ : r

Γ1 $∆1,@xP pxq

pπ2q
Γ2, P ptq $∆2

@ : l
Γ2,@xP pxq $∆2

cut
Γ1,Γ2 $∆1,∆2

pπ1ptqq

Γ1 $∆1, P ptq
pπ2q

Γ2, P ptq $∆2
cut

Γ1,Γ2 $∆1,∆2

The proof πptq is obtained by applying the substitution tαÐ tu to πpαq. The sub-
stitution leaves context unchanged because it does not contain the eigenvariable α.

e) The cut formula is introduced by existential quantification:
Analogous to the universal case.

4. Right rank reduction: These cases handle the situation where the right parent inference
does not have the cut formula as primary formula. We permute the cut upwards by distin-
guising unary and binary inferences. The contraction case is handled seperately.

a) The right parent inference is a unary rule, but not contraction:

pπ1q
Γ1 $∆1, A

pπ2q
Γ2 $A,∆2 ρ
Γ12 $A,∆1

2
cut

Γ1,Γ
1
2 $∆1,∆

1
2

pπ1q
Γ1 $∆1, A

pπ2q
Γ2 $A,∆2

cut
Γ1,Γ2 $∆1,∆2 ρ
Γ1,Γ

1
2 $∆1,∆

1
2

b) The right parent inference is a binary rule:

pπ1q
Γ1 $∆1, A

pπ2q
A,Γ2 $∆2

pπ3q
Γ3 $∆3 ρ

A,Γ12,Γ13 $∆1
2,∆

1
3
cut

Γ1,Γ
1
2,Γ

1
3 $∆1,∆

1
2,∆

1
3

pπ1q
Γ1 $∆1, A

pπ2q
A,Γ2 $∆2

cut
Γ1,Γ2 $∆1,∆2

pπ3q
Γ3 $∆3 ρ

Γ1,Γ
1
2,Γ

1
3 $∆1,∆

1
2,∆

1
3

5. Left rank reduction
This is symmetrical to the right reduction. Gentzen’s version always performs right rank
reduction before left rank reduction, but the actual rules do not depend on that. In any
case, grade reduction only happens when rank reduction is not applicable anymore.

6. The parent inferences is a series of contractions:
In the most general case, there appears a series of contractions after the introduction rules
for the outermost connective of the cut formula on both parent branches of the cut-rule.
Like in grade reduction, we distinguish on the outermost symbol of the cut formula and
reduce the number of contraction inferences of both parents by one. To make the reduction
better visible, we denote n occurrences of a formula F as Fn:

18

a) The cut-formula is a conjunction inference F “ A^B:

pπ1q
Γ1 $F a, A,∆1

pπ2q
Γ2 $F b, B,∆2

^ : r
Γ1,Γ2 $F a`b, A^B,∆1

pa` b´ 1q ˆ c : r
Γ1,Γ2 $F,A^B,∆1,∆2

c : r
Γ1,Γ2 $F,∆1,∆2

pπ3q
Γ3, A, F

n $∆3
^ : l

Γ3, A^B,Fn $∆3
pn´ 1q ˆ c : l

Γ3, A^B,F $∆3
c : l

Γ3, F $∆3
cut

Γ1,Γ2,Γ3 $∆1,∆2,∆3

This proof contains a ` b ` n contractions between the conjunction inferences and
the cut. In principle, we use the same arguments as for rank reduction, but also
permute them over the contractions. Since π3 contains A instead of B, the number
b of occurrences of F in the end-sequent of π2 is irrelevant, in the symmetrical case
this holds for the number a of occurrences in the end-sequent of π1.11 We distinguish
on the lengths a and n of the contraction sequences in the parent proofs of the cut:

• a “ 0, n “ 0: This is the grade reduction case 3 without contractions.
• a “ 0, n ą 0: Since there are no additional occurrences of F in the succedent

of the end-sequent of π1, we can directly cut with π3 and contract later:

pπ1q
Γ1 $A,∆1

pπ2q
Γ2 $F b, B,∆2

^ : r
Γ1,Γ2 $F b, A^B,∆1

bˆ c : r
Γ1,Γ2 $F,∆1,∆2

pπ1q
Γ1 $A,∆1

pπ3q
Γ3, A, F

n $∆3
cut

Γ1,Γ3, F
n $∆1,∆3

pn´ 1q ˆ c : r
Γ1,Γ3, F $∆1,∆3

cut
Γ1,Γ3,Γ1,Γ2 $∆1,∆3,∆1,∆2

c : l ` c : r
Γ1,Γ2,Γ3 $∆1,∆2,∆3

We now have b` n´ 1 contraction inferences but needed to duplicate the cut.
• a ą 0, n “ 0: This case is symmetrical to the preceding one:

pπ1q
Γ1 $F a, A,∆1

pπ3q
Γ3, A $∆3

cut
Γ1,Γ3 $F a,∆1,∆2

aˆ c : r
Γ1,Γ3 $F,∆1,∆3

pπ3q
Γ3, A, F

n $∆3
^ : l

Γ3, A^B,Fn $∆3
nˆ c : l

Γ3, F $∆3
cut

Γ1,Γ3,Γ3 $∆1,∆3,∆3
c : l ` r, w : l ` r

Γ1,Γ2,Γ3 $∆1,∆2,∆3

• a ą 0, n ą 0 uses:

pπ1q
Γ1 $F a, A,∆1

pa´ 1q ˆ c : r
Γ1 $F,A,∆1

pπ3q
Γ3, A, F

n $∆3
^ : l

Γ3, A^B,Fn $∆3
pn´ 1q ˆ c : l

Γ3, A^B,F $∆3
c : l

Γ3, F $∆3
cut

Γ1,Γ3 $A,∆1,∆3

pπ4q
11To make the contraction clearer, we make the last contraction explicit. In the cases of a ` b “ 0 and n “ 0,

this means that we also need to skip the explicit step.

19

and

pπ1q
Γ1 $F a, A,∆1

pπ2q
Γ2 $F b, B,∆2

^ : r
Γ1,Γ2 $F a`b, A^B,∆1

pa` b´ 1q ˆ c : r
Γ1,Γ2 $F,A^B,∆1,∆2

c : r
Γ1,Γ2 $F,∆1,∆2

pπ3q
Γ3, A, F

n $∆3
pn´ 1q ˆ c : l

Γ3, A, F $∆3
cut

Γ1,Γ2,Γ3, A $∆1,∆2,∆3

pπ5q
which are combined again by cut:

pπ4q
Γ1,Γ3 $A,∆1,∆3

pπ5q
Γ1,Γ2,Γ3, A $∆1,∆2,∆3

cut
Γ1,Γ3,Γ1,Γ2,Γ3 $∆1,∆3,∆1,∆2,∆3

c : l ` c : r
Γ1,Γ2,Γ3 $∆1,∆2,∆3

The proof π4 contains a ` n ´ 1 contraction inferences whereas the proof π5

contains a` b` n´ 1 contraction inferences. Applying cut-elimination to the
parent proofs eliminates the contractions before the cut-formula in the final cut,
such that cut-elimination also terminates in this case.

b) The cases of disjunction and implication work analogously to the conjunction case.

c) The cut-formula is a quantification @xF pxq: The pattern looks as follows:

pπ1pαqq
Γ1 $p@xF pxqqn, F pαq,Γ2

@ : r
Γ1 $p@xF pxqqn,@xF pxq,Γ2

nˆ c : r
Γ1 $@xF pxq,Γ2

pπ2q
Γ2, p@xF pxqqm, F ptq $∆2

@ : l
Γ2, p@xF pxqqm,@xF pxq $∆2

mˆ c : l
Γ2,@xF pxq $∆2

cut
Γ1,Γ2 $∆1,∆2

We only describe the most complicated case with n ą 0,m ą 0, the others work
accordingly. Again we create two proofs, skipping the @ : r respectively the @ : l
rule to obtain

pπ1ptqq
Γ1 $p@xF pxqqn, F pαq,Γ2

pn´ 1q ˆ c : r
Γ1 $@xF pxq, F ptqΓ2

pπ2q
Γ2, p@xF pxqqm, F ptq $∆2

@ : l
Γ2, p@xF pxqqm,@xF pxq $∆2

mˆ c : l
Γ2,@xF pxq $∆2

cut
Γ1,Γ2 $∆1,∆2, F ptq

pπ3q
where π1ptq is the instance of πpαq and

20

pπ1pαqq
Γ1 $p@xF pxqqn, F pαq,Γ2

@ : r
Γ1 $p@xF pxqqn,@xF pxq,Γ2

nˆ c : r
Γ1 $@xF pxq,Γ2

pπ2q
Γ2, p@xF pxqqm, F ptq $∆2

pm´ 1q ˆ c : l
Γ2,@xF pxq, F ptq $∆2

cut
Γ1,Γ2, F ptq $∆1,∆2

pπ4q
Both proofs have n`m´ 1 contractions leading into the cut which can be succes-
sively removed until they vanish completely and reduce to the grade reduction case.
They can be combined as follows:

pπ3q
Γ1,Γ2 $∆1,∆2, F ptq

pπ4q
Γ1,Γ2, F ptq $∆1,∆2

cut
Γ1,Γ2,Γ1,Γ2 $∆1,∆2,∆1,∆2

c : l ` r
Γ1,Γ2 $∆1,∆2

d) The cut-formula is one of the other unary logical rules or weakening: The is essen-
tially the same pattern as the case for universal quantification.

The reduction rule 1 is the only one where a cut-formula becomes an end-sequent ancestor.
This becomes problematic in one of the post-processing steps of the CERES method. Instead
of immediately discarding one parent proof, we can permute the cut upwards via rank-reduction
and eliminate it at its introduction. This is either a weakening rule which is covered in case 2 or
an axiom rule which is covered by the following reduction:

Definition 2.4.4. Modified reductive cut-elimination is the rewrite system obtained by taking all
rules from definition 2.4.3 apart from rule 1, 3d and 3e. Furthermore we add the rule:

1a. A $A A $A
cut

A $A A $A

2.5 CERES

Reductive cut-elimination – that is cut-elimination based on quantifier shifting like the methods
of Gentzen [39] or Schütte / Tait [103] – may produce multiple cut-free proofs, depending on the
order in which the cut rules are shifted. While these methods apply locally, the CERES method
[7, 8, 61] restructures the proof globally. The proof is first reduced to a set of proof projections,
which are cut-free proofs of a combination of the original end-sequent with additional atom
formulas. These formulas can also be interpreted as clauses and are extracted from the axiom
rules of the input proof which contribute to the proofs of cut formulas. From the construction
of this characteristic clause set, we know it is contradictory. In particular, it has a resolution
refutation which can be simulated in sequent calculus with the projections taking the roles of
the clauses. Where the resolution refutation leads to the empty clause, the simulation removes
the additional clauses from the end-sequent, resulting in a proof of solely the original end-
sequent. The flexibility of the CERES method comes from its dependence on the form of the
refutation, which produces proofs reductive methods cannot achieve. Even a propositional proof

21

showing double negation elimination by using the law of excluded middle (see also Reis’ work
on CERES in intuitionistic logic [80]) exhibits this phenomenon:

P $P

P $P
 : l P, P $
 : r P $ P
_ : l

P _ P $P , P
_ : r

P _ P $P _ P

P $P

P $ P
 : l P , P $
 : r P $ P
 : l P, P $
_ : l

P _ P , P $P
Ñ: r

P _ P $ P Ñ P
cut

P _ P $ P Ñ P

Having the law of excluded middle in the end-sequent allows to formulate it as an intu-
itionistic proof. Using Gentzen’s cut-elimination, the trivial cut on the law of excluded middle
vanishes, again resulting in an intuitionistic proof:

P $P

P $P
 : l P, P $
 : r P $ P
 : l p P q, P $
_ : l

P _ p P q, p P q $P
Ñ: r

P _ p P q $p p P qq Ñ P

But the CERES method produces the following purely classical proof, where the law of
excluded middle is just added by weakening:

P $P
 : r$P, P
 : l P $P
Ñ: r$ P Ñ P

w : l
P _ P $ P Ñ P

Since the Gentzen method always preserves intuitionistic proofs, the one produced by CERES
is genuinely different. Let us explore how this proof was produced. The first observation is that
the differentiation into unary (_ : r, ^ : l, Ñ: r) and binary logical rules (^ : r, _ : l,
Ñ: l) characterizes them as either disjunctive or conjunctive. When writing the sequents of
the ^ : l inference as formulas (see definition 2.2.2), it is obvious that

Ź

Γ ^ A ^ B Ñ
Ž

∆ is equivalent to Ž

Γ _ A _ B
Ž

∆ which exhibits the disjunctive nature of the rule.
The binary cut-rule also fits into the characterisation as conjunctive, since it can be seen as
 Ž

Γ1_Ž

∆1_ p F ^F q _ Ž

Γ2_Ž

∆2. We can focus on the branching nature of our
input proof by drawing graph with each node representing a sequent and each edge connecting
child- and parent proofs.

Since our task is the elimination of the cut rule we generate a set of projections from the
input proof by leaving out all inferences which prove a cut formula. In case of a binary rule the
question is how to combine the projections of the parent proof. For sure it is related to the fact

22

whether the main formula contributes to a cut-formula or not. In the first case we color a node
in our graph blue, in the second case we color the node red, leading to the following graph for
our example:

ˆ

Y

ˆ Y

Y

Y

This graph gives us the template to construct the set of projections mentioned above: in-
ferences of red nodes are necessary to prove the original end-sequent and are preserved in a
projection. Blue nodes – in particular cuts – are left out, leading to additional atoms in the
end-sequent. In case of binary rules, we create the union of the parent projection sets. In our
example, the projections are the following:

P $P
P $P

 : l P, P $
_ : l

P _ P, P $P
w : r

P _ P, P $P , p P q Ñ P

pπ1q

P $P
w : l p P q, P $P
Ñ: r

P $ p P q Ñ P
w : l

P _ p P q, P $ p P q Ñ P

pπ2q
P $ P

 : r$ P , P
 : l p P q $ P
w : r p P q $P, P
Ñ: r$ P , p P q Ñ P

w : l
P _ p P q $ P , p P q Ñ P

pπ3q
The corresponding characteristic sets of additional sub-sequents is CCS “ tP $ P ; P $

;$ P u. When we remember that we created the union of projections when a binary rule con-
tributes to a cut-formula, it is evident its conjunctive nature reflects also in the interpretation of
the set as conjunction of the contained sequents. Similarly the skipped unary inferences’ dis-
junctive nature is reflected in the (classical) interpretation of a sequent as

Ž

Γ _Ž

∆. Under
the condition that axiom rules introduce only atomic formulas, the set CCS can be seen as a
clause set – the so called characteristic clause set.

As mentioned above, the characteristic clause set always has a refutation, in the case of the
example it is the following:

23

P $ $ P
Res$

Since ground resolution corresponds to the cut on an atom formula the resolution proof
serves as template to remove the additional content from the projections:

P $P
w : l p P q, P $P
Ñ: r

P $p p P qq Ñ P
w : l

P _ p P q, P $p p P qq Ñ P

P $ P
 : r$ P , P
 : l p P q $ P
w : r p P q $P, P
Ñ: r$ P , p p P qq Ñ P

w : l
P _ p P q $ P , p P q Ñ P

cut
P _ p P q, P _ p P q $ p P q Ñ P, p P q Ñ P

c : l
P _ p P q $ p P q Ñ P, p P q Ñ P

c : r
P _ p P q $ p P q Ñ P

We now have effectively reduced a proof with arbitrary cut formulas to a proof with atomic
cut formulas, its so called atomic-cut normal-form (ACNF). To obtain a cut-free proof we can
use the Gentzen method where only rank reductions are necessary since the cut formulas always
have grade 1.

To generalize the method to first-order logic, we also need to consider the quantifier rules.
Disregarding the quantifier constant itself, a formula quantified over is a generalization of its
auxiliary formula. In other words each formula @λxF introduced is inferred from the formula
pλxF qα for an eigenvariable α (in the case of a strong quantifier inference) or pλxF qt for any
term t (in the case of a weak quantifier inference). The refutation of the characteristic sequent
set then completes the necessary term instantiations which again can be different from those
the Gentzen method generates. There are two requirements which need to be fulfilled for this
to work: the proof must be regular i.e. the eigenvariables must be globally unique. Otherwise
the instantiation terms of different proof branches are implicitly unified, possibly leading to
a satisfiable CCS. Furthermore a projection may have more free variables than the original
sequent, which could invalidate the eigenvariable conditions of strong quantifier inferences on
ancestors of end-sequent formulas. The solution there is to perform proof Skolemization as
a preprocessing step [6]. This is unproblematic in first-order logic since De-Skolemization is
always possible.

Apart from the richer number of cut-free normal-forms, which have mostly proof-theoretic
value, CERES provides additional value when taking equality rules into account. Right now we
describe the binary equality rules from defintion 2.2.3 as they are the historically evolved ones
– section 3.2 discusses the (dis-)advantages of the simpler unary rules. In principle, the binary
equality rules are treated like a cut: the rule does not contribute to a projection in case the primary
formula F rts is a cut-ancestor and it contributes to the projection otherwise. Now the Gentzen
method can not permute a cut with an equality rule where the primary formula is a cut-ancestor.
It is possible to move equality rules towards the leaves such that cuts can move upwards too, but
the cuts cannot be completely removed leaving the proof in atomic-cut normal-form. Moreover,

24

the up-shifting of equality rules causes an unwanted rewriting of the proof modulo the theory
defined by the equality s “ t which complicates the interpretation of this ACNF. Contrary to
reductive methods, CERES simulates paramodulation12 inferences whenever they occur in the
resolution refutation of the CCS, leading to a more natural mix of equational reasoning and
atomic cuts.

2.6 CERESω

This section now presents CERESω, the formulation of CERES for higher-order logic. It draws
heavily on the original presentation in Weller’s PHD thesis [111] and its journal version [48].
Extended with first-order equality (see section 3.1) it will be the main method underlying our
experiments.

When generalizing CERES to higher-order logic, the embedding of resolution refutations
into sequent calculus becomes more difficult. Before applying CERES in first-order logic, the
input proof needs to be skolemized [6], since projections can only be computed when the end-
sequent does not contain strong quantifiers. But in a higher-order resolution calculus, the substi-
tution of a predicate variable may also introduce quantifiers. Even worse, without restrictions, a
skolemized formula may be provable even though the original formula is not (see section 2.3.2
for an example).

The approach taken here is to modify the strong quantifier rules of the sequent calculus to
use Skolem terms instead of eigenvariables, when they contribute to the end-sequent. Rules
with eigenvariables conditions are still necessary to infer formulas contributung to cuts because
they appear both negatively and positively in the cut rule, which would lead to different skolem
normal forms.

To preserve soundness, the Skolem terms must correspond contain the instances of the weak
quantifier inferences which will be applied subsequently. In order to propagate this non-local
information, each formula occurrence has a label which annotates the primary formulas of later
weak quantifier rules, from which the Skolem context is generated. Another non-local property
of Skolem quantifier rules is each quantifier in the end-sequent must have a unique Skolem sym-
bol assigned i.e. duplicated Skolem symbols are only allowed when a subsequent contraction
will lead to the same quantifier occurrence in the end-sequent.

The approach taken in CERESω is to start with anLK proof of the end-sequent S containing
the usual quantifier rules with eigenvariable conditions (see figure 2.2.2). It is then transferred
to a proof of S in the calculus LKskc by replacing quantifier inferences contributing to the end-
sequent with Skolem quantifier rules. The context of weak quantifier inferences operating on
successors of a formula is traced by the means of labels attached to each formula. Out of the
LKskc proof, the characteristic sequent set and the cut-free proof projections to each sequent
in the set are generated. After finding a resolution refutation of the characteristic sequent set in
the Ral calculus, it serves as a template to create a proof of S in LKskc. The only cut-formulas
in this proof come from simulations of the resolution rule. Even though the cut-formulas may
contain quantifiers, no inference operates on its ancestors13. Therefore Gentzen style reductive

12This also applies to superposition, since a superposition rule can be seen as a restriction of paramodulation.
13The restrictedness property will ensure exactly that.

25

cut-elimination will perform only rank reduction steps, resulting in anLKsk proof . Further post-
processing is required since the simulation may generate Skolem quantifier inferences in places
of the proof where the eigenvariable condition would not hold. After pushing these inferences
towards the root, the Skolem quantifier rules can be replaced by the usual ones, resulting in a
cut-free proof of S in LK.

2.6.1 The Sequent Calculi LKsk and LKskc

Like for LK, the formula language used in all calculi are terms of simply typed lambda calculus
in β-normal-form. A labeled formula F is written as 〈F 〉`, where ` is a set of simply typed
lambda terms. If the label can be inferred from the context, it is omitted. We also call the unla-
beled formula lsF ∅ the reduct of 〈F 〉`. Analogous to an unlabeled sequent, a labeled sequent is
a sequent of labeled formulas.

Y psq $Y psq Y ptq $Y ptq
Ñ: l

Y psq Ñ Y ptq, Y psq $Y ptq
@ : lp@XpXpsq Ñ Xptqqq, Y psq $Y ptq
 : rp@XpXpsq Ñ Xptqqq $ Y psq, Y ptq
_ : rp@XpXpsq Ñ Xptqqq $ Y psq _ Y ptq

@ : rp@XpXpsq Ñ Xptqqq $p@Xp Xpsq _Xptqqq

p@xP px, sqq $p@xP px, sqq
 : l p@xP px, sqq, p@xP px, sqq $ p@xP px, tqq $p@xP px, tqq

_ : l p@xP px, sqq _ p@xP px, tqq, p@xP px, sqq $p@xP px, tqq
Ñ: r p@xP px, sqq _ p@xP px, tqq $p@xP px, sqq Ñ p@xP px, tqq
@ : lp@Xp Xpsq _Xptqqq $p@xP px, sqq Ñ p@xP px, tqq

cutp@XpXpsq Ñ Xptqqq $p@xP px, sqq Ñ p@xP px, tqq

Figure 2.1: An example of an LK proof

An example showing the application of a replacement rule similar to Leibniz equality can
be seen in figure 2.1. Even though the cut formula @Xp Xpsq _Xptqq can be mainly obtained
from @XpXpsq Ñ pXptqq with simple propositional reasoning, it still contains a higher-order
quantifier.

The calculus LKskc now adds the Skolem quantifier rules to LK and requires that the label
of auxiliary formulas and the primary formula in logical and structural rules are identical. Axiom
rules may introduce differently labeled formulas though.

Definition 2.6.1 (Skolem quantifier rules and LKskc Trees).

Skolem Quantifier rules:

Γ, 〈F pfS1 . . . Snq〉` $ ∆ Dsk : l
Γ, 〈DαF 〉` $ ∆

Γ $ ∆, 〈F pfS1 . . . Snq〉` @sk : r
Γ $ ∆, 〈@αF 〉`

with ` “ S1, . . . , Sn and, if τpSiq “ αi for 1 ď i ď n, then f P Kα1,...,αn,α is a Skolem
symbol.

〈FT 〉`,T ,Γ $ ∆ @sk : l
〈@αF 〉` ,Γ $ ∆

Γ $ ∆, 〈FT 〉`,T Dsk : r
Γ $ ∆, 〈DαF 〉`

26

An LKskc tree consists of inferences from LK together with the rules in definition 2.6.1,
where Skolem quantifier rules only apply to ancestors of end-sequent formulas and LK quanti-
fier rules only apply to ancestors of cut-formulas.

In order to express the restrictions on Skolem quantifier rules discussed above, it is necessary
to introduce the notions of proper and weakly regular derivations.

Definition 2.6.2. Let π be an LKskc derivation where every label of an end-sequent formula is
empty. Then π is called proper.

The intuition behind a weakly regular LKskc tree is that an occurrence of a strong quantifier
in the end-sequent will always be introduced using the same Skolem symbol. In particular, this
happens if a contraction rule applies after the introduction of that strong quantifier. To make this
intuition precise, we also introduce the notions of homomorphic paths and inferences.

Definition 2.6.3 (Homomorphic Paths and Inferences). Let F pωq denote the the formula at
occurrence ω. Let P pµq be the sequence of formulas resulting from mapping each occurrence ω
in the sequence of formula occurrences µ to F pωq, omitting repetitions. Then the sequences of
formula occurrences µ and ν are homomorphic, if P pµq “ P pνq.

Let α1, . . . , γ1 and α2, . . . , γ2 be two homomorphic paths of formula occurrences and c be
contraction rule with auxiliary formulas γ1 and γ2. Then α1 and α2 are homomorphic in c.

Two formula occurrences ω1 and ω2 are homomorphic, if there exists a c such that they are
homomorphic in c. Let ρ1 and ρ2 be two inferences of the same type with auxiliary formula
occurrences α1

1 and α1
2 in the case of a unary rule and with auxiliary formula occurrences α1

1, α
2
1

and α1
2, α

2
2 in the case of a binary rule. The inferences ρ1 and ρ2 are homomorphic, if there

exists a contraction inference in c such that α1
1 and α1

2 are homomorphic in c, and, if applicable,
also α2

1 and α2
2 are homomorphic in c.

A homorphic inference captures the intuition that a skolem function is associated with a
strong quantifier occurrence in the end-sequent. In fact, the full skolem terms agree:

Proposition 2.6.4. If two strong skolem quantifier inferences are homomorphic, then they have
identical skolem terms.

Now we can define a notion of proof:

Definition 2.6.5 (Weak Regularity, LKskc and LKsk proofs). An LKskc tree with end-sequent
S is weakly regular, if for all distinct strong Skolem quantifier inferences ρ1, ρ2 holds: if ρ1

and ρ2 have the same Skolem terms, then they are homomorphic. An LKskc proof is a proper,
weakly regular LKskc tree. An LKsk proof is an LKskc proof without the cut-rule.

The proof in figure 2.2 shows the LKskc proof corresponding to the LK proof in figure 2.1.
In order to translate an LK proof into LKskc, weak regularity is insufficient. Similar to the

first-order notion of regularity, Eigenvarables need to be globally unique and the same reasoning
is applied to strong Skolem quantifier rules.

Definition 2.6.6 (Regular LKskc / LK trees). An LKskc / LK tree π is regular if:

27

〈Y psq〉 $〈Y psq〉Y 〈Y ptq〉Y $〈Y ptq〉
Ñ: l

〈Y psq Ñ Y ptq〉Y , 〈Y psq〉 $〈Y ptq〉
@
sk : l〈p@XpXpsq Ñ Xptqqq〉 , 〈Y psq〉 $〈Y ptq〉
 : r

〈p@XpXpsq Ñ Xptqqq〉 $〈Y ptq〉 , 〈 Y psq〉
_ : r

〈p@XpXpsq Ñ Xptqqq〉 $〈p Y psqq _ Y ptq〉
@
sk : r〈p@XpXpsq Ñ Xptqqq〉 $〈p@Xpp Xpsqq _Xptqqq〉

〈P px, sq〉x $〈P px, sq〉
@
sk : l〈p@xP px, sqq〉 $〈P px, sq〉
@ : r〈p@xP px, sqq〉 $〈p@xP px, sqq〉
 : l〈 p@xP px, sqq〉 , 〈p@xP px, sqq〉 $

〈P ps0ptq, tq〉 $〈P ps0ptq, tq〉
@ : l〈p@xP px, tqq〉 $〈P ps0ptq, tq〉
@
sk : r〈p@xP px, tqq〉 $〈p@xP px, tqq〉
_ : l〈p p@xP px, sqqq _ p@xP px, tqq〉 , 〈p@xP px, sqq〉 $〈p@xP px, tqq〉

Ñ: r
〈p p@xP px, sqqq _ p@xP px, tqq〉 $〈p@xP px, sqq Ñ p@xP px, tqq〉

@ : l〈p@Xpp Xpsqq _Xptqqq〉 $〈p@xP px, sqq Ñ p@xP px, tqq〉
cut

〈p@XpXpsq Ñ Xptqqq〉 $〈p@xP px, sqq Ñ p@xP px, tqq〉

Figure 2.2: The LKskc translation of the LK example from figure 2.1

1. Each strong labeled quantifier inference has a unique Skolem symbol

2. The eigenvariable of each strong quantifier inference ρ occurs only in the sub-proof of ρ
within π.

Since each Skolem symbol is unique, every regular proof is also weakly regular. The con-
structive translation to LKskc given by Hetzl et al. [48] replaces eigenvariables of end-sequent
ancestors with according Skolem terms built from fresh Skolem functions, leading to the follow-
ing theorem:

Theorem 2.6.7 (Skolem Translation). Given a regular LK proof of the end-sequent S, there
exists a regular LKskc proof of S.

The distinction whether a formula is an ancestor of a cut-formula or an end-sequent formula
is not only relevant to which kind of quantifier rule can be applied. For CERESω, it is necessary
to construct the projections of a proof but the notion of a formula contributing to a cut is visible
within the whole method.

Definition 2.6.8 (Cut-ancestors and End-sequent ancestors). Given an LKskc proof π with end-
sequent S. For each rule in π inferring the sequent T , define cutancpT q as the subsequent of T
where each formula is an ancestor of a cut-formula. Likewise, define esancpT q as the subsequent
of T where each formula is an ancestor of a formula in S.

In any rule, its sequent S can be expressed as cutancpSq ˆ esancpSq, where the merge of
two sequents Γ1 $ ∆1 ˆ Γ2 $ ∆2 is defined as Γ1,Γ2 $ ∆1,∆2. We also lift the merge
operation to sequent sets by defining S ˆ T as the set tsˆ t|s P S, t P T u.

To simplify proof transformation algorithms, we introduce a shortcut notation for often used
operations. Given a unary inference σ, a binary inference ρ and the LKskc trees π and ψ,
we define σpπq and ρpπ, ψq as an application of the rules to the respective proof(s). These
definitions are not applicable in general, but for some transformations which construct a proof
Transformpπq with end-sequent T from a proof π with end-sequent S and last inference ρ,
there exists a mapping from the formulas in S to formulas in T , such that ρ can be uniquely
applied to the image of the auxiliary formula(s) fpA1q (and fpA2q). A simple example is the
application of a substitution τ to all formulas in a proof π: we define subpτ, πq by distinguishing
on the last inference in ρ, referring to the parent proof(s) as π1 (and π2).

28

• ρ is an axiom introducing the sequent S: then subpτ, πq is the Axiom introducing τS.

• ρ is a quantifier rule with the primary formula @x.Fx: let τ 1pvq “ τpvq for v ‰ x and
τ 1pxq “ x. Then subpτ, πq “ ρpsubpτ 1, π1qq.
• ρ is weakening rule introducing F , then subpτ, πq is obtained by applying a weakening of
τF to π1.

• ρ is a unary logical rule introducing F ˝ G with ˝ P t^,_,Ñu and auxiliary formula F
(G): then subpτ, πq “ ρpsubpτ, π1qq, with primary formula τF ˝ τG.

• ρ is any other unary rule: then subpτ, πq “ ρpsubpτ, π1qq
• ρ is any binary rule: then subpτ, πq “ ρpsubpτ, π1q, subpτ, π2q

We can also lift this notion to sequent sets by defining S ˆρ T as tρps, tq|s P S, t P T u.
Since the version of LK given here uses multiplicative rules, it is sometimes necessary to

add multiple successive weakenings. Given an LKskc tree π, we write πΓ$∆ for the proof
obtained by applying weakening rules to add the sequent Γ $ ∆ to π.

2.6.2 Proof Projections

The idea underlying proof projections is to transform a proof of the end-sequent S into a set of
cut-free proofs of a weaker end-sequent SˆC. The CERES method assembles these projections
into a proof of S. Since projections are cut-free, a cut in the completed proof must come from an
assembly step. In the case of CERESω, a resolution refutation in the Ral calculus (see section
2.6.3) serves as a template for the proof construction. Its input – called the characteristic sequent
set – is obtained by mapping each projection’s end-sequent S ˆ C to the additional part C. We
now state Weller’s definition [48] of projections and the characteristic sequent set for CERESω.

Definition 2.6.9 (Proof Projections and Characteristic Sequent Set). Let π be a regular LKskc-
proof. For each inference ρ in π, we define a set of LKsk-trees, the set of projections Pρpπq,
and a set of labeled sequents, the characteristic sequent set CSρpπq.
• If ρ is an axiom with conclusion S “ 〈A〉`1 $ 〈A〉`2 , distinguish:

– cutancpSq “ S. Then CSρpπq “ Pρpπq “ ∅.
– cutancpSq ‰ S. Distinguish:

(a) If cutancpSq “ $ 〈A〉`2 then CSρpπq “ t$ 〈A〉`1u and Pρpπq “ t〈A〉`1 $
〈A〉`1u,

(b) if cutancpSq “ 〈A〉`1 $ then CSρpπq “ t〈A〉`2 $u and Pρpπq “ t〈A〉`2 $
〈A〉`2u,

(c) if cutancpSq “ $ then CSρpπq “ t$u and Pρpπq “ tSu.
• If ρ is a unary inference with immediate predecessor ρ1 with Pρ1pπq “ tψ1, . . . , ψnu,

distinguish:

29

(a) ρ operates on ancestors of cut formulas. Then

Pρpπq “ Pρ1pπq

(b) ρ operates on ancestors of the end-sequent. Then

Pρpπq “ tρpψ1q, . . . , ρpψnqu

In any case, CSρpπq “ CSρ1pπq.
• Let ρ be a binary inference with immediate predecessors ρ1 and ρ2.

(a) If ρ operates on ancestors of cut-formulas, let Γi $ ∆i be the ancestors of the end-
sequent in the conclusion sequent of ρi and define

Pρpπq “ Pρ1pπqΓ2$∆2 Y Pρ2pπqΓ1$∆1

For the characteristic sequent set, define

CSρpπq “ CSρ1pπq Y CSρ2pπq

(b) If ρ operates on ancestors of the end-sequent, then

Pρpπq “ Pρ1pπq ˆρ Pρ2pπq.
For the characteristic sequent set, define

CSρpπq “ CSρ1pπq ˆ CSρ2pπq

The set of projections of π, Ppπq is defined as Pρ0pπq, and the characteristic sequent set of π,
CSpπq is defined as CSρ0pπq, where ρ0 is the last inference of π.

Coming back to the example from figure 2.2, we can calculate the characteristic sequent
set tS1, S2, S3u with S1 : Y psq $ Y ptq, S2 : $ p@xP px, sqq and S3 : p@xP px, tqq $. The
corresponding projections can be seen in figure 2.3, where the formulas contributing to the CS
sub-sequents are indicated in colors.

A central property of the characteristic sequent set is that – disregarding labels – it always
has a refutation in LK:

Proposition 2.6.10. Let π be a regular LKskc-proof. Then there exists an LK-refutation of the
reduct of CSpπq.

30

Y psq $Y psq Y ptq $ Y ptq
Ñ: l

Y psq, Y psq Ñ Y ptq $ Y ptq
@
sk : l

Y psq, p@XpXpsq Ñ Xptqqq $ Y ptq
w : r

Y psq, p@XpXpsq Ñ Xptqqq $ Y ptq, p@xP px, sqq Ñ p@xP px, tqq
pPS1q

p@xP px, sqq $p@xP px, sqq
w : rp@xP px, sqq $p@xP px, sqq, p@xP px, tqq
Ñ: r$p@xP px, sqq, p@xP px, sqq Ñ p@xP px, tqq

w : lp@XpXpsq Ñ Xptqqq $p@xP px, sqq, p@xP px, sqq Ñ p@xP px, tqq
pPS2q

p@xP px, tqq $p@xP px, tqq
w : lp@xP px, tqq, p@xP px, sqq $p@xP px, tqq
Ñ: rp@xP px, tqq $p@xP px, sqq Ñ p@xP px, tqq

w : lp@xP px, tqq, p@XpXpsq Ñ Xptqqq $p@xP px, sqq Ñ p@xP px, tqq
pPS3q

Figure 2.3: The projections of the example from figure 2.2

2.6.3 The Resolution Calculus Ral

Since axioms in LKskc are always of the form F $ F , it is possible to expand it to a proof
from axioms containing only atomic formulas [61]. Then the characteristic sequent set actu-
ally becomes a clause set. In the first-order case, this set is contradictory and can be refuted
by resolution [7]. Unfortunately, in higher-order logic the clause form is not preserved under
substitution. For instance, applying the substitution σ “ tY Ð λzpP px, zqqu to the sequent S1

from the example, we obtain the sequent p@xP px, sqq $ p@xP px, tqqwhich is not in clause form
anymore. In order to keep resolution only to apply on literals, a higher-order resolution calculus
therefore needs to integrate rules for clause normal form transformation and the introduction of
Skolem terms.

Definition 2.6.11 (Ral rules, deductions and refutations).

Resolution rules:

〈F 〉`1 $ 〈F 〉`2
intro S

S tX Ð T u
Sub

Γ $ ∆, 〈A〉`1 , . . . , 〈A〉`n 〈A〉`n`1 , . . . , 〈A〉`m ,Π $ Λ

Γ,Π $ ∆,Λ
Cut

31

Logical rules:
Γ $ ∆, 〈 A〉`

〈A〉` ,Γ $ ∆

T

〈 A〉` ,Γ $ ∆

Γ $ ∆, 〈A〉`

F

Γ $ ∆, 〈A_B〉`

Γ $ ∆, 〈A〉` , 〈B〉`
_
T

〈A_B〉` ,Γ $ ∆

〈A〉` ,Γ $ ∆
_
F
l

〈A_B〉` ,Γ $ ∆

〈B〉` ,Γ $ ∆
_
F
r

〈A^B〉` ,Γ $ ∆

〈A〉` , 〈B〉` ,Γ $ ∆
^
F

Γ $ ∆, 〈A^B〉`

Γ $ ∆, 〈A〉`
^
T
l

Γ $ ∆, 〈A^B〉`

Γ $ ∆, 〈B〉`
^
T
r

Γ $ ∆, 〈AÑ B〉`

〈A〉` ,Γ $ ∆, 〈B〉`
Ñ
T

〈AÑ B〉` ,Γ $ ∆

Γ $ ∆, 〈A〉`
Ñ
F
l

〈AÑ B〉` ,Γ $ ∆

〈B〉` ,Γ $ ∆
Ñ
F
r

Quantifier rules:

Γ $ ∆, 〈@αA〉`

Γ $ ∆, 〈AX〉`,X
@
T

〈@αA〉` ,Γ $ ∆

〈ApfS1 . . . Snq〉` ,Γ $ ∆
@
F

〈DαA〉` ,Γ $ ∆

〈AX〉`,X ,Γ $ ∆
D
F

Γ $ ∆, 〈DαA〉`

Γ $ ∆, 〈ApfS1 . . . Snq〉`
D
T

The auxiliary formulas A in the Cut rule is atomic. The variable X in the weak quantifier rules
@T and DF does not occur in Γ, ∆ and A. The label ` in the strong quantifier rules @F and
DT consists of S1, . . . , Sn. Moreover f P Kα1,...,αn,α is a Skolem symbol with τpSiq “ αi for
1 ď i ď n. An application of a strong quantifier rule is called source inference of fS1 . . . Sm,
and fS1 . . . Sm is called the Skolem term of this inference.

It might seem counter-intuitive that the weak quantifier rules introduce a fresh variable. At
a second glance, it is similar to the first-order CNF transformation where the formula P paq ^
 Qpbq^pDxP pxq Ñ @xQpxqq corresponds to the clause set t $ P paq;Qpbq $;P pxq $ Qpyqu
where one occurrence of the bound variable x had to be renamed. Like in first-order resolution
the free variable may become instantiated further on in the derivation.

Definition 2.6.12 (Ral refutation). Let C be a set of sequents. A sequence of sequents S1, . . . , Sn
is an Ral-deduction of Sn from C if for all 1 ď i ď n either

1. Si P C or

2. Si is derived from Sj (and Sk) by an Ral rule, where j, k ă i.

In addition, we require that all @F and DT inferences used have pairwise distinct Skolem sym-
bols. An Ral-deduction of the empty sequent from C is called an Ral-refutation of C.

A possible Ral refutation of the example for a characteristic sequent set from section 2.6.2
is given in figure 2.4.

32

$p@xP px, sqq
@
T

$〈P pv, sq〉v
Sub$〈P pd, sq〉v

Y psq $Y ptq
Subp@xP px, sqq $p@xP px, tqq
@
T

p@xP px, sqq $〈P pu, tq〉u
Subp@xP px, sqq $〈P pc, tq〉u

p@xP px, tqq $
@
F

P pc, tq $
cutp@xP px, sqq $

@
F

P pd, sq $
cut$

Figure 2.4: A Ral refutation of the characteristic sequent set from example in section 2.6.2.

2.6.4 CERESω

We now turn to the task of simulating the Ral refutation using the projection proofs as axioms
which results in an LKskc proof where ancestors of cut formulas are never active formulas
of an inference. The analogue notion in first-order CERES is the atomic-cut normal-form.
The reason why the restriction to atomic cuts fails is that higher-order atom formulas are not
closed under substitution. Nevertheless, these cuts behave like atom formulas in the sense that
Gentzen’s method only applies rank-reduction (reducing the length of the ancestor introducing a
cut formula to the occurrence in the cut rule), never grade reduction rules (reducing the number
of logical symbols in the cut formula).

The other complication in contrast to the first-order method is that a substitution might
require a CNF transformation in higher-order resolution. Even though a projection preserves
the order of quantifier inferences, the CNF transformations happen at the leaves of the proof
tree. A possible introduced quantifier then needs to be shifted into a suitable place before De-
Skolemizing the proof.

From Projections and an Ral refutation to an LKskc Proof

The transformations in the following sections have additional requirements on LKskc trees. The
first one comes from the observation that there are no inferences operating on formulas from the
characteristic sequent to which a proof is projected. Then each of these formulas can be traced
to the unique inference which introduces it.

Definition 2.6.13. Restrictedness and Linearity
Let S be a set of formula occurrences in an LKskc tree π. Then π is called S-linear, if no
inferences operate on ancestors of S. If no inferences except contraction operate on ancestors of
S, then π is called S-restricted.

Additionally, we call π restricted, if S is the set of cut-formulas in π.

Proposition 2.6.14. Let π be an S-linear proof, where ω P S is an occurrence within the end-
sequent of π. Then there exists a unique axiom introducing the ancestor of ω.

Proposition 2.6.14 is a direct consequence of linearity: since no inference operates on the
ancestors of ω, there is always a unique ancestor in every inference. Looking back at the projec-

33

tion to S1 shown in figure 2.3, both the occurrence of Y psq and Y ptq are linear and introduced
by the axioms Y psq $ Y psq and Y ptq $ Y ptq.

Moreover, proofs which are S-linear have the property, that the labels of any formula in S
can be deleted.

Proposition 2.6.15. Let π be an LKskc-tree, and S a set of formula occurrences in π that is
closed under descendants, and let π be S-linear. If π1 is obtained from π by replacing all labels
of ancestors of occurrences in S by the empty label, then π1 is an LKskc-tree.

We also have the tools to formally define passive cuts:

Definition 2.6.16. A cut rule on the formula F with parent proofs π1 and π2 is called passive,
if the occurrence of F in the conclusion of π1 is restricted and the occurrence of F in the
conclusion of π2 is restricted.

A proof π is in passive-cut normal-form (PCNF) if all cut rules in π are passive.

In preparation to simulate Ral’s substitution rule, we introduce the notion of Skolem paral-
lelism. It expresses that whenever the skolem terms of strong quantifier inferences in two dif-
ferent proofs are unifiable, they must be homomorphic. In particular, an LKskc tree is Skolem
parallel to its substitution instances.

Definition 2.6.17 (Skolem parallel). Let ρ1, ρ2 be strong labeled quantifier inferences in LKskc-
trees π1, π2 with Skolem terms S1, S2 respectively. ρ1, ρ2 are called Skolem parallel if for all
substitutions σ1, σ2, if S1σ1 “ S2σ2 then µ1σ1, µ2σ2 are homomorphic, where µ1, µ2 are the
maximal downwards paths starting at S1, S2 respectively. π1, π2 are called Skolem parallel if for
all strong labeled quantifier inferences ρ1, ρ2 in π1, π2 respectively, ρ1, ρ2 are Skolem parallel.

In general, the introduced formula in an axiom rule of LKskc may have different labels in the
antecedent and succedent. However, if one of the axiom formulas is the ancestor of an element
of the characteristic sequent set within the end-sequent of a projection, the labels must agree.
Only then the skolem context is properly propagated to the resolution refutation and transferred
back accordingly during the simulation of that proof. This property is captured by the notion of
suitable axiom labels.

Definition 2.6.18 (Axiom Labels). Let π be an LKskc-tree, let ω be a formula occurrence in π,
and let µ be an ancestor of ω that occurs in an axiom A. Then A is called a source axiom for ω.
Let S be a set of formula occurrences in π. We say that π has suitable axiom labels with respect
to S if for all formula occurrences ω in S, the source axioms of ω are of the form 〈F 〉` $ 〈F 〉`.

If we recall the axiom case in the definition of the characteristic sequent set (see defini-
tion 2.6.9), it is the label of the axiom partner i.e. the antecedent (succedent) occurrence corre-
sponding to the succedent (antecedent) occurrence of F in the axiom 〈F 〉`1 $ 〈F 〉`q2 which is
attached to a literal in the sequent. If both occurrences of F are cut-ancestors and therefore unla-
beled the corresponding characteristic sequent set literal does not propagate the correct skolem
context to the resolution calculus. For this reason, this situation is forbidden in a balanced pro-
jection.

34

Definition 2.6.19 (Balancedness). Let π be an LKskc-tree, and let S be a set of formula occur-
rences in π. We call π S-balanced if for every axiom 〈F 〉`1 $ 〈F 〉`2 in π, at least one occurrence
of F is an ancestor of a formula occurrence in S. We say that π is balanced if π is S-balanced,
where S is the set of end-sequent occurrences of π.

Now we can tie up these definitions into the invariant which will hold on all intermediate
LKskc-proofs created during the simulation of the Ral refutation of its characteristic sequent
set.

Definition 2.6.20 (CERES-projections). Let S be a proper sequent, and C be a sequent. Then
an LKskc-tree π is called a CERES-projection for pS,Cq if the end-sequent of π is SˆC and π
is weakly regular,OC-linear,OS-balanced, restricted, and has suitable axiom labels with respect
to OC , where OS resp. OC is the set of formula occurrences of S resp. C in the end-sequent of
π.

Let C be a set of sequents. A set of LKskc-trees P is called a set of CERES-projections for
pS, Cq if for all C P C there exists a πpCq P P such that πpCq is a CERES-projection for pS,Cq
and moreover, for all π1, π2 P P , π1 and π2 are Skolem parallel.

In fact, the projections of a proof are always CERES-projections [48]. This allows us to use
them as initial objects for the simulation if the resolution refutation.

Lemma 2.6.21. Let π be a regular LKskc-proof of S. Then Ppπq is a set of CERES-projections
for pS,CSpπqq. Furthermore, for all ψ P Ppπq, |ψ| ď |π|.
Definition 2.6.22. Assume we are given a proper sequent S, a set of sequents C, a set of CERES-
projections P for pS, Cq and a Ral refutation γ of C. We inductively define a series Π of sets
of LKskc trees on the length 0 ă i ă n of the refutation. Then the γ-simulation from the
projections P is the proof corresponding to Sn “$ with the end-sequent S, which is contained
in Pn.

To construct Pn, we set P0 “ P for i “ 0 and distinguish on the source of the inferred
sequent Si for i ą 0:

1. Si P C: Then we set Pi “ Pi´1.

2. Si is derived from Sj (and Sk) and Pi´1 is constructed from pS, C Y tS1, . . . , Si´1q.
Since j ă i (and k ă i), we can choose the CERES-projections πj for pS, Sjq (and πk
for pS, Skq) from Pi´1.

We set Pi “ Pi´1 Y tπiu, where πi is an LKskc-tree defined by distinguishing how Si is
inferred in γ:

a) Si “ 〈A〉` ,Π $ Λ is derived from Sj “ Π $ Λ, 〈 A〉` by T . Then the end-
sequent of πj is S ˆ Sj “ Γ,Π $ Λ,∆, 〈 A〉`.
By Sj-linearity of πj , Proposition 2.6.14 we can uniquely identify the axiom 〈 A〉`.
Let µ end in 〈 A〉` $ 〈 A〉` (the labels are identical because πj has suitable axiom
labels with respect to Sj).

35

By S-balancedness, we may replace this axiom in πj by

〈A〉` $ 〈A〉`
〈A〉` , 〈 A〉` $: l

to obtain πi of 〈A〉` ,Γ,Π $ Λ,∆ “ S ˆ Si.
b) Si is derived from Sj by some other propositional rule: analogously to the previous

case, there exists a unique axiom introducing the auxiliary formula of the inference
in πj . Depending on the rule applied, we perform one of the following replacements
to obtain πi:

 F : 〈 A〉` $ 〈 A〉`

〈A〉` $ 〈A〉`
$ 〈 A〉` , 〈A〉`

 : r

_T : 〈A_B〉` $ 〈A_B〉`
〈A〉` $ 〈A〉` 〈B〉` $ 〈B〉`
〈A_B〉` $ 〈A〉` , 〈B〉` _ : l

_Fl : 〈A_B〉` $ 〈A_B〉`
〈A〉` $ 〈A〉`

〈A〉` $ 〈A_B〉` _ : r1

_Fr : 〈A_B〉` $ 〈A_B〉`
〈B〉` $ 〈B〉`
〈B〉` $ 〈A_B〉` _ : r2

The replacements for the cases of ^F ,^Tl ,^Tr ,ÑT ,ÑF
l ,ÑF

r are analogous.

c) Si “ 〈AS〉` ,Π $ Λ is derived from Sj “ 〈@A〉` ,Π $ Λ by @F . Then the end-
sequent of πj is 〈@A〉` ,Π,Γ $ ∆,Λ. By Sj-linearity and suitable axiom labels
there exists a unique axiom 〈@A〉` $ 〈@A〉` introducing the ancestor of 〈@A〉`. By
S-balancedness, we may replace it by

〈AS〉` $ 〈AS〉`
〈AS〉` $ 〈@A〉` @

sk : r

to obtain πi of 〈AS〉` ,Π,Γ $ ∆,Λ.

d) Si “ Π $ Λ, 〈AX〉`,X is derived from Sj “ Π $ Λ, 〈@A〉` by @T . By (IH) we
have an LKskc-tree πj of Π,Γ $ ∆,Λ, 〈@A〉`. By Sj-linearity there exists a unique
axiom 〈@A〉` $ 〈@A〉` introducing the ancestor of 〈@A〉`. By S-balancedness, we
may replace it by

〈AX〉`,X $ 〈AX〉`,X
〈@A〉` $ 〈AX〉`,X @sk : l

to obtain πi of Π,Γ $ ∆,Λ, 〈AX〉`,X .

36

e) Si is inferred from Sj by Sub with substitution σ. Then πi “ πjσ is an LKskc-tree
of Sjσ ˆ S.

f) Si “ Γj ,Γk $ ∆j ,∆k is derived from Sj “ Γj $ ∆j , 〈A〉`1 , . . . , 〈A〉`n and
Sk “ 〈A〉`n`1 , . . . , 〈A〉`m ,Γk $ ∆k by Cut. By Proposition 2.6.15, we may delete
labels from the ancestors of occurrences of A from πj , πk respectively, denote these
trees by π1j , π1k. Take for πi

pπ1jq
Γ,Γj $ ∆,∆j , A, . . . , A

Γ,Γj $ ∆,∆j , A
contr : r

pπ1kq
A, . . . , A,Γk,Γ $ ∆k,∆

A,Γk,Γ $ ∆k,∆
contr : l

Γ,Γ,Γj ,Γk $ ∆,∆,∆j ,∆k
cut

Γ,Γj ,Γk $ ∆,∆j ,∆k
contr : ˚

Proposition 2.6.23. All the transformations in definition 2.6.21 deriving S ˝ Si preserve Si-
linearity, S-balancedness and restrictedness as well as suitable axiom labels with respect to S.

Most properties carry over trivially, detailed arguments for each case are contained in Lemma
3 of the original publication [48]. Furthermore, since all cuts are on restricted formulas, the
simulation of an Ral proof produces an LKskc proof in passive cut normal-form.

Even for a small proof of length 12 like our example refutation (Figure 2.4), the series πi of
simulations already takes too much space to fit on a page. Therefore figure 2.5 only contains the
final proof π12, but the full series14 is given in appendix C.

14We assume the inferences are numbered by a pre-order traversal of the proof.

37

P pc, tq $P pc, tq
@ : r

P pc, tq $@xP px, tq
w : l

P pc, tq,@xP px, sq $@xP px, tq
Ñ: r

P pc, tq $@xP px, sq Ñ @xP px, tq
w : l

P pc, tq,@XpXpsq Ñ Xptqq $@xP px, sq Ñ @xP px, tq
pπ9q

P pd, sq $P pd, sq
@
sk : r

P pd, sq $@xP px, sq
〈P pc, tq〉λxP px,tq $〈P pc, tq〉λxP px,tq

@
sk : l@xP px, tq $〈P pc, tq〉λxP px,tq

Ñ: l
P pd, sq,@xP px, sq Ñ @xP px, tq $〈P pc, tq〉λxP px,tq

@
sk : l

P pd, sq,@XpXpsq Ñ Xptqq $〈P pc, tq〉λxP px,tq
w : r

P pd, sq,@XpXpsq Ñ Xptqq $〈P pc, tq〉λxP px,tq,@xP px, sq Ñ @xP px, tq
pπ9q

P pc, tq,@XpXpsq Ñ Xptqq $@xP px, sq Ñ @xP px, tq
cut

P pd, sq,@XpXpsq Ñ Xptqq,@XpXpsq Ñ Xptqq $@xP px, sq Ñ @xP px, tq,@xP px, sq Ñ @xP px, tq
c : l

P pd, sq,@XpXpsq Ñ Xptqq $@xP px, sq Ñ @xP px, tq,@xP px, sq Ñ @xP px, tq
c : r

P pd, sq,@XpXpsq Ñ Xptqq $@xP px, sq Ñ @xP px, tq
pπ11q

〈P pd, sq〉λxP px,sq $P pd, sq
@
sk : l@xP px, sq $P pd, sq
w : r@xP px, sq $P pd, sq,@xP px, tq
Ñ: r$P pd, sq,@xP px, sq Ñ @xP px, tq

w : l@XpXpsq Ñ Xptqq $P pd, sq,@xP px, sq Ñ @xP px, tq
pπ11q

P pd, sq,@XpXpsq Ñ Xptqq $@xP px, sq Ñ @xP px, tq
cut@XpXpsq Ñ Xptqq,@XpXpsq Ñ Xptqq $@xP px, sq Ñ @xP px, tq,@xP px, sq Ñ @xP px, tq

c : l@XpXpsq Ñ Xptqq $@xP px, sq Ñ @xP px, tq,@xP px, sq Ñ @xP px, tq
c : r@XpXpsq Ñ Xptqq $@xP px, sq Ñ @xP px, tq

pπ12q

Figure 2.5: The refutation simulation on the projections of the example from Figure 2.2

From LKskc PCNFs to LKsk

Since the refutation simulation produces a proof in passive-cut normal form, it is sufficient to
apply rules similar to the rank reduction case in Gentzen’s reductive cut-elimination [105, p.27].
The skolem quantifier rules do not have any eigenvariable conditions and can also be shifted
upwards without restrictions. The only interesting case is that of a contraction of a cut-ancestor
which comes from the simulation of a resolution cut rule. Here the cut needs to be duplicated.

Γ1 $∆1, C

C,C,Γ2 $∆2
c : r

C,Γ2 $∆2, F
cut

Γ1,Γ2 $∆1,∆2

Γ1 $∆1, C

Γ1 $∆1, C C,C,Γ2 $∆2
cut

Γ1,Γ2 $C,∆1,∆2
cut

Γ1,Γ2 $∆1,∆2

Therefore, if we can find a Ral refutation of the characteristic clause set of a (regular and
proper) LKskc proof, we can use the simulation to create an LKskc proof with exclusively
passive cuts, which can be removed by Gentzen style rank reduction. In the end, we obtain a
(cut-free) LKsk proof.

Theorem 2.6.24. Let π be a regular, proper LKskc-proof of S such that there exists an Ral-
refutation of CSpπq. Then there exists an LKsk-proof of S.

Eliminating the passive cuts in the example, we obtain the derivation in Figure 2.6.

38

〈P pd, sq〉λxP px,sq $P pd, sq
@
sk : l@xP px, sq $P pd, sq
w : r@xP px, sq $P pd, sq,@xP px, tq
Ñ: r$P pd, sq,@xP px, sq Ñ @xP px, tq

w : l@XpXpsq Ñ Xptqq $P pd, sq,@xP px, sq Ñ @xP px, tq
@
sk : r@XpXpsq Ñ Xptqq $@xP px, sq,@xP px, sq Ñ @xP px, tq

〈P pc, tq〉λxP px,tq $P pc, tq
@
sk : l@xP px, tq $P pc, tq

Ñ: l@XpXpsq Ñ Xptqq,@xP px, sq Ñ @xP px, tq $P pc, tq,@xP px, sq Ñ @xP px, tq
@
sk : l@XpXpsq Ñ Xptqq,@XpXpsq Ñ Xptqq $P pc, tq,@xP px, sq Ñ @xP px, tq

w : r@XpXpsq Ñ Xptqq,@XpXpsq Ñ Xptqq $P pc, tq,@xP px, sq Ñ @xP px, tq,@xP px, sq Ñ @xP px, tq
@ : r@XpXpsq Ñ Xptqq,@XpXpsq Ñ Xptqq $@xP px, tq,@xP px, sq Ñ @xP px, tq,@xP px, sq Ñ @xP px, tq

w : l@XpXpsq Ñ Xptqq,@XpXpsq Ñ Xptqq,@xP px, sq $@xP px, tq,@xP px, sq Ñ @xP px, tq,@xP px, sq Ñ @xP px, tq
Ñ: r@XpXpsq Ñ Xptqq,@XpXpsq Ñ Xptqq $p@xP px, sqq Ñ p@xP px, tqq,@xP px, sq Ñ @xP px, tq,@xP px, sq Ñ @xP px, tq

w : l@XpXpsq Ñ Xptqq,@XpXpsq Ñ Xptqq,@XpXpsq Ñ Xptqq $p@xP px, sqq Ñ p@xP px, tqq,@xP px, sq Ñ @xP px, tq,@xP px, sq Ñ @xP px, tq
c : l@XpXpsq Ñ Xptqq,@XpXpsq Ñ Xptqq $@xP px, sq Ñ @xP px, tq,@xP px, sq Ñ @xP px, tq,@xP px, sq Ñ @xP px, tq

c : r@XpXpsq Ñ Xptqq,@XpXpsq Ñ Xptqq $@xP px, sq Ñ @xP px, tq,@xP px, sq Ñ @xP px, tq
c : l@XpXpsq Ñ Xptqq $@xP px, sq Ñ @xP px, tq,@xP px, sq Ñ @xP px, tq

c : r@XpXpsq Ñ Xptqq $@xP px, sq Ñ @xP px, tq
pπ12cutelimq

Figure 2.6: The simulation of the example proof after elimination of atomic cuts.

From LKsk to LK

The last part of CERESω concerns itself with the removal of the skolem quantifier rules, i.e. with
De-Skolemization. Since the LKskc skolem quantifier rules need not adhere to eigenvariable
conditions but the LK quantifier rules do. A series of rewrite systems move the quantifier
rules into an appropriate place where it can be safely replaced by a strong LK quantifier rule.
The first step is to remove all homomorphic inferences on the same branch i.e. all sequential
homomorphic pairs.

Definition 2.6.25 (Sequential pruning). Let π be an LKsk-tree and ρ, ρ1 inferences in π. Then
ρ, ρ1 are called sequential if they are on a common branch in π. We define the set of sequential
homomorphic pairs as

SHPpπq “ t〈ρ, ρ1〉 | ρ, ρ1 homomorphic in π and ρ, ρ1 sequentialu.
We say that π is sequentially pruned if SHPpπq “ ∅.

First, a rewrite relation Źc permutes contraction rules with inferences independent from it
as close to the root as possible.

Definition 2.6.26. Let ρ be an inference above an inference σ. Then ρ and σ are independent if
the auxiliary formula of σ is not a descendent of the main formula of ρ.

Definition 2.6.27 (The relation Źc). We will now define the rewrite relation Źc for LKsk-trees
π, π1, where we assume the inferences contr : ˚ and σ to be independent:

1. Given the two proofs π, π1

39

Π,Π,Γ $∆,Λ,Λ
c : ˚

Π,Γ $∆,Λ
σ

Π,Γ1 $∆1,Λ
pπq

Π,Π,Γ $∆,Λ,Λ
σ

Π,Π,Γ1 $∆1,Λ,Λ
c : ˚

Π,Γ1 $∆1,Λ
pπ1q

then π Ź1
c π

1.

2. Given the two proofs π, π1

Π,Π,Γ $∆,Λ,Λ
c : ˚

Π,Γ $∆,Λ Σ $Θ
σ

Π,Γ1 $∆1,Λ
pπq

Π,Π,Γ $∆,Λ,Λ Σ $Θ
σ

Π,Π,Γ1 $∆1,Λ,Λ
c : ˚

Π,Γ1 $∆1,Λ
pπ1q

then π Ź1
c π

1.

3. symmetric to case 2

The Źc relation is then defined as the transitive and reflexive closure of the compatible closure
of the Ź1

c relation.

Rewriting via Źc preserves weak regularity and allows to “zip up” the homomorphic paths
into one, such that two sequential homomorphic skolem quantifier inferencs can be merged into
one, providing an elimination procedure for sequential homomorphic pairs.

Lemma 2.6.28. Let π be a LKsk-tree with end-sequent S such that π is not sequentially pruned.
Then there exists a LKsk-tree π1 with end-sequent S such that

|SHPpπ1q| ă |SHPpπq|
Furthermore, if π is weakly regular, so is π1.

We only state the rewrite rules and refer to the proof of Lemma 2.6.28 of the paper [48] for
the full argumentation.

Definition 2.6.29. We define the rewrite relation Ź1
zip as follows:

• The outermost symbol is a unary operator:
Γ $∆, 〈F 〉`1

ρ

Γ $∆, 〈G〉`2

...
Γ1 $∆1, 〈F 〉`1 , 〈G〉`2

ρ1

Γ1 $∆1, 〈G〉`2 , 〈G〉`2
...

Γ˚ $∆˚, 〈G〉`2 , 〈G〉`2
c

Γ˚ $∆˚, 〈G〉`2

Γ $∆, 〈F 〉`1

...
Γ1 $∆1, 〈F 〉`1 , 〈F 〉`1

c
Γ1 $∆1, 〈F 〉`1

ρ1

Γ1 $∆1, 〈G〉`2
...

Γ˚ $∆˚, 〈G〉`2

40

• The outermost symbol is a binary operator:
〈F 〉` ,Γ $∆ 〈G〉` ,Π $Λ

ρ

〈F _G〉` ,Γ,Π $∆,Λ

...
〈F 〉` , 〈F _G〉` ,Γ˚ $∆˚ 〈G〉` ,Π˚ $Λ˚

ρ1

〈F _G〉` , 〈F _G〉` ,Γ˚,Π˚ $∆˚,Λ˚

...
〈F _G〉` , 〈F _G〉` ,Γ` $∆`

c : l
〈F _G〉` ,Γ` $∆`

〈F 〉` ,Γ $∆
w : ˚

〈F 〉` ,Γ,Π $∆,Λ

...
〈F 〉` , 〈F 〉` ,Γ˚ $∆˚

c
〈F 〉` ,Γ˚ $∆˚ 〈G〉` ,Π˚ $Λ˚

ρ1

〈F _G〉` ,Γ˚,Π˚ $∆˚,Λ˚

...
〈F _G〉` ,Γ` $∆`

The relation Źzip is the reflexive, transitive closure of Ź1
zip.

The next step gives us the tools to permute an independent unary (Źu) or independent binary
rule (Źb) ρ over an arbitrary inference σ. We will only give examples of the rules and refer to
definitions 21 and 22 in the original publication [48] for a full list. Suppose σ is the D : r rule,
then the rewrite pattern for Ź1

u is:
Γ $F,G,∆

ρ
Γ $M,G,∆

σ
Γ $M,N,∆

Γ $F,G,∆

σ
Γ $F,N,∆

ρ
Γ $M,N,∆

Suppose σ is the _ : l rule, then the rewrite pattern for Ź1
u is:

Γ $F,G1,∆ ρ
Γ $M,G1,∆ Π, G2 $Λ

σ
Γ,Π,M,G1 _G2 $∆,Λ

Γ $F,G1,∆ Π, G2 $Λ

σ
Γ,Π, F,G1 _G2 $∆,Λ

ρ
Γ $M,G1 _G2,∆

Since we use the multiplicate version of binary rules, we take possible contractions into account.
Supose σ is again the D : l rule, then the rewrite pattern for Ź1

b is:
Π,Γ1, F,G1 $∆1,Λ Π,Γ2, G2 $∆2,Λ ρ

Π,Π,Γ1,Γ2, F,G1 _G2 $∆1,∆2,Λ,Λ
c : ˚

Π,Γ1,Γ2, F,G1 _G2 $∆1,∆2,Λ
σ

Π,Γ1,Γ2,M,G1 _G2 $∆1,∆2,Λ

Π,Γ1, F,G1 $∆1,Λ
σ

Π,Γ1,M,G1 _G2 $∆1,Λ Π,Γ2, G2 $∆2,Λ ρ
Π,Π,Γ1,Γ2,M,G1 _G2 $∆1,∆2,Λ,Λ

c : ˚
Π,Γ1,Γ2,M,G1 _G2 $∆1,∆2,Λ

Suppose σ is the _ : l rule, then the rewrite pattern for Ź1
b is from

Π,Γ1, F1, G1 $∆1,Λ Π,Γ2, F2, G1 $∆2,Λ ρ
Π,Π,Γ1,Γ2, F1 _ F2, G1, G1 $∆1,∆2,Λ,Λ

c : ˚
Π,Γ1,Γ2, F1 _ F2, G1 $∆1,∆2,Λ G2,Γ3 $∆3

σ
Π,Γ1,Γ2,Γ3, F1 _ F2, G1 _G2 $∆1,∆2,∆3,Λ

to

Π,Γ1, F1, G1 $∆1,Λ G2,Γ3 $∆3
σ

Π,Γ1,Γ3, F1, G1 _G2 $∆1,∆3,Λ

Π,Γ2, F2, G1 $∆2,Λ G2,Γ3 $∆3
σ

Π,Γ1,Γ3, F2, G1 _G2 $∆1,∆3,Λ ρ
Π,Π,Γ1,Γ2,Γ3, F1 _ F2, G1 _G2 $∆1,∆2,∆3,Λ,Λ

c : ˚
Π,Γ1,Γ2,Γ3, F1 _ F2, G1 _G2 $∆1,∆2,∆3,Λ

41

The rewrite relations Źu and Źb are the reflexive transitive closures of their one step coun-
terparts Ź1

u and Ź1
b . Again, both rewrite systems preserve weak regularity of a proof.

All but one rewrite rule of Źc, Źu and Źb preserve or reduce the number of inferences (be-
cause some formulas are now introduced by weakening instead). The only exception is the case
of two binary rules in Źb, when the auxiliary formula of the downwards inference is contracted
(see above). Then the rule permutation needs to duplicate the sub-tree proving G2,Γ3 $ ∆3 .
Therefore we want to be able to talk about the branchings occuring between the occurrence of
skolem quantifier rule and its destined position in the tree:

Definition 2.6.30. Let π be a LKsk-tree, and let ξ be a branch in π. Let σ, ρ be inferences on
ξ and w.l.o.g. let σ be above ρ. Let ξ1, . . . , ξn be the binary inferences between σ and ρ. For
1 ď i ď n, let λi be the subproofs ending in a premise sequent of ξi such that λi do not contain
σ. Then λ1, . . . , λn are called the parallel trees between σ and ρ.

Now we formulate an equivalent to the eigenvariable condition by means of Skolem terms.
A proof in which each strong skolem quantifier inference is correctly placed can be safely De-
Skolemized.

Definition 2.6.31. Let σ be a strong labelled quantifier inference in π with Skolem term S, and
ρ be a weak labelled quantifier inference in π with substitution term T . We say that ρ blocks
σ if ρ is below σ and T contains S. We call σ correctly placed if no weak labelled quantifier
inference in π blocks σ.

Using the rewrite systems Źc, Źu and Źb we can correctly place all strong skolem quanti-
fiers. The two latter are used for the actual movement whereas Źc sequentially prunes the proof
which ensures termination despite the possible duplication of sub-proofs during the permutation
of two binary inferences.

Lemma 2.6.32. Let π be a LKsk-proof of S. Then there exists an LKsk-proof π1 of S such that
all strong labelled quantifier inferences in π1 are correctly placed.

As a last step, we only need to replace the strong skolem quantifier rules with skolem terms
by quantifier rules with eigenvariables and disregard the labels to end up with a cut-free LK
proof. Therefore the CERESω method is sound.

Theorem 2.6.33 (Soundness). Let π be a LKsk-proof of S. Then there exists a cut-free LK-
proof of S.

2.6.5 Soundness and Completeness Results

We now have a complete cut-elimination procedure: given an LK proof with cuts and an Ral
refutation of the characteristic sequent set of its LKskc conversion, we can produce an LK
proof without cuts (basically putting together the methods showing theorems 2.6.7, 2.6.24 and
2.6.33). There is still one open problem, namely the dependence on the Ral refutation. By
proposition 2.6.10 we know that the reduct of the characteristic sequent set always has a refu-
tation in LK – and therefore also in Andrew’s (unlabeled) R. But it is an open question, if

42

this implies that there is also an Ral refutation for every (labeled) characteristic sequent set of
a regular, proper LKskc proof. In practice this result is of less importance than expected, be-
cause we have found that even the characteristic clause sets produced in the complete first-order
formulation of CERES are usually too complex to be refuted by current first-order provers. In-
terestingly, the complexity of the problems in different proofs grows so fast that a problem is
either provable by the quite outdated Prover 9 as well as by Vampire and the E prover or by none
of the three at all15.

2.7 Automated Higher-Order Theorem Proving

So far we disregarded the actual automation of higher-order resolution. Additional to first-order
theorem proving, the main problems are the semi-decidability of higher-order unification and
the cut-simulation property of important axioms like Leibniz equality.

2.7.1 Higher-Order Unification

Huet showed the undecidability of higher-order unification by encoding the Post correspondence
problem [54] into third-order unification. For this reason, an automated theorem prover can not
decide when to stop looking for a unifier even for a single inference. Moreover, the complete
set of minimal unifiers is possibly infinite: the problem Xιąιpfιąιąιpa, bqq “ fpXpaq, bq with
the set of unifiers tX “ λxfpx, bq, X “ λxfpfpx, bq, bq, X “ λxfpfpfpx, bq, b, bqq, . . .u is an
example for this. Even with a finite bound, the search space for a prover becomes substantially
larger than in the first-order case. Still, Huet gave a semi-decidable algorithm for enumerating
the complete set of minimal unifiers [55] which was later on formulated as a rule based system
[94]. Terms are classified as rigid, when the head symbol is a constant, or as flexible, when
the head symbol is a variable. Then the decomposition rule of Martelli-Montanari [67] handles
the unification of rigid with rigid terms. Flexible-rigid pairs are either treated by imitation or
projection. With imitation, the variable mimics the head symbol of the rigid term and introduces
a fresh variable to apply more rules later on. A projection lifts one of the arguments of the
variable to the root of the term tree. One of Huet’s insights was that flexible-flexible unifications
can be postponed. In principle, the situation allows for both variables to project to an arbitrary
term but more unifications further on might require a more specific one. By carrying the flexible-
flexible pairs on as constraints in a pre-unifier, the projection terms can be specified lazily. We
refrain from giving the whole set of rules but show a possible derivation for the first unifier of
the example above:

15It is obvious that this claim is quite subjective – it is evident in the schematic analysis of Fürstenberg’s proof
of the infinitude of primes where only the existence of more than two primes can be found automatically – although
Vampire finds the refutation more than 200 times faster than Prover9. It has also been confirmed by other analysis
attempts of the author and to a point also in this thesis. Still, all of this is anecdotal and might only depend on finding
the right settings for a particular prover.

43

tXpfpa, bqq “ fpXpaq, bqu imitate X “ λxfpY pxq, Zpxqq
tfpY pfpa, bqq, Zpfpa, bqqq “ fpfpY paq, Zpaqq, bqu decompose
tY pfpa, bqq “ fpY paq, Zpaqq;Zpfpa, bqqq “ bu imitate Z “ λx.b
tY pfpa, bqq “ fpY paq, bq; b “ bu remove
tY pfpa, bqq “ fpY paq, bqu project Y “ λx.x
tfpa, bq “ fpa, bqu remove
tu

Dougherty also proposed a unification algorithm based on combinators [28], but to the best
of our knowledge, it has not been used in an automated theorem prover yet. For the resolution
calculusRal used in this thesis, all details of unification are hidden by the substitution rule which
does not specify where the substitution actually comes from.

2.7.2 Cut-simulation

The expressiveness of higher-order logic allows the use of axioms which are sufficiently strong
to replace rules built into the calculus. When the calculus is specifically tailored to restrict the
search-space, the simulation of an unsuitable rule undermines the whole effort. In the case of
sequent calculus, this is the cut rule: since the reasoning process proceeds from the end-sequent
upwards, applying a cut rule amounts to inventing an arbitrary cut-formula. A simple axiom that
simulates cut is @XpX Ñ Xq: assuming the axiom occurs in the context Γ1,Γ2, each inference

Γ1 $∆1, F Γ2, F $∆2
cut

Γ1,Γ2 $∆1,∆2

can be rewritten to

Γ1 $∆1, F Γ2, F $∆2
Ñ: l

Γ1,Γ2, F Ñ F $∆1,∆2
@ : l

Γ1,Γ2,@XpX Ñ Xq $∆1,∆2
c : l

Γ1,Γ2 $∆1,∆2

Benzmüller and Kohlhase showed [10] that similar simulations exist for Leibniz equality,
extensionality, comprehension and the axiom of choice. Consequently, an effective higher-order
theorem prover replaces these axioms with built-in rules that avoid cut-simulation.

2.7.3 Leo II

The main prover used for the experiments in this thesis is Leo II [11, 16]. In the meantime, the
successor Leo III [13] is sufficiently developed to take part in the CASC competition [23] and
was regularly used together with the other contestant Satallax [20,37]. Here, we just give a short
overview of Leo II to develop an intuition of problems which are hard for the prover.

The basic inference rules [9] of Leo II resemble those of Ral: for each operator there is a
decomposition rule; the quantifier rules introduce skolem terms or arbitrary terms, depending on
the polarity. The resolution rule postpones unification of two terms s and t by adding the equality

44

s “ t as a constraint to the clause. This allows the rules of pre-unification to co-exist on the
same level as the other inference rules, preventing a strict division into phases of resolution and
unification. Special rules handle Boolean and functional extensionality, Leibniz and Andrews
rules handle equality as a primitive symbol of the language, with a final set of rules handling
choice. Factoring is only applied when the sequent is completely in clause form and primitive
substitution applies some limited guessing to overcome situations where a sequent set needs to
be specialized without having a partner clause to guide the process by unification. Leo II also
uses the E prover [86,87] as backend by encoding sub-problems into untyped or typed first-order
logic [15], depending on the choice of the user. Relevant for this work is also that extensionality
can be explicitly disabled.

45

CHAPTER 3

Proof Formalization Techniques

This part of the thesis develops the techniques we will be using for our analysis in chapter 4. In
section 3.1 we add first-order equality rules to the CERESω method to gain a more natural in-
put language and section 3.2 discusses the differences between unary and binary equality rules.
Section 3.6 provides definition rules, an additional way of structuring an input proof, which be-
comes invisible to the CERESω“ method since definitions can be removed in the pre-processing
phase.

We also approach the expensive post-processing steps of eliminating passive and proposi-
tional cuts (section 3.5) together with the de-skolemization procedure (section 3.4). Section 3.3
will give us the necessary lemmas for expansion trees to do that. Moreover, we also document
the integration of first-order resolution provers (section 3.10) into GAPT, which can be seen as
a simplified variant of CERES. To be useful for higher-order cut-elimination, a higher-order
input formula must be projected to the first-order fragment. Section 3.9 describes the (rather
naive) lambda-lifting and type reconstruction techniques implemented.

Furthermore we will discuss the GAPT implementation and the visualization of proofs in
PROOFTOOL (section 3.11) for the investigation of local inferences. The part on sunburst trees
(section 3.13) develops a complementary global visualization of tree-shaped proofs.

3.1 CERESω“
Adding first order equality rules to LK is unproblematic since the rules can be simulated assum-
ing the axioms of reflexivity and replacement of equals by equals. A similar translation exists
for an unlabeled version of Ral. To simplify matters, we will refer to the extended versions of
the corresponding calculi of section 2.6.1 as LK“, LKsk“, LKskc“ and Ral“.

In the labeled calculi LKsk and Ral, the simulation of an equality rule working on s “ t
needs to introduce weak quantifiers since s and t may contain Skolem terms which would carry
on to the end-sequent, thus violating the proper-ness of an LKsk proof. Consequently, the
corresponding weak quantifier rules require additional labels in the ancestors of the auxiliary
formula up to the axioms introducing them. When applying the CERESω method, this leads to
two problems:

For one, a CERESω projection needs to have suitable axioms labels with regard to the
ancestors of the characteristic sequent set, thus propagating the additional labels to the axioms
of the resolution refutation. It is unclear, if the additional arguments those labels create in anRal
refutation are admissible. In principle, each strong quantifier rule of Ral introduces a distinct
Skolem symbol, which means that a second occurrence of a Skolem term not occurring in the

46

LKsk proof can only come from a substitution txÐ trsp`1, . . . , `nqsu. Nonetheless it is not
straightforward to prove that given a proof with Skolem terms sp`1, . . . , `nq without equality
arguments can be extended to a proof with equality arguments.

The second problem is the simulation of equality inferences in theRal proof. In principle, an
Ral equality rule can be mapped to an LKsk equality rule (preferred) or be simulated otherwise.
There is also the choice of simulating the inference on the root of the clause projections (similar
to first-order CERES) or at the axiom introducing the literal. We will explore some of these
possibilities and their interaction with the labels.

The third, and most severe problem is that a simulation disrupts the ancestor relationship
of a formula when an LKsk equality rule is applied. In particular, it is unclear if a path which
is homomorphic in LK stays homomorphic in LKskc“. As an immediate consequence, two
strong quantifier rules which were required to introduce the same Skolem symbol before might
now introduce different ones.

In any case the following properties need to be fulfilled in the end:

1. The equality translation may only introduce cuts on linear formulas.
Since atomic formulas are not closed under substitutions, the first-order notion of atomic-
cut normal-form can not be upheld in higher-order logic. The closest we can get is a linear
formula, which behaves passively and can be treated like an atom during the reductive cut-
elimination following the resolution simulation.

2. The properties of CERES-projections need to be preserved.
The properties are restrictedness, linearity and suitable axiom labels with regard to reso-
lution simulation ancestors and balancedness with regard to end-sequent ancestors.

3. Introduced quantifier rules should be in place.
We aim for a solution where rewriting steps like sequential pruning are not necessitated by
equality rules. An equality translation with out-of-order quantifier rules would invalidate
the results on any fragment which preserves the order otherwise. Also, any additional
theory formulas in the sequent necessary to simulate equality need to be closed. They are
preserved down to the end-sequent and should not bring a subsequent quantifier inference
out of place (i.e. invalidate the eigenvariable condition after deskolemization).

4. There should be a straightforward relationship between the refutation of a proof with
equality rules and the one without. In particular the extracted expansion proof should
have unmodified instantiations.

3.1.1 General observations on labels

The only rules which modify labels are the weak quantifier rules, going from premise to con-
clusion, the LKskc rules remove labels and the Ral rules introduce labels. The reason for that is
that a weak Ral inference

Γ $∆, 〈@αA〉`
@
T

Γ $∆, 〈AX〉`,X

47

is simulated at the (unique) axiom introducing the formula by the rewrite step:

. . . 〈@αA〉` $〈@αA〉`
. . .

Γ $∆, 〈@αA〉`
ñ . . .

〈AX〉`,X $〈AX〉`,X
@ : l@αA $〈AX〉`,X

. . .
Γ $∆, 〈AX〉`,X

The labeling of a resolution rule therefore directly depends on its simulation. In particular,
whenever the simulation of a @T rule is performed at an axiom, the corresponding resolution
rule must introduce a label and whenever a simulation of the rule is performed at the projection
root, it must remove a label (since the order is the same as in LK).

The next observation is that the only direct interaction of labels with formulas happens in
the strong quantifier rules. Therefore adding an LK equality rule which removes labels will
extend the Skolem terms introduced by ancestor inferences on the formula by exactly these
labels. Moreover, the extended labels do not reflect on the formula level as long as there is no
simulation of strong Ral quantifier inferences.

Another role of labels is that they constrain some inferences because they require identical
labels on the auxiliary formulas. This also reflects in a projection’s property of suitable axiom
labels (if one occurrence of F in the axiom 〈F 〉`1 $〈F 〉`2 is an ancestor of a formula which is
part of the simulation of the CSS, then `1 “ `2), which ensures that Skolem terms introduced
in the resolution refutation are correct in their simulation in LKskc.

3.1.2 Without Labels

The axioms used are Ref “ @xx “ x, Repl1 “ @u@v@F pu “ v Ñ pF puq Ñ F pvqq and
Repl2 “ @u@v@F pv “ uÑ pF puq Ñ F pvqqq.

Alternatively, the @F can be moved inside the implication, but that does not change the
labeling significantly later on1. Also givenRef ,Repl2 is provable fromRepl1 (and vice versa)2.

The reflexivity axiom $ t “ t is translated to a proof Ref $ t “ t.
A binary rule is translated as:

Γ1 $s “ t,∆1 Γ2 $F rss,∆2
“: r

Γ $F rts,∆ ñ
Γ1 $s “ t,∆1

Γ2 $P rss,∆2 P rts $P rts
Ñ: l

Γ2, P rss Ñ P rts $P rts,∆2
Ñ: l

Γ, s “ tÑ P rss Ñ P rts $P rts,∆
@ : l

Γ, p@u@v@F pu “ v Ñ F puq Ñ F pvqqq $P rts,∆
pEQ1 : rq

with Γ “ Γ1,Γ2 and ∆ “ ∆1,∆2.
The problem with here is that the occurrence of P rss and s “ t in the parent proofs are now

always end-sequent ancestors. This changes the CSS significantly which invalidates require-
ment 4.

1 The formula s “ t will then be labeled by only two instead of three expressions
2by proving the instance s “ tÑ pλxx “ sqsÑ pλxx “ sqtq $ t “ s and then using t “ s

48

3.1.3 LKsk with labels

Unfortunately, requirement 3 enforces the introduction of quantifiers, since s and t need not be
ground. This leads to additional labels in the transformation to LKskc, but like for quantifier
rules, we need to differentiate if the active formula is a cut-ancestor or not.

We start with equality inferences on end-sequent ancestors, since we already have a trans-
lation that. In parallel to the quantifier rules, we call this “sk: r which receives the following
labels:

Γ1 $〈s “ t〉`1,`2,`3 ,∆1

Γ2 $〈P rss〉`1,`2,`3 ,∆2 〈P rts〉`1,`2,`3 $P rts
Ñ: l

Γ2, 〈P rss Ñ P rts〉`1,`2,`3 $P rts,∆2
Ñ: l

Γ, 〈s “ tÑ P rss Ñ P rtsq〉`1,`2,`3 $P rts,∆
@ : l

Γ, p@u@v@F pu “ v Ñ F puq Ñ F pvqqq $P rts,∆
pEQ1 : rq

with `1 “ λu@v@F pu “ v Ñ F puq Ñ F pvqqq, `2 “ λv@F ps “ v Ñ F psq Ñ F pvqqq,
`3 “ λF ps “ tÑ F psq Ñ F ptqqq. The corresponding rule is then:

Γ1 $〈s “ t〉`,`1,`2,`3 ,∆ Γ2 $〈F rss〉`,`1,`2,`3 ,∆
“sk: r

Γ1,Γ2 $〈F rts〉` ,∆1,∆2

In particular, since P rts is an end-sequent ancestor, the axiom 〈P rts〉`1,`2,`3 $ P rts does
not need to have suitable axiom labels.

Rules on operating on cut-ancestors don’t introduce labels, therefore the equality rule “: r
looks like:

Γ1 $s “ t,∆ Γ2 $F rss,∆
“: r

Γ1,Γ2 $F rts,∆1,∆2

Since the simulation of a resolution refutation only creates cuts on linear formulas (require-
ment 2), the only “: r rules occurring will come from the simulation.

3.1.4 Simulating Equality rules in Ral

The CSS and the Projections

The best upfront translation of“: r we found (appendix 3.1.7) enforces the application of equal-
ities and disallows refutations in which these applications are not necessary. Therefore we drop
requirement 4 and try a different approach. There we define cut-ancestorship directly via the
equality rules and remove the resolution equalities during the simulation of the refutation.

Extending definition 2.6.9 (respectively definition 11 of [48]) we define the characteristic
sequent set Cρpπq and Pρpπq as :

49

Definition 3.1.1. • The inference ρ is an “: rsk rule inferring F rts from F rss and s “ t.
The rule always works on end-sequent ancestors, therefore we define the CSS as Cρpπq “
Cρ1pπ1qˆCρ2pπ2q. Like all rules working on end-sequent ancestors, the projection repeats
the rule:

pP1q
Γ1 $〈s “ t〉` ,∆1

pP2q
Γ2 $〈F rss〉` ,∆2

“: r
Γ1,Γ2 $F rts,∆1,∆2

pP q

with ` “ t`1, `2, `3u, P1 P Pρ1 and P2 P Pρ2 .

• The inference ρ is an“: r rule inferring F rts from F rss and s “ t. The rule always works
on cut-ancestors, therefore we define the CSS as Cρ “ Cρ1 Y Cρ2 . Like all rules working
on cut-ancestors, P “ Pρ1 Y Pρ2 .

Since the extended definition does not treat equalities different from other binary rules, the
argumentation in the proof of proposition 2.6.103 still holds for LK“.

Simulating an equality rule

Since the labeling of the equality rule of Ral directly depends on its simulation, we concentrate
on the shape first and insert the label denoted with a question-mark (?) later:

Γ1 $〈s “ t〉`1 ,∆1 Γ2 $〈F rss〉`2 ,∆2
“
F

Γ1,Γ2 $〈F rts〉? ,∆1,∆2

Simulating such a rule needs to extend the proof of Lemma 3 in [48] with the following case:

• Si is derived from Sj and Sk by the “T rule:
By definition, there exist projections πj P Pi´1 to Γ,Π1 $ 〈s “ t〉`1 ,∆,Λ1 and πk P
Pi´1 to Γ,Π2 $ 〈F rss〉`2 ,∆,Λ2 .

By induction hypothesis we assume πj and πk to be weakly regular. It also provides us
with the knowledge that πj is Π1 $ Λ1 -linear, that πk is Π2 $ Λ2 -linear and that both
proofs are Γ $ ∆ -balanced and restricted. They also have suitable axiom labels with
respect to Π1 $ Λ1 and Π2 $ Λ2 respectively.

Since the occurrences of s “ t and F rss are linear, we may obtain the proofs π1j and π1k
by deleting the labels `1 and `2 from their ancestors in πj and πk.

Then we can use the projection EQPROJ to Repl1 to connect the proofs via two appli-
cations of the cut-rule:

3see the proof of proposition 10 in [48] for details

50

pπ1jq
Γ,Π1 $s “ t,∆,Λ1

pEQPROJq
Repl, s “ t, F rss $〈F rts〉`

cut
Γ, Repl,Π1, F rss $〈F rts〉` ,∆,Λ1

pπ1kq
Γ,Π2 $F rss,∆,Λ2

cut
Γ, Repl,Π1,Π2 $〈F rts〉` ,∆,Λ1,Λ2

pπiq

The projection EQPROJ is defined as:

s “ t $〈s “ t〉`
F rss $〈F rss〉` 〈F rts〉` $〈F rts〉`

Ñ: l
〈F rss Ñ F rts〉` , F rss $〈F rts〉`

Ñ: l
〈s “ tÑ F rss Ñ F rts〉` , F rss, s “ t $〈F rts〉`

@ : l
Repl, F rss, s “ t $〈F rts〉`

pEQPROJq

where ` “ tλu@v@F pu “ v Ñ F puq Ñ F pvqq, λv@F ps “ v Ñ F psq Ñ F pvqq, λF ps “
tÑ F psq Ñ F ptqqu.
An inspection of the tree πi reveals it is Π1,Π2 $ Λ1,Λ2, F rts -linear: linearity carries
over from the parent proofs for Π1,2 and Λ1,2 and no inference operates on ancestors of
F rts. The tree is also Γ $ ∆ -balanced and restricted, since nothing changed with regard
to Γ and ∆. Finally, the tree has also suitable axiom labels with respect to Π1,Π2 $
Λ1,Λ2, F rts : again, the property carries over from the parent proofs for Π1,2 and Λ1,2.
The introduction rule for 〈F rts〉` $ 〈F rts〉` in EQPROJ also has suitable axiom labels.

Now we can insert the missing label into the equality rule given above:

Γ1 $〈s “ t〉`1 ,∆1 Γ2 $〈F rss〉`2 ,∆2
“
F

Γ1,Γ2 $〈F rts〉` ,∆1,∆2

with ` as defined above and `1, `2 arbitrary. What is surprising here is that the labels `1 and
`2 vanish and F rts starts with a fresh set of labels coming from the translation of the equality
rule.

As noted above, the refutation simulation still contains “sk rules but no more “ rules. The
translation from section 3.1.3 allows us to obtain an LKskc proof and continue by applying the
original CERESω method.

3.1.5 Simulating first order equality proofs

The first observation we can make is that we can enforce the CSS to be in clause form by
expanding non-atomic introduction rules F $ F . The algorithm [61]4 recursively applies the

4The algorithm is contained in the proof of Lemma 4.1.1 within the book.

51

outermost operator of F to both sides of the sequent. The only interesting case is that of a
quantifier where the strong inference has to be applied below the weak inference. Now if the
SUB rule never substitutes predicate variables with quantifier-free instances, the clause form is
preserved. Therefore, noRal“ refutation of the characteristic sequent set will contain a quantifier
inference.

The second observation is that the computation of a projection preserves the order of in-
ferences, since only some inferences are skipped. Also the conversion to LKsk preserves the
order of inferences. Together with requirement 3, which is preserved by the simulation of equal-
ity rules defined above, the strong quantifier inferences are still in place. Therefore, no further
post-processing is necessary for de-skolemization.

Since cuts on propositional formulas do not interfere with the extraction of an expansion
proof, we can obtain it directly from the refutation simulation. In the case of a first-order refu-
tation, no simulation will be applied to axioms. In the terms of expansion sequent proofs, this
means that the tree shape is invariant over first-order substitutions. Then the substitution ob-
tained from grounding the refutation applied to each projection will create expansion sequents
which can be directly merged. The subsequent of trees for end-sequent ancestors is then the
same as the one extracted from the atomic-cut normal-form.

3.1.6 CERESω can produce quantified cuts

In this section we investigate a phenomenon of CERESω which at first seems counter-intutive:
since the atomicity of formulas is not preserved under substitution, the simulation of a cut on
an atom formula might subsequently be expanded to a cut on an arbitrary formula. Take for
instance the following Ral refutation:

$P ptq

P pXq $Xpbq
Xpyq $Qpyq

Sub
Xpbq $Qpbq

cut
P pXq $Qpbq

Sub
P ptq $Qpbq

cut$Qpbq Qpbq $
cut$

With t “ λx@Y pY pxq Ñ Y pxqq. Now the corresponding ground refutation cuts on @Y pY pbq Ñ
Y pbqq:

$P ptq
P ptq $@Y pY pbq Ñ Y pbqq @Y pY pbq Ñ Y pbqq $Qpbq

cut
P ptq $Qpbq

cut$Qpbq Qpbq $
cut$

If the set t$ P ptq;P pX, bq $ Xpbq;Xpyq $ Qpyqu is the characteristic sequent set of an
LKskc proof π, then the non-atomic cut carries over to the simulation of the refutation on the
projections of π. But in contrast to π, every occurrence of a cut-ancestor formula is restricted.
Since only contraction inferences are allowed to operate on ancestors of restricted occurrences,
the structure of the cut-formula is irrelevant.

52

3.1.7 A failed translation

A possible way to fix this problem is to create two rules, one for equality operations on end-
sequent ancestors (“sk) and one for cut-ancestors (“). Then the translation of “sk1 : r will be
the one from EQ1 : r and the translation of “1: r will be that of CEQ1 : r below, which adds
artificial cuts:

Γ1 $s “ t,∆1

s “ s $s “ t

Γ2 $P rss,∆2

P rss $P rss P rts $P rts
Ñ: l

Γ2, P rss, P rss Ñ P rts $P rts
cut

Γ2, P rss Ñ P rts $P rts,∆2
Ñ: l

Γ, s “ t, s “ tÑ pP rss Ñ P rtsq $P rts,∆
cut

Γ, s “ tÑ pP rss Ñ P rtsq $P rts,∆
@ : l

Γ, p@u@v@F pu “ v Ñ F puq Ñ F pvqqq $P rts,∆
pCEQ1 : rq

The cut on s “ t is unproblematic, but the cut on P rss, even when restricted to P rss being
an atom, may become non-atomic during subsequent substitutions if P is a predicate variable.
If we restrict the substitution such that this case does not occur, we still need to investigate the
relation of this rule to the simulation of a resolution refutation.

If we define the characteristic sequent set analogously to the other binary rules, then for the
proof π with parents π1 and π2, CS“pπq “ CSpπ1q Y CSpπ2q and CS“skpπq “ CSpπ1q ˆ
CSpπ2q. In contrast to that, the translated CSS is CS“pπq “ CSpπ1q Y ps “ t $ˆ pCSpπ2q Y
F psq $ F ptqqq “ CSpπ1q Y ps “ t $ ˆ CSpπ2qq Y s “ t, F psq $ F ptqqq. A projection to
s “ t, F psq $ F ptq consists of the application of the equality rule or directly its translation:

s “ t $s “ t

P rss $P rss, P rts $P rts
Ñ: l

P rss, P rss Ñ P rts $P rts,
Ñ: l

s “ t, P rss, s “ tÑ P rss Ñ P rtsq $P rts
@ : l

s “ t, P rss, p@u@v@F pu “ v Ñ F puq Ñ F pvqqq $P rts
pPs“t,P rss$P rtsq

The problem here is that the additional occurrence of each equation s “ t applied to a cut-
ancestor ends up in the antecedent of the corresponding characteristic sequent. This means we
must use Ps“t,P rss$P rts or resolve with a positive occurrence of s “ t to remove it. Therefore
this approach excludes refutations without equality for these cases, which is undesirable.

3.1.8 Relative completeness

Similar to proposition 2.6.10 we can state that the reduct of an LKskc“ proof is refutable in
LK“.

Proposition 3.1.2. Let π be a regular LKskc“-proof. Then there exists an LK“-refutation of
the reduct of CSpπq.

53

Proof. We extend the inductive construction of an LK“ refutation γρ for an inference ρ with
conclusion S in π used to prove proposition 2.6.105 by the case for the binary equality rule. It
is treated exactly like the other binary rules.

• ρ is an equality inference: w.l.o.g. assume the inference is an “: r/“sk: r inference
proving F rts from s “ t and F rss, the other side is symmetrical. Let ρ1, ρ2 be the parent
inferences of ρ in π with the conclusion S1, S2. By IH we can assume that the refutations
γρ1 and γρ2 of Cρ1pπq, Cρ2pπq have been constructed. Then we distinguish on the cut-
ancestorship of F rts:

– F rts is a cut-ancestor:
Then ρ must be an “: r inference and Cρpπq “ Cρ1pπq Y Cρ2pπq. We reapply ρ on
γρ1 and γρ2 and obtain γρ, which has exactly the axioms of Cρ1pπq Y Cρ2pπq.

– F rts is an end-sequent ancestor:
Then ρ must be an“sk inference and Cρpπq “ Cρ1pπqˆCρ2pπq. Now we replace all
axioms A in γρ2 by the weakened sequent Aˆ C for each C P Cρ1pπq and contract
all duplications of C to obtain a proof γC . Then replace all axioms C P Cρ1pπq
in γρ1 by the proof γC and again contract duplications in the end-sequent. Each
axiom now is a a merge C1 ˆ C2 with C1 P Cρ1pπq, C2 P Cρ2pπq which is exactly
Cρ1pπq ˆ Cρ2pπq.

Since we only simulate inferences on cut-ancestor occurrences and the end-sequent is by
definition free of cut-ancestors, we have constructed an LK proof of the empty sequent with
axioms from Cρpπq.

Since it is still unclear if there is a Ral refutation whenever there is an LK-refutation of the
reduct of a sequent, we also leave the same question with regard to LK“ and Ral“ open.

3.2 Unary versus Binary Equality Rules in CERES

The first-order formulation of CERES is historically defined with binary equality rules for LK
which directly mirror the paramodulation resolution rule [4]. But proof theoretically, a unary
equality rule seems easier to handle. A rule infers F ptq from F psq under the condition that the
context contains the equation s “ t:

Definition 3.2.1 (Unary Equality Rules).
Γ, s “ t, F psq $∆

“: ul
Γ, s “ t, F ptq $∆

Γ, s “ t $F psq,∆
“: ur

Γ, s “ t $F ptq,∆

At the first glance it seems there is just one primary formula but this is misleading: if s “ t is
the ancestor of a cut-formula, permutating the corresponding cut over the equality would invali-
date the side-condition of the rule and prevent its application. Therefore we consider the rule to

5The construction is given in the proof of Proposition 10 in [48].

54

have two primary formulas, marking the ancestors of the occurence of the primary formula F ptq
red and marking the ancestors of the occurence of the primary formula s “ t blue. To show the
difference to the unary rule, we repeat the binary version and color the ancestors of F ptq red:

Γ1 $s “ t,∆1 Γ2 $F psq,∆2
“: r

Γ1,Γ2 $F ptq,∆1,∆2

In principle, both sets of rules are equivalent because they can simulate each other. Express-
ing the binary rule by means of the unary one needs to introduce the equality by weakening
which is then cut with the second parent proof deriving Γ1 $ s “ t,∆1 .

Lemma 3.2.2 (Binary equality is simulated by unary equality.).

pπ1q
Γ1 $s “ t,∆1

pπ2q
Γ2 $F psq,∆2

w : l
Γ2, s “ t $F psq,∆2

“: ur
Γ2, s “ t $F ptq,∆2

cut
Γ1,Γ2 $F ptq,∆1,∆2

Likewise, using the tautological axiom s “ t $ s “ t to provide the equality in the
consequent, it is easy to express the binary rule:

Lemma 3.2.3 (Unary equality is simulated by binary equality.).

s “ t $s “ t

pπ3q
Γ, s “ t $F psq,∆

“: r
Γ, s “ t, s “ t $F ptq,∆

c : l
Γ, s “ t $F ptq,∆

pπq
As an alternative it would be possible to use the theory axiom$ s “ t and save the contrac-

tion. This would only work in the first-order formulation of CERES but not for the higher-order
formulation CERESω“(see section 3.1) since the latter does not allow non-tautological axioms.
Therefore we will stick to the translation provided above. As a side-effect, the translation im-
proves the visibility of both active formulas in the unary rules. cut-ancestorship of both primary
formulas to calculate the projections and the characteristic sequent set.

3.2.1 The CS and Projection for Unary Equality Rules

We use the simulation π (Lemma 3.2.3) of the unary rule by the binary rule and use the defini-
tions for the latter (see section 3.1.16) to compute the set of projections Pρpπq and the charac-
teristic sequent set Cρpπq. To simplify matters we will refer to the axiom inference introducing
s “ t $ s “ t as proof π4.

6 The CERESω“ rules are identical to their first-order counterparts.

55

Then by induction, we assume that the parent sets Pρ3pπ3q, Cρ3pπ3q, Pρ4pπ4q, Cρ4pπ4q have
been constructed, where ρ, ρ3 and ρ4 are the respective last inference in π, π3 and π4. We
differentiate on the cut-ancestorship of F ptq and s “ t in the end-sequent of proof π to create
Pρpπq and Cρpπq:

1. if F ptq is a cut-ancestor: Then the equality inference operates on a cut-ancestor and
Cρpπq “ Cρ3pπ3q Y Cρ4pπ4q.

a) If s “ t is a cut-ancestor: Then Cρ4pπ4q “ tu and Cρpπq is Cρ3pπ3q Y tu “ Cρ3pπ3q.
The projections are unchanged, i.e. Pρpπq “ Ppπ3q.

b) If s “ t is an es-ancestor: Then Cρ4pπ4q “ t$ s “ tu and Cρpπq is Cρ3pπ3q Y t$
s “ tu. Since

s “ t $s “ t

pπ4q
is an LK axiom as well as the projection of itself, we can add it to the set of projec-
tions i.e. Pρpπq “ Ppπ3q Y tπ4u.

2. if F ptq is an end-sequent ancestor: Then the equality inference operates on an end-sequent
ancestor and Cρpπq “ Cρ3pπ3q ˆ Cρ4pπ4q.

a) If s “ t is a cut-ancestor: If we look at the simulation in transformation 3.2.3, we
see that the eq : r rule needs to be applied but the c : l must not, leading to a proof
of Γ,Π, s “ t $ ∆,ΛF ptq where the sub-sequent Π $ Λ contains the literals of
the characteristic sequent we are projecting to.
Then Cρ4pπ4q “ ts “ t $u and Cρpπq is Cρ3pπ3q ˆ ts “ t $u. For the projections
Pρpπq we apply the following inference:

pP q
Γ,Π $Λ,∆F psq

w : l
Γ,Π, s “ t $Λ,∆, F psq

“: ur
Γ,Π, s “ t $Λ,∆, F ptq

to each projection P P Cρ3pπ3q.
b) If s “ t is an es-ancestor: Then Cρ4pπ4q “ t$u and Cρpπq is Cρ3pπ3q ˆ t$u “
Cρ3pπ3q. The equation rule is repeated, i.e. we infer

pP q
Γ, s “ t $F psq,∆

“: ur
Γ, s “ t $F ptq,∆

pP 1q
for each parent projection P . Now the new set of projections Cρpπq “ tP 1|P P
Pρ3pπ3qu.

This way it is possible to add the unary equality rules to the implementation and treat them
implicitly as their binary version.

56

3.2.2 GAPT Integration

Earlier versions of GAPT used the binary rules, but they have recently been replaced by their
unary equivalents. There are still input proofs with binary equality which now use the simulation
via unary rules. In particular this holds for the LLK input format (see section 3.12) which
predates this development. We will have a short look at the impact on the CERES method.
Since we defined the characteristic sequent set and the projections via their simulation by the
binary inferences, we actually compute the corresponding sets as if each binary inference

pπ1q
Γ1 $s “ t,∆1

pπ2q
Γ2 $F psq,∆2

“: r
Γ1,Γ2 $F ptq,∆1,∆2

were replaced by the pattern:

pπ1q
Γ1 $s “ t,∆1

s “ t $s “ t

pπ2q
Γ2 $F psq,∆2

w : l
Γ2, s “ t $F psq,∆2

“: r
Γ2, s “ t, s “ t $F ptq,∆2

c : l
Γ2, s “ t $F ptq,∆2

cut
Γ1,Γ2 $F ptq,∆1,∆2

If we assume, the characteristic sequent sets Cpπ1q and Cpπ2q have been constructed, we
distinguish again on the cut-ancestorship of F rts.
• F rts is a cut-ancestor: Then the resulting set for the original inference is Cpπ1q Y Cpπ2q

and the one for the double-simulation is also Cpπ1qYCpπ2q (s “ t $ s “ t is a tautology).

• F rts is an end-sequent ancestor: Then the resulting set for the original inference is Cpπ1qˆ
Cpπ2q. But since the s “ t in the end-sequent of π1 is now a cut´ ancestor independent
of the cut-ancestorship of F rts, the characteristic sequent set is different. If we call this
set C1pπ1q then the resulting set of the double-simulation is C1pπ1q Y ps “ t $ˆ Cpπ2qq.

To compare Cpπ1q and C1pπ1q, we see that s “ t is atomic and therefore only other equality
rules or contractions can be applied to ancestors of the this equation. In the case that the oc-
currence of s “ t is linear (i.e. no inference operates on its ancestors), s “ t will occur as an
additional consequent in some of the sequents in C1π1. The intuition is that in these cases, the ad-
ditional succedent occurrences of s “ t in C1pπ1q can be resolved with the additional antecedent
occurrence of s “ t in s “ t $ ˆ Cpπ2q to obtain Cpπ1q ˆ Cπ2 directly or a consequence of it.
Then, similarly, multiple equality inferences on ancestors of s “ t would just add additional
literals to resolve on. Currently, it is still unclear how to exactly prove this intuition so we will
leave it as a conjecture:

Conjecture 3.2.4. Let π be an LK proof with binary equality equality rules and let π1 be the
proof obtained by translating the binary equality rules to unary ones. Then Cpπ1q is refutable if
Cpπq is refutable.

57

3.3 Some Properties of Skolem Expansion Trees

We will prove a few lemmas about skolem expansion trees, which will be useful in section 3.5
where we show the validity of skolem expansion trees extracted from LKskc proofs with propo-
sitional and passive cuts. The first can be seen as an idempotence lemma for the merge operation.
Even though merging two copies of an expansion tree does not result in the exact same tree be-
cause of the merge of weak quantifier nodes, we can still prove that their deep formulas are
equivalent.

Lemma 3.3.1. Let A be a (skolem) expansion tree. Then DppAq ô DppmergepA,Aqq.
Proof. We proceed by induction on the structure of A:

• A is an atom node: ThenmergepA,Aq “ A and therefore also DppAq ô DppmergepA,Aqq
holds.

• A is a negation node B or a binary logical node B ˝ C with ˝ P t^,_,Ñu:
By definition of merge,mergep B, Bq “ mergepB,Bq andmergepB˝C,B˝Cq “
mergepB,Bq˝mergepC,Cq respectively. By IH we can assume that DppmergepB,Bqq ô
DppBq and DppmergepC,Cqq ô DppCq. Then also DppmergepB,Bqq ô DppBq
and DppmergepB,Bqq ˝DppmergepC,Cqq ô DppBq ˝DppCq hold.

• A is a strong (skolem) quantifier node QF `s `B:
By definition of merge, mergepQF `s B,QF `s Bq “ QF `smergepB,Bq and again
by IH we can assume that DppmergepB,Bqq ô DppBq. Since by definition of the deep
formula, DppQF `s Bq “ DppBq holds, the equivalence again extends to DppQF `s
Bq ô DppmergepQF `s `B,QF `s `Bqq.
• A is a weak quantifier nodeQF `t1B1` . . .`tnBn: thenmergepA,Aq “ QF `t1B1`
. . . `tn Bn `t1 B1 ` . . . `tn Bn. Now DppQF `t1 B1 ` . . . `tn Bn `t1 B1 ` . . . `tn
Bnq “ DppB1q ˝ . . .DppBnq ˝ DppB1q ˝ . . .DppBnq where ˝ stands for a disjunction
if A occurs positively and where it stands for a conjunction if A occurs negatively. Both
operators are associative, commutative and idempotent, allowing us to reduce the formula
to DppB1q ˝ . . .DppBnq which is equivalent to DppQF `t1 B1 ` . . .`tn Bnq.

Also, the associativity of disjunction and conjunction transfers to the merge operation:

Lemma 3.3.2. Let A,B,C be expansion trees such that ShpAq “ ShpBq “ ShpCq. Then
DppmergepA,mergepB,Cqqq “ DppmergepmergepA,Bq, Cqq.
Proof. We proceed again by structural induction. The only non-trivial case is the merge of weak
quantifiers:

• LetA “ QF`r1R1`. . .`rlRl,B “ QF`s1`S1 . . .`smSm, ,C “ QF`t1`T1 . . .`tn
Tn. Then DppmergepA,mergepB,Cqqq “ Žl

i“1Ri_p
Žm
j“1 Sj_

Žn
k“1 Tkq “ p

Žl
i“1Ri_

Žm
j“1 Sjq _

Žn
k“1 Tk “ DppmergepmergepA,Bq, Cqq.

58

Furthermore, we can show that the merge operation is similar to weakening: the deep for-
mula of an expansion tree A implies the deep formula of A merged with some expansion tree
B.

Lemma 3.3.3. Let A,B be positive occurrences of (skolem) expansion trees with ShpAq “
ShpBq. Then DppAq Ñ DppmergepA,Bqq. IfA,B are negative occurrences, then DppAq Ñ
 DppmergepA,Bqq.
Proof. We proceed by induction on the stucture of A, but only the weak quantifier case is non-
trivial:

• A is a weak quantifier node QF `t1 A1 ` . . . `tn An and B is a weak quantifier node
QF `t1 B1 ` . . .`tn Bm:
ThenmergepA,Bq “ QF`t1A1`. . .`tnAn`t1B1`. . .`tnBm and DppmergepA,Bqq “
DppA1q ˝ . . . ˝DppAnq ˝DppB1q ˝ . . . ˝DppBmq ô DppAq ˝DppBq where ˝ P t_,^u,
depending on the polarity of A. If A occurs positively, this leads to DppAq Ñ pDppAq _
DppBqq, if A occurs negatively, this leads to DppAq Ñ pDppAq ^ DppBqq. Both
cases are instances of weakening and are easily checked for validity.

The relationship between disjunction and the merge operation is not immediately obvious.
The expansion of a positive occurence of DF `s Fs `t Ft to Fs _ Ft would hint that they are
equivalent, but merge is in fact a stronger operation than disjunction: if we consider the two
trees T1 “ pDXX `K Kq^ pDXX `J Jq and T2 “ pDXX `J Jq^ pDXX `K Kq, we see that
DppmergepT1, T2qq “ pK_Jq^ pJ_Kq “ J but DppT1 _ T2q “ pK^Jq_ pJ^Kq “ K.

The converse direction holds though:

Lemma 3.3.4. Let A,B expansion trees of positive polarity such that ShpAq “ ShpBq. Then
DppmergepA,Bqq Ñ pDppAq_DppBqq. If they are of negative polarity, then DppmergepA,Bqq Ñ
 pDppAq ^DppBqq.
Proof. We proceed by induction on the shape of the shallow formula and distinguish on the
polarity:

• Positive polarity:

– Atom F : then DppAq “ DppBq “ F and we have to check F Ñ F , which trivially
holds.

– Negation F : since the polarity of F is positive, the polarity of F is nega-
tive. Let the expansion trees A and B have the shape C and D. Then we
have to check Dppmergep C, Dqq Ñ pDpp Cq _ Dpp Dqq which unfolds to
 DppmergepC,Dqq Ñ p pDppCq ^ DppDqqq. But since the complexity of
ShpCq is less than the one of Shp Cq, the IH gives us exactly the formula in ques-
tion.

59

– Conjunction F ^ G: let us call FT and GT the expansion trees corresponding to
F and G. Then we unfold the definition of deep formulas from DppFT ^ GT q to
DppFT q ^DppGT q. Then DppFT q ^DppGT q Ñ pDppFT q _DppGT qq.

– Disjunction F_G: similar to the conjunctive case, we need to check that pDppFT q_
DppGT qq Ñ pDppFT q _DppGT qq holds, which again is trivial.

– Weak quantifier DF : let the shape of A be DF `t1 C1 ` . . .`tn `Cn and the shape
of B be DF `t1 D1 ` . . .`tn `Dn with ShpCiq “ ShpDiq for i P t1, . . . , nu with
common instantiation terms ti. Then we need to show that DppDF `t1 C1` . . .`tn
`Cn`t1D1` . . .`tn`Dnq Ñ pDppDF `t1C1` . . .`tn`Cnq_DppDF `t1D1`
. . .`tn `Dnq. Unfolding the deep formula, we obtain pDppC1q _ . . ._DppCnq _
DppD1q_. . ._DppDnqq Ñ ppDppC1q_. . ._DppCnqq_pDppD1q_. . .DppDnqqq
which is valid by the associativity of disjunction.

– Strong quantifier @F : let the shape of A be @F `s C and the shape of B be @F `s
D. We need to show that Dppmergep@F `s C,@F `s Dqq Ñ pDpp@F `s Cq _
Dpp@F `s Dqq which unfolds to DppmergepC,Dqq Ñ pDppCq _ DppDqq by
the definition of merge and deep formulas. Since the complexity of ShpCq is less
than the complexity of @F `s C, we can invoke the IH which again gives us this
implication.

• Negative polarity:
The cases are symmetrical to the positive case.

As a kind of corrolary of lemma 3.3.4, we can show that permuting merge over a logical
operator strengthens the deep formula of an expansion tree.

Lemma 3.3.5. Let A,B,C,D be expansion trees such that ShpAq “ ShpCq and ShpBq “
ShpDq. Then for all operators ˝, the implications Dpp˝mergepA,Cqq Ñ Dppmergep˝A, ˝Cqq
and DppmergepA,Cq ˝mergepB,Dqq Ñ DppmergepA ˝ C,B ˝Dqq hold.

Proof.
We distinguish on the node ˝:
• Negation: by the definition of merge, mergep A, Cq “ mergepA,Cq and the impli-

cation is trivially true.

• Conjunction, Disjunction, Implication: similarly, by the definition of merge, mergepA ˝
C,B ˝Dq “ mergepA,Cq ˝mergepB,Dq in these cases.

• Strong quantifier node: also mergepQF `s G1, QF `s G2q “ QF `s mergepG1, G2q
which transfers to an implication of the deep formulas.

• Weak quantifier node: w.l.o.g. assume the quantifier is existential and we are in a positive
context. Since ShpAq “ ShpCq, the instantiation term t must be the same in both cases.
We therefore want to show DppDF tmergepA,Cqq Ñ DppmergepDF `t A, DF `t Cqq.

60

By definition of the deep formula and merge, this amounts to DppmergepA,Cqq Ñ
pDppAq _DppCqq which we proved in lemma 3.3.4.

Unfortunately, the restrictions on the weak quantifier enforce a its application in a restricted
context. Nevertheless, both lemma 3.3.4 and lemma 3.3.5 will be vital in the next section.

3.4 Extracting Expansion Proofs from LKsk Proofs

We now consider the extraction of skolem expansion proofs from the cut-free calculus LKsk.
The algorithm is similar to Miller’s (see section 2.3.1) but skolem quantifier inferences produce
skolem quantifier nodes in the extracted tree. Since the notion of a skolem term depends on
the global structure of the tree, sub-trees of skolem expansion trees are not necessarily skolem
expansion trees themselves. We therefore extract a tree of skolem expansion nodes first and
show later that an extraction from an LKsk proof really provides a skolem expansion tree. To
explicitly track weakening in expansion sequents, we also introduce a weakening node:

Definition 3.4.1. Let F be a formula, then W`F is an expansion tree with ShpW`F q “ F . If
the tree occurs positively then DppW`F q “ K, if it occurs negatively then DppW`F q “ J.

Definition 3.4.2. Let π be an LKsk tree ending in the inference ρ. We distinguish on the
inference type of ρ:

• ρ is a strong skolem quantifier inference: w.l.o.g. suppose the sequent Γ $ 〈@F 〉` ,∆
was inferred from the sequent S : Γ $ 〈F pfpS1, . . . , Snqq〉` with ` “ S1, . . . , Sn and
that Λ $ Q,Π is the tree for S. Then the tree for π is Λ $ @ F `fS1...Sn Q,Π.

• ρ is a weak skolem quantifier inference: w.l.o.g. suppose the sequent Γ $ 〈DF 〉` ,∆ was
inferred from the sequent S : Γ $ 〈FT 〉`,T and that Λ $ Q,Π is the tree for S. Then the
tree for π is Λ $ D F `T Q,Π.

• ρ is an axiom rule, a logical rule or a contraction rule: Then we follow the pattern from
section 2.3.1.

• ρ is a weakening rule: suppose the expansion sequent of the premise is Γ $ ∆ and the
formula F is introduced by a weakening to the right. Then the expansion sequent of the
conclusion is Γ $ ∆,W`F . The weakening to the left rule is symmetrical.

We call the function implementing this algorithm extractpπq.
We also extend the definition of the merge operation (see definition 2.3.8):

Definition 3.4.3. Let Ta and Tb be expansion trees with ShpTaq is α-equal to ShpTbq. We define
mergepTa, Tbq by distinguishing pTa, Tbq on their (identical) root node:

• Strong skolem quantifier node pQ F`fS1...Sn , Q F`fS1...Snq:
then mergepQ F`fS1...Sn , Q F`fS1...Snq “ Q F`fS1...Sn .

61

• Weak skolem quantifier node pQ F `t1,...,tm T 1a, Q F `tm`1,...,tn T 1bq :
then mergepQ F `t1,...,tm T 1a, Q F `tm`1,...,tn T 1bq “ Q F `t1,...,tn mergepT 1a, T 1bq.

• Weakening node:
then mergepT,W`F q “ mergepW`F, T q “ T . 7

• Atom or Logical Connective node: this is the same as in definition 2.3.8.

The definition is incomplete in the sense that the merge of strong quantifier nodes is only de-
fined when the skolem terms agree. This is similar to the merge of quantifier nodes with selected
variables. For that case, Miller mentions that two expansion proofs Q1 and Q3 in a contraction
can be picked such that they can be merged.8 In our case, we can peform the renaming on the
LKsk proof, because weak regularity is preserved and sequential pruning coincides with the
merge operation: both are only performed on contracted inferences which are skolem parallel.
For instance, the proof

〈P psq〉x,y $P psq
@
sk : r〈P psq〉x,y $@xP pxq

〈P ptq〉x,y $P ptq
@
sk : r〈P ptq〉x,y $@xP pxq
_ : l

〈P psq _ P ptq〉x,y $@xP pxq,@xP pxq
@
sk : l〈@ypP psq _ P pyqq〉s $@xP pxq,@xP pxq
@
sk : l@x@ypP pxq _ P pyqq $@xP pxq,@xP pxq
c : r@x@ypP pxq _ P pyqq $@xP pxq

pπq

has two skolem symbols s and t which were introduced by two @sk : r rules. Later on the
inferred formula @xP pxq is contracted (the homomorphic part of the path is colored blue and the
non-homomorphic path is colored purple). Since the two skolem symbols are different, there is
no sequential homomorphic pair in π. Renaming s to t allows us to perform sequential pruning,
where the Źc relation pushes the contraction as close to the root as possible:

7 The tree chosen is deterministic: in the case of a merge of two weakening nodes mergepW`F,W`Gq, both
trees need to agree on their shallow formula. But if ShpW`F q “ ShpW`Gq, then also F “ G and the nodes are
identical.

8 The relevant part is in the proof of case 1 in Lemma 3.13 of Miller:“A compact representation for proofs”.
Given a grounded expansion proof for A _ B and for C _ B, we are looking for a grounded expansion proof for
pA^ Cq _B. Miller writes:

Thus, assume thatA_B andC_B have grounded ET-proofsQ1_Q2 andQ3_Q4. These expansion
trees can be picked so that Q1 and Q3 can be merged to obtain Q5 and that Q :“ Q5 _ rQ2 ^ Q4s

contains no variable selected twice. Clearly, Q is a grounded expansion tree for S _ rA^Bs.

Remark: There seems to be a mixup with the indices, because Q1 and Q3 can only be merged if they have the
same shallow formula, i.e. if they are expansion proofs for B. Also the formulas are called A,B,C, not A,B, S in
the statement of the lemma. If we infer S _ pA^Bq from S _A and S _B, everything works as expected.

A merge of strong quantifiers is only defined for the same selected variable. “These expansion trees can be picked”
then refers to renaming the selected variable accordingly.

62

〈P ptq〉x,y $P ptq
@
sk : r〈P ptq〉x,y $@xP pxq

〈P ptq〉x,y $P ptq
@
sk : r〈P ptq〉x,y $@xP pxq
_ : l

〈P ptq _ P ptq〉x,y $@xP pxq,@xP pxq
@
sk : l

〈@ypP ptq _ P pyqq〉t $@xP pxq,@xP pxq
@
sk : l@x@ypP pxq _ P pyqq $@xP pxq,@xP pxq
c : r@x@ypP pxq _ P pyqq $@xP pxq

The expansion trees for the auxiliary @xP pxq occurrences in the contraction are both T1 “
T2 “ @xtP pxq (with the deep formula P ptq). Afterwards, the duplicated paths are zipped up,
leading to the proof:

〈P ptq〉x,y $P ptq 〈P ptq〉x,y $P ptq
_ : l

〈P ptq _ P ptq〉x,y $P ptq, P ptq
c : r

〈P ptq _ P ptq〉x,y $P ptq
@
sk : r〈P ptq〉x,y $@xP pxq
@
sk : l

〈@ypP ptq _ P pyqq〉t $@xP pxq
@
sk : l@x@ypP pxq _ P pyqq $@xP pxq

Sequential pruning merged the paths up to the strong quantifier inference, which also hap-
pens during mergepT1, T2q. Since such a renamed LKsk proof is not regular, we will call it
strict weak regularity.

Definition 3.4.4. Let π be a strict weak regular LKsk proof. We call π strictly weakly regular,
for all distinct strong Skolem quantifier inferences ρ1, ρ2 holds: if ρ1 and ρ2 are homomorphic,
they have the same Skolem terms.

Since we can perform this renaming before the extraction, we only need to show that strict
weak regularity is sufficient to perform the operation.

Lemma 3.4.5. Let π be a weakly regular LKsk proof. Then extractpπq is a skolem expansion
tree.

Proof. We recall the two global properties in the definition of skolem expansion trees (see defi-
nition 2.3.11):

1. Each skolem quantifier node introduces a unique skolem function f .

2. The path from the root to a skolem quantifier node contains exactly p weak quantifier
nodes with expansion terms t1 to tp (in that order).

Property 1 is fulfilled in a strictly weakly regular proof: since by definition, homomorphic
quantifier inferences have a uniting contraction, their corresponding nodes will be merged into
one during the application of extract. Furthermore, all non-homomorphic quantifier inferences

63

introduce a unique skolem function. Therefore, each quantifier node introduces a unique skolem
function.

Property 2 is fulfilled since an LKsk proof is proper and each label corresponds to a weak
skolem quantifier inference: let ω : 〈@F 〉S1,...,Sn be the labeled formula occurrence inferred
from the skolem term fpS1, . . . , Snq in a strong quantifier inference and let µ be a path from
its descendant in the end-sequent to ω. Then S1, . . . , Sn are exactly the instantiation terms of
the weak quantifier rules with active formulas in µ. We prove this by induction on the number
i P t0, . . . , nu of labels: For i “ 0 the list of labels must be empty. This is the case at the
root because π is an LKsk proof and therefore proper. The only rule which increases n is a
weak quantifier skolem quantifier rule inferring an occurrence on µ. By IH let us assume the
list ` “ S1, . . . , Si´1 has been correctly created. Since a weak quantifier rule always extends
the label by its instantiation term Si, we can extend the list to `, Si. This result carries over
to the skolem expansion tree, since extractpπq preserves the order of quantifier inferences.
Furthermore each weak quantifier in the LKsk tree acting on an occurrence on µ maps to a
distinct quantifier in the corresponding skolem expansion tree. Therefore the arguments of the
skolem quantifier node Q corresponding to ω are exactly the instantiation terms of the weak
quantifier nodes between the root of the tree and Q.

Since we extract a skolem expansion tree from an LKsk proof, we would expect that this is
actually a skolem expansion proof.

Conjecture 3.4.6. Let T be a skolem expansion tree obtained by applying extractpπq to a
weakly regular LKsk proof π. Then DppT q is a tautology and T is a skolem expansion proof.

If we are in the context of the functional fragment of CERESω, the situation is simple:
already in the LK input proof, we can expand axioms introducing formulas to proofs with
atomic introduction rules only. Then the characteristic sequent set does contain neither predicate
variables nor non-atomic formulas in any sequent. Therefore a refutation of the characteristic
sequent set does not contain any quantifier inferences and a simulation of this proof does not
add any quantifier inferences either. Furthermore, the projection transformation, the simulation
and reductive cut-elimination preserve the order of quantifiers such that they are still the same
as in the input proof. But the input proof respects the eigenvariable condition, therefore all the
quantifiers in the resulting LKskc proof are correctly placed and preserved through the whole
method.

For the general case, it seems likely that we could generate the deep formula, or at least
an equivalent one, just by skipping the quantifier inferences in an LKsk proof. However, the
presence of contraction inferences complicates matters: we could replace the contraction of two
existential inferences DxP pxq as a disjunction P pt1q _ P pt2q of the auxiliary formulas. But as
we have seen in section 3.3, the counter-example to DppT1q _ DppT2q Ñ DppmergepT, T qq
shows that the merge operation is stronger than a disjunction. Therefore, this approach does not
work.

In a way, the proof rewriting systems from section 2.6.4 used to put quantifier inferences
into place performs this strengthening. We will show for each rule that the deep formula of each
reduct implies the deep formula of its redex. Then, the validity of the final skolem expansion
sequent implies the validity of the extracted skolem expansion sequent.

64

Lemma 3.4.7. Let π Ź1
c π

1 be a contraction shift. Then Dppextractpπ1qq Ñ Dppextractpπqq.

Proof. We distinguish between σ being a unary or primary formula when applying Ź1
c (see

definition 2.6.27).

• Unary rule: let S : ΠT ,ΠT̊ ,ΓT $ ∆T ,ΛT ,ΛT̊ be the expansion sequent extracted from
the parent proof common to π and π1. Since the expansion trees of the duplicated occur-
rences of Π may lead to different expansion trees, we denote the second version with a
star (˚).

Moreover, the permuted inferences are independent and the extraction algorithm only
takes ancestor inferences of a formula occurrence into account. We can therefore safely
distinguish between the extraction of the contracted formulas Π and Λ and the formulas Γ
and ∆ affected by the inference σ.

Then the extracted expansion proof for π is Π1T ,Γ1T $ ∆1
T ,Λ

1
T where Γ1T and ∆1

T are
identical to ΓT and ∆T up to the primary formula F of σ. In case σ is a contraction, in
both cases the expansion tree for the primary formula is mergepF1, F2q, in the case of a
logical operator ˝, it is an expansion tree of the form ˝F1.

The contracted trees Π1T and Λ1T for both π and π1 translate to the same merges between
trees in ΠT and ΠT̊ respectively to merges between trees in ΛT and ΛT̊ .

Therefore, with identical expansion sequents, we surely also have Dppextractpπ1qq Ñ
Dppextractpπqq.

• Binary rule: again let S1 : ΠT ,ΠT̊ ,ΓT $ ∆T ,ΛT ,ΛT̊ and S2 : ΣT $ ΘT be the expan-
sion sequents corresponding to the parent proofs common in π and π1. Similar to the unary
case, we can use the independence of the operation to argue separately on the contracted
formulas and the primary formula of σ. Again, we end up with the same merged expan-
sion trees in ΠT ,ΛT and ΠT̊ ,ΛT̊ as well as binary node ˝ applied on the auxiliary trees in
ΣT and ΘT , ending up with identical expansion sequents for extractpπq and extractpπ1q.
The implication of the deep formulas follows trivially. The symmetrical case where S1

and S2 are flipped works alike.

Lemma 3.4.8. Let π1 be an LKsk proof obtained from an LKsk proof π by applying one of the
rules in definition 2.6.29. Then Dppextractpπqq Ñ Dppextractpπ1qq.

Proof. We distinguish between the outermost symbol of the contracted formula.

• The outermost symbol is a unary operator ˝:
Then the rewrite rule in question looks as follows:

65

Γ $∆, 〈F 〉`1
ρ

Γ $∆, 〈G〉`2

...
Γ1 $∆1, 〈F 〉`1 , 〈G〉`2

ρ1

Γ1 $∆1, 〈G〉`2 , 〈G〉`2
...

Γ˚ $∆˚, 〈G〉`2 , 〈G〉`2
c

Γ˚ $∆˚, 〈G〉`2

Γ $∆, 〈F 〉`1

...
Γ1 $∆1, 〈F 〉`1 , 〈F 〉`1

c
Γ1 $∆1, 〈F 〉`1

ρ1

Γ1 $∆1, 〈G〉`2
...

Γ˚ $∆˚, 〈G〉`2

The inferences on ancestors of the context Γ˚,∆˚ are independent of the skipped infer-
ence ρ as well as the contractions and ρ1. For these, the extracted expansion sequent
extractpΓ˚ $ ∆˚q is identical for π and π1 such that also the deep formulas agree.

Suppose FT is the expansion tree corresponding to 〈F 〉`1 and FT̊ the one corresponding
to 〈F 〉`2 . Then the expansion tree for the occurrence of 〈G〉`2 in the end-sequent of π
is mergep˝FT , ˝FT̊ q. Furthermore the expansion tree for the occurrence of 〈G〉`2 in the
end-sequent of π1 is ˝mergepFT , FT̊ q. Now, we can apply lemma 3.3.5: for all operators
but the weak quantifiers, mergep˝A, ˝Bq “ ˝mergepA,Bq, such that the deep formulas
agree. If ˝ is a weak quantifier, the fact that both inferences are homomorphic ensure
that it was inferred from the same formula F and instantiation term t, such that we obtain
mergepG`t FT , G`t FT̊ q from π and G`t mergepFT , FT̊ q from π1.

Furthermore suppose that F and F ˚ occur positively, the negative case is analogous,
where disjunction is replaced by conjunction. Then by unfolding the definition of deep
formulas, we see that DppmergepG `t FT , G `t FT̊ qq “ DppFT q _ DppFT̊ q. Now by
lemma 3.3.4, we know that DppmergepFT , FT̊ qq Ñ pDppFT q _ DppFT̊ qq such that the
implication also holds in this case.

• The outermost symbol is a binary operator:
Then the rewrite rule looks as follows:
〈F 〉` ,Γ $∆ 〈G〉` ,Π $Λ

ρ

〈F _G〉` ,Γ,Π $∆,Λ

...
〈F 〉` , 〈F _G〉` ,Γ˚ $∆˚ 〈G〉` ,Π˚ $Λ˚

ρ1

〈F _G〉` , 〈F _G〉` ,Γ˚,Π˚ $∆˚,Λ˚

...
〈F _G〉` , 〈F _G〉` ,Γ` $∆`

c : l
〈F _G〉` ,Γ` $∆`

〈F 〉` ,Γ $∆
w : ˚

〈F 〉` ,Γ,Π $∆,Λ

...
〈F 〉` , 〈F 〉` ,Γ˚ $∆˚

c
〈F 〉` ,Γ˚ $∆˚ 〈G〉` ,Π˚ $Λ˚

ρ1

〈F _G〉` ,Γ˚,Π˚ $∆˚,Λ˚

...
〈F _G〉` ,Γ` $∆`

Suppose the expansion sequents of the common parent proofs are F 1
T ,ΓT $ ∆T and

G2
T ,ΠT̊ $ ΛT̊ . Furthermore, suppose the expansion sequent for the additional parent

proof is G1
T ,ΠT $ ΛT and the tree corresponding to the auxiliary occurrence of F in ρ1

of π is F 2
T .

Again, independence allows to have a separate argumentation for the primary formula and
a context formula of the end-sequent:

66

– Primary formula: the expansion tree for the primary formula in π is thenmergepF 1
T_

G1
T , F

2
T _G2

T q “ mergepF 1
T , F

2
T q_mergepG1

T , G
2
T q and the expansion tree for the

primary formula in π1 is mergepF 1
T , FT̊ q _G2

T where FT̊ depends on the ancestor-
ship of the auxiliary F in ρ:

∗ F has an ancestor in Γ or ∆: then FT̊ is identical to F 2
T and we need to check

 DppmergepF 1
T , F

2
T q _ G2

T q Ñ DppmergepF 1
T , F

2
T q _ mergepG1

T , G
2
T qq

which simplifies to DppG2
T q Ñ DppmergepG1

T , G
2
T qq. But since the oc-

currences ofG1
T andG2

T are negative, this is exactly an instance of lemma 3.3.3.
∗ F has an ancestor in Π or Λ: then FT̊ comes from weakening and has the shape
W`F . SincemergepF 1

T ,W`F q “ F 1
T , we need to check DppF 1

T _G2
T q Ñ

 DppmergepF 1
T , F

2
T q _mergepG1

T , G
2
T qq which simplifies to p DppF 1

T q Ñ
DppmergepF 1

T , F
2
T qqq _ p DppG2

T q Ñ DppmergepG1
T , G

2
T qqq. Since both

disjuncts are instances of lemma 3.3.3, also this case is covered.

Lemma 3.4.9. Let πŹ1
uπ
1 be a unary rule shift. Then DppSq Ñ DppT qwhere S “ extractpπ1q

and T “ extractpπq.

Proof. We distinguish on the type of the inference σ:

• σ is a unary rule:
Then the general rewrite pattern looks like:

Γ $F,G,∆
ρ

Γ $M,G,∆
σ

Γ $M,N,∆

Γ $F,G,∆

σ
Γ $F,N,∆

ρ
Γ $M,N,∆

Depending on the actual rule, the polarity and number of occurrences of the formulas F
and G in the parent proof may differ. But in each case, when we look at the (indpendent)
paths between F and M / G and N in π and π1, they are pairwise homomorphic. Then
because the extraction of expansion trees depends only on the structure of M and N , the
extracted expansion sequents S and T must be the same and therefore DppSq Ñ DppT q
holds.

• σ is a binary rule:
Then the general rewrite pattern looks like:

Γ $F,G1,∆ ρ
Γ $M,G1,∆ Π, G2 $Λ

σ
Γ,Π,M,G1 _G2 $∆,Λ

Γ $F,G1,∆ Π, G2 $Λ

σ
Γ,Π, F,G1 _G2 $∆,Λ

ρ
Γ $M,G1 _G2,∆

Again, the paths F to M , G1 to G1 _ G2 and G2 to G1 _ G2 in π are homomorphic
to their counterparts in π1. Then again, the extracted expansion sequents do not differ
making DppSq Ñ DppT q valid.

67

Lemma 3.4.10. Let π Ź1
b π

1 be a binary rule shift. Then DppSq Ñ DppT q where S “
extractpπ1q and T “ extractpπq.
Proof. We distinguish on the type of the inference σ:

• σ is a unary rule:
Then the general pattern is:

Π,Γ1, F,G1 $∆1,Λ Π,Γ2, G2 $∆2,Λ ρ
Π,Π,Γ1,Γ2, F,G1 _G2 $∆1,∆2,Λ,Λ

c : ˚
Π,Γ1,Γ2, F,G1 _G2 $∆1,∆2,Λ

σ
Π,Γ1,Γ2,M,G1 _G2 $∆1,∆2,Λ

Π,Γ1, F,G1 $∆1,Λ

σ
Π,Γ1,M,G1 _G2 $∆1,Λ Π,Γ2, G2 $∆2,Λ ρ

Π,Π,Γ1,Γ2,M,G1 _G2 $∆1,∆2,Λ,Λ
c : ˚

Π,Γ1,Γ2,M,G1 _G2 $∆1,∆2,Λ

Similar to Ź1
u, the paths from F to M , G1 to G1 _ G2 and G2 to G1 _ G2 in π and π1

are homomorphic, leading to identical expansion sequents S and T such that DppSq Ñ
DppT q holds.

• σ is a binary rule:
Then the general pattern rewrites

Π,Γ1, F1, G1 $∆1,Λ Π,Γ2, F2, G1 $∆2,Λ ρ
Π,Π,Γ1,Γ2, F1 _ F2, G1, G1 $∆1,∆2,Λ,Λ

c : ˚
Π,Γ1,Γ2, F1 _ F2, G1 $∆1,∆2,Λ G2,Γ3 $∆3

σ
Π,Γ1,Γ2,Γ3, F1 _ F2, G1 _G2 $∆1,∆2,∆3,Λ

to

Π,Γ1, F1, G1 $∆1,Λ G2,Γ3 $∆3
σ

Π,Γ1,Γ3, F1, G1 _G2 $∆1,∆3,Λ

Π,Γ2, F2, G1 $∆2,Λ G2,Γ3 $∆3
σ

Π,Γ1,Γ3, F2, G1 _G2 $∆1,∆3,Λ ρ
Π,Π,Γ1,Γ2,Γ3, F1 _ F2, G1 _G2 $∆1,∆2,∆3,Λ,Λ

c : ˚
Π,Γ1,Γ2,Γ3, F1 _ F2, G1 _G2 $∆1,∆2,∆3,Λ

In this case, the duplicated parent trees lead to additional merges. Suppose the expan-
sion sequents corresponding to parent proofs are ΠT ,Γ1T , F1T , G1T $ ∆1T ,ΛT and
G2T ,Γ3T $ ∆3T . Let QS and QT be expansion trees in the extracted expansion se-
quents S and T of π and π1. We distinguish on the ancestorship of QS /QT in the parent
proofs:

– The trees correspond to formulas in Π,Λ:
Then QS “ QT “ mergepP,Qq where P,Q are expansion trees in ΠT or ΛT . The
implication DppQSq Ñ DppQT q follows trivially.

– The trees correspond to formulas in Γ1,Γ2,∆1,∆2:
Then QS “ QT “ Q where Q is an expansion tree in Γ1T ,Γ2T ,∆1T ,∆2T . Again
the implication DppQSq Ñ DppQT q holds trivially.

– The trees correspond to formulas in Γ3,∆3:
Then QS “ mergepQ,Qq and QT “ Q where Q is an expansion tree in Γ3T ,∆3T .
The implication DppSq Ñ DppT q holds by the idempotence of merge (lemma 3.3.1).

68

– The trees corresponds to the formula F1 _ F2:
Then QS “ QT “ F1T _ F2T making the implication DppQSq Ñ DppQT q trivial
again.

– The trees corresponds to the formula G1 _G2:
Then QS “ G1T _mergepG2T , G2T q and QT “ G1T _G2T and again the impli-
cation DppQSq Ñ DppQT q holds by the idempotence of merge.

Putting all these results together we can lift the soundness of the deskolemization procedure
onLKsk trees to a soundness result on the extracted expansion trees, proving the conjecture 3.4.6
stated earlier.

Theorem 3.4.11. Let T be a skolem expansion tree obtained by applying extractpπq to a weakly
regular LKsk proof π. Then DppT q is a tautology and T is a skolem expansion proof.

Proof. Suppose π is an LKsk proof where quantifier inferences are correctly placed. Then by
theorem 2.6.33 there exists a regular LK proof π1 corresponding to π such that by the soundness
of LK, the end-sequent of π1 is valid. The difference between π and π1 only lies in the replace-
ment of skolem terms by unique eigenvariables. The uniqueness allows us to reverse this replace-
ment such that we can define a substitution σ mapping the eigenvariables to the skolem terms in
π. But then certainly the deep formula Dppextractpπqq is the instance Dppextractpπ1qqσ and
the validity of the general formula carries over.

Suppose π is an LKsk proof where the quantifier inferences are not correctly placed. Then
by lemma 2.6.32 there exists a series of applications of Źc, Źzip, Źu and Źb such that the
resulting proof has correctly placed quantifier inferences. Let πi Ź πi`1 be such a step in the
reduction sequence of proofs π, π1, . . . πn. Then by lemmas 3.4.7, 3.4.8, 3.4.9 and 3.4.10, we
know that Dppextractpπi`1qq Ñ Dppextractpπiqq. Now the final proof πn has correctly placed
quantifier inferences and therefore we know that Dppπnq is valid. Following the implication
chain to the original proof π, this validity is preserved. Therefore Dppextractpπqq is valid and
extractpπq is an expansion proof.

The impact of this theorem on the proof analysis is that we can directly take the expansion
proof obtained from the LKsk proof obtained without performing the elaborate post-processing
steps. The only disadvantage is that rewriting via Źzip removes sub-proofs such that a directly
extracted expansion proof might not be minimal.

Finally, because the deep formula does not contain any quantifiers in the formula structure9,
it can be double-checked for validity by a SAT-solver with an apropriate encoding. Since Satallax
is also saturation based, we expect it to work well without encoding.

In the case of LKsk“, we do not have an equivalence to theorem 3.4.11 yet. Still, an SMT
solver handling equality modulo uninterpreted functions suffices to double-check the validity of
the deep formula. Since Satallax is just SAT but not SMT based, we only expect Leo II to handle
these problems well.

9They may be present in arguments of an atom but can not be pushed to the formula level.

69

3.5 Extracting Expansion Proofs from LK Proofs with
Propositional Cuts

Miller’s extraction algorithm for expansion trees is only defined for cut-free proofs. Our moti-
vation for extracting expansion proofs from LK proofs with propositional cuts is twofold: The
primary reason is that the CERES method produces proofs with atomic cuts. If we are only
interested in the expansion proof, a direct extraction makes the elimination of atomic cuts –
which has an exponential time complexity proportional to the size of the proof10 – superfluous.
A similar situation arises when we leave propositional cuts in place since then they are already
present in the projections.

The secondary reason is our long-term goal to use expansion proofs even earlier in the
CERES procedure. Replacing the projections by expansion proofs, we can define the simu-
lation of the refutation of the characteristic sequent set as operations on expansion proofs. The
crucial step there is that ground expansion proofs are not closed under substitution, which is so
far unsolved. What still poses problems is that a substitution σ “ txÐ tu is not restricted to
ancestors of formulas in the end-sequent which contain x. Let us assume that the succedent oc-
currence of the axiom inference P pxq $ P pxq is preserved in the end-sequent, but the ancestor
occurrence will be used to infer @y P pyq $ P pxq . Then the node expanding the quantifier will
also contain x which must be replaced by t when applying σ to the proof. But since a branch of
an expansion proof can come from a merge of multiple sub-trees, it is unclear if the substituted
term is sufficient in all of these sub-trees. In the context of CERESω the situation is even worse
since the refutation simulation also inserts inferences on axioms. For the same reason as before
it is unclear how to identify the parts connected by an axiom. It is possible that an annotation
linking the formulas connected by an introduction rule suffices to define substitution, but we
have not succeeded yet.

Nonetheless, as a first step into this direction, let us prove that an expansion tree’s property
of being an expansion proof is invariant under Gentzen’s reductive cut-elimination rules, as long
as occurrences of cut formulas are always restricted or quantifier free. For the proof, we will use
expansion sequents (see section 2.3).

Since we will be reasoning on parent proofs which contain a cut-formula, we need to adapt
the notion of expansion trees. Although the class of LKskc proofs we are considering does
not contain any LK quantifier rules with eigenvariables, a restricted formula may still contain
quantifiers which are irrelevant to the validity of the theorem. Since an atom node can not
represent such a formula, we introduce such a passive node.

Definition 3.5.1. Let F be a formula, then the passive node P`F is an expansion tree with
ShpP`F q “ DppP`F q “ F . The merge of passive nodes is defined as mergepP`F, T q “
mergepT,P`F q “ T and the expansion tree extraction is extended: let S1 ˆ S2 be a product
of two sequents, where the formulas in S1 are ancestors of end-sequent formulas and those in
S2 are ancestors of cut-formulas. Then extractppS1 ˆ S2q “ extractpS1q ˆ P where each
expansion tree in P is P`pF q for each corresponding formula occurrence F in S2. Also

10 This results directly from the rank reduction rules in Gentzen’s algorithm, in particular from the number of
contraction rules applied. See also Theorem 5.2.4 in Methods of Cut-Elimination [61].

70

extractppF $ F q “ P`pF q $ P`pF q for an axiom where one of the occurrences of F is
passive.

Lemma 3.5.2. Let π be a balanced LKskc proof where all cut formulas are propositional or
passive and let Tπ be the expansion sequent extracted from π. Furthermore, let ρ be the LKsk

proof obtained by applying one of the reductive cut-elimination rules of definition 2.4.4 to π and
let Tρ be the expansion sequent extracted from ρ. Then DppTρq Ñ DppTπq.

Proof. We proceed by induction on the length of the reduction sequence. The base case π “ ρ
is trivial. For the step case we distinguish among the possible rules which can be applied:

1. The cut has two axiom parents:
A $A A $A

cut
A $A A $A

Suppose Tπ “ T1 $ T2 then Tρ “ T1 $ T2 and for both atom and passive nodes,
DppT1q “ DppT2q “ A.

2. The cut formula is introduced by weakening:

pπ1q
Γ1 $∆, F

pπ2q
Γ2 $∆2

w : l
F,Γ2 $∆2

cut
Γ1,Γ2 $∆1,∆2

pπ2q
Γ2 $∆2

w : l
Γ1,Γ2 $∆2

w : r
Γ1,Γ2 $∆1,∆2

Suppose T “ extractpπ2q “ TΓ2 $ T∆2 then also Dppextractpρqq “ DppTΓ2 $ T∆2q
because for each antecedent tree W`pF q “ J and for each succedent tree W`pGq “ K.

3. The cut formula is introduced by negation:
pπ1q

Γ1, A $∆1
 : r

Γ1 $∆1, A

pπ2q
Γ2 $A,∆2

 : l
Γ2, A $∆2

cut
Γ1,Γ2 $∆1,∆2

pπ1q

Γ2 $∆2, A

pπ2q
Γ1, A $∆1

cut
Γ1,Γ2 $∆1,∆2

Then the ancestor relation of end-sequent formulas is untouched and Dppextractpπqq “
Dppextractpρqq.

4. The cut formula is introduced by conjunction:
pπ1q

Γ1 $∆1, A

pπ2q
Γ2 $∆2, B

^ : r
Γ1,Γ2 $∆1,∆2, A^B

pπ3q
Γ3, A $∆3

^ : l
Γ3, A^B $∆3

cut
Γ1,Γ2,Γ3 $∆1,∆2,Γ3

pπ1q

Γ1 $∆1, A

pπ3q
Γ3, A $∆3

cut
Γ1,Γ3 $∆1,∆3

w : ˚
Γ1,Γ2,Γ3 $∆1,∆2,∆3

Suppose Tπ “ TΓ1 , TΓ2 , TΓ3 $ T∆1 , T∆2 , T∆3 then Tρ “ TΓ1 ,W1, TΓ3 $ T∆1 ,W2, T∆3

where W1 and W2 are the weakening nodes corresponding to ShpΓ2q and Shp∆2q. Then
for the same reasons as in the weakening case, DppTρq “ DppTΓ1 , TΓ3 $ T∆1 , T∆3q. But
the latter sequent is a sub-sequent of Dppπq and each subsequent implies its weakend
form. Therefore Dppρq Ñ Dppπq.

5. The cut formula is introduced by disjunction/implication:
The reasoning is analogous to the conjunction case.

71

6. The cut formula is introduced by quantification:
This case can not happen because all cuts are either propositional or passive.

7. The cut is permuted over a unary rule (which is not contraction):

pπ1q
Γ1 $∆1, A

pπ2q
Γ2 $A,∆2 ρ
Γ12 $A,∆1

2
cut

Γ1,Γ
1
2 $∆1,∆

1
2

pπ1q
Γ1 $∆1, A

pπ2q
Γ2 $A,∆2

cut
Γ1,Γ2 $∆1,∆2 ρ
Γ1,Γ

1
2 $∆1,∆

1
2

The inferences are independent and the ancestor relationship unchanged, leading to Tπ “
Tρ and DppTρq “ DppTπq.

8. The cut is permuted over a binary rule:

pπ1q
Γ1 $∆1, A

pπ2q
A,Γ2 $∆2

pπ3q
Γ3 $∆3 ρ

A,Γ12,Γ13 $∆1
2,∆

1
3
cut

Γ1,Γ
1
2,Γ

1
3 $∆1,∆

1
2,∆

1
3

pπ1q
Γ1 $∆1, A

pπ2q
A,Γ2 $∆2

cut
Γ1,Γ2 $∆1,∆2

pπ3q
Γ3 $∆3 ρ

Γ1,Γ
1
2,Γ

1
3 $∆1,∆

1
2,∆

1
3

Again, the inferences are independent and the ancestor relationship unchanged, leading to
Tπ “ Tρ and DppTρq “ DppTπq.

9. The cut is permuted over a contraction rule:
We show the case for contractions on both cut-formulas where the last inference applied
before was a conjunction; the other cases are analogous.

The pattern

pπ1q
Γ1 $F a, A,∆1

pπ2q
Γ2 $F b, B,∆2

^ : r
Γ1,Γ2 $F a`b, A^B,∆1

pa` b´ 1q ˆ c : r
Γ1,Γ2 $F,A^B,∆1,∆2

c : r
Γ1,Γ2 $F,∆1,∆2

pπ3q
Γ3, A, F

n $∆3
^ : l

Γ3, A^B,Fn $∆3
pn´ 1q ˆ c : l

Γ3, A^B,F $∆3
c : l

Γ3, F $∆3
cut

Γ1,Γ2,Γ3 $∆1,∆2,∆3

is rewritten to the two proofs π4 and π5

pπ1q
Γ1 $F a, A,∆1

pa´ 1q ˆ c : r
Γ1 $F,A,∆1

pπ3q
Γ3, A, F

n $∆3
^ : l

Γ3, A^B,Fn $∆3
pn´ 1q ˆ c : l

Γ3, A^B,F $∆3
c : l

Γ3, F $∆3
cut

Γ1,Γ3 $A,∆1,∆3

pπ4q

and

72

pπ1q
Γ1 $F a, A,∆1

pπ2q
Γ2 $F b, B,∆2

^ : r
Γ1,Γ2 $F a`b, A^B,∆1

pa` b´ 1q ˆ c : r
Γ1,Γ2 $F,A^B,∆1,∆2

c : r
Γ1,Γ2 $F,∆1,∆2

pπ3q
Γ3, A, F

n $∆3
pn´ 1q ˆ c : l

Γ3, A, F $∆3
cut

Γ1,Γ2,Γ3, A $∆1,∆2,∆3

pπ5q

which are combined again by cut:

pπ4q
Γ1,Γ3 $A,∆1,∆3

pπ5q
Γ1,Γ2,Γ3, A $∆1,∆2,∆3

cut
Γ1,Γ3,Γ1,Γ2,Γ3 $∆1,∆3,∆1,∆2,∆3

c : l ` c : r
Γ1,Γ2,Γ3 $∆1,∆2,∆3

The case is similar to the uncontracted conjunction case, just with merges added. Suppose
TF is an expansion tree resulting from extractpF q where F appears in Γ1,Γ3,∆1,∆3

within π, then the corresponding tree in ρ is mergepF, F q. By lemma 3.3.1, we know
that DppmergepF, F qq Ñ DppF q and DppmergepF, F qq Ñ DppF q, depending on
the polarity of F . For occurrences in TG of a G in Γ2,∆2 the corresponding tree in ρ is
identical to TG. Therefore, DppTρq Ñ DppTπq.

Together with theorem 3.4.11, we can now extract an expansion proof directly from the
PCNF, skipping the elimination of passive cuts as well as the whole de-skolemization process.

3.6 Definition Elimination

An issue which impedes the readability of sequent calculus is that the context is repeated in each
inference. Sometimes even a single large formula is hard to understand. One approach taken in
mathematics is the use of definitions to abstract over details which are not required throughout
the whole proof. Without definitions, even simple mathematical texts become unreadable. For
instance, already the first chapter of “Proofs from the Book” [1] presenting six different proofs
of the infinity of primes silently presupposes (amongst others) the definitions of a number being
prime, a number being the divisor of another, the group axioms11 and the power series of the
logarithm function. Sometimes, the act of folding or unfolding a definition is relevant to the
proof though. Examples for this occur in the same chapter: In proof 4, the authors identify
a sum as a geometric series and insert its explicit form to simplify an expression. Further on
in proof 5, we are shown properties of open and closed sets by pure definition unfolding. To
achieve a similar kind of abstraction, we integrate definition rules to LKskc in the following
manner:

11Mentioned in the proof for Lagrange’s theorem.

73

Definition 3.6.1 (Definition rewrite rule). A definition is a rewrite rule cα Ñ tα, where c is a
constant different from the logical operators as well as skolem constants and the definiens t is a
HOL term with FV ptq “ ∅.

Definition 3.6.2 (Definition Rule). We define the inference rule def as:
Γ $∆, F

def : R
Γ $∆, G

Γ $∆, G
undef : R

Γ $∆, F

If F rewrites to G within one step using the definition R.

From our mathematical intuition we would expect that definitions are removable. Usually
this is guaranteed by ordering the definitions together with the requirement that the definiens
only contains simpler definitions. We will abstract from this notion and just require thatÑdtpπq
is convergent, i.e. it is confluent and terminating. The former will assure that definitions unfold
to a unique normal form while the latter prevents infinite definition unfolding sequences.

The restriction of the left-hand side in a definition rewrite rule to a constant is less severe than
it seems because the definition tautpxq “ x_ x can be formulated as the rule tautÑ λx.x_
 x. Unfortunately, it is sufficiently strong that, together with the termination requirement, it
excludes any recursive definitions, since a rule c Ñ f rcs cannot terminate. Still we believe that
this approach can be extended to recursive definitions by lifting the restriction the constants as
left-hand side of a rule and some syntactic restrictions on the definiens instead of convergence.

It is also worth mentioning that the elimination of a single definition inference from a proof
has some global effects. For example, if a defined formula is contracted further on in the proof,
the contraction can only be applied if both auxiliary formulas are unfolded. But the second
formula could have been directly introduced by an axiom or a weakening rule. In a similar
manner, a weak quantifier rule can replace occurrences of the term t in different sub-formulas.
Again, one sub-formula might have introduced t by a definition rule but the other occurrence
of t was already present during the axiom or weakening rule which introduced its respective
sub-formula. Examples of both cases can be seen in figure 3.1.

With definitions Without definitions

F $F
def

F $G

A $A
w : r

A $A,G
_ : l

F _A $A,G,G
c : r

F _A $A,G

F $F

A $A
w : r

A $A,F
_ : l

F _A $A,F, F
c : r

F _A $A,F

F psp0qq $F psp0qq
def

F psp0qq $F ptq Gptq $Gptq
^ : r

F psp0qq, Gptq $F ptq ^Gptq
D : r

F psp0qq, Gptq $pDxF pxq, Gpxqq

F psp0qq $F psp0qq Gpsp0qq $Gpsp0qq
^ : r

F psp0qq, Gpsp0qq $F psp0qq ^Gpsp0qq
D : r

F psp0qq, Gpsp0qq $pDxF pxq, Gpxqq

Figure 3.1: Examples of global effects of definition elimination

To reflect the global nature of definition rules, we now introduce the notion of a definition
table. A welcome side-effect is that we do not need to annotate the particular definition used in

74

a rule, as long the definition table is known.

Definition 3.6.3 (Definition Table). Furthermore, a definition table dtpπq of a proof π is the
rewrite system consisting of all definitions occurring in definition rules within π. We denote the
reflexive-transitive closure of a definition table dtpπq byÑdtpπq.

Theorem 3.6.4 (Admissibility of definition rules). Let π be an LKskc proof with definition rules
and end-sequent S. Moreover, let us assume that Ñdtpπq is convergent, i.e. it is confluent and
terminating. Then there exists an LKskc proof of the end-sequent S1 without definition rules,
where S1 is obtained by applyingÑdtpπq to each label and formula in S.

Before giving the proof, we will restate two well-known results in rewriting. If a rewrite
systemÑ1 Y Ñ2 is confluent, it does not follow thatÑ1 andÑ2 are confluent12. Moreover, if
Ñ1 andÑ2 are terminating, it does not follow thatÑ1 Y Ñ2 is terminating13. This means that
we cannot expect to inductively combine the definition tables of a binary rule’s parents. What
works out though, is that we use a global definition table to remove all definitions together.

Proof. We obtain our result with a transformation EDpρ,Ñq, where ρ is an LKskc proof with
definitions and Ñ is a strongly normalizing rewrite system. It recursively applies Ñ to every
label, formula and substitution term of a rule in π. Then EDpπ,Ñdtpπqq has the desired proper-
ties.

We will show this by induction on the structure of ρ. In all cases, the context of an inference
stays unchanged, therefore the claim that the context was correctly rewritten follows directly
from the induction hypothesis. For the active formulas, we make a case distinction on the last
inference p˚q, using FÓ as a shorthand notation for the normal form of F with regard to Ñ as
well as using `Ó for txÓ| x P `u:

• p˚q is an axiom: we directly obtain the rewritten proof since we applyÑ to all labels and
all formulas

• p˚q is a definition rule with auxiliary formula F and primary formula G: w.l.o.g. we
assume F Ñ G. Then FÓ “ GÓ, i.e. the parent proof has already the desired form, so we
can safely skip the definition inference.

• p˚q is a strong quantifier rule inferring 〈QF 〉` from 〈FX〉` (Q P t@, Du): by IH our
auxiliary formula is 〈pFXqÓ〉`Ó. Since each left-hand side of a rewrite rule is a constant
there can be no overlap between F and X i.e. pFXqÓ “ FÓXÓ. Since X is a variable
we this is also equivalent to 〈FÓX〉`Ó. The eigenvariable condition still holds, since the
free variables did not change. Applying (*), we infer 〈QpFÓq〉`Ó. Furthermore, because
quantifiers are not subject to definitions, we know that 〈QpFÓq〉`Ó “ 〈pQF qÓ〉`Ó, which is
what is required.

12A counter-example: taÑ b; aÑ cu is not confluent, but taÑ b; aÑ cu Y tbÑ cu is.
13A counter-example: taÑ bu and tbÑ au are terminating, but taÑ bu Y tbÑ au is not.

75

• p˚q is a weak quantifier rule inferring 〈QF 〉` from 〈FT 〉` (Q P t@, Du): by IH we know
that our auxiliary formula is 〈pFT qÓ〉`Ó. Again there is no possible overlap between F and
T , leading us to 〈FÓTÓ〉`Ó. We now apply p˚q to obtain 〈QpFÓq〉`Ó which is equivalent to
〈pQF qÓ〉`Ó, since quantifiers are not changed by theÑ relation.

• p˚q is a strong skolem quantifier rule inferring 〈QF 〉` from 〈F pfpS1, . . . , Snqq〉` where
` “ tS1, . . . , Snu (Q P t@, Du): Since f is a skolem symbol, it will never be directly
rewritten. By the absence of overlaps we obtain the equivalence F pfpS1, . . . , SnqqÓ “
FÓfpS1Ó, . . . , SnÓq. Since definitions preserve all free variables, the skolem term will be
contained at least once after beta normalization.

Therefore by IH we obtain a formula 〈FÓpfpS1Ó, . . . , SnÓqq〉`Ó. Looking at the definition
of a strong skolem quantifier rule, we see that tS1, . . . , SnuÓ “ `Ó allowing us to apply p˚q
to infer 〈QFÓ〉`Ó. Shifting the rewriting over the quantifier again, we obtain 〈pQF qÓ〉`Ó,
which is the formula required.

• p˚q is a weak skolem quantifier rule inferring 〈QF 〉` from 〈FT 〉`,T (Q P t@, Du): we
can follow the argumentation for weak quantifiers, but have to make sure the labels
behave properly. By IH the auxiliary formula is 〈pFT qÓ〉`Ó,TÓ, which is equivalent to
〈FÓTÓ〉`Ó,TÓ. Since the labels agree, we can apply p˚q, obtaining 〈QFÓ〉`Ó and subse-
quently 〈pQF qÓ〉`Ó.
• p˚q is a unary logical rule inferring F from F : by IH we have FÓ as auxiliary formula

and apply p˚q to infer FÓ. Since logical operators are unchanged byÑ, this is equivalent
to p F qÓ.
• p˚q is a binary logical rule inferring F ˝G from F and G: by IH we obtain FÓ and GÓ as

auxiliary formulas. We apply p˚q to infer FÓ ˝GÓ, which is equivalent to pF ˝GqÓ again.

• p˚q is a weakening rule introducing F : since there are no restrictions on the weakening
rule, we just introduce FÓ.
• p˚q is a contraction rule with auxiliary formula F : by IH we know that there are two

occurrences of FÓ in the parent proof, which we can contract again.

• p˚q is a cut rule on the formula F : by IH we know that there are suitable occurrences of
FÓ in the parent proofs, allowing us to apply the cut rule again.

We will conclude this section with an overview of some of the challenges when we extend to
recursive definitions. So far we strongly relied on the impossibilities of overlaps in an application
sptq. It allowed us to disregard β-normalization but it also prevented quantifier inferences on an
overlap. Let us consider the definition P paq Ñ A together with the following proof:

76

A $A
def

A $P paq P pbq $P pbq
Ñ: l

A,P paq Ñ P pbq $P pbq
D : l

A, DXpXpaq Ñ Xpbqq $P pbq
Every ground instance of P pxq has a unique normal-form, but the rewritten proof

A $A P pbq $P pbq
Ñ: l

A,AÑ P pbq $P pbq
lacks a suitable instance for X to apply the D : l inference. Given an if-then-else operator,

a possible substitution would be X Ð λxpif x “ a then A else P pxqqq. But as soon as we
quantify over a predicate or function variable, solving the equation x “ f may be undecidable
and therefore cannot be resolved automatically. An alternative might be to use the notions of
higher-order rewriting [57, 68, 109] which takes substitution and β-reduction into account.

3.7 Encoding Computations in Arithmetic

3.7.1 Conditionals (If-then-else)

A basic ingredient of computation is branching, in programming usually implemented as the
if-then-else statement. Roughly speaking, we would expect that we can prove the equations
if pexpoq then tα else fα “ tα in case the conditional exp is true and if pexpoq then tα else fα “
fα otherwise. The central question is now, how we evaluate exp.

A possible approach is to use Church numerals and definition by cases defined in sec-
tion 2.1.1. Alternatively, the projections λxιλyι x and λxιλyι y may represent true and false,
which can be directly used to implement the conditional as λtιλfιλeιąιąι e t f .

Practical as this seems, the strong quantifier rules of sequent calculus block many computa-
tions. Suppose we would like to prove an induction step as follows:

pπq
P pv, wq $DyP pv ` 1, yq

D : lDyP pv, yq $DyP pv ` 1, yq
Ñ: r$DyP pv, yq Ñ DyP pv ` 1q

@ : r$@xpDyP px, yq Ñ DyP px` 1, zqq
The eigenvariables v and w will stay untouched in π which severely restricts the expressivity

results mentioned in section 2.1.1. We know that v`1 is equivalent to λxλu.vpx, xpuqq but since
v is the head of the application, the expression can only change in the arguments x and xpuq.
The same problem applies to the condition e of an if-then-else expression. If no substitution
unfolds e to one of the two projections mentioned above, the evaluation can not be made on the
computational level.

What is possible though is to reason on the logical level and specify computations as equa-
tional theories. Then we can prove the theorem @exp@t@fppif pexpq then tα else fα “ tαq _

77

pif pexpq then tα else fα “ tαqq by making a case distinction that exp is either true or false.
Since we have an axiomatization on the logical level, it is practical to formulate all axioms
of Second Order Arithmetic there and also encode if-then-else arithmetically. Using bounded
subtraction ´, the expression p1 ´ p1 ´ eqq ˚ t` p1 ´ eq ˚ f fulfills the equations above.

However, having both an equational and a computational definition of an arithmetic function
leads to duplication. In the worst case, for each pair of functions f, g where f stands for the
arithmetical and g stands for the computational definition, we need to prove the equivalence
@xpfpxq “ gpxqq. In case of the conditional we can hide the actual representation of the behind
a conversion function z {oąι for the Boolean type and x yιąι for the individual type. A suitable
axiomatization then ensures that the range of both conversions is the set t0, 1u, simplifying the
conditional to e ˚ t ` p1 ´ eq ˚ f . The equations X Ñ zp{Xq “ 1, X Ñ zp{Xq “ 0 and
xpyxq “ 1p´p1 ´ xq provide this, leading to a unified representation of if-then-else. If hiding
the arithmetical content behind a definition iteιąαąαąα, we can also prove the two lemmas
P $ itepzP {, t, fq “ t and P $ itepzP {, t, fq “ f . Outside the lemmas, the actual
definition of ite does not matter anymore.

This formulation of the conversion functions is a slight diversion from the original goal: we
actually embed the result zx ă y{ of a function instead of the operator xză{y itself. It is obvious
that a general proof of zx ă y{ “ xză{y requires the axiom of extensionality. Still, for the given
task of evaluating the condition of an if-then-else expression on the logical level, the version
presented here suffices.

3.7.2 Recursion

Using second order arithmetic as axiom system has the advantage that we know which terms we
will encounter: every individual x is either zero or the successor of another individual. Therefore
if we prove the existence of an individual xι, we can find it by enumerating all numerals (e.g.
by term depth) and will eventually find it, although we do not know when. Therefore when we
are talking about a mathematical interpretation, we can certainly use the µ recursion operator
to find the smallest number which fulfills the predicate. Using µ instead of primitive recursion
circumvents the problem of the unknown bound but we don’t need it to express functions which
grow non-elementary.

3.8 Reducing the characteristic sequent set during construction

Subsumption has a substantial computational complexity [45]. Moreover, the algorithms in
GAPT are not highly optimized, so reduction under higher-order subsumption of a sequent set
can already take about 10 minutes for sizes of about 1700 clauses. This means that we can
not expect subsumption to terminate on set sizes of 100000 or more in reasonable time. In the
following, we will use subsumedpSq to denote a maximal subset of S where for each clause
C P S, there is exists no clause D P S where D is subsumed by C. Since the subsumption
relation is a non-strict partial order in which two clauses C and D only subsume each other, if
they are equal modulo renaming of variables, the set defined by subsumed is also unique up to
variable names.

78

A possible approach is to fold the subsumption into clause set generation. Using the set
product ˆ and union Y operation to represent characteristic clause sets, we see two possible
optimization points in the product and the addition operation. Unfortunately, the subsumption
operation is not homomorphic modulo the sequent product.

Lemma 3.8.1. There exists sequent sets C1 and C2 for which the following proposition does
not hold:

subsumedpC1 ˆ C2q Ď subsumedpC1q ˆ subsumedpC2qq
Proof. Take C1 “ tP pxq $; u and C2 “ t$ Qpxq; u, then C1 ˆ C2 “ tP pxq $ Qpxqu. If we
now define the substitutions σ “ tx ÞÑ au and τ “ tx ÞÑ bu, it is clear that S1 subsumes S1σ
and S2 subsumes S2τ . But S1 ˆ S2 does not subsume S1σ ˆ S2τ , since x needs to be mapped
to a and b at the same time.

Even though subsumption commutes with set union, the product of a subsumed set can be
less general than the product of the original sets.

Lemma 3.8.2. There exist sequents sets C1 and C2 for which the following property does not
hold:

subsumedpC1q ˆ C2 does not subsume subsumedpC1 ˆ C2q
Proof. Take C1 “ tP pxq $;P pyq $u and C2 “ t$ Qpxqu. Then tP pxqu subsumes C1, but
does not subsume P pyq $ Qpxq, which is contained in C1 ˆ C2.

The reason for the failure is that for the mergeˆ of sequent sets, the uniqueness of subsumedpSq
up to variable renaming is insufficient because it may accidentally unify two variables. A refu-
tation of subsumedpC1q ˆ C2 can be extended to one of subsumedpC1 ˆ C2q by adding the
renaming to the unifiers. Since this refutation is only found in proofs where all contractions are
redundant, the result is not helpful in practice.

3.9 A simple First Order Embedding

We perform lambda lifting [56] to replace lambda expressions by functions. Essentially, we
obtain a formula in many-sorted first order logic. A prover supporting many-sorted first-order
logic could already work with this input, but without sorts an embedding is necessary to stay
sound. As a heuristic, the current implementation uses such an unsound embedding which
completely drops the types. If the types can be restored, the first-order refutation is also a
Ral refutation: factoring can be delayed before resolution is applied (as is done in Robinson’s
original formulation [81] where it is integrated in the resolution rule).

In GAPT, the function replaceAbstractions is responsible for lambda lifting. Used
on an expression, it just returns the abstracted term:
gapt> val exp = hof"p(^(x:i) (x+x))"
exp: at.logic.gapt.expr.HOLFormula = p(λx x + x): o

gapt> replaceAbstractions(exp)
res15: at.logic.gapt.expr.HOLFormula = p(’q_{1}’:i>i): o

79

Applied to a list of sequents, we also obtain the information to reconstruct the original for-
mula:
gapt> val (map, List(HOLSequent(_,lifted :: _))) = replaceAbstractions(List(HOLSequent() :+ exp))
map: at.logic.gapt.expr.fol.replaceAbstractions.ConstantsMap = Map(λx x + x -> q_{1})
lifted: at.logic.gapt.expr.HOLFormula = p(’q_{1}’:i>i): o

gapt> undoReplaceAbstractions(lifted, map)
res25: at.logic.gapt.expr.HOLFormula = p(λx x + x): o

3.10 A CERES based LK conversion of Resolution Proofs

This part is based on one of our publications [50]. Here we approach the method in the terms
of CERES. Its origin is the first-order proof import function of GAPT which takes an arbitrary
formula and returns a resolution refutation (e.g. Prover9.getRobinsonProof) or an LK
proof (e.g. Prover9.getLKProof). A direct interpretation of resolution as cut, factoring
as contraction and with instances of clauses as axioms leads to a proof of the empty sequent.
Already from the user’s point of view this is unsatisfactory since she would expect the input
formula in the end-sequent. Moreover, from Gentzen’s consistency proof via sequent calculus it
is obvious that a proof of the empty sequent is only possible if we admit it as an initial sequent.
Consequently, an application of reductive cut-elimination will prune every such formulated im-
port to a single introduction of the empty sequent. For the same reason, the expansion sequent
of this proof would be empty, making further exploration impossible.

Using the ideas of CERES, we can construct projections from the input formula to each
clause. Then we can continue using the original CERES method and simulate the refutation
with the projections. In practice there is one more complication: the skolem symbols are intro-
duced by the theorem prover and need to be inferred from the proof output. Therefore it is less
problematic to skolemize the input formula before projecting and restoring the strong quantifier
inferences afterwards.

We will first define the clause normal form (CNF) decomposition for positive and negative
contexts.

Definition 3.10.1 (Clause normal forms). Let A,A1, A2 denote formulas without weak quanti-
fiers and B,B1, B2 denote formulas without strong quantifiers and let P denote atoms. Define
the mappings CNF`pAq and CNF´pBq by the following mutual induction:

CNF`pP q “ t$ P u CNF`pA1 ^A2q “ CNF`pA1q Y CNF`pA2q
CNF´pP q “ tP $u CNF`pA1 _A2q “ CNF`pA1q ˆ CNF`pA2q
CNF`p Bq “ CNF´pBq CNF´pB1 ^B2q “ CNF´pB1q ˆ CNF´pB2q
CNF´p Aq “ CNF`pAq CNF´pB1 _B2q “ CNF´pB1q Y CNF´pB2q
CNF`p@x.Aq “ CNF`pAq CNF´pDx.Bq “ CNF´pBq

The case ofÑ is defined by combining the cases of _ and .

Now we can state an algorithm proving F ˆ C which is the projection of a formula F to one
of the clauses C P CNF`pF q:
Definition 3.10.2 (CNF Projection). We define the functions PCNF`pF, V q which creates a
set of sequents t$ F ˆ C|C P CNF`pF qu and PCNF´pF, V q which creates a set of sequents

80

tF $ˆ C|C P CNF´pF qu. In both cases, V is a list of instantiation terms (i.e. an LKsk label).

PCNF`pP, V q “ PCNF´pP, V q “ tP $ P u
PCNF`p B, V q “ tapply : r to B $ˆ C|B $ˆ C P PCNF´pB, V qu
PCNF`pA1 ^A2, V q “ tapply ^ : l with A2 to A1 $ˆ C|A1 $ˆ C P PCNF`pA1, V quY

tapply ^ : l with A1 to A2 $ˆ C|A2 $ˆ C P PCNF`pA2, V qu
PCNF`pA1 _A2, V q “ tapply _ : l to A1 $ˆ C1 and A2 $ˆ C2

|A1 $ˆ C1 P PCNF`pA1, V q, A2 $ˆ C2 P PCNF`pA2, V qu
PCNF`p@x.A, V q “ tapply @ : l to Aσ $ˆ C

|Aσ $ˆ C P PCNF`pAσ, z :: V q, σ “ txÐ zu , z R FV pV qu

PCNF´p A, V q “ tapply : l to $ Aˆ C|$ Aˆ C P PCNF`pA, V qu
PCNF´pB1 ^B2, V q “ tapply ^ : r to $ B1 ˆ C1 and $ B2 ˆ C2

|$ B1 ˆ C1 P PCNF´pB1q,$ B2 ˆ C2 P PCNF´pB2, V qu
PCNF´pB1 _B2, V q “ tapply _ : t with B2 to $ B1 ˆ C|$ B1 ˆ C P PCNF´pB1, V quY

tapply _ : r with B1 to $ B2 ˆ C|$ B2 ˆ C P PCNF´pB2, V qu
PCNF´pDx.A, V q “ tapply D : r to $ Bσ ˆ C

|$ Bσ ˆ C P PCNF´pBσ, z :: V q, σ “ txÐ zu , z R FV pV qu
Then we define PCNFpF q “ PCNF`pF, nilq.

This procedure can easily be extended to a sequent Γ $ ∆ by computing PCNFpŹ Γ Ñ
Ž

∆q and skipping the last^ : l,_ : r inferences which lead to the finalÑ: r. We can apply this
procedure to create anLK proof of S : p@x0pP px0q Ñ P pspx0qqqq, P p0q $ P pspsp0qqq via res-
olution. We compute CNF`pSq “ t $ P p0q;P pxq $ P pspxqq;P pspsp0qqq $ u and PCNF`pSq.

Another extension uses LKskc to introduce strong quantifiers with skolem terms built from
the label V passed to PCNF`{PCNF´:

Definition 3.10.3.
We replace the quantifier rules for PCNF` and PCNF` with the following:
PCNF`p〈@A〉V , V q “ tapply @sk : l to 〈Az〉z,V $ˆ C

|〈Az〉z,V $ˆ C P PCNF`pAσ, z :: V q, z R FV pV qu
PCNF´p〈DB〉V , V q “ tapply D : r to $ 〈Bz〉z,V ˆ C

|$ 〈Bz〉z,V ˆ C P PCNF´pBσ, z :: V q, z R FV pV qu
PCNF´p〈@A〉V , V q “ tapply @sk : r to 〈Afp`1, . . . , `nq〉V $ˆ C

|Afp`1, . . . , `nq $ ˆ C P PCNF`pAfp`1, . . . , `nq, V q, V “ `1, . . . , `nu
PCNF`p〈DB〉V , V q “ tapply Dsk : l to $ 〈Bfp`1, . . . , `nq〉V ˆ C

|$ Bfp`1, . . . , `nq ˆ C P PCNF`pBfp`1, . . . , `nq, V q, V “ `1, . . . , `nu
Each projection in this extended PCNF has strong quantifier rules which are properly placed,

because they contain no contractions and the variables z introduced do not appear in the skolem
terms between the inference and the root. The extension is not yet implemented though.

81

Grounded refutation of CNF`pSq:

$P p0q P p0q $P psp0qq
cut$P psp0qq

P psp0qq $P pspsp0qqq P pspsp0qqq $
cut

P psp0qq $
cut$

Projections PCNFpSq:
P p0q $P p0q
pπP p0q$q

P pspsp0qqq $P pspsp0qqq
pπ$P pspsp0qqqq

P puq $P puq P pspuqq $P pspuqq
Ñ: l

P puq Ñ P pspuqq, P puq $P pspuqq
@ : lp@x0pP px0q Ñ P pspx0qqqq, P puq $P pspuqq

pπP puq$P pspuqqpuqq
Refutation simulation:

pπP p0q$q
P p0q $P p0q

pπP puq$P pspuqqp0qq
p@x0pP px0q Ñ P pspx0qqqq, P p0q $P psp0qq

cut
P p0q, p@x0pP px0q Ñ P pspx0qqqq $P psp0qq

pπP puq$P pspuqqpsp0qqq
p@x0pP px0q Ñ P pspx0qqqq, P psp0qq $P pspsp0qqq

pπ$P pspsp0qqqq
P pspsp0qqq $P pspsp0qqq

cutp@x0pP px0q Ñ P pspx0qqqq, P psp0qq $P pspsp0qqq
cut

P p0q, p@x0pP px0q Ñ P pspx0qqqq, p@x0pP px0q Ñ P pspx0qqqq $P pspsp0qqq
c : lp@x0pP px0q Ñ P pspx0qqqq, P p0q $P pspsp0qqq

Figure 3.2: Proof import of the sequent P p0q,@xpP pxq Ñ P pspspxqqqq $ P pspsp0qqq

3.11 Implementation of the techniques in GAPT and PROOFTOOL

The original aim of the General Architecture for Proof Theory (GAPT) [32,33,36] was to serve
as a testing ground for our methods of cut-elimination [31, 35, 80, 83] and cut-introduction [47].
Over time other applications were added: the proof visualation tool PROOFTOOL [34, 62] pro-
vides a flexible user-interface (see also section 3.13). Since an active software project changes
rather quickly, we describe version 2.314 here, which is current at the time of writing.

GAPT provides fundamental data-structures and algorithms for the language of first-order
logic and a simply typed lambda calculus. For example, church numerals (as defined in sec-
tion 2.1.1) can be implemented in a few lines15:
def alpha(x: Var, a: LambdaExpression, n: Int,

acc: LambdaExpression => LambdaExpression): LambdaExpression =
n match {

case 0 => acc(x);
case n if n > 0 => alpha(x, a, n - 1, e => App(a, acc(e)))
case _ => throw new Exception("Church numerals must be positive!")

}

def num(n: Int) = {
val x = hov"(x:i)"
val a = hov"(z:i>i)"
Abs(a, Abs(x, alpha(x, a, n, identity)))

}

14 The github tag https://github.com/gapt/gapt/releases/tag/v2.3 points to the source and the GAPT homepage [33]
provides a binary download available as https://logic.at/gapt/downloads/gapt-2.3.tar.gz.

15See also the file examples/ChurchNumerals.scala in the GAPT distribution.

82

https://github.com/gapt/gapt/releases/tag/v2.3
https://logic.at/gapt/downloads/gapt-2.3.tar.gz

def plus (e1: LambdaExpression, e2: LambdaExpression) =
BetaReduction.betaNormalize(le"^(x:i>i) => ^(u:i) => (($e1 x) (($e2 x) u))")

def times(e1: LambdaExpression, e2: LambdaExpression) =
BetaReduction.betaNormalize(le"^u ($e2 ($e1 u))")

We define the n-fold iteration function α within the object num and close the term binding
the start term x and iterator function a. The definitions addition and multiplication can be written
via the string interpolator le"..." which allows us to mix parsing with the objects e1 and e2
from the scala environment. For demonstration purposes, both functions beta-normalize their
result. Now we can check that 40 ˚ 80 is indeed 2000` 2000:
gapt> val fourthousand = times(num(50),num(80))
gapt> fourthousand == plus(num(2000), num(2000))

The system also provides several calculi to represent proofs. In the context of this thesis the
focus on sequent calculus, resolution and expansion proofs is no surprise. The data-structures
are sufficiently flexible to express multiplicative and additive versions of LK rules or to reason
intuitionistically. Proofs can be entered manually, using the basic constructors and viewed in
prooftool:
gapt> val x = Var("x", Ti)
x: at.logic.gapt.expr.Var = x

gapt> val fxx = parseLLKFormula("const F:i>i>o; var x:i;F(x,x)")
fxx: at.logic.gapt.expr.HOLFormula = F(x, x): o

gapt> val afxx = All(x, fxx)
afxx: at.logic.gapt.expr.HOLFormula = @x F(x, x)

gapt> val efxy = parseLLKFormula("const F:i>i>o; var x,y:i;(exists y F(x,y))")
efxy: at.logic.gapt.expr.HOLFormula = Dy F(x, y)

gapt> val eefxy = Ex(x, efxy)
eefxy: at.logic.gapt.expr.HOLFormula = Dx Dy F(x, y)

gapt> val p1 = LogicalAxiom (fxx)
p1: at.logic.gapt.proofs.lk.LogicalAxiom =
[p1] F(x, x) $F(x, x) (LogicalAxiom(F(x, x): o))

gapt> val p2 = ForallLeftRule(p1, Ant(0), afxx, x)
p2: at.logic.gapt.proofs.lk.ForallLeftRule =
[p2] @x F(x, x) $F(x, x) (ForallLeftRule(p1, Ant(0), F(x, x): o, x, x))
[p1] F(x, x) $F(x, x) (LogicalAxiom(F(x, x): o))

gapt> val p3 = ExistsRightRule(p2, Suc(0), efxy, x)
p3: at.logic.gapt.proofs.lk.ExistsRightRule =
[p3] @x F(x, x) $Dy F(x, y) (ExistsRightRule(p2, Suc(0), F(x, y): o, x, y))
[p2] @x F(x, x) $F(x, x) (ForallLeftRule(p1, Ant(0), F(x, x): o, x, x))
[p1] F(x, x) $F(x, x) (LogicalAxiom(F(x, x): o))

gapt> val p4 = ExistsRightRule(p3, Suc(0), eefxy, x)
p4: at.logic.gapt.proofs.lk.ExistsRightRule =
[p4] @x F(x, x) $Dx Dy F(x, y) (ExistsRightRule(p3, Suc(0), Dy F(x, y), x, x))
[p3] @x F(x, x) $Dy F(x, y) (ExistsRightRule(p2, Suc(0), F(x, y): o, x, y))
[p2] @x F(x, x) $F(x, x) (ForallLeftRule(p1, Ant(0), F(x, x): o, x, x))
[p1] F(x, x) $F(x, x) (LogicalAxiom(F(x, x): o))

Using the backend for EProver, we can also find an automatic proof for @xF px, xq Ñ
DxDyF px, yq:
gapt> val Some(q) = EProver.getLKProof(Imp(afxx, eefxy))
q: at.logic.gapt.proofs.lk.LKProof =
[p10] $@x F(x, x) ÑDx Dy F(x, y) (ContractionRightRule(p9, Suc(1), Suc(0)))

83

[p9] $@x F(x, x) ÑDx Dy F(x, y), @x F(x, x) ÑDx Dy F(x, y) (CutRule(p4, Suc(0), p8, Ant(0)))
[p8] F(X2, X2) $@x F(x, x) ÑDx Dy F(x, y) (ImpRightRule(p7, Ant(0), Suc(0)))
[p7] @x F(x, x), F(X2, X2) $Dx Dy F(x, y) (WeakeningLeftRule(p6, @x F(x, x)))
[p6] F(X2, X2) $Dx Dy F(x, y) (ExistsRightRule(p5, Suc(0), Dy F(x, y), X2, x))
[p5] F(X2, X2) $Dy F(X2, y) (ExistsRightRule(p1, Suc(0), F(X2, y): o, X2, y))
[p4] $F(X2, X2), @x F(x, x) ÑDx Dy F(x, y) (ImpRightRule(p3, Ant(0), Suc(1)))
[p3] @x F(x, x) $F(X2, X2), Dx Dy F(x, y) (WeakeningRightRule(p2, Dx Dy F(x, y)))
[p2] @x F(x, x) $F(X2, X2) (ForallLeftRule(p1, Ant(0), F(x, x): o, X2, x))
...

To obtain the sequent @xF px, xq $ DxDyF px, yq, we have to perform the equivalent of im-
plication elimination in natural deduction. In sequent calculus, this amounts to the introduction
of a cut:

gapt> val q1 = LogicalAxiom(afxx)
q1: at.logic.gapt.proofs.lk.LogicalAxiom =
[p1] @x F(x, x) $@x F(x, x) (LogicalAxiom(@x F(x, x)))

gapt> val q2 = LogicalAxiom(eefxy)
q2: at.logic.gapt.proofs.lk.LogicalAxiom =
[p1] Dx Dy F(x, y) $Dx Dy F(x, y) (LogicalAxiom(Dx Dy F(x, y)))

gapt> val q3 = ImpLeftRule(q1, Suc(0), q2, Ant(0))
q3: at.logic.gapt.proofs.lk.ImpLeftRule =
[p3] @x F(x, x) ÑDx Dy F(x, y), @x F(x, x) $Dx Dy F(x, y) (ImpLeftRule(p1, Suc(0), p2, Ant(0)))
[p2] Dx Dy F(x, y) $Dx Dy F(x, y) (LogicalAxiom(Dx Dy F(x, y)))
[p1] @x F(x, x) $@x F(x, x) (LogicalAxiom(@x F(x, x)))

gapt> val q4 = CutRule(q, Suc(0), q3, Ant(0))
q4: at.logic.gapt.proofs.lk.CutRule =
[p14] @x F(x, x) $Dx Dy F(x, y) (CutRule(p10, Suc(0), p13, Ant(0)))
[p13] @x F(x, x) ÑDx Dy F(x, y), @x F(x, x) $Dx Dy F(x, y) (ImpLeftRule(p11, Suc(0), p12, Ant(0)))
[p12] Dx Dy F(x, y) $Dx Dy F(x, y) (LogicalAxiom(Dx Dy F(x, y)))
[p11] @x F(x, x) $@x F(x, x) (LogicalAxiom(@x F(x, x)))
[p10] $@x F(x, x) ÑDx Dy F(x, y) (ContractionRightRule(p9, Suc(1), Suc(0)))
[p9] $@x F(x, x) ÑDx Dy F(x, y), @x F(x, x) ÑDx Dy F(x, y) (CutRule(p4, Suc(0), p8, Ant(0)))
[p8] F(X2, X2) $@x F(x, x) ÑDx Dy F(x, y) (ImpRightRule(p7, Ant(0), Suc(0)))
[p7] @x F(x, x), F(X2, X2) $Dx Dy F(x, y) (WeakeningLeftRule(p6, @x F(x, x)))
[p6] F(X2, X2) $Dx Dy F(x, y) (ExistsRightRule(p5, Suc(0), Dy F(x, y), X2, x))
[p5] F(X2, X2) $Dy F(X2,...

gapt> prooftool(q4)

PROOFTOOL, the graphical user-interface of GAPT, shows the resulting proof as:

84

When we eliminate the cuts using Gentzen’s method, we obtain a proof isomorphic (modulo
names of eigenvariables) to the manual proof p4 above:
gapt> val q5 = ReductiveCutElimination(q4)
q5: at.logic.gapt.proofs.lk.LKProof =
[p4] @x F(x, x) $Dx Dy F(x, y) (ForallLeftRule(p3, Ant(0), F(x, x): o, X2, x))
[p3] F(X2, X2) $Dx Dy F(x, y) (ExistsRightRule(p2, Suc(0), Dy F(x, y), X2, x))
[p2] F(X2, X2) $Dy F(X2, y) (ExistsRightRule(p1, Suc(0), F(X2, y): o, X2, y))
[p1] F(X2, X2) $F(X2, X2) (LogicalAxiom(F(X2, X2): o))

gapt> prooftool(q5)

With PROOFTOOL we can also visualize clause sets, for instance the ones obtained from the
case study (see section 4.8.3), before and after lambda-lifting:
gapt> val css_nolabels = nTape2.css.map(_.map(x => x._2))
css_nolabels: scala.collection.immutable.Set[at.logic.gapt.proofs.Sequent[at.logic.gapt.expr.

HOLFormula]] =
Set(f(#v(’\\alpha’: i)) = 0,
s_5(λx Dh (@i @j (i < x + 1 ^(j < x + 1 ^i < j) Ñh(i) < h(j)) ^

@i (i < x + 1 Ñf(h(i)) = 0))) <
s_5(λx Dh (@i @j (i < x + 1 ^(j < x + 1 ^i < j) Ñh(i) < h(j)) ^

@i (i < x + 1 Ñf(h(i)) = 0))) +
1,

s_6(
λx Dh (@i @j (i < x + 1 ^(j < x + 1 ^i < j) Ñh(i) < h(j)) ^

@i (i < x + 1 Ñf(h(i)) = 0)),
s_5(λx Dh (@i @j (i < x + 1 ^(j < x + 1 ^i < j) Ñh(i) < h(j)) ^

@i (i < x + 1 Ñf(h(i)) = 0)))) <
#v(’\\alpha_0’: i),

f(#v(’\\alpha_0’: i)) = 0
$
, $0 + #v(n_0: i) < #v(n_1: i) + 1 + #v(n_0: i), $0 + #v(n_1: i) < #v(n_0: i) + 1 + #v(n_1: i), f

(#v(’\\alpha_2’: i)) = 1,
s_22(

λx Dh (@i @j...
gapt> val (absmap, css_lifted) = replaceAbstractions(css_nolabels.toList)
absmap: at.logic.gapt.expr.fol.replaceAbstractions.ConstantsMap =
Map(λx Dh (@i @j (i < x + 1 ^(j < x + 1 ^i < j) Ñh(i) < h(j)) ^

@i (i < x + 1 Ñf(h(i)) = 0)) -> q_{1}, λx Dh (@i @j (i < x + 1 ^(j < x + 1 ^i < j) Ñh(i) < h
(j)) ^

@i (i < x + 1 Ñf(h(i)) = 1)) -> q_{2})
css_lifted: List[at.logic.gapt.proofs.HOLSequent] =
List($#v(n_1: i) + #v(n_0: i) = #v(n_0: i) + #v(n_1: i), f(#v(’\\alpha’: i)) = 0,
s_6(’q_{1}’:i>o, s_5(’q_{1}’)) < #v(’\\alpha_0’: i),
f(#v(’\\alpha_0’: i)) = 0
$
#v(n_2: i) < #v(n_2: i) + 1, $0 + #v(n_1: i) = #v(n_1: i), $0 + #v(n_0: i) = #v(n_0: i), f(#v(’\\

alpha_2’: i)) = 1,
s_21(’q_{2}’:i>o) < s_21(’q_{2}’) + 1,
s_22(’q_{2}’, s_21(’q_{2}’)) < #v(’\\alpha_3’: i),
f(#v(’\\alpha_3’: i)) = 1
$
, $#v(n_1: i) + 1 + #v(n_0: i) = #v(n_0: i) + (#v(n_...
gapt> val qs = absmap.toList.map(x => HOLSequent(Nil, Eq(Const(x._2, x._1.exptype),x._1)::Nil))
qs: List[at.logic.gapt.proofs.Sequent[at.logic.gapt.expr.HOLAtom]] =
List(
$
(’q_{1}’:i>o) =
(λx Dh (@i @j (i < x + 1 ^(j < x + 1 ^i < j) Ñh(i) < h(j)) ^

@i (i < x + 1 Ñf(h(i)) = 0))),
$
(’q_{2}’:i>o) =
(λx Dh (@i @j (i < x + 1 ^(j < x + 1 ^i < j) Ñh(i) < h(j)) ^

@i (i < x + 1 Ñf(h(i)) = 1))))

gapt> prooftool(css_nolabels)

gapt> prooftool(qs)

gapt> prooftool(css_lifted)

85

The clause sets are displayed as follows:

The last feature of PROOFTOOL to highlight is the viewer for expansion proofs. Weak quan-
tifier nodes are by default drawn folded and can be dynamically expanded by the user. A mouse-
click on an expansion displays the witness terms explicitly, a second click shows the expanded
formula up to the next layer of weak quantifier nodes. GAPT contains an example proof of the
sequent @xpQpx, fpxqq _Qpx, gpxqqq, P paq _ P pbq $ DxpP pxq ^ DyQpx, yqq which has mul-
tiple witness terms. The nodes in the antecedent and the P pbq ^ pQpb, gpbqq _Qpb, fpbqqq node
in the succedent are fully expanded while the a instance in the succedent shows only the witness
terms of the expansion.

3.12 The LLK Input Format

The LLK language emerged from the need to input proofs in higher-order logic in a human
readable style. At that time [34], the GAPT system could read legacy proofs in an XML for-
mat generated by the Handy LK [96] tool and the predecessor system CERES. The second
proof input method implemented was a proof description language for schematic proofs, called

86

Handy LKS. Both options, formalization in HLK and in HLKS, were deemed unfit. In the first
case, the original code written in C++ would have needed a reimplementation to keep GAPT
self-contained. This was complicated by the fact that only a grammar in EBNF exists, but no
semantics were documented. The second format did not improve too much over the direct use
of the GAPT API. The most important drawback of both formats is that only the active formu-
las of an inference are mentioned. Hence, every inference can be easily evaluated by the user,
whereas the context of an inference is hard to track. LCF style [43, 44] proof assistants like
Isabelle [75, 78] and Coq [69] share this drawback. The approach taken there is to use an inte-
grated development environment like Isabelle/jEdit [112] and CoqIDE [69], which shows open
goals in its own window.

Since the development of an IDE was outside the scope of the thesis, we opted for a language
which can be easily read by humans. Although the THF0 fragment of TSTP is flexible enough
for our purposes, the explicit application operator makes deeply nested terms hard to read. This
becomes already apparent when looking at equational axioms like associativity16. The main idea
is to adapt the development pattern from working with the popular bussproofs LATEXpackage. In
fact, with an appropriate style file (see appendix D), the LLK format can by directly copy pasted
into a prooftree environment.

An actual derivation is written with the full context, but the active formulas are inferred
automatically. In the logical rules, weakenings and contractions are inserted when necessary.
The order of the inferences is specified as a pre-order traversal of the proof tree i.e. as a stack.
This allows us to develop a proof starting from the end-sequent, leaving yet unwritten parts as a
hypothesis. Often such a hypothesis has a mathematical meaning and should be properly named.
Therefore we added the possibility to define and instantiate subproofs. Since we formalized the
arithmetical axioms as an equational theory, we soon noticed emerging patterns: Often, a theory
equation is first instantiated and then applied to a subterm within a formula. Since the equality
rules in the LKskc“ calculus are binary, a series of such inferences quickly grows to the side,
obscuring the actual computation. Inspired by deduction modulo [29, 30], we added a unary
macro rule for an equational inference with an axiom. In contrast to the original, we perform
only one step rewrites. To automatically infer the equation to be used, the theory needs to be
declared beforehand. Additional rules like propositional autocompletion were easy to add, since
the algorithm was already implemented [31].

An example can be seen in figure 3.3. Suppose we would like to represent lists using the
associative symbol ˚ for the list constructor and nil for the empty list. To allow reordering
elements, the symbol ˚ is also considered commutative. Using equational logic, it is possible
to reverse the list a ˚ pb ˚ pc ˚ nilqq with six inferences. We will now show how to formulate
the corresponding proof in LKskc“ using the LLK language. Since the axiom rules in LKskc“
are either tautologies or instances of the reflexivity axiom, the theory axioms need to be added
to the antecedent of the end-sequent, which results in comm ^ assoc $ a ˚ pb ˚ pc ˚ nilqq “
c ˚ pb ˚ pa ˚ nilqq.

In order to prove this end-sequent, we first need to define the language. The CONSTDEC
and VARDEC commands allow to to declare the types for each symbol. Symbol names are
considered globally and the set of variable names must be disjoint from the constant names.

16The axiom of associativity is denoted as ppplus@Xq@ppplus@Y q@Zqq “ ppplus@ppplus@Xq@Y qq@Zqq.

87

% language declaration %
\CONSTDEC{a,b,c,nil}{i}
\VARDEC{x,y,z,rest}{i}
\CONSTDEC{∗}{i>i>i}

% names %
\CONSTDEC{THEPROOF, AX, symm,assoc}{o}
\CONSTDEC{FIRSTEQ}{i>o}

% axiom declarations %
\AXIOMDEC{symm}{}{x∗y=y∗x}
\AXIOMDEC{assoc}{}{x∗(y∗z)=(x∗y)∗z}

% a proof reversing the list [abcd] %
\AX{}{c∗(b∗(a∗rest)) = c∗(b∗(a∗rest))}
\WEAKL{AX}{c∗(b∗(a∗rest)) = c∗(b∗(a∗rest))}
\EQAXIOM{b∗(a∗rest) = (b∗a)∗rest}{AX}{c∗((b∗a)∗rest) = c∗(b∗(a∗rest))}
\CONTINUEWITH{FIRSTEQ(rest)}

\CONTINUEFROM{FIRSTEQ(nil)}{AX}{c∗((b∗a)∗nil) = c∗(b∗(a∗nil))}
\EQAXIOM{c∗((b∗a)∗nil) = (c∗(b∗a))∗nil }{AX}{(c∗(b∗a))∗nil = c∗(b∗(a∗nil))}
\EQAXIOM{(b∗a)∗c = c∗ (b∗a)}{AX}{((b∗a)∗c)∗nil = c∗(b∗(a∗nil))}
\EQAXIOM{a∗b=b∗a}{AX}{((a∗b)∗c)∗nil = c∗(b∗(a∗nil))}
\EQAXIOM{(a∗b)∗(c∗nil) = ((a∗b)∗c)∗nil}{AX}{(a∗b)∗(c∗nil) = c∗(b∗(a∗nil))}
\EQAXIOM{a∗(b∗(c∗nil)) = (a∗b)∗(c∗nil)}{AX}{a∗(b∗(c∗nil)) = c∗(b∗(a∗nil))}
\CONTINUEWITH{THEPROOF}

Figure 3.3: Example of an LLK proof: Reversing a list of 3 elements

In order to instantiate proofs and axioms easily, their names are represented by atom formulas.
Consequently, they need to be declared as well.

In the next step, we define the background theory. Each AXIOMDEC associates a name to
the sequent representing the axiom, in this case we use assoc and comm. To represent the theory
in the proof, we use the special atom AX in the antecedent, which is automatically defined as the
conjunction of the universal closure of each axiom. Whenever an axiom is needed, its instance
can be derived from AX by a series of conjunction left and universal left rules.

Instead of manually instantiating each axiom, we can use the EQAXIOM macro rule, which
does the job for us. The proof in figure 3.4 directly mirrors the equational reasoning via unary
equation rules. In each EQAXIOM rule, we provide the instance of the axiom used as an addi-
tional parameter, the rest is automatically generated. When we have a look at the unfolded proof
(figure 3.5), the binary equation inferences let it grow horizontally to a point, where the proof
is unreadable. There are two ways to handle this problem: either we decompose the proof into
readable parts or we change the format of the proof. Here, we concentrate on the first solution,
the second is addressed in section 3.13.

In the particular example, we will focus on the first equational inference of the proof, since
the others are similar. The CONTINUEWITH statement allows us to give this sub-proof the
name FIRSTEQ. Later on, we refer to this sub-proof with a CONTINUEFROM statement. Since
we might want to reuse this step, instead of the constant nil we use the variable rest throughout
the FIRSTEQ proof. Consequently, the parameter rest needs to be passed as an argument to
FIRSTEQ when the sub-proof is named and has to be instantiated by referring to FIRSTEQ(nil)
later on. We can now continue with the remaining EQAXIOM steps, naming the full proof just
THEPROOF.

88

$c ˚ pb ˚ pa ˚ restqq “ c ˚ pb ˚ pa ˚ restqq
w : l

AX $c ˚ pb ˚ pa ˚ restqq “ c ˚ pb ˚ pa ˚ restqq
EQAX : b ˚ pa ˚ restq “ pb ˚ aq ˚ rest

AX $c ˚ ppb ˚ aq ˚ restq “ c ˚ pb ˚ pa ˚ restqq
pFIRSTEQprestqq

pFIRSTEQpnilqq
AX $c ˚ ppb ˚ aq ˚ nilq “ c ˚ pb ˚ pa ˚ nilqq

EQAX : c ˚ ppb ˚ aq ˚ nilq “ pc ˚ pb ˚ aqq ˚ nil
AX $pc ˚ pb ˚ aqq ˚ nil “ c ˚ pb ˚ pa ˚ nilqq

EQAX : pb ˚ aq ˚ c “ c ˚ pb ˚ aq
AX $ppb ˚ aq ˚ cq ˚ nil “ c ˚ pb ˚ pa ˚ nilqq

EQAX : a ˚ b “ b ˚ a
AX $ppa ˚ bq ˚ cq ˚ nil “ c ˚ pb ˚ pa ˚ nilqq

EQAX : pa ˚ bq ˚ pc ˚ nilq “ ppa ˚ bq ˚ cq ˚ nil
AX $pa ˚ bq ˚ pc ˚ nilq “ c ˚ pb ˚ pa ˚ nilqq

EQAX : a ˚ pb ˚ pc ˚ nilqq “ pa ˚ bq ˚ pc ˚ nilq
AX $a ˚ pb ˚ pc ˚ nilqq “ c ˚ pb ˚ pa ˚ nilqq

pTHEPROOF q

Figure 3.4: The LATEXrendering of the reverse list LLK input

ppb ˚ pa ˚ nilqq “ ppb ˚ aq ˚ nilqq $ppb ˚ pa ˚ nilqq “ ppb ˚ aq ˚ nilqq
@ : lp@zppb ˚ pa ˚ zqq “ ppb ˚ aq ˚ zqqq $ppb ˚ pa ˚ nilqq “ ppb ˚ aq ˚ nilqq
@ : lp@yp@zppb ˚ py ˚ zqq “ ppb ˚ yq ˚ zqqqq $ppb ˚ pa ˚ nilqq “ ppb ˚ aq ˚ nilqq
@ : lp@xp@yp@zppx ˚ py ˚ zqq “ ppx ˚ yq ˚ zqqqqq $ppb ˚ pa ˚ nilqq “ ppb ˚ aq ˚ nilqq
def

assoc $ppb ˚ pa ˚ nilqq “ ppb ˚ aq ˚ nilqq
^ : l

symm^ assoc $ppb ˚ pa ˚ nilqq “ ppb ˚ aq ˚ nilqq
def

AX $ppb ˚ pa ˚ nilqq “ ppb ˚ aq ˚ nilqq
$ppc ˚ pb ˚ pa ˚ nilqqq “ pc ˚ pb ˚ pa ˚ nilqqqq

w : l
AX $ppc ˚ pb ˚ pa ˚ nilqqq “ pc ˚ pb ˚ pa ˚ nilqqqq

“: r
AX,AX $ppc ˚ ppb ˚ aq ˚ nilqq “ pc ˚ pb ˚ pa ˚ nilqqqq

c : l
AX $ppc ˚ ppb ˚ aq ˚ nilqq “ pc ˚ pb ˚ pa ˚ nilqqqq

pFIRSTEQpnilqq

ppa ˚ pb ˚ pc ˚ nilqqq “ ppa ˚ bq ˚ pc ˚ nilqqq $ppa ˚ pb ˚ pc ˚ nilqqq “ ppa ˚ bq ˚ pc ˚ nilqqq
@ : lp@zppa ˚ pb ˚ zqq “ ppa ˚ bq ˚ zqqq $ppa ˚ pb ˚ pc ˚ nilqqq “ ppa ˚ bq ˚ pc ˚ nilqqq

@ : lp@yp@zppa ˚ py ˚ zqq “ ppa ˚ yq ˚ zqqqq $ppa ˚ pb ˚ pc ˚ nilqqq “ ppa ˚ bq ˚ pc ˚ nilqqq
@ : lp@xp@yp@zppx ˚ py ˚ zqq “ ppx ˚ yq ˚ zqqqqq $ppa ˚ pb ˚ pc ˚ nilqqq “ ppa ˚ bq ˚ pc ˚ nilqqq
def

assoc $ppa ˚ pb ˚ pc ˚ nilqqq “ ppa ˚ bq ˚ pc ˚ nilqqq
^ : l

symm^ assoc $ppa ˚ pb ˚ pc ˚ nilqqq “ ppa ˚ bq ˚ pc ˚ nilqqq
def

AX $ppa ˚ pb ˚ pc ˚ nilqqq “ ppa ˚ bq ˚ pc ˚ nilqqq

pppa ˚ bq ˚ pc ˚ nilqq “ pppa ˚ bq ˚ cq ˚ nilqq $pppa ˚ bq ˚ pc ˚ nilqq “ pppa ˚ bq ˚ cq ˚ nilqq
@ : lp@zpppa ˚ bq ˚ pc ˚ zqq “ pppa ˚ bq ˚ cq ˚ zqqq $pppa ˚ bq ˚ pc ˚ nilqq “ pppa ˚ bq ˚ cq ˚ nilqq
@ : lp@yp@zpppa ˚ bq ˚ py ˚ zqq “ pppa ˚ bq ˚ yq ˚ zqqqq $pppa ˚ bq ˚ pc ˚ nilqq “ pppa ˚ bq ˚ cq ˚ nilqq
@ : lp@xp@yp@zppx ˚ py ˚ zqq “ ppx ˚ yq ˚ zqqqqq $pppa ˚ bq ˚ pc ˚ nilqq “ pppa ˚ bq ˚ cq ˚ nilqq

def
assoc $pppa ˚ bq ˚ pc ˚ nilqq “ pppa ˚ bq ˚ cq ˚ nilqq

^ : l
symm^ assoc $pppa ˚ bq ˚ pc ˚ nilqq “ pppa ˚ bq ˚ cq ˚ nilqq

def
AX $pppa ˚ bq ˚ pc ˚ nilqq “ pppa ˚ bq ˚ cq ˚ nilqq

ppa ˚ bq “ pb ˚ aqq $ppa ˚ bq “ pb ˚ aqq
@ : lp@yppa ˚ yq “ py ˚ aqqq $ppa ˚ bq “ pb ˚ aqq
@ : lp@xp@yppx ˚ yq “ py ˚ xqqqq $ppa ˚ bq “ pb ˚ aqq
def

symm $ppa ˚ bq “ pb ˚ aqq
^ : l

symm^ assoc $ppa ˚ bq “ pb ˚ aqq
def

AX $ppa ˚ bq “ pb ˚ aqq

pppb ˚ aq ˚ cq “ pc ˚ pb ˚ aqqq $pppb ˚ aq ˚ cq “ pc ˚ pb ˚ aqqq
@ : lp@ypppb ˚ aq ˚ yq “ py ˚ pb ˚ aqqqq $pppb ˚ aq ˚ cq “ pc ˚ pb ˚ aqqq
@ : lp@xp@yppx ˚ yq “ py ˚ xqqqq $pppb ˚ aq ˚ cq “ pc ˚ pb ˚ aqqq

def
symm $pppb ˚ aq ˚ cq “ pc ˚ pb ˚ aqqq

^ : l
symm^ assoc $pppb ˚ aq ˚ cq “ pc ˚ pb ˚ aqqq

def
AX $pppb ˚ aq ˚ cq “ pc ˚ pb ˚ aqqq

ppc ˚ ppb ˚ aq ˚ nilqq “ ppc ˚ pb ˚ aqq ˚ nilqq $ppc ˚ ppb ˚ aq ˚ nilqq “ ppc ˚ pb ˚ aqq ˚ nilqq
@ : lp@zppc ˚ ppb ˚ aq ˚ zqq “ ppc ˚ pb ˚ aqq ˚ zqqq $ppc ˚ ppb ˚ aq ˚ nilqq “ ppc ˚ pb ˚ aqq ˚ nilqq
@ : lp@yp@zppc ˚ py ˚ zqq “ ppc ˚ yq ˚ zqqqq $ppc ˚ ppb ˚ aq ˚ nilqq “ ppc ˚ pb ˚ aqq ˚ nilqq
@ : lp@xp@yp@zppx ˚ py ˚ zqq “ ppx ˚ yq ˚ zqqqqq $ppc ˚ ppb ˚ aq ˚ nilqq “ ppc ˚ pb ˚ aqq ˚ nilqq
def

assoc $ppc ˚ ppb ˚ aq ˚ nilqq “ ppc ˚ pb ˚ aqq ˚ nilqq
^ : l

symm^ assoc $ppc ˚ ppb ˚ aq ˚ nilqq “ ppc ˚ pb ˚ aqq ˚ nilqq
def

AX $ppc ˚ ppb ˚ aq ˚ nilqq “ ppc ˚ pb ˚ aqq ˚ nilqq
pFIRSTEQ(nil)q

AX $ppc ˚ ppb ˚ aq ˚ nilqq “ pc ˚ pb ˚ pa ˚ nilqqqq
“: r

AX,AX $pppc ˚ pb ˚ aqq ˚ nilq “ pc ˚ pb ˚ pa ˚ nilqqqq
c : l

AX $pppc ˚ pb ˚ aqq ˚ nilq “ pc ˚ pb ˚ pa ˚ nilqqqq
“: r

AX,AX $ppppb ˚ aq ˚ cq ˚ nilq “ pc ˚ pb ˚ pa ˚ nilqqqq
c : l

AX $ppppb ˚ aq ˚ cq ˚ nilq “ pc ˚ pb ˚ pa ˚ nilqqqq
“: r

AX,AX $ppppa ˚ bq ˚ cq ˚ nilq “ pc ˚ pb ˚ pa ˚ nilqqqq
c : l

AX $ppppa ˚ bq ˚ cq ˚ nilq “ pc ˚ pb ˚ pa ˚ nilqqqq
“: r

AX,AX $pppa ˚ bq ˚ pc ˚ nilqq “ pc ˚ pb ˚ pa ˚ nilqqqq
c : l

AX $pppa ˚ bq ˚ pc ˚ nilqq “ pc ˚ pb ˚ pa ˚ nilqqqq
“: r

AX,AX $ppa ˚ pb ˚ pc ˚ nilqqq “ pc ˚ pb ˚ pa ˚ nilqqqq
c : l

AX $ppa ˚ pb ˚ pc ˚ nilqqq “ pc ˚ pb ˚ pa ˚ nilqqqq
pTHEPROOF q

Figure 3.5: Reverse list example: binary equation rules after macro expansion make the proof
hardly readable

89

Apostrophe := ”’
BSlash := ’\’
InfixOp := "=" | "!=" | "<" | "<=" | ">" | ">=" | "+" | "*" | "-" | "/"
UnLogicalOp := "-" | (BSlash ~ "neg")
BiLogicalOp := "&" | "|" | "->" |

(BSlash ~ ("land" | "lor" | "impl"))
Quantifier := "all" | "exists" |

(BSlash ~ ("forall" | "exists"))
NameParticle := ([’a’-’z”A’-’Z”0’-’9’] |Apostrophe)+
UpperLowerParticle := ((’ˆ’ | ’_’) ~ (’{’ ~ NameParticle ~ ’}’))?
Name := BSlash ~ (NameParticle ~ UpperLowerParticle ~ (NameParticle |’[’ |’]’)*)+
Atom := Name |

Name ~ ’(’ ~ (Expr ~ (’,’ ~ Expr)*)? ’)’ |
Expr ~ InfixOp ~ Expr

Abs := ’(’ ~ BSlash ~ Name ~ "=>" "PExprOrAtom" ’)’
App := ’(’ ~ ’@’ ~Expr+ ’)’ |

’(’ ~ BSlash ~ "apply{" ~Expr+ ’}’ ’)’ |
PExprOrAtom Atom | PExpr | Abs | App
QuantifierExpr := (Quantifier ~ Name)+ ~PExprOrAtom
PExpr := ’(’ ~ Expr | QuantifierExpr ’)’
Expr := PExprOrAtom |

UnLogicalOp ~ PExprOrAtom
PExprOrAtom ~ BiLogicalOp ~ PExprOrAtom

Formula := Expr

Figure 3.6: Formula Grammar

90

OneAtomList := ’{’ ~ Atom ~ ’}’
OptAtomList := ’{’ ~ Atom? ~ ’}’
FormulaList := ’{’ ~ (Formula ~ (’,’ ~ Formula)*)? ~ ’}’
Sequent := FormulaList ~ FormulaList
IntroRule := BSlash ~ "AX" ~ Sequent |

BSlash ~ "CONTINUEFROM" ~ OneAtomList ~ Sequent |
BSlash ~ "AUTOPROP" ~ OneAtomList ~ Sequent

Uname := "WEAKL" | "WEAKR" | "CONTRL" |
"CONTRR" | "ANDL" | "ORR" | "IMPR" |
"NEGL" | "NEGR" | "DEF"

URule := Proof ~ BSlash ~ Uname ~ Sequent
Qname := "ALLL" | "ALLR" | "EXL" | "EX"
QRule := Proof ~ BSlash ~ QName ~ OptAtomList ~ Sequent
Bname := "CUT" | "ANDR" | "ORL" | "IMPL" | "EQL" | "EQR"
BRule := Proof ~ Proof ~ BSlash ~ Bname ~ Sequent
NamedAtomList := ’{’ ~ Atom ~ ’:’ ~ Atom ~ ’}’
EQAxRule := Proof ~ BSlash ~ "EQAXIOM" ~ NamedAtomList ~ Sequent
InstAxRule := Proof ~ BSlash ~ "INSTAXIOM" ~ OneAtomList ~ Sequent
Proof := IntroRule | URule | BRule | QRule
CompletedProof := Proof ~ BSlash ~ "CONTINUEWITH" ~ OneAtomList

Figure 3.7: Proof Grammar

91

3.13 Using Sunburst Trees to navigate large proofs

This section is based on a publication [62] on PROOFTOOL [34] as part of GAPT (see also
section 3.11) and focuses on the exploration of large proofs.

The need for visualizing data precedes the invention of computers. Even so, the large data
processed by computers made this need more explicit and initiated much research in data visu-
alization and particularly in tree visualization. For example, the traditional disk usage analyzers
were all implemented as trees, with directories and files represented by nodes and edges denot-
ing the containment relation. In the last decades, the increase in disk space and the increase in
number of files that followed, prompted the design of new tree visualization methods which will
be more space efficient. One of the first methods was TreeMap [92] which divides a box into
several smaller boxes representing the subtrees. Other algorithms made the nodes implicit by
drawing fractals [70,82], added a third dimension [52,63,74] or used hyperbolic and other radial
approaches to better group subtrees [51, 60, 97, 115]. Treevis.net [85], a visual bibliography of
tree viewers, now contains more than 270 different algorithms.

Sequent calculus proofs are often depicted as trees and in fact, the tree representation was
used from the very beginning. Gentzen’s representation for sequent calculus proofs can be seen
as a variant of an algorithm by Donald Knuth [59]. The child nodes are horizontally aligned
in the distance of the width of their respective subtrees with their parent node being aligned
centrally between them. The vertical alignment is determined by the distance from the root.

However, although this presentation seems natural, it is not well suited for large proofs as
their structure is no longer visible. Even tracing the ancestors of a formula is cumbersome, since
the distance between parent inferences can be very large.

Despite the abundant research done in the field of tree visualization and the fact that proofs
are normally represented as trees, little was done so far in integrating these advancements into
tools for proof visualization. In fact, the first viewer which was integrated into PROOFTOOL

was a traditional tree viewer. Proof General [3], which also manages the proof visualization
for provers such as Coq [53], supports the traditional tree view as well. Other systems like
LΩUI [93] and Theorema [114] provide a structural overview in form of a DAG and a tree,
respectively. However, their main focus lies on human-readable proofs where the formula level
is directly contained in the text. One of the few graphical user interfaces which deviates is
IDV [106]. It renders DAG proofs in the TSTP format [101] using the spring layout [27]. This
layout turned out to be insufficient for our needs as is discussed in [34]. The reason that many
advancements in tree visualization are only slowly reaching the proof theory community may
primarily lie with the fact that only few of the provers care about a visual presentation of the
generated object, if they generate it at all. Nevertheless, proof visualization is a crucial tool for
analyzing large proofs like the ones we encounter in our work. Therefore, we find it important
to search for and integrate efficient tree viewers.

We propose some criteria for visualizing sequent calculus proofs and use them to analyze
the existing layouts. We argue that Sunburst Trees [97] are the most adequate layout and develop
a new viewer for PROOFTOOL, the graphical user interface of the GAPT framework, which is
based on them. The viewer allows to display the structure of the whole proof at once, to easily
identify similar subproofs, to zoom in to relevant parts and to see the relevant inference details.

92

3.13.1 Criteria for Visualizing Sequent Calculus Proofs

When using the traditional tree layouts, wide node labels often stretch the width of the tree and
deform its structure. One reason for that is that the context formulas of an inference need to be
repeated along many branches. Moreover, it can also happen that the main or auxiliary formulas
become overly wide themselves. Therefore, it is helpful to completely separate the tree structure
from the information about the inference itself. Since sequent calculus and the inference viewer
work well on the sequent level, we concentrate on the requirements for the structural layout.

In this section, we compile a small set of requirements which were identified as critical
for our proof analysis. We have tried comparing our conclusions with other works concerning
the aesthetics of mathematical proofs. Surprisingly, they often stay only on an abstract level.
Hardy [46] names unexpectedness, inevitability and economy as aesthetic properties. The first
refers to an element of surprise when a conclusion is reached, which has similarities to nar-
ratives [22]. The second stands for a detailed, convincing deduction whereas the third means
restricting a proof to the minimal steps in order to prove the theorem. Some works deepen these
concepts and introduce case studies [77], but we know of no work which details the relation be-
tween graphical notations and the aesthetics of a proof. Therefore, the requirements given here
are the result of the authors’ own involvement with the formalization of mathematical proofs.

1. Displaying large proofs is one of the most important factors. Proofs containing thousands
of inference steps can become very hard to read. We would like to find the most efficient
tree representation. For example, despite the fact that proofs are traditionally denoted as
trees, the edges between the nodes play a very small role and are not space efficient. An-
other aim is to be able to represent the full proof on a single screen in a comprehensive
way. This is not only useful for exporting purposes, but for tracking changes after the ap-
plication of proof transformations, such as substitution, skolemization or cut-elimination.

2. Distinguishing between different kinds of rules is important as some rules, like quanti-
fier rules, give information about the content of the proof while others, like contractions,
give information about the shapes of proofs. Different coloring of rules is one way to
distinguish between them.

3. Without easy navigation, one would not be able to follow the logical progress of the proof.
The sub-proof relation should always be obvious and easy to navigate.

4. In many cases, formula ancestor information is important in order to relate a sequent with
the atomic formulas by which it is implied.

5. Proofs have many uses and one would sometimes like to focus on different aspects of the
proof. Proof complexity, different instantiations, cuts complexity and contractions may all
be important for a prospective viewer of a proof.

6. The ability to relate shape of proofs and sub-proofs to their content might also be an
important factor since it might allow us to detect redundancies and similarities of content.

93

3.13.2 Choosing the proper tree visualization

One of the most comprehensive bibliographies for research on tree visualization is Treevis.net [85]
which contains over 270 different algorithms. Consequently, it is a challenge to pick an adequate
algorithm out of the numerous ones which have been published. However, Treevis.net also pro-
vides a categorization of the techniques in terms of the criteria of dimensionality (2D, 3D or
hybrid), representation (implicit, explicit or hybrid) and alignment (axis-parallel, radial or free).
In this section we will first explain our choices with regard to the categories mentioned. We
then identify the algorithm satisfying our category requirements and show that it also meets our
visualization criteria.

We decided to focus on two-dimensional representations, since there is no general additional
structure which could be mapped to the third dimension. Although both explicit and implicit
representations of edges would suit our purposes, the later allows us to expect a more compact
layout. Consequently, we would like to focus on this case. This is additionally motivated by the
fact that sequent calculus proofs often contain a high amount of unary rules, where the edge is
then redundant. From the algorithms meeting these requirements, we now excluded those which
do not meet criterion 6 from Section 3.13.1. The remaining options were unexpectedly low in
number. A reason for that is that the large class of layouts based on TreeMap divides a box into
equal sub-parts for each subtree. The problem there is that in a series of identical subproofs
connected by binary inferences, each subproof has half the size of the preceding one, making
it nigh impossible to recognize their similarity. Fractal layouts have similar problems, whereas
grid embeddings [84, 116] do not reflect the similarity of subtrees.

What remained were explicit axis-parallel layouts and implicit radial layouts. The first class
consists of improvements on the classical Tidy Tree algorithm [113], whereas the later centers
around representing the tree from the root outwards.

Of special appeal to our applications was the Sunburst Tree [97]. It is particularly efficient
for displaying large proofs due to its radial shape and the fact that it eliminates all edges. One
can easily distinguish different kinds of rules by setting different colorings. The user can group
the rules by their function in the proof and thus separate the proof into parts with logical, equa-
tional or quantifier inferences. Together with the branching structure, (sub-)proofs are already
distinguishable from each other without referring to the formula level. Navigation is similarly
simple. A single click into a subproof shrinks the original proof to half its size. At the same
time the selected subproof is projected onto the circle around the full proof, giving it sufficient
space to see detailed inferences. This kind of stretching can impede the identification of similar
structures within the proof. Nonetheless, the combination with the full view allows a compar-
ison on the same level. In order to focus on different aspects of proofs, a customization of two
parameters is possible. By changing both the coloring scheme as well as the inference width
ratio, one can single out instantiations denoted by weak quantifiers, different subproof complex-
ities and other aspects. Another strong point of the Sunburst viewer is its ability to relate content
to proof shape. This is again achieved by inference coloring and width ratio and by its efficient
presentation of a whole proof on a single screen. Finally, a radial layout is also helpful in that it
can always be drawn into a square, leaving room on the screen for the inference information.

There is one requirement where the Sunburst viewer falls far behind the traditional tree
viewers and this is with keeping formula ancestor information. The relationship between a

94

formula and its ancestor, while easily displayed in the traditional viewer, cannot be represented
in Sunburst. This raises another important requirement for a useful proof visualization tool, its
ability to support different viewers and the switching between them.

3.13.3 Integration in PROOFTOOL

We have integrated the Sunburst view as an option accessible from the menu. Choosing this
option loads the Sunburst view into a separate dialog window. In addition to the proof, which
is displayed on the left side, we display also an inference panel. The information in this panel
contains details about the inference: its type, its primary and auxiliary formulas, and quantifier
instantiation information, if applicable.

In the remainder of this section, we will describe the new interface in terms of the conditions
given in Section 3.13.1. To emphasize what is written, we have inserted snapshots of views of
actual proofs. The appendix contains information about the names of each proof and of how to
load it using our system.

Displaying of large proofs. The traditional Gentzen layout contains abundant and redundant
white spaces, not only due to its use edges, but also because it has to create extra hori-
zontal spaces between premises of binary inferences. Therefore, proofs with many binary
inferences, even if the formulas are hidden, are too wide to fit on the screen. An example
of this can be seen in Figure 3.8.

Figure 3.8: A small part of the Gentzen view of a proof with more than 2000 nodes.

Projecting the sequent calculus proof to a circle allows roughly four times more space to
render the inferences of a certain level17. Since the formulas are hidden, an inference is
an easily clickable section of the disc, covering the whole area below its parents. Also,
hovering over an inference with the mouse cursor triggers a darkening of its bounds. This
is particularly helpful when tracing a formula throughout a proof, as one can then easily
identify branching without the need to zoom in.

17Let us assume the Gentzen proof to be an isosceles triangle with base length w1, and height d. If we further
assume the window is maximized, we can estimate the ratio w1 : d “ 16 : 10. Then the height d is also the radius of
the Sunburst tree giving it circumference w2 “ 2dπ. The ratio of the two lengths is then w1 : w2 “

20π
16
« 4.

95

As an example, Figure 3.9 shows the n-occurrences tape proof from section 4.8 with more
than 2000 inferences together with a zoomed in subproof. Comparing the two figures
shows that even if we hide all inference information in the Gentzen view, we will still not
be able to fit this proof on the screen. In contrast, the Sunburst view allows us to identify
the main parts which constitute the proof: the top and bottom side have the same shape, for
they contain the same reasoning structure on different terms. Only a small proof, which
gives rise to a case distinction, is situated on the left hand side. Just by hovering over
or selecting the cut-formulas (colored green), the user can identify the three parts of the
proof. The right hand side of Figure 3.9 shows a zoom into one of the proof instances just
mentioned.

Figure 3.9: Sunburst view of a large proof in full view (left) and zoomed in (right).

Distinguishing between different kinds of rules. This is easily achieved in Sunburst view by
coloring the inference depending on the rule type. In order to obtain the highest contrast,
we assigned the colors of the rainbow (see Figures 3.9 and 3.10) to groups of rules ac-
cording to Table 3.1. The relative size of subtrees to each other is adjustable by defining a

Cut green Unary Logical Rule orange Strong Quantifier Rule red
Structural Rule gray Binary Logical Rule yellow Weak Quantifier Rule blue
Axiom gray Equational Rule violet anything else magenta

Table 3.1: Rules coloring schemes.

so called weight. At the moment, the weight of a subtree is just the number of inferences.
Depending on the application, one can imagine metrics which prioritize specific rules or
even specific inferences.

96

Figure 3.10: A combinatory proof (left) with a zoom into one of its subproofs (right).

Easy navigation. Navigation is very easy in Sunburst, as can be seen in Figure 3.10. A single
click on a subproof shrinks the whole proof to half of its size while displaying the subproof
on its outer ring. Navigating backward can be done using the nested original proof.

One drawback of this form of navigation is that zooming into a subproof distorts its shape,
affecting the user ability to understand the structure of the proof. Zooming into a subproof
distorts all inferences in the same way. We therefore believe that this has only a minor
affect on understanding the proof structure, since a human user can easily compensate for
this fixed distortion.

Figure 3.11: Synchronizing the two views.

97

Formula ancestor information. The sunburst view window is divided into two parts as shown
in Figure 3.11. The first part shows the structure of the proof, while the second part gives
additional information about the selected node. This includes the inference name, its aux-
iliary and principal formulas, and the substitution used, if any. But still, this information is
not enough to see the ancestor relationship as well as it is possible in the Gentzen layout.
The two views complement each other in this aspect as is illustrated in Figure 3.12.

Figure 3.12: The cut-formula ancestors marked green.

Focus on different aspects of the proof. In order to display different aspects of the same proof,
one can take advantage of the possibility to customize the colors and width ratio of infer-
ences in Sunburst. We would like to have a set of such pre-defined customizations which
will emphasize different aspects, such as sub-proof and cut complexities, variable instan-
tiations and specific rules and inferences. We plan to implement this feature in the near
future.

Shape of proofs. In some situations where the formula level is obscured, it is helpful to con-
centrate on the structure of the proof. In the following we describe two phenomenons we
encountered.

Proof transformations often keep the structure intact. Some proof transformations such
as elimination of definition rules and skolemization strongly change the proof on a
formula level, but only slightly modify the structural layout. Nonetheless, locating
an inference in the Gentzen layout with the find function of PROOFTOOL becomes
virtually impossible, since the subterms allowing a unique identification of a formula
often have changed. The Sunburst view allows to use the proof structure to find the
inference. For example, it is not always clear how a skolem term ends up in a weak
quantifier inference, since the term might be carried over from a different part of the
proof. In the Sunburst view, we can navigate to this inference and use both views for
further investigation.

98

Understanding proof arguments. In the process of formalizing a proof, one might not
recognize all the possibilities where the proof can be generalized. In the Sunburst
view, structural similarities are easier to spot and can then be checked whether a
generalization is indeed possible.

As an example, we can look at subsequent instances of a formalization of Fürsten-
berg’s proof of the infinity of primes [5]. Here the schematic nature of the proof was
already taken into account during formalization, but now the induction argument
becomes clearly visible (see Figure 3.13).

Figure 3.13: Instances 1, 2 and 3 of the formalization of Fürstenberg’s proof of the infinity of
primes.

3.13.4 Further Directions

In this section, we have explained the issues that standard tree viewers have when faced with
large proofs. We have then identified various criteria for a suitable tree visualization and ana-
lyzed the available algorithms with respect to them. Our results show that Sunburst Trees seem
to be the most adequate structural layout for viewing sequent calculus proofs. The global struc-
ture can be better seen than in standard layouts, which makes large proofs readable. We found
identifying inferences, navigation, and tracing derivations superior to the Gentzen layout. At the
same time, formula or context intensive tasks such as identifying the ancestor relationship are
better left to the latter. The integration of the Sunburst viewer alongside the Gentzen viewer in
PROOFTOOL demonstrate how well these two complementary layouts interact with each other.

Some improvements are still of interest to us. Foremost, multiple Sunburst trees can be
represented by a forest structure. We plan to take advantage of this in two ways. First, larger
proofs usually consist of several subproofs solving partial problems. In other words, they can
be represented as a forest with links [35] to their subproofs. This division is often explicitly
contained in the proof input language18, but the proof object itself usually does not carry on this
information. If all proof transformations are adjusted to carry on the link structure, the result
can be divided into a set of proofs, making the meta-structure of the proof visible. Moreover, it

18The proof languages hlk, shlk and llk defined in the context of GAPT can be seen as examples for this.

99

is also possible to display DAGs by converting them into forests. This would enable the viewer
to display resolution refutations. The high reuse of clauses in a refutation might fill the forest
with many tiny trees, but this is open to experimentation.

A practical improvement is the addition of viewing profiles. By setting different color
schemes and inference width ratios for each profile, we can customize the viewer to better dis-
play different aspects of proofs, like subproof complexity and instantiations.

The last two planned improvements are on the level of formulas. First, we might increase
the readability of large formulas by replacing them with new symbols. In addition, we would
like to improve the search facilities in PROOFTOOL. Right now, searching for a specific formula
in the Gentzen view mark all occurrences of the formula. We plan to add a similar facility to the
Sunburst view. One idea is to put the search results into a list in a new window, thus allowing
the user to browse through the search results and jump to the right inference.

100

CHAPTER 4

Case Study: A proof of the n-occurrences pigeon hole principle

4.1 Practical Aspects of the Analysis Process

Even though the process of proof analysis is usually presented as a linear development, it is in
fact an iterative process similar to developing a mathematical proof or writing a program. Often,
one starts with an idea for proving a particular theorem. Filling in the concrete details might
lead to a restatement of the theorem in more suitable terms. In some cases, the theorem even
needs some restrictions in order to hold. In others, the original method can not bridge a gap and
we might need to change the entire approach. In order to discuss the analysis of our case study,
we will also show the development of the proof before we look at the results.

Before we come to that, we give a quick overview of the steps necessary to obtain the atomic-
cut normal form and an expansion sequent of our proof (see Figure 4.1). Having formalized an
input proof in LKwith first-order equality and definitions(1), the proof needs to be transformed
intoLKskc“ to allow the extraction of the characteristic sequent set (2-4). The sequent set is then
reduced by tautology elimination, subsumption and condensation. In the case we are attempting
to find a first-order refutation, an appropriate embedding has to be performed (5). Now we
enter the critical phase of finding an actual refutation (6). This mainly involves experimentation
with prover parameters. Another approach further massages the input problem to better suit
the prover (see section 3.9). If we fail to obtain a refutation, we have to return to one of the
previous steps. Having finally found a refutation, we need to transform the prover output to Ral
(7), before we create an atomic cut-normal form of the input proof and extract the expansion
sequent. The pre/postprocessing steps also include trivial transformations like the adjustment of
variable and constant names to the language appropriate for this step. Most of these steps can be
automatized, only steps 1, 5 and 6 need human interaction.

101

1. Proof formalization in LKwith definitions

2. Eliminate definitions & expand tautological axioms

3. Conversion to LKskc“with definitions

4. Extract struct, convert to characteristic sequent set & calculate projections

5. Sequent set pre-processing

6. External theorem prover

7. Refutation post-processing

8. Construct proof in ACNF & extract expansion sequent

Steps involving human interaction are denoted in bold face.

Figure 4.1: Analysis Process

4.2 Choosing a Problem

Both, CERESω and CERESS , were developed to overcome a drawback of the original CERES
method, which was uncovered during the analysis of Fürstenberg’s proof of the infinitude of
primes [5]: Theorem provers usually did not manage to refute the extracted clause sets. What
lead to success in the prime analysis was to use a schematic proof specification which is com-
piled for specific instances. Even there, only small instances could be solved by theorem provers.
Despite enormous improvements in automated theorem proving techniques, the situation is un-
changed six years later. Vampire, E-Prover, SPASS and Prover 9 all manage to refute the clause
set coming from the instance showing that there are more than two primes, but each of them fails
to find a proof for higher instances.

Later on, an (unpublished) attempt of analyzing a second-order formalization of the Fürsten-
berg proof in CERESω was stuck in the refutation phase. It was even possible to extract a first-
order characteristic sequent set, but it turned out as too big of a challenge to handle automatically.
Since the set also resisted manual analysis, the investigations had to stop there.

Therefore, in order to gain better insights into the workings of CERESω, the proof inves-
tigated needed to be simpler. A straightforward way to reduce complexity is to restrict quan-
tification to individual and function variables only. This way, instantiations are only performed
on the term level. Even if the terms contain quantifiers, they can not be used on the logical
level without a projection, which must come from an instantiation of a predicate variable. For
example, a sequent containing the formula XpDxQpxqq can only have an existential quantifier
rule applied, when X is substituted by the identity projection λY Y . As a consequence, during
the refutation of the characteristic sequent set, the absence of predicate variables means that
the logical and quantifier rules will not be applied after bringing the initial sequents into clause
form. In particular, if we expand non-atomic sequent calculus axioms to their axiom form, our
initial sequent set is already in clause form. With only the resolution rules of cut and substitution

102

applicable, the refutations are closer to first-order ones. Therefore, given suitable substitutions
for function variables, it was possible to use a first-order theorem prover in case the higher-order
provers failed.

To further increase the chances of finding a refutation, we turned to a problem we had studied
before [4]: the infinite pigeon hole principle. Ratiu and Trifonov [79] had already managed to
extract two different functionals from the infinite pigeon hole principle using A-translations
with realizability and the Dialectica interpretation [79]. Therefore we were interested in what
functional we would obtain using the CERESω method.

4.3 The Infinite Pigeon Hole Principle

There exist several variations of the pigeon hole principle. The underlying metaphor is that of
a dovecote housing pigeons in its holes. Now, whenever there are more pigeons than holes, at
least two pigeons need to share a hole. This observation can also be generalized by stating that
for an infinite amount of pigeons, at least one of the (finitely many) holes contains an infinite
amount of pigeons. To make this more formal, we define the Infinite Pigeon Hole Principle as
follows:

Theorem 4.3.1 (Infinite Pigeon Hole Principle). Given a total function f : NÑ H , where H is
finite, there exists a hole h P H s.t. the set of pigeons Ph “ tp P N|fppq “ hu in it is infinite.

Proof. For the sake of contradiction, assume Ph is finite for each hole h P H . Then each hole
contains a maximal element ch for each h P H . Because H is finite, the sum

ř

hPH
ch is also

finite. Since all summands are natural numbers, ci ď ř

hPH
ch for each i P H . Furthermore

k “ 1 ` ř

hPH
ch is larger than any ci and therefore not contained in any Ph with h P H . But

since f is a total function, k must be mapped to some h P H and hence also be contained in one
of the Ph, leading to the contradiction.

The restriction to only two holes can be proved in the same manner.

Theorem 4.3.2 (Infinite Pigeons, Two Holes Principle). Given a total function f : NÑ t0, 1u,
then either P0 “ tp P N|fppq “ 0u or P1 “ tp P N|fppq “ 1u is of infinite cardinality.

Proof. Again, let us assume P0 and P1 to be finite having c0 and c1 as their respective maximal
elements. Then both c0 ă c0` c1` 1 and c1 ă c0` c1` 1 hold, therefore c0` c1` 1 is neither
contained in P0 nor P1. But fpc0 ` c1 ` 1q “ 0 or fpc0 ` c1 ` 1q “ 1, meaning that it must be
contained either in P0 or P1, leading to the contradiction.

4.4 The n-occurrences Pigeon Hole Principle

Another metaphor for the pigeon hole principle is presented in the PhD thesis of Urban [108].
There, the function f from the previous section represents the tape of a Turing machine. The
mapping NÑ t0, 1u can then be seen as function from indices of tape cells to a binary alphabet.

103

Furthermore, the pigeon hole principle itself then states that at least one of the symbols occurs
infinitely many times on the tape. An easy way to express this as a formula is to state that there
is no upper bound on the occurrences of the symbol s: Dx@ypx ă y Ñ fpyq ‰ sq. Pushing
the negation inwards, we can also state that for each position x, there is a larger position y
containing s.

Definition 4.4.1 (Infinite occurrences). The formula expressing an infinite number of occur-
rences of the symbol s on the tape f is defined as:

Ipsq “ @xDypx ă y ^ fpyq “ sq

Actually, Urban used the infinite pigeon hole principle for his investigations in (first-order)
cut-elimination. It serves as a lemma to prove a simpler statement, namely that there exist two
different positions on the tape which have the same symbol. Later on, several formalizations of
this proof were used for experiments with the CERES method [4].

To obtain a harder problem, we can generalize the statement in two ways: firstly, we can
state that for every natural number n, there exist n different positions on the tape containing the
same symbol. Secondly, we focus our interest on extracting the series enumerating the n indices
with the same symbol. Mathematically, we claim that there exists a strictly monotonic function
h such that fphp0qq “ fphpiqq holds for all i ď n.

Theorem 4.4.2 (n-Occurrences Tape Enumeration). For each natural number n, there exists a
strictly monotonic function h s.t. fphp0qq “ fphpiqq for all i ď n.

Proof. From theorem 4.3.2 we know that at least one, Ip0q or Ip1q holds. We continue by
handling each case separately:

• Ip0q holds:
Now we perform induction on n:
base case:
By Ip0q we know there exists a position p for which fppq “ 0. Therefore we define
hp0q “ p.
step case:
By IH we have a function h1piq for which fph1piqq “ 0 for all i ď n. We now define hpjq
by a case distinction on j:

– j ď n: This is already covered by h1 and we can define hpjq “ h1pjq.
– j “ n` 1: By lemma Ip0q we know there exists an index y such that y ą hpnq and
fpyq “ 0. We then define hpn` 1q “ y.

This gives us fph1pjqq “ 0 for all j ď n` 1.

• Ip1q holds: analogous to the 0 case

104

A stronger statement would be the claim that there exists a function h such that for every n
we find at least n different indices in f with the same value. The fixed point of the induction
in theorem 4.4.2 would provide such a function, but we can not express it directly. We follow
Ratiu et. al. in the claim that this quantifier shift is not provable without the axiom of choice and
formalize the unbounded sequence of enumeration functions for simplicity.

4.5 Formalization

One of the hardest steps of the CERES method is to find a resolution refutation of the charac-
teristic sequent set. The reason is that the formalizer has little control over a theorem prover’s
search strategies. Therefore even in the first-order case, where the completeness of CERES
guarantees the existence of a refutation, the input proof needs adjustments. For example, the
relation x ď y can be rewritten as x ă y _ x “ y or x ă y ` 1. As a result, the formalization
process becomes iterative, blurring the line between specification and analysis.

Further on, we will describe the axioms, definitions and structure common to all variants of
the n-occurrences tape proof. Later on, we will split the proof into four versions, where version
2 and 3 can be fully analyzed. Version 3 is also fully contained in appendix A. Furthermore we
will also replace the use of the induction axiom by iterated application of the induction step and
prove specific instances of the n-Tape lemma. The proof versions 4 and 5 are results of these
experiments.

4.6 Expectations

The formalization of the first version was dominated by the question on how to specify the
function h. A simple way to count n different symbols is to look at 2n ` 1 arbitrary positions
on the tape. Summing up the counts for each symbol, we can decide to return the positions of
the one occurring at least n times. What poses a problem is that the symbol being counted can
change.

In the configuration depicted in figure 4.2, we first look at a single position and find the sym-
bol 0. Therefore the function hp0q “ 0 is a witness for a monotonous function enumerating one
symbol index. Advancing now to look at three positions, the symbol 0 is still in the majority and
we just extend h by hp1q “ 1. Now, when we look at two more positions, we find that there are
insufficient occurrences of 0 to count. Our function becomes then hp0q “ 2, hp1q “ 3, hp2q “ 4,
counting the symbol 1 this time. Trying to count four symbols, we have to return to count oc-
currences of 0 again. We can extend the mapping from the case counting two occurrences by
hp2q “ 5, hp3q “ 6.

0 0 1 1 1 0 0 1 . . .

r0s r0, 1s r2, 3, 4s r0, 1, 5, 6s

Figure 4.2: Example of a tape with switching counting function

105

h0,1

h0,2 h1,2

h0,1

h0,2 h1,2

c0

c1

c2

hx,ypnq = if pn “ 0q then cx else
if pn “ 1q then cy else 0

Figure 4.3: A possible decision tree for hp2q

To specify h, we could create a tree of nested conditionals expressing all possible configura-
tions of 2n`1 positions. For instance, we can consider the tree for three positions (enumerating
two symbols) depicted in figure 4.3. Each node at level k branches to the left if the tape at the
corresponding position ck contains 0, otherwise it branches to the right. The leaf nodes now
are labeled with the functions returning the corresponding positions. Even though this solution
looks satisfying, creating a lambda term which, given an encoded numeral n, expands to a deci-
sion tree with depth n of nested if-then-else statements is non-trivial. Our expectation now was
that cut-elimination would obtain a function specification similar to this decision tree.

4.6.1 Axioms

The original idea was to use Robinson’s Q with a second-order induction axiom. LKskc“’s weak
quantifier rules implicitly use comprehension, so we already have all the ingredients for higher-
order arithmetic. In fact, for our investigations we stayed within second-order arithmetic. The
highest occurring type of a quantifier variable is ι ą ι, even though some skolem constants have
a more complex type like ι>(ι>o)>(ι>ι)>ι. As it turned out, only using this axiom set is quite
restrictive. Already proving the commutativity of addition would take a double induction – if
commutativity is applied to a cut-ancestor, the characteristic sequent set will most likely include
the proof of commutativity too1. If the induction invariant contains higher-order variables which
also end up in the characteristic sequent set. Since the general induction axiom is cut-strong,
a partial instantiation which still has higher-order variables may also be cut-strong2. For this
reason, we added more arithmetic theorems with the restrictions that they are reasonably easy to
prove in Peano Arithmetic.

From the three approaches for branching discussed in section 3.7.1, we picked the approach
of arithmetic encoding. Since the actual reasoning is only used in the sub-proofs about evalu-
ating if-then-else, it is easy to switch methods. Therefore we decided to encode only Boolean
expressions and add the transformation to atom encodings when it is required.

The complete list of axioms is presented in table 4.1.

1The exception is the case where commutativity is not necessary to refute the characteristic sequent set.
2For sure, this is the case for predicate variables which occur directly in the formula structure.

106

Arithmetic:

Basic Axioms:

A1 px` 1 “ 0q
A2 x “ 0_ pDkx “ k ` 1q
A3 x` 1 “ y ` 1 Ñ x “ y
A4 x “ y Ñ x` 1 “ y ` 1
A5 0 ˚ x “ 0
A6 px` 1q ˚ y “ px ˚ yq ` y
A7 px ă 0q
A8 x ă y Ñ pDkpx` kq ` 1 “ yq
A9 x ă y _ x “ y _ y ă x
A30 x` 0 “ x
A31 0` x “ x

Derived Axioms (from A1 - A9, A30,
IND) :

A10 x ă y ` 1 Ñ px ă y _ x “ yq
A11 x “ y _ x ă y Ñ x ă y ` 1
A12 x` y “ y ` x
A13 x` py ` zq “ px` yq ` z
A14 x ˚ y “ y ˚ x
A15 x ˚ py ˚ zq “ px ˚ yq ˚ z
A16 x “ y Ñ x` z “ y ` z
A17 x` z ă y ` z Ñ x ă y
A36 x ă y Ñ x` z ă y ` z
A18 x “ 0_ pDyy ă xq
A19 0 ă x` 1
A33 px ă xq
A34 x ă y ^ y ă z Ñ x ă z

Induction, bounded subtraction and encoding of truth values:

IND p@Y p0q ^ p@npY pnq Ñ Y pn` 1qqq Ñ p@nY pnqqq
A20 p@xp0 ´ x “ 0qq
A21 p@xpx´ 0 “ xqq
A22 p@x@yppx` 1q´ py ` 1q “ x´ yqq
A23 p@P pP Ñ zP { “ 1qq
A24 p@P p P Ñ zP { “ 0qq

Unused Axioms: A4, A11, A14, A15, A16, A18;

Table 4.1: Axioms of the n-occurrences Tape proof

4.6.2 Definitions

Already when we sketched the proof, we started using shortcuts to make the proof readable.
Later on, we formally introduced the shortcuts as definition rules. The first formulas which
underwent this treatment were the infinity lemma Ipsq, the tape axiomatization T , monotonicity
MONph, nq of a function restricted up to position n and NOCCph, n, sq, which states that
a function counts n occurrences of a specific symbol. What also came up quickly were the
formulas C describing the actual formula we were going to prove and its relativization Apσq,
which removes the quantifier on the symbol σ from C and keeps it as a free variable instead.

For the presentation of the induction invariant, we also introduced Bpn, σq by stripping A
of the quantification on n3.

The function definition t comes from proving the induction step. It reuses the function h

3Apσq “ @nBpn, σq

107

MONph, nq p@i@jpi ă n` 1^ j ă n` 1^ i ă j Ñ hpiq ă hpjqqq
NOCCph, n, sq p@ipi ă n` 1 Ñ fphpiqq “ sqq
C p@nDhpMONph, nq ^ pDsNOCCph, n, sqqqq
Apsq @nDhpMONph, nq ^NOCCph, n, sqq
Bpn, sq DhpMONph, nq ^NOCCph, n, sqq
T p@npfpnq “ 0_ fpnq “ 1qq
Ipsq p@xDypx ă y ^ fpyq “ sqq
tph, n, x, yq if zx ă n` 1{ then hpxq else y
xiy 1 ´ i
if xiy then x else y xiy ˚ x` p1 ´ xiyq ˚ y
if zX{ then x else y zX{ ˚ x` p1 ´ zX{q ˚ y

Figure 4.4: Defined predicated and functions in the n-occurrences tape proof.

generated in the previous step if possible or picks the next suitable index on the tape.
Another set of definitions are related to the encoding of if-then-else. Even though it was not

used in the proof, we prepared to allow expressions of type ι. For this, the condition expression
must be mapped into the interval t0, 1u first. Actually, the definitions only need to be unfolded
when proving properties of if-then-else, making the actual formalization transparent within the
rest of the proof.

The full list of definitions is given in figure 4.4.

4.6.3 General Input Proof Structure

The proof is divided into the proof of the infinite occurrences lemma, which is then used to prove
the main theorem. The respective names of these sub-proofs are INFLEMMA and MAIN .
Over the development of the proofs, these two components did not substantially change, but the
top level proof which uses them did. The development can be seen in figures 4.5, 4.8 and 4.17.
What is common in all top level proofs is the cut on the infinite occurrences axiom I , but in the
beginning we used the additional lemma Ap0q _ Ap1q which turned out to be a major obstacle
during the refutation phase.

The proof of the lemma is quite short (see figure 4.6), where the central element is exactly
the one given in the mathematical formulation above: in the case distinction on the symbol, we
instantiate the new position y as a sum n0`n1. The use of commutativity allows the flipping of
the roles of n0 and n1 during the reasoning on the second symbol. This allows us to introduce
the preceding position x from n0 in the first case and and from n1 in the second. Since the roles
of the variables flip in the different branches, both introductions of x fulfill the eigenvariable
condition.

As it turned out, the main proof is independent of the actual symbol σ, which allowed some
simplifications in version 3 of the proof. Its main ingredient is an induction on the invariant
Bpn, σq, which unfolds to our claim that there exists a function h which is monotonous up to n
and which counts n occurrences of σ. The base case for monotonicity is trivial. Similarly, the
base case for one symbol occurrence directly follows from the infinity lemma. Unsurprisingly,

108

the step case encompasses the largest part of the proof. What was surprising though, was that
showing the monotonicity of h is more effort than enumerating n ` 1 occurrences. The reason
for that is that the monotonicity step MONstep contains a case distinction on tape positions
defined by the constraints i ă j, i ă n` 1 and j ă n` 1. The n-occurrences step NOCCstep
extends the previous function by the case distinction covering the case of n ` 1. The exact
statistics of the input proof sizes can be found in table 4.2.

pBASEpσqq

Ipσq $Bp0, σq

pSTEP pσqq

Ipσq $@npBpn, σq Ñ Bpn` 1, σqq
^ : r

Ipσq $Bp0, σq ^ @npBpn, σq Ñ Bpn` 1, σqq

Apσq $Apσq
def

@nBpn, σq $Apσq
Ñ: l

Ipσq, pBp0, σq ^ @npBpn, σq Ñ Bpn` 1, σqqq Ñ @nBpn, σq $Apσq
@ : l

Ipσq,@XpXpσq ^ @npXpnq Ñ Xpn` 1qq Ñ @nXpnqq $Apσq
def

Ipσq, IND $Apσq

pMAINpσqq

pINFTAPEq

AX,T $Ip0q, Ip1q

pMAINp0qq

AX, Ip0q $Ap0q
cut

AX, T $Ap0q, Ip1q

pMAINp1qq

AX, Ip1q $Ap1q
cut

AX, T $Ap0q, Ap1q
_ : r

AX, T $Ap0q _Ap1q

pTRIV IALp0qq

Ap0q $C

pTRIV IALp1qq

Ap1q $C
_ : l

Ap0q _Ap1q $C
cut

AX, T $C

pTAPEPROOF q

Figure 4.5: General structure of version 1 of the n-occurrences tape proof

pLTSUMpn0, n1qq
AX $n0 ă pn0 ` n1q ` 1

pLTSUMpn1, n0qq
AX $n1 ă pn1 ` n0q ` 1

EQAX : A12
AX $n1 ă pn0 ` n1q ` 1

fppn0 ` n1q ` 1q “ 0 $fppn0 ` n1q ` 1q “ 0 fppn0 ` n1q ` 1q “ 1 $fppn0 ` n1q ` 1q “ 1
_ : l

fppn0 ` n1q ` 1q “ 0_ fppn0 ` n1q ` 1q “ 1 $fppn0 ` n1q ` 1q “ 1, fppn0 ` n1q ` 1q “ 0
@ : lp@xpfpxq “ 0_ fpxq “ 1qq $fppn0 ` n1q ` 1q “ 1, fppn0 ` n1q ` 1q “ 0

def
T $fppn0 ` n1q ` 1q “ 1, fppn0 ` n1q ` 1q “ 0

^ : r
AX,T $fppn0 ` n1q ` 1q “ 1, pn1 ă pn0 ` n1q ` 1q ^ fppn0 ` n1q ` 1q “ 0

^ : r
AX,T $pn0 ă pn0 ` n1q ` 1q ^ fppn0 ` n1q ` 1q “ 1, pn1 ă pn0 ` n1q ` 1q ^ fppn0 ` n1q ` 1q “ 0

D : r
AX,T $pn0 ă pn0 ` n1q ` 1q ^ fppn0 ` n1q ` 1q “ 1, pDyppn1 ă yq ^ fpyq “ 0qq

D : r
AX,T $pDyppn0 ă yq ^ fpyq “ 1qq, pDyppn1 ă yq ^ fpyq “ 0qq

@ : r
AX,T $pDyppn0 ă yq ^ fpyq “ 1qq, p@xDyppx ă yq ^ fpyq “ 0qq

@ : r
AX,T $p@xDyppx ă yq ^ fpyq “ 1qq, p@xDyppx ă yq ^ fpyq “ 0qq

def
AX,T $p@xDyppx ă yq ^ fpyq “ 1qq, Ip0q

def
AX,T $Ip1q, Ip0q
pINFTAPEq

Figure 4.6: The infinite occurrences lemma (without sub-proof LTSUM)

109

Version independent
BASE INFTAPE MONstep NOCCstep

169 207 857 456

Version specific
TAPEPROOF v2 TAPEPROOF v3 TAPEPROOF v4 (Instance 2 / 3 / 4)

Input proof 3262 1738 3324 / 3342 / 3360
Preprocessed input 3655 1947 3749 / 3803 / 3857

Atomic-cut normal form 5174 5429 –
Characteristic sequent set 14 12 1034 / 1034 / 1034

Preprocessed css 9 7 87 / 87 / 87
Refutation size (dag) 76 52 –
Refutation size (tree) 133 122 –

Reproved deep formula (dag) 1118 1110 –
Reproved deep formula (tree) 1492173 3345509 –

Table 4.2: Statistics of input proof sizes

4.7 Version 1

The first formalization phase happened in parallel to the specification of the LLK language.
The first patterns to emerge were axiom instantiation, reasoning modulo a theory equation and
lemma instantiation. This allowed to encapsulate the lemmas about if-then-else and other simple
arithmetical statements like @x px ` 1 ă xq. The first resulting sequent set left so much
room for improvement, that we started to improve the input. It turned out that even though
sparsely used, the lemma instantiations substantially increased the sequent set size. Luckily, the
inferences could be replaced by direct proof instantiations. The extracted sequent set still had
the impressive size of 243154 elements taking about 20 minutes to extract. To eliminate some
redundancy, we tried to shrink the sequent set using subsumption, but stopped the algorithm after
one week running. To overcome this, we folded the subsumption algorithm into the sequent set
generation (see section 3.8).

What finally made a significant difference was to relax the projection computation, leav-
ing cuts on formulas without quantifiers or free higher-order variables intact. After applying
subsumption, the final sequent set now had 29 elements.

Next, we could turn our attention to the sequents themselves. The preprocessing step of
expanding tautological formula axioms (see section 2.6.3) was responsible that the sequents
were already in clause form. Some expressions within a clause were still hard to understand.
Especially two skolem contexts, which come from the instantiation of the induction axiom,
were obstructing the structure of a clause by their sheer size. After introducing the constants q1

and q0 for them, we could obtain a human readable clause set (see figure 4.7).
What was still problematic, though, was that the set contained a high number of the function

variables h0 and h1. Nonetheless we attempted to find a refutation via System on a TPTP using
Leo II, Satallax and TPS as backends. Within the time limit of 5 minutes, we could not find a
refutation. Leaving a local installation of Leo II running for a week did not yield a result either.

110

Since also manual attempts on finding instantiations failed, we went back to redesigning the
input proof.

$ pp0` n1q ă ppn0` 1q ` n1qq;
$ ppn0` n1q “ pn1` n0qq;
$ ppn1` pn0` 1qq “ ppn1` n0q ` 1qq;
$ pp0` n1q “ n1q;
$ ps24ph0q ă ps27 ` 1qq, ps26ph0, 0q ă ps27 ` 1qq;
$ ps25ph0q ă s24ph0qq, ps26ph0, 0q ă ps27 ` 1qq;
$ ps25ph0q ă ps27 ` 1qq, ps26ph0, 0q ă ps27 ` 1qq;
$ ps28ph1q ă ps31 ` 1qq, ps30ph1, 1q ă ps31 ` 1qq;
$ ps29ph1q ă s28ph1qq, ps30ph1, 1q ă ps31 ` 1qq;
$ ps29ph1q ă ps31 ` 1qq, ps30ph1, 1q ă ps31 ` 1qq;
$ pfpppn1` n0q ` 1qq “ 0q, pfpppn1` n0q ` 1qq “ 1q;
ph0ps25ph0qq ă h0ps24ph0qqq $ ps26ph0, 0q ă ps27 ` 1qq;
ph1ps29ph1qq ă h1ps28ph1qqq $ ps30ph1, 1q ă ps31 ` 1qq;
pfph0ps26ph0, 0qqq “ 0q $ ps24ph0q ă ps27 ` 1qq;
pfph0ps26ph0, 0qqq “ 0q $ ps25ph0q ă s24ph0qq;
pfph0ps26ph0, 0qqq “ 0q $ ps25ph0q ă ps27 ` 1qq;
pfph1ps30ph1, 1qqq “ 1q $ ps28ph1q ă ps31 ` 1qq;
pfph1ps30ph1, 1qqq “ 1q $ ps29ph1q ă s28ph1qq;
pfph1ps30ph1, 1qqq “ 1q $ ps29ph1q ă ps31 ` 1qq;
ph0ps25ph0qq ă h0ps24ph0qqq, pfph0ps26ph0, 0qqq “ 0q $;
ph1ps29ph1qq ă h1ps28ph1qqq, pfph1ps30ph1, 1qqq “ 1q $;
pfpα3q “ 1q, ps21pq1, s22pq1qq ă α5q, pfpα5q “ 1q, pi0 ă pn0` 1qq $ pn0 ă pn0` 1qq, pfps23pq1, n0, i0qq “ 1q;
pfpα0q “ 0q, ps9pq2, s10pq2qq ă α2q, pfpα2q “ 0q, pi0 ă pn0` 1qq $ pn0 ă pn0` 1qq, pfps11pq2, n0, i0qq “ 0q;
pfpα0q “ 0q, ps10pq2q ă ps10pq2q ` 1qq, ps9pq2, s10pq2qq ă α2q, pfpα2q “ 0q, pi0 ă pn0` 1qq $ pfps11pq2, n0, i0qq “ 0q;
pfpα3q “ 1q, ps22pq1q ă ps22pq1q ` 1qq, ps21pq1, s22pq1qq ă α5q, pfpα5q “ 1q, pi0 ă pn0` 1qq $ pfps23pq1, n0, i0qq “ 1q;
pfpα3q “ 1q, ps21pq1, s22pq1qq ă α5q, pfpα5q “ 1q, pi0 ă pn0 ` 1qq, pj1 ă pn0 ` 1qq, pi0 ă j1q $ pn0 ă
pn0` 1qq, ps23pq1, n0, i0q ă s23pq1, n0, j1qq;
pfpα0q “ 0q, ps9pq2, s10pq2qq ă α2q, pfpα2q “ 0q, pi0 ă pn0 ` 1qq, pj1 ă pn0 ` 1qq, pi0 ă j1q $ pn0 ă
pn0` 1qq, ps11pq2, n0, i0q ă s11pq2, n0, j1qq;
pfpα0q “ 0q, ps10pq2q ă ps10pq2q ` 1qq, ps9pq2, s10pq2qq ă α2q, pfpα2q “ 0q, pi0 ă pn0 ` 1qq, pj1 ă pn0 ` 1qq, pi0 ă j1q $
ps11pq2, n0, i0q ă s11pq2, n0, j1qq;
pfpα3q “ 1q, ps22pq1q ă ps22pq1q ` 1qq, ps21pq1, s22pq1qq ă α5q, pfpα5q “ 1q, pi0 ă pn0 ` 1qq, pj1 ă pn0 ` 1qq, pi0 ă j1q $
ps23pq1, n0, i0q ă s23pq1, n0, j1qq;

with: q1 = λxpDhpp@ip@jpppi ă px` 1qq ^ ppj ă px` 1qq ^ pi ă jqqq Ñ phpiq ă hpjqqqqq ^ p@ippi ă px` 1qq Ñ pfphpiqq “ 1qqqqq
q2 = λxpDhpp@ip@jpppi ă px` 1qq ^ ppj ă px` 1qq ^ pi ă jqqq Ñ phpiq ă hpjqqqqq ^ p@ippi ă px` 1qq Ñ pfphpiqq “ 0qqqqq

Figure 4.7: Characteristic sequent set of version 1 of the n-occurrences tape proof

4.8 Version 2

Going back to the proof, we analyzed the remaining cut formulas. The most complex formula
wasAp0q_Ap1q, one of the top level cuts. Even though Gentzen’s reductive elimination method
can not move a cut inference over an equational inference or another cut, it could be used in this
case. The cut was used to prove Apσq $ C for both cases, which could be folded into the
MAIN proof such that it provesAX,T, Ip0q $ C directly instead ofApσq(see figure 4.8). The
sunburst view shows the complete structure of the proof (see figure 4.9 a).

111

pBASEpσqq

Ipσq $Bp0, σq

pSTEP pσqq

Ipσq $@npBpn, σq Ñ Bpn` 1, σqq
^ : r

Ipσq $Bp0, σq ^ @npBpn, σq Ñ Bpn` 1, σqq

pTRIV IALpσqq

Apσq $C
def

@nBpn, σq $C
Ñ: l

Ipσq, pBp0, σq ^ @npBpn, σq Ñ Bpn` 1, σqqq Ñ @nBpn, σq $C
@ : l

Ipσq,@XpXpσq ^ @npXpnq Ñ Xpn` 1qq Ñ @nXpnqq $C
def

Ipσq, IND $C

pMAINpσqq

pINFTAPEq

T $Ip0q, Ip1q

pMAINp0qq

Ip0q $C
cut

T $Ip1q, C

pMAINp1qq

Ip1q $C
cut

T $C,C
c : r

T $C

Figure 4.8: General structure of the second version of the n-occurrences tape proof

a) Input Proof b) Atomic-cut normal form

Figure 4.9: Graphical comparison of version 2 of the n-occurrences tape proof before and after
CERES

4.8.1 Characteristic Sequent Set

The benefit of this elimination was dramatic: the characteristic sequent set shrank to 9 clauses
(see figure 4.10). It still contained higher-order skolem terms, but after introducing the constants
q0 and q1 for the skolem contexts of the induction rule, there was a good chance to find a refuta-
tion. Indeed, Leo II managed to refute the clause set in less than four seconds by embedding the
problem into a first-order one. We also managed to directly embed the clause set into first-order
(see section 3.9) and load a Prover 9 refutation into GAPT.

This allowed us to transform the input proof into atomic-cut normal form and extract an

112

$ pp0` n0q ă ppn1` 1q ` n0qq;
$ ppn0` pn1` 1qq “ ppn0` n1q ` 1qq;
pfpα0q “ 0q, ps10pq2q ă ps10pq2q ` 1qq, ps9pq2, s10pq2qq ă α2q, pfpα2q “ 0q $;
$ pfpppn1` n0q ` 1qq “ 0q, pfpppn1` n0q ` 1qq “ 1q;
pfpα0q “ 0q, ps9pq2, s10pq2qq ă α2q, pfpα2q “ 0q $ pn0 ă pn0` 1qq;
pfpα3q “ 1q, ps26pq1q ă ps26pq1q ` 1qq, ps25pq1, s26pq1qq ă α5q, pfpα5q “ 1q $;
pfpα3q “ 1q, ps25pq1, s26pq1qq ă α5q, pfpα5q “ 1q $ pn0 ă pn0` 1qq;
$ ppn0` n1q “ pn1` n0qq;
$ pp0` n0q “ n0q;
with
q1 = λxpDhpp@ip@jpppi ă px` 1qq ^ ppj ă px` 1qq ^ pi ă jqqq Ñ phpiq ă hpjqqqqq ^ p@ippi ă px` 1qq Ñ pfphpiqq “ 1qqqqq
q2 = λxpDhpp@ip@jpppi ă px` 1qq ^ ppj ă px` 1qq ^ pi ă jqqq Ñ phpiq ă hpjqqqqq ^ p@ippi ă px` 1qq Ñ pfphpiqq “ 0qqqqq

Figure 4.10: Characteristic sequent set of version 2 of the n-occurrences tape proof

expansion sequent. From the expansion sequent, we retrieved the instantiation terms for the
enumeration function h (see figure 4.11).

Source Term

TRIV IALp0q s14pq1, s15q
TRIV IALp0q s30pq2, s15q
BASEp0q λxp ps25pq1, s26pq1qq ` 1q ` s9pq2, s10pq2qqq
BASEp1q λxp ps9pq2, s10pq2qq ` 1q ` s25pq1, s26pq1qqq
STEP p0q λxp zx ă ps10pq2q ` 1q{ ˚ s9pq2, xqq`

pp1 ´ zx ă ps10pq2q ` 1q{q ˚ pps25pq1, s26pq1qq ` 1q ` s9pq2, s10pq2qqqqq
STEP p1q λxp zx ă ps26pq1q ` 1q{ ˚ s25pq1, x2qq`

pp1 ´ zx2 ă ps26pq1q ` 1q{q ˚ pps9pq2, s10pq2qq ` 1q ` s25pq1, s26pq1qqqqq

q1 = λxpDhpp@ip@jpppi ă px` 1qq ^ ppj ă px` 1qq ^ pi ă jqqq Ñ phpiq ă hpjqqqqq ^ p@ippi ă px` 1qq Ñ pfphpiqq “ 1qqqqq
q2 = λxpDhpp@ip@jpppi ă px` 1qq ^ ppj ă px` 1qq ^ pi ă jqqq Ñ phpiq ă hpjqqqqq ^ p@ippi ă px` 1qq Ñ pfphpiqq “ 0qqqqq

Figure 4.11: Function instantiation terms in the second version of the n-occurrences tape proof

4.8.2 Analysis

As an orientation, we can visually compare the original proof to its atomic-cut normal form in
the sunburst view (see figure 4.9): the dual reasoning on both tape symbols leads to a symmetry
which is also present after cut-elimination. The simulation of the resolution refutation is eas-
ily recognized by the additional green cut-nodes, purple equational nodes and grey contraction
nodes at the center of the tree.

To gain more information, we analyze the extracted expansion proof. Expanding the weak
quantifier node for the function h within the occurrence of the formula C in the end-sequent, we
find the two instances s14pq1, s15q, s30pq2, s15q. Both of them are skolem terms which give no
insight into the structure of h. Investigating the proof, we quickly find the reason: the instance
comes from the sub-proof TRIV IAL, which just shows the introduction of the existential quan-
tification over the symbol σ within Apσq such that it becomes C. Since the quantification of h

113

and n in C are strong occurrences, it introduces the constants s14, s30 and s15. So even though
Apσq contains a weak quantifier on h, it does not help at all.

We now turn our attention to the two occurrences of the induction axiom in MAINp0q and
MAINp1q, where the invariant Bpn, σq contains the other quantifications on h. In figure 4.12,
the occurrences of the invariant which contain a weak quantification over h are underlined. One
of them is the base case, the other is the n` 1 part of the step case.

pBp0, σq ^ @np Bpn, σq Ñ Bpn` 1, σqqq Ñ @n Bpn, σq
Figure 4.12: Sources of function instances in the induction axiom of the n-occurrences tape
proof

If we look into these two instances of h, we notice the same skolem constants occurring all
over again: s9 and s25 of type pι ą oq ą ι ą ι and s10 and s26 of type pι ą oq ą ι. Apart from
finding patterns in the term structure, we need to give a semantic interpretation of these skolem
symbols.

Remembering our definitions, the pattern in the term structure is easier to recognize: it is an
instance of the if-then-else definition. Reintroducing the definition, the terms look already more
readable (see figure 4.13).

Source Term

BASEp0q hpxq “ ps25pq1, s26pq1qq ` 1q ` s9pq2, s10pq2qq
BASEp1q hpxq “ ps9pq2, s10pq2qq ` 1q ` s25pq1, s26pq1qq
STEP p0q hpxq “ if zx ă ps10pq2q ` 1q{ then s9pq2, xq else ps25pq1, s26pq1qq ` 1q ` s9pq2, s10pq2qq
STEP p1q hpxq “ if zx ă ps26pq1q ` 1q{ then s25pq1, xq else ps9pq2, s10pq2qq ` 1q ` s25pq1, s26pq1qq

Figure 4.13: Induction instances in the expansion sequent of version 2 of the n-occurrences tape
proof

What we can see now is that the base cases are identical modulo commutativity. Likewise
the else branches of the step cases are equal modulo associativity and commutativity. This looks
mysterious, since we would expect the base case of the function enumerating 0 and of the one
enumerating 1 to be different. The solution must lie in the interpretation of the skolem symbols,
so we continue with this task.

An idea on how to interpret them comes from the position in the proof where they are intro-
duced. The constants s9 and s10 occur in the MAINp0q branch of the input proof, whereas the
constants s25 and s26 occur in the MAINp1q branch, which explains the duplicate occurrence
of each type. Investigating further, we find out that s9 and s25 come from the strong occurrence
of h in the induction step, which is overlined in figure 4.12.

The source of s10 and s26 is nearby, in form of the induction variable n, which is written in
bold script in the same figure. What is still a bit confusing is the context of the skolem symbols.
All of them share the first parameter, which comes from instantiating the invariant within the
induction axiom. This also explains why the term q2 only occurs as an argument of s9 and s10

114

whereas q1 is only an argument of s25 and s26. The second parameter is the induction variable
n, up to which the function h is already defined in the step.

Since we have a base instance and a step instance of h, we could try to write down an
inductive definition of h.

If we look into the base cases and into the “else” branch of the step case, the same term
occurs there (modulo associativity and commutativity): c` d` 1 with c “ s9pq2, s10pq2qq and
d “ s25pq1, s26pq1qq. This looks exactly like the instantiation terms in the lemma (see 4.6) –
including the application of commutativity to flip the roles of c and d, depending which symbol
we are counting.

In the step case, the situation is similar, but the “then” branch contains a term for which c is
an instance in STEP p0q and d is an instance in STEP p1q. The reason is that in STEP p0q, s9

is the function from our induction hypothesis which is defined up to s10pq2q. Then c is simply
the last index defined for s9 to which we add d`1 to obtain the next index of the tape containing
0.

The situation for STEP p1q is mirrored, but now d is the the function s25pq1, xq evaluated
at the highest defined index s26pq1q.

What makes these explanations complicated, is that we only look at one step where the
preceding ones are captured by the skolem functions. Unfolding the induction, we define a
series of indices ci`1 ` di`1 ` 1 and a series of pairs of functions h0,i`1 and h1,i`1 where
h0,i`1pi` 1q “ ci`1 “ ci ` di ` 1 and h1,i`1pi` 1q “ di`1 “ ci ` di ` 1. The base case for
both functions is both c0 ` d0 ` 1. In a way, in STEP p0q, the ci enumerate the indices on the
tape where the di express the distance of the gaps between ci and ci`1. For STEP p1q, the two
just swap roles where di represents indices and ci represents holes. If we put this into proper
mathematical notation, we arrive at the function in figure 4.14. A diagram showing the gaps can
be seen in figure 4.15.

h0,0p0q c0 ` d0 ` 1

h0,n`1pxq
"

h0,npxq if x ă n` 1
h0,npnq ` dn`1 ` 1 o.w.

h1,0p0q c0 ` d0 ` 1

h1,n`1pxq
"

h1,npxq if x ă n` 1
h1,npnq ` cn`1 ` 1 o.w.

Figure 4.14: Mathematical version of the function extracted from version 2 of the n-occurrences
tape proof

Now, the classical nature of the proof comes into play. We defined two witness functions,
but only one of them needs to provide the correct indices on the tape. Moreover, we are still
away from a computational interpretation of the proof, since the exact position is hidden by the
skolem functions. A way to salvage something is to manually provide a possible interpretation
of h0 and h1, based on the analysis done so far. For the function not used for recursion will just
express the distance. To distinguish it from the function counting indices, we call it g and define
g1piq “ h0pi` 1q ´ h0piq ´ 1 while counting zeroes and g0piq “ h1pi` 1q ´ h1piq ´ 1 while
counting ones.

115

. 0 0 0 0

d1 d2 d3
c0 ` d0 ` 1 c1 ` d1 ` 1 c2 ` d2 ` 1

. 1 1 1 1

c1 c2 c3
d0 ` c0 ` 1 d1 ` c1 ` 1 d2 ` c2 ` 1

Figure 4.15: Interpretation of the skolem functions on the tape

Now only the implementation of the actual function is missing. Since our lemma proves the
existence of an index, we can enumerate indices until we have found a fitting one. Borrowing
the µ operator from recursion theory, we can fill in the gaps and arrive at the definition in figure
4.16.

Case 0:
h0,0p0q g1p0q ` 1

h0,n`1pxq
"

h0,npxq if x ď n
h0,npnq ` g1pnq ` 1 if x ą n

g1pnq
" pµyp0 ă y ^ fpyq “ 0qq ´ 1 if n “ 0
pµyph0,npnq ă y ^ fpyq “ 0qq ´ h0,npnq ´ 1 if n ą 0

Case 1:
h1,0p0q g0p0q ` 1

h1,n`1pxq
"

h1,npxq if x ď n
h1,npnq ` g0pnq ` 1 if x ą n

g0pnq
" pµyp0 ă y ^ fpyq “ 1qq ´ 1 if n “ 0
pµyph1,npnq ă y ^ fpyq “ 1qq ´ h1,npnq ´ 1 if n ą 0

Figure 4.16: Operational interpretation of the extracted function from version 2 of the n-
occurrences tape proof

4.8.3 Running the Experiments in GAPT

Each of the versions has its own Scala object nTape2 – nTape4 providing those steps in
figure 4.1 which apply. Since we managed to complete the analysis of version 2, all the steps are
available.

The following script is also available in the gapt distribution in the file examples/ntape/
ntape2.script. It calls the appropriate methods of the nTape2 object, which again collect
various cli commands. The source code with the API calls is contained in appendix E, a help
text with the API documentation can be generated using the help command.

116

gapt> help(nTape2)

In the end, it also prints the information used to create tables 4.2 and 4.11.
gapt> //Step 1: proof database with proofs, definitions and completed
gapt> // input proof
gapt> nTape2.proofdb.Definitions

gapt> prooftool(nTape2.input_proof)

gapt> //Step 2: prepocessed input proof
gapt> nTape2.preprocessed_input_proof

gapt> //Step 3: conversion to LKskc=
gapt> nTape2.lksk_proof

gapt> //Step 4: extract characteristic sequent set and projections
gapt> prooftool(nTape2.css)

gapt> nTape2.projections

gapt> //Step 5: prepreocess the css applying subsumption,
gapt> // replacing lambda abstractions by fresh
gapt> // function terms and mapping hol types to fol
gapt> nTape2.fol_css

gapt> //Step 6: refute fol clause set
gapt> prooftool(nTape2.fol_refutation)

gapt> //Step 7: convert fol refutation to Ral=, reintroducing
gapt> // lambda expressions and hol types
gapt> nTape2.ral_refutation

gapt> //Step 8: create proof in atomic-cut normal-form by
gapt> // simulating the refutation
gapt> prooftool(nTape2.acnf)

gapt> //Step 9: extract expansion proof (datastructure includes atomic cuts in
gapt> antecedent) and show expansion proof without atomic cuts
gapt> nTape2.expansion_proof

gapt> prooftool(nTape2.expansion_proof.expansionSequent)

gapt> // Print statistics and extracted witness terms
gapt> nTape2.printStatistics

The integration of Leo II is not that tight, since GAPT is still unable to parse its output.
Therefore we export the problem to the TPTP THF fragment.
gapt> nTape2.export_thf("ntape2leo.tptp")

A manual call to Leo II shows it is able to find a proof quickly.
[marty@phedre gapt]$ time leo ntape2leo.tptp -po 0 -t 600
real 0m3.515s
user 0m3.495s
sys 0m0.020s

4.9 Version 3

After the successful analysis of version 2, we saw a simple way to improve the input. Instead of
instantiating MAIN with each symbol, we could infer DsIpsq from both instances and contract
them. Then, only one cut on DsIpsq is necessary, which nearly halves the input proof size. An
immediate effect of this is that the induction axiom is only used for a label once. Instead of two
instances the skolem context now contains a more general label with the free variable σ. As

117

a consequence, the terms q1 and q2 in the first-order clause set vanish and are replaced by the
function qpσq, which also shrinks to the clause set to 7 elements (see figure 4.19).

What does not change too much is the structure of the atomic-cut normal form of the proof.
The reason is that during the resolution refutation, qpσq is instantiated as qp0q and qp1q. The
two instances play exactly the same role the terms q1 and q2 do in version 2 of the proof. In
fact, qp0q is identical to q1 and qp1q is identical to q2 after unfolding the definitions of q, q1 and
q2. Equipped with this knowledge, it is no surprise that the extracted function terms are also the
same as that of version 2 (see figure 4.20).

pINFTAPEq

AX,T $Ip0q, Ip1q
D : r

AX, T $DsIpsq, Ip1q
D : r

AX, T $DsIpsq, DsIpsq
c : r

AX, T $DsIpsq

pMAINpσqq

AX, Ipσq $C
D : l

AX, DsIpsq $C
cut

AX,AX, T $C
c : l

AX, T $C

pTAPEPROOF q

Figure 4.17: General structure of the third version of the n-occurrences tape proof

a) Input Proof b) Atomic-cut normal form

Figure 4.18: Graphical comparison of version 3 of the n-occurrences tape proof before and after
CERES

118

$ pp0` n0q ă ppn1` 1q ` n0qq;
$ ppn0` pn1` 1qq “ ppn0` n1q ` 1qq;
$ pfpppn1` n0q ` 1qq “ 0q, pfpppn1` n0q ` 1qq “ 1q;
pfpα0q “ σ0q, ps9pqpσ0q, s10pqpσ0qqq ă α2q, pfpα2q “ σ0q $ pn0 ă pn0` 1qq;
pfpα0q “ σ0q, ps10pqpσ0qq ă ps10pqpσ0qq ` 1qq, ps9pqpσ0q, s10pqpσ0qqq ă α2q, pfpα2q “ σ0q $;
$ ppn0` n1q “ pn1` n0qq;
$ pp0` n0q “ n0q;

Figure 4.19: Characteristic sequent set of version 3 of the n-occurrences tape proof

λxpps9pq1, s10pq1qq ` 1q ` s9pq2, s10pq2qqq
λxpps25pq2, s26pq2qq ` 1q ` s25pq1, s26pq1qqq
λxppzx ă ps10pq2q ` 1q{ ˚ s9pq2, xqq ` pp1 ´ zx ă ps10pq2q ` 1q{q ˚ pps9pq1, s10pq1qq ` 1q ` s9pq2, s10pq2qqqqq
λxppzx ă ps26pq1q ` 1q{˚s25pq1, xqq`pp1´zx ă ps26pq1q ` 1q{q˚pps25pq2, s26pq2qq`1q`s25pq1, s26pq1qqqqq

Figure 4.20: Function instances of version 3 of the n-occurrences tape proof

4.9.1 Analysis

To understand the difference between versions 2 and 3 of the n-occurrences proof we might have
a look at the shifting rule for quantifiers when performing reductive cut-elimination. Figure 4.21
shows the pattern which occurs in version 3. Shifting the cut over the contraction duplicates
the cut rule, leading to the pattern from version 2. In any case, the eigenvariables α and β are
subsequently replaced by the terms s and t.

When we come back to the CERES method, we can compare the characteristic sequent
sets of these transformations. To simplify matters, we assume here that F is an atom and was
introduced by an axiom rule (i.e. not by a weakening rule). Then the characteristic sequent set
of π1 contains at least one element of the form C ˆ $ F psq. If the sets introducing F psq and
F ptq were joined by a binary rule – which in case of the n-occurrences tape proof is the clause
$ fpxq “ 0, fpxq “ 1 – it will be of the form C1 ˆ $ F psq, F ptq. Similarly, the characteristic
sequent set of πpαq contains a clause DˆF pαq $. Resolving twice with the clause above leads
to the clause C1 ˆ D tαÐ su ˆ D tαÐ tu. This means that either way, using an LK proof
transformation or resolution, the instantiation and duplication happens.

Certainly, the resolvent clause does not need to be used for the actual refutation, but there
is some intuition why it often happens in practice. Since the characteristic sequent set charac-
terizes the cut formulas, a clause will not be used in the refutation, whenever the cut-formula
it contributes to is redundant. Since we were rearranging the main lemma of the n-occurrences
tape proof, it is highly unlikely it is redundant. Therefore we just moved some effort from the
human input to the theorem prover.

One interesting observation is that in our particular case, Prover 9 still finds a refutation in
less than a second, while Leo II returns an SZS status Unknown after a timeout of ten minutes.

119

pπ1q
Γ1 $∆1, F psq, F ptq

D : r
Γ1 $∆1, DxF pxq, F ptq

D : r
Γ1 $∆1, DxF pxq, DxF pxq

c : r
Γ1 $∆1, DxF pxq

pπ2pαqq
Γ2, F pαq $∆2

D : l
Γ2, DxF pxq $∆2

cut
Γ1,Γ2 $∆1,∆2

ó

pπ1q
Γ1 $∆1, F psq, F ptq

D : r
Γ1 $∆1, DxF pxq, F ptq

D : r
Γ1 $∆1, DxF pxq, DxF pxq

pπ2pαqq
Γ2, F pαq $∆2

D : l
Γ2, DxF pxq $∆2

cut
Γ1,Γ2 $∆1,∆2, DxF pxq

pπ2pβqq
Γ2, F pβq $∆2

D : l
Γ2, DxF pxq $∆2

cut
Γ1,Γ2,Γ2 $∆1,∆2,∆2

c : ˚
Γ1,Γ2 $∆1,∆2

ó

pπ1q
Γ1 $∆1, F psq, F ptq

D : r
Γ1 $∆1, DxF pxq, F ptq

pπ2ptqq
Γ2, F ptq $∆2

cut
Γ1,Γ2 $∆1,∆2, DxF pxq

pπ2pβqq
Γ2, F pβq $∆2

D : l
Γ2, DxF pxq $∆2

cut
Γ1,Γ2,Γ2 $∆1,∆2,∆2

c : ˚
Γ1,Γ2 $∆1,∆2

ó

pπ1q
Γ1 $∆1, F psq, F ptq

pπ2ptqq
Γ2, F ptq $∆2

cut
Γ1,Γ2 $∆1,∆2, F psq

pπ2psqq
Γ2, F psq $∆2

cut
Γ1,Γ2,Γ2 $∆1,∆2,∆2

c : ˚
Γ1,Γ2 $∆1,∆2

Figure 4.21: Reductive cut-elimination of a contracted existential quantifier

120

4.9.2 Running the Experiments in GAPT

Since version 2 and 3 of the n-occurrences proof are so similar, all the commands mentioned
in section 4.8.3 still apply. The full script is also available in the gapt distribution in the file
examples/ntape/ntape3.script. Again, the printStatistics methods outputs
the information used to create tables 4.2 and 4.20.
gapt> // Print statistics and extracted witness terms
gapt> nTape3.printStatistics

4.10 Version 4

Since the induction axiom hides the unfolding of the enumeration function h and we found no
possibility to encode an unfolding of the if-then-else structure up to a variable n, we aimed for
a lower goal. How would the instantiation terms look like, if we only proved our theorem for
a specific instance? First of all, the main formula C needed to be replaced by a relativization
Dpnq ” DhpMONph, nq ^ DσNOCCph, n, σqq. Now, for the MAINpσq proof, instead of
using the proofs BASEpσq and STEP pσq to prove the induction axiom, we cut on the con-
junction of Bp0, σq and @npBpn, σq Ñ Bpn ` 1, σqq. Then we could use n contractions of
the induction step to show Bpp. . . p0` 1q . . .` 1q, σq. Below the proof of MAINpσq, nothing
changed and we could use the same reasoning as in the n-occurrences proof version 2.

121

Bp0, σq $Bp0, σq

Bp0` 1, σq $Bp0` 1, σq

pTRIV IALq

Bpp0` 1q ` 1, σqq $Dpp0` 1q ` 1q
Ñ: l

Bp0` 1, σq, Bp0` 1, σq Ñ Bpp0` 1q ` 1, σqq $Dpp0` 1q ` 1q
@ : l

Bp0` 1, σq,@npBpn, σq Ñ Bpn` 1, σqq $Dpp0` 1q ` 1q
Ñ: l

Bp0, σq, Bp0, σq Ñ Bp0` 1, σq,@npBpn, σq Ñ Bpn` 1, σqq $Dpp0` 1q ` 1q
@ : l

Bp0, σq,@npBpn, σq Ñ Bpn` 1, σqq,@npBpn, σq Ñ Bpn` 1, σqq $Dpp0` 1q ` 1q
c : l

Bp0, σq,@npBpn, σq Ñ Bpn` 1, σqq $Dpp0` 1q ` 1q

pSTEPSq

pBASEpσqq

Ipσq $Bp0, σq

pSTEP pσqq

Ipσq $@npBpn, σq Ñ Bpn` 1, σqq
^ : r

Ipσq $Bp0, σq ^ @npBpn, σq Ñ Bpn` 1, σqq

pSTEPSq

Bp0, σq,@npBpn, σq Ñ Bpn` 1, σqq $Dpp0` 1q ` 1q
^ : l

Bp0, σq ^ @npBpn, σq Ñ Bpn` 1, σqq $Dpp0` 1q ` 1q
cut

Ipσq $Dpp0` 1q ` 1q

pMAINpσqq

pINFTAPEq

T $Ip0q, Ip1q

pMAINp0qq

Ip0q $Dpp0` 1q ` 1q
cut

T $Ip1q, Dpp0` 1q ` 1q

pMAINp1qq

Ip1q $Dpp0` 1q ` 1q
cut

T $Dpp0` 1q ` 1q, Dpp0` 1q ` 1q
c : r

T $Dpp0` 1q ` 1q

Figure 4.22: Structure of the instance p0`1q`1 of the fourth version of the n-occurrences tape
proof

a) p0` 1q ` 1 b) pp0` 1q ` 1q ` 1 c) ppp0` 1q ` 1q ` 1q ` 1

Figure 4.23: Graphical comparison of instances of version 4 of the n-occurrences tape proof

122

4.10.1 Analysis

We investigated the instances numbers 2, 3 and 4 for our analysis, which correspond to the
upper bound n of the enumeration function h instantiated with the terms 0` 1, p0` 1q ` 1 and
pp0 ` 1q ` 1q ` 1. Instance 1 only uses the induction base and does not contain a higher-order
cut.

Interestingly, in each case, the clause set set size was 1034. After applying subsumption
these sets together with tautology elimination, we ended up with 75 clauses in both cases. Com-
paring the clause sets of the three instances, we observed that the only difference in the reduced
clause sets was the instance constant.

Unfortunately, similar to version 1 of the proof, the formula of the induction step here is a
cut ancestor, resulting in free function variables in the clause set. An example for such a clause
is fphps35ph, 1qqq “ 1 $ s33phq ă pp0 ` 1q ` 1q – in total 34 clauses contain a function
variable. Again, the recursion pattern is clearly visible, but no higher-order prover managed to
find a refutation of this clause set. Similarly, we failed at finding an instantiation to first-order
by hand.

4.10.2 Running the Experiments in GAPT

Since we did not manage to perform the full analysis of version 4, we can only execute the
steps up to the export of the characteristic sequent set to the TPTP THF fragment. Again, the
printStatistics method outputs the information used in table 4.2.
gapt> // Print statistics and extracted witness terms
gapt> for (i <- 2 to 4) nTape4(i).printStatistics

We can investigate the clauses with function variables in prooftool:
gapt> prooftool(nTape4(2).preprocessed_css_hol_clauses)

The actual THF export is done calling export_thf again.
gapt> for (i <- 2 to 4) nTape4(i).export_thf(s"ntape4-thf-${i}.tptp")

4.11 Version 5

The reason why the sequent set was the same in version 4 can be explained by the additional cut
on the induction step. The cut-formula is quantified on n, therefore the clause set is also general
in n, even though we only need specific instances. The next version of the proof therefore used
explicit instances of the induction step instead of the general one (see figure 4.24 for the modified
proof structure). This meant, that instead of one cut, we now needed to introduce n` 1 cuts, to
prove the instance for the numeral n. Using the optimization done in version 3, we now obtained
55 clauses for the instance p0` 1q.

Since the theorem provers still failed, we continued with the simplification of the proof. In
the original proof, removing arithmetization the if-then-else did not make a significant differ-
ence. With the additional cut on the induction step, this changed. Replacing the arithmetic proof
of if-then-else by the equational axiomatization, the sequent set shrunk to 214 elements, which
could be reduced to 26. As expected, the size of the sequent set started to grow with the size of

123

pBASEpσqq

AX, Ipσq $pDhpMONph, 0q ^NOCCph, 0, σqqq

pSTEP 1p0, σqq

AX, Ipσq, pDhpMONph, 0q ^NOCCph, 0, σqqq $pDhpMONph, 0` 1q ^NOCCph, 0` 1, σqqq
cut

AX, Ipσq, AX, Ipσq $pDhpMONph, 0` 1q ^NOCCph, 0` 1, σqqq
c : l

AX, Ipσq $pDhpMONph, 0` 1q ^NOCCph, 0` 1, σqqq

pTRIV IALp0` 1qq

pDhpMONph, 0` 1q ^NOCCph, 0` 1, σqqq $Dp0` 1q
cut

AX, Ipσq $Dp0` 1q

pMAINpσqq

pINFTAPEq

T $Ip0q, Ip1q
D : r

AX, T $pDxIpxqq, Ip1q
D : r

AX, T $pDxIpxqq, pDxIpxqq
c : r

AX, T $pDxIpxqq

pMAINpσqq

AX, Ipσq $Dp0` 1q
D : l

AX, pDxIpxqq $Dp0` 1q
cut

AX,AX, T $Dp0` 1q
c : l

AX, T $Dp0` 1q

pTAPEPROOF q

Figure 4.24: Structure of the instance p0` 1q ` 1 of the fifth version of the n-occurrences tape
proof

a) p0` 1q ` 1 b) pp0` 1q ` 1q ` 1 c) ppp0` 1q ` 1q ` 1q ` 1

Figure 4.25: Graphical comparison of instances of version 5 of the n-occurrences tape proof

the instantiation numeral. Still, in all cases, no higher-order theorem prover managed to refute
our problem. Figure 4.26 contains the full statistics for instances 2 to 4.

124

Arithmetic if-then-else Axiomatized if-then-else
Instance 2 Instance 2 Instance 3 Instance 4

Input proof 1760 900 1383 1866
Preprocessed input 1967 1004 1528 2052

Characteristic sequent set 522 71 122 173
Preprocessed css 55 26 30 54

Clauses with HOL content 18 15 25 35

Figure 4.26: Proof and characteristic sequent set sizes for version 5 of the n-occurrences tape
proof

4.11.1 Running the Experiments in GAPT

Similar to version 4, we can only export the generated sequent sets to TPTP THF. Again, the
printStatistics method outputs the information used in table 4.2 and help(nTape5)
provides help and the API of the experiment.
gapt> // Print statistics and extracted witness terms
gapt> for (i <- 2 to 4) nTape5(i).printStatistics

We can investigate the clauses with function variables in prooftool:
gapt> prooftool(nTape5(2).preprocessed_css_hol_clauses)

The actual THF export is done calling export_thf again.
gapt> for (i <- 2 to 4) nTape5(i).export_thf(s"ntape5-thf-${i}.tptp")

4.12 Experiments with the If-then-else axiomatization

The failure to derive instances of the instantiated n-Tape problem sets leads to the question for
the source. To eliminate other influences, we simplify the problem and claim the existence of
a function which is specified by a finite amount of function values. Again we are looking at
variations of the same problem, all of which are contained in figure 4.27.

To start simply, we represent an enumeration of the sequence p1, 0q as Dhphp0q “ sp0q ^
hpsp0qq “ 0 and try to prove it from our axiomatization of if-then-else. Out of Leo II, Satallax
and agsyHOL, only the latter manages to prove the theorem. The initial expectation was that the
prover finds an instantiation similar to hpxq “ if x “ 0 then sp0q else 0. Accordingly, also
Leo II and Satallax find a proof when we add this witness to our axiom set.

Extending the sequence to p1, 0, 0q and p1, 0, 1q we are in a similar situation: the witness can
be described with the use of a single if-then-else conditional. Nonetheless, it is necessary to add
axioms which ascertain that the domain does not collapse to one element. Without this require-
ment, conditions like sp0q ‰ 0 allowing to evaluate the else-branch can not be proved for the
problems p1 and p2, which have three approximation points. Just to be sure the axiomatization
would work for nested if-then-else constructs, we provided a second witness W3 for problem
p2, which Leo II and Satallax accepted without problems.

In a way the bad performance of the theorem provers is no surprise: the condition X in
the if-then-else axiomatization is a free variable. The clauses X Ñ if p then X else , s, tq “

125

F1 @X@u@vpX Ñ itepX,u, vq “ uq
F2 @X@u@vp X Ñ itepX,u, vq “ vq
F3 @xpspxq ‰ 0q
F4 @xpspxq ‰ xq
W1 @xphpxq “ iteppx “ 0q, sp0q, 0qq
W2 @xphpxq “ iteppx “ sp0qq, 0, sp0qqq
W3 @xphpxq “ iteppx “ 0q, sp0q, iteppx “ sp0qq, 0, sp0qqq
G1 DHpHp0q “ sp0q ^Hpsp0q “ 0qq
G2 DHpHp0q “ sp0q ^Hpsp0qq “ 0^Hpspsp0qqq “ 0qq
G3 DHpHp0q “ sp0q ^Hpsp0qq “ 0^Hpspsp0qqq “ sp0qqq

Provable by
Short Name Conjecture Leo II Satallax agsyHOL
p0 (1,0) sequence F1, F2 $ G1 x
w0 (1,0) sequence + witness W1 F1, F2,W1 $ G1 x x x

(1,0,0) sequence F1, F2 $ G2

p1 (1,0,0) sequence + arith F1, F2, F3, F4 $ G2

(1,0,0) sequence + witness W1 F1, F2,W1 $ G1

w1 (1,0,0) sequence + witness W1 + arith F1, F2, F3,W1 $ G2 x x x
(1,0,1) sequence F1, F2 $ G3

p2 (1,0,1) sequence + arith F1, F2, F3, F4 $ G3

w2 (1,0,1) sequence + witness W2 + arith F1, F2, F3, F4,W2 $ G3 x x x
w2b (1,0,1) sequence + witness W3 + arith F1, F2, F3, F4,W2 $ G3 x x x

Figure 4.27: Variants of if-then-else experiments

s and X Ñ if p then X else , s, tq “ t directly encode a cut on X such that unification
with arbitrary negative/positive literals will happen. Moreover, it seems that equality is usually
handled in a special way such that the unification with x “ 0 never happens. This problem even
remains when we instantiate the if-then-else axiomatization to x “ y Ñ if p then x else “
y, s, tq “ s. An obvious solution would be to use the TPTP $ite construct for conditionals
(see the definition of thf_conditional in the TPTP Syntax BNF [99]), but unfortunately it is
unsupported by Leo II and Satallax.

4.12.1 Running the Experiments in GAPT

This time, we only generate clause sets and export them to TPTP THF. As usual, a call to
help(nTape6) opens the API documentation with a short description. The method export
has an optional parameter for a directory, where the problem set is written - the default is the
current directory. The files themselves are called ntape-6-${i}-without-witness.
tptp and ntape-6-${i}-with-witness.tptp for i from 0 to 2. Within the system,
the methods p0 to p2 and w0 to w2 provide the corresponding problems.
gapt> nTape6.P2
gapt> nTape6.W2
gapt> nTape6.export()

126

The call to Leo II and Satallax is done as usual, with a 10 minute timeout:
for I in ntape6-*tptp; do leo $I -t 600 > $I.leo ;done
for I in ntape6-*tptp; do satallax -t 600 $I> $I.satallax ;done

The generated input and output files can also be downloaded from the personal webpage of
the author4. An even better download option is the NUN section on the website of the TPTP
problem library5. The problems NUN24, NUN25 and NUN26 correspond to the three functions
defined here.

4.13 Comparison to A-Translation with modified Realizability

4.13.1 The method

The infinite pigeonhole principle was also formalized by Ratiu and Trifonov [79]. In this case,
the computational information was extracted twice. The first method uses a combination of
refined versions of A-Translation and modified Realizability [17,38] and a second time by func-
tional interpretation [42, 90]. Since in comparison to our analysis with cut-elimination, the two
methods have similar results, we focus on A-translation, which performed better for the investi-
gated proof of the infinite pigeon hole principle.

The context of both methods is Negative Arithmetic (NAω) which is the fragment of Heyting
Arithmetic with finite types (HAω) which only uses implication and universal quantification in
its formula language. The language of object terms is Gödel’s System T which is a lambda
calculus with the simple types of booleansB, natural numbersN and lists L of natural numbers.
Complex types are constructed via type arrows and a pairing operator. It also adds the respective
type constructors (tt, ff , 0, S, rs, ::, ă , ą) as well as pair projections, a conditional operator C
and the operatorsRN ,RL for primitive recursion on naturals and lists. The latter are defined as
additional rewrite rules for beta-reduction.

RN 0 s t Ñs RL nil s t Ñs
RN pS0q s tÑt n pRN s tq RL pn :: lq s tÑt n l pRL l s tq
C tt t1 t2 Ñt1
C ff t1 t2 Ñt2

Atoms are created by lifting decidable boolean terms to atoms via the atp q predicate.6 Al-
ternatively, terms are applied to predicate variables to form uninterpreted atoms. Formulas are
inductively created using the K, Ñ and @ operators. The classical negation operator ̃A is
defined as A Ñ K, the classical existential quantifier D̃xA is defined as the dual ̃@x ̃A of
universal quantification. The pattern A1 ˜̂ . . . ˜̂An Ñ B stands for a series of implications
A1 Ñ . . . An Ñ B.

The language of proof terms annotates each term with the conclusion of the corresponding
natural deduction rules. Its axiom rules allow the introduction of an assumption variable uA and
of arithmetical truth atpttq. The introduction rules of implication and universal quantification are

4 https://logic.at/staff/riener/if-then-else.tgz
5 http://www.cs.miami.edu/~tptp/cgi-bin/SeeTPTP?Category=Problems&Domain=NUN
6Even though atp q lifts the type B to the formula level, boolean terms are not formulas themselves.

127

https://logic.at/staff/riener/if-then-else.tgz
http://www.cs.miami.edu/~tptp/cgi-bin/SeeTPTP?Category=Problems&Domain=NUN

realized via lambda abstraction with an eigenvariable condition for the latter. The elimination
rules are realized by application. Additionally it contains (schematic) induction rules on the base
types B, N and L.

The role of modified A-Translation is to rewrite a classically valid formula such that modi-
fied realizability can be applied. It applies Gödel’s negative translation which amounts to double
negation of atoms in NAω. Further simplifications are achieved by distinguishing computation-
ally relevant formulas (those ending in K) from irrelevant ones. Using this notion, goals are
atoms including K, implications proving another goal from a relevant or decidable assumption
and universal quantification over irrelevant goals. Furthermore, definite formulas are atoms in-
cluding K, implications with a relevant assumption, implications with an irrelevant conclusion
and universal quantification over definite formulas.

Formulas to be realized have the form @xpD Ñ H Ñ D̃Gq, with D atoms, G goals and
H arbitrary. There, arithmetical falsity (atpffq) replaces logical falsity (K) in goals and defi-
nite formulas. Denoting this substitution AF for a formula A, the remaining occurrences of K
are replaced by DyGF . The formula in consideration then has the form @xpDF Ñ HrK Ð
DyGpx, yqF s Ñ D̃GF q. As required by realizability, it belongs to the Π0

2 fragment of the arith-
metical hierarchy.

We now turn to modified realizability: the notion |A|r means that r realizes the formula A.
To every predicate variable P of type σ1 ą p. . . pσn ą oqq we assign a corresponding type αP
and a fresh variable P r of type αP ą pσ1 ą p. . . pσn ą oqqq. Then we can define realizability
as follows:

|P psq|r “
"

P rpr, sq if P is a predicate variable of type αP
P psq if P is a predicate constant

|@xA|r “ @x|A|rx
|AÑ B|r “ @xp|A|x Ñ |B|rxq

When extracting a realizer from a proof term, the logical rules are directly interpreted in the
term language. The induction rules map to primitive recursion, whereas the conditional rules
map to arithmetical choice with the condition of n “ 0 for naturals and l “ rs for lists.

vuAw x
τpAq
u

vpλuAMqAÑBw λx
τpAq
u vMw

vpMAÑBNqw vMwvNw
vpλxρMq@xAw λxρvMw
vpM@xArqw vMwr

vIndN,Aw RN
vIndL,Aw RLpρq
vCasesn,Aw Cn,σ
vCasesl,Aw Cl,σ

The relation between a the proof term for a formula and its realizer is made explicit the
following soundness theorem:

Theorem 4.13.1 (Soundness of Proof Extraction by A-Translation with modified Realizability
[17]).
Assume that M is a derivation of B. Then there is a derivation |B|vMw from the assumptions
t|C|xτpCqu |uC P free assumptions of Mu.

In other words, if M is a proof of the formula B, there exists a proof of B realized by the
term extracted from M which uses the same assumptions as M .

128

4.13.2 Formulation of the Infinite Pigeonhole Principle

The formulation of the infinite pigeonhole principle IPH is quite close to the INFTAPE lemma
used in this work:

@r@fp@nfpnq ă r Ñ D̃q@nD̃kpn ď k ˜̂fpkq “ qqq IPH

@xpfpxq “ 0_ fpxq “ 1q Ñ Dq@xDypx ă y ^ fpyq “ qq INFTAPE

The function f represents an infinite sequence of r different colors. The sequence directly
corresponds to the tape f but we investigate only the instance r “ SpSp0qq. The theorem
IPH does not fulfill the syntactic requirements for realizability, therefore it is used to prove the
consequence UPH which does.

@r@fp@n ̃ ̃fpnq ă r Ñ @nD̃lGpf, n, lqq UPH
|l| “ n ˜̂
p@mpSpmq ă nÑ lSpmq ă lmqq ˜̂
p@mpSpmq ă nÑ fplmq “ fplSpmqqqq G1pf, n, lq

@xpfpxq “ 0_ fpxq “ 1q Ñ @nDhGph, nq TAPEPROOF
MONph, nq ^ Ds@ipi ă n` 1 Ñ fphpiqq “ sqq G(h,n)
@i@jpi ă n` 1^ pj ă n` 1^ i ă jq Ñ hpiq ă hpjqq MON(h,n)

The modified goal of UPH claims the existence of a descending list l of length n which
contains the indices of the same color. Again, there are strong similarities to our TAPEPROOF
theorem. The enumeration function h plays the same role as the list l. Both have a monotonicity
requirement with the TAPEPROOF version being the transitive closure of the one in UPH. More-
over, the n-occurrences statement in the TAPEPROOF differs from the same colors statement in
UPH only by making the color explicit.

4.13.3 Proof and Extracted Programs

The proof of IPH is an induction on r, where the base case is trivial because the condition
@nfpnq ă 0 is a contradiction. The step case is proved indirectly by assuming the induction
hypothesis (@r@fp@nfpnq ă r Ñ D̃q@nD̃kpn ď k ˜̂fpkq “ qqq) and the restriction to r ` 1
colors (@nfpnq ă Sprq) hold, but the conclusion of the step is false (@q ̃p@nD̃kpn ď k ˜̂fpkq “
qqq). Now either the color r appears an infinite amount of times, then this leads straight to
contradiction with the negated conclusion. Alternatively, the color r appears a finite amount of
times. Then there exists an index i, from which on f does not contain the color r. We then create
a function f 1pnq “ fpmaxpn, iqq which repeats the symbol fpiq in the range 0 to i and agrees
with f for indices greater than i. But the induction hypothesis also applies to f 1 from which we
conclude that a symbol of color less than r repeats an infinite amount of times which again leads
to a contradiction.

The proof of UPH uses IPH as an assumption and proves the existence of a list l of decreasing
indices such that fplmq “ q for allm ă n and the infinitely occurring color q, again by induction

129

on the length n of the list. For length 0, the witness is the empty list, for length 1 the instance
n “ 0 of IPH suffices. For the induction step IPH is instantiated with n “ l0, the highest index
of the list provided by the induction hypothesis. Also since for all elements in the list fpliq “ q,
q is replaced by fpli`1q which removes q, including the existential quantifier on q.

The extracted programs conform to continuation passing style, a technqiue in functional
programming which takes a program - the continuation - as an additional parameter which is
executed instead of returning control to the caller. This is mirrored in the weakening of tau-
tologies of the form A Ñ K by replacing K by arbitrary formulas. The pattern also surfaces
when the higher-order functions associated to IPH are passed functions associated with UPH. In
particular, UPH provides an implementation for the check that the coloring is finite (FC) and the
function to construct the infinite monochromatic series (IMS). The sequence extraction function
SE ties the knot of the continuation and accumulates the actual implementation of the function
h in TAPEPROOF .

IPH:

IPHpr, f, FC, IMSq :“ if r “ 0 then FCp0, ˝q else IMSpr ´ 1, ISq
ISpn, SEq :“ IPHpr ´ 1, λx.fpmaxpn, xq, FCn, λxλy.IMSnpSE, x, yqq
FCnpn1,Kq :“ FCpmaxpn, n1q, if fpmaxpn, n1qq ‰ r ´ 1 then K else SEpmaxpn, n1qq
IMSnpSE, q, IS1q :“ IMSpq, IS1pk, λx.SEpmaxpn, xqqqq

UPH:

UPHpr, f, nq :“ IPHpr, f, FC, IMSq
FCpn,Kq :“ if fpnq ă r then K else ˝
IMSpq, ISq :“ FSpn, λl.lq
FSpn, P q :“ if n “ 0 then nil else

if n “ 1 then ISp0, λk.P pk :: nilqq else FSpn´ 1, P 1q
P 1pk :: lq :“ ISpk ` 1, λk1.P pk1 :: k :: lqq

Figure 4.28: Realizers for IPH and UPH obtained by A-Translation (slightly modified to acco-
modate for additional arguments from helper functions)

The minlog system [18, 89] implements both the A-Translation with modified realizability
and the Dialectica method. The example file pigeonhole.scm in the directory minlog
examples/classical/combinatorics of the distribution contains the formalizations
discussed here. Executing the test successfully extracts lists of indices for all possible input
configurations of two symbols and tapes of length four.

4.14 Comparison

As mentioned above, the n-Tape lemma INFTAPE is essentially the IPH lemma restricted to two
symbols. The statement of the theorem TAPEPROOF differs from UPH in two ways: TAPE-
PROOF does not require a double negation translation and it uses functions of type N ą N

130

to represent the sequence instead of the list data-type L. The refined A-Translation does not
permit existential quantification on a function as a goal, whereas the CERESω method does not
have such restrictions. But this freedom comes with a price: data-types are essential to the suc-
cessful proof extraction from UPH, because System T contains recursion operators to interpret
induction rules for each data-type. If the induction axiom is used instead of a rule, the invariant
DhGph, nq must be skolemized in the induction step DhGph, nq Ñ DhGph, n ` 1q. But then
the interpretation of a skolem function is only axiomatized by the context in which it appears.
Even worse, the term language might be insufficient to express the skolem function. This is
exactly the case for s9 and s25 in the n-Tape 2 formalization of TAPEPROOF, where we added
µ-recursion to express the interpretations.

Another important lesson is to reduce the expressivity of the condition in the if-then-else
operator like it is done with C. There only arithmetical expressions are allowed, not arbitrary
formulas like in the n-Tape formulation. The effect only surfaces in the instantiated example n-
Tape 6, where the cut-strong axiomatization of if-then-else ended up in the characteristic sequent
set and which subsequently sent each automated higher-order prover into a hopeless synthetisa-
tion attempt for that conditional.

4.15 Discussion

Looking at every version of the n-occurrences tape proof, we identified three vital elements for
extracting a meaningful function from the proof. First, disregarding purely propositional cut-
formulas without higher-order variables reduced the clause set to a treatable size. The second
ingredient was a successful embedding of the problem into a first-order clause set. The third key
was the manual interpretation of the skolem symbols. Unfortunately, this part cannot be fully
automatized, but it might be worth to study the effect of specific axioms. In this particular case,
where we encounter a combination of the induction axiom with a weak function quantifier in
the invariant, the idea to interpret the skolem function as a fixed point is close by. Nonetheless,
some conditions have to be met to allow this interpretation. A straightforward one is the fact
that the lemma folded into the function is a Π0

2 formula. Only because a Π0
2 formula can be seen

as a function itself, the fixed-point interpretation is meaningful.
Similar to the observation in the introduction that empirically, the clause set of first-order

CERES can be solved by any first-order prover in System on TPTP or not at all, the sequent
sets of CERESω seem to be solvable by higher-order theorem provers when they can be mapped
and solved by first-order prover or not at all. In particular the recursion pattern reflected by term
hpsphqq with a skolem function s selecting the next input of h based on itself that occurred in
early sequent sets seems to be out of reach in principle. The prover would need to syntesize pos-
sibly nested conditionals, which is futile without built-in support for if-then-else in the prover.
To the best of our knowledge, no higher-order prover supports the $ite construct of TPTP.

Furthermore, we overestimated the performance of higher-order provers in the fragment with
first-order equality. In the case of Leo II, the integration of E prover seems handle most equality
reasoning. But then it is clear that this leads to a two phase process where the higher-order
instantiations are found first and only then a most of the the equational part is solved. In the
case of Satallax, the SAT backend is completely unaware of equality. We suspect that this is the

131

reason why Satallax does not find a proof of the essentially multisorted first-order deep formulas
of nTape2 and nTape3. Interestingly, the only prover which can reprove the deep formulas is
Isabelle 2016 by encoding the problem into SMT and solving it with Z3.

132

CHAPTER 5

Conclusion

5.1 Summary

In this thesis we introduced CERESω“ which adds first-order equality to the calculi used in
CERESω but removes quantifier inferences from the resolution calculus, effectively removing
the need for labels in there. Furthermore we could replace the computationally expensive post-
processing steps of the full CERESω method and extract expansion proofs directly from the
PCNF. This result carries over CERESω“ because its PCNF can be translated to a version with
equality axioms instead of rules.

We also extended the GAPT framework by an implementation of the new calculus, including
support for Prover9 proofs, the LLK proof input language, and interactive viewers for tree-like
proofs and expansion sequents. In the meantime, the Ebner, Hetzl, Reis, Wolfsteiner and Zivota
added, amongst other things, support for cut-introduction, an internal superposition prover, ex-
pansion trees with cut and backends for a multitude of theorem provers including minlog, veriT,
E Prover, SPASS and Vampire [36].

Consequently, we managed to formalize a proof of the infinite pigeon hole principle. In our
variant, the proof proceeds using the finite pigeon hole principle as a lemma, which is subse-
quently eliminated by CERESω“. The key to finding the required refutation of the character-
istic sequent set was the replacement of cut-free projections by ones which may include cuts
on propositional formulas. This allows the higher-order theorem prover Leo II to successfully
embed the problem into first-order logic and solve it with eProver. Additionally our manual
first-order translation could be refuted by Prover 9.

As we hoped, expansion proofs allowed us to investigate the instantiation terms of the func-
tion quantifier we were interested in. Inside, we found two inductively defined functions, cov-
ering the cases of counting an infinite occurrence of each possible symbol. In contrast to the
competing methods, the presence of skolem symbols makes the interpretation of the term as
program impossible. A manual analysis of the proof interprets the relevant skolem terms as
fixed points of the formula representing the finite pigeon hole principle. This interpretation is
ad-hoc, but can be justified by the proof structure. Nonetheless, since the Skolem functions are
now only declaratively specified, they destroy the interpretation of the function term as a pro-
gram. In programming terms, this would amount to a call to a function for which we know pre-
and postconditions but where no actual implementation is given. A term with these holes can
not be executable. Our particular case is even worse because the interpretation of the skolem
function is a fixed point computation, which is not realizable in simply typed lambda calculus.

Since we conjectured the fixed point construction to be unavoidable, we turned our attention

133

to instances of the problem by finitely repeating the induction step. Contrary to our intuition,
the problem became harder since where we had a skolem function before, the relevant term now
contained a free function variable. Even despite the interesting observation that the characteristic
sequent sets for the instances 2 to 4 reduce to the same set modulo the parameter, the problem
was out of reach of the theorem provers.

As we had expected a decision tree enumerating the - now finite - sub-sequences as possible
instance, we investigated if such a tree would constructed in a simpler case. For this we specified
a function by a low number of supporting points, added the axioms for if-then-else and claimed
that such a function exists. Only one of the theorem provers found the decision tree for a function
with two supporting points, none of them managed to find the nesting of if-then-else terms
necessary to solve instances with more than two supporting points. The reason is that unification
does not find the conditions x “ 0, x “ sp0q, etc. since the equalities themselves do not occur
in the input problem. This means that without special treatment of if-then-else in the prover,
this problem cannot be solved. To track the progress in this matter, we submitted the problem
to the TPTP library. The problems NUN24, NUN25 and NUN26 are exactly those examples we
investigated in section 4.12.

5.2 Future Work

5.2.1 Open Problems

There are still unsolved problems with the CERESω (and subsequently the CERESω“) method.
The foremost one is the lack of a (relative) completeness result, for which it is sufficient to
show the relative completeness of Ral with regard to Andrew’s R on which it is based. The
main difficulties there are the different quantifier rules due to the lack of labeling in R and
the integration of contraction (the Simp rule) into Ral’s cut rule, essentially restricting it to a
contraction on atom formulas. In the case of CERESω“, the problem is simplified due to the
minor role of labels in it. Still, more work has to be done to complete the proof.

The second open problem lies in the manual interpretation of Skolem functions. In the par-
ticular proof investigated, all the points of the function which were calculated in the previous step
of the induction become eigenvariables. This significantly simplifies the manual interpretation
of the Skolem function. If it turned out that this property is essential for manual interpretation,
the results of our analysis would be hard to transfer to other problems. We also believe that
the fact that the cut formula of the highest complexity belongs to the Π0

2 class also plays a role
because these formulas can be translated to functions. Again, these phenomena deserve further
investigation.

The third open problem concerns the validity preservation of expansion trees under proof
rewrite systems like Źc. The important ingredients for for lemmas 3.4.7, 3.4.8, 3.4.9 and 3.4.10
are the independence of the permuted operations and the preservation of homomorphic paths. It
is quite intuitive that a rewrite rule that preserves paths such that they are homomorphic should
have the same expansion tree. Nevertheless, a general theorem of this kind is still missing.

The last open problem is to completely remove the need to compute projections and use
expansion proofs instead. The first-order case has been successfully solved by Lolic [64] but the

134

higher-order case is complicated by the simulation of steps on the leaves of a projection. Such
a simulation requires a unique axiom introducing the literal corresponding to the formula re-
solved on. But in an expansion tree, this axiom might have been merged with other axioms with
potentially different labels. Consequently, the simulation of quantifier rules might be unsound
for a wrong axiom. Intuitively, because only contractions lead to merges and contractions only
appear as the factoring part of the simulation of a resolution inference, it is directly followed by
cut. That this is sufficient to prevent unsound leaf simulations needs yet to be proved.

5.2.2 Beyond CERESω“
Going further than CERESω“ has multiple meanings. First, we can aim for even stronger systems
like Gödel’s system T , which adds tuples and primitive recursion to simply typed lambda cal-
culus. An even stronger system which is still decidable would be Girard’s system F which also
adds type polymorphism [41]. Apart from the technical difficulties of establishing the method,
the main problem there is that no automated theorem provers exist for these term languages.

Therefore a second direction to develop the method is to abandon automated theorem prov-
ing in favor of interactive theorem proving. In principle, the essential restriction on the calculus
used to refute the characteristic sequent set is that there is a translation to sequent calculus which
does not apply the cut rule on quantified formulas. This does not hold for natural deduction, but
it might be possible to sufficently automatize a tableaux calculus in Isabelle/HOL to be able to
find actual refutations. The reason for using HOL is that it is Isabelle’s theory which enjoys
the most automatation. In contrast to Coq, Isabelle creates an explicit proof object, but it is
completely unclear how to extract the proof of the abstraction level we would need.

The third direction is somehow the contraposition to the first one. If we can not automatically
refute the sequent sets we obtain right now, we can look for (nontrivial) classes where there
exist efficient provers. SMT solvers are increasingly exploring fields like quantifier instantiation
[21, 25, 26]. Looking at these classes we could investigate which cuts they introduce and what
kind of proofs are possible in these classes.

A central observation there is that refuting the characteristic sequent set essentially amounts
to finding a proof in atomic-cut normal form of all the cut formulas at the same time. This direct
relation of the cut formulas to the hardness of refuting the characteristic sequent set imposes
severe limits on the scalability of method.

Therefore the fourth direction to go on is to work out methods to divide-and-conquer the
problem posed by the characteristic sequent set. For instance it is clear that cuts in different
branches of the proof can be dealt with independently. Using the original CERES method,
this would not change the characteristic sequent set, because the atomic cuts used to simulate
resolution cannot be removed via reductive cut-elimination without elimination of the cuts which
were skipped. Since we extended the method to ignore propositional cuts, repeated application
of the CERES method can now be performed. It is still open how well this influences the
scalability of the method.

Direction five is motivated by the observation that the construction of the projections bears
a striking resemblance to Maehara’s method of constructing an interpolant [65, 105]. Both have
the same case distinction for the introduction rule and recombine their components in two ways.
The equivalent of the union of projection sets would be the creation of a conjunction and the

135

equivalent of creation of proofs which merge of all pairs of end-sequents would be a disjunc-
tion. Obviously, the cut-formulas do not share the language of the end-sequent but it might
be fruitful to investigate other proof theoretic interpolation methods [73] and transfer them to
cut-elimination.

136

Bibliography

[1] Martin Aigner and Günter M. Ziegler. Proofs from the Book. Springer Berlin Heidelberg,
2006.

[2] Peter B. Andrews. Resolution in type theory. In Jörg H. Siekmann and Graham Wright-
son, editors, Automation of Reasoning: 2: Classical Papers on Computational Logic
1967–1970, pages 487–507. Springer Berlin Heidelberg, Berlin, Heidelberg, 1983.

[3] David Aspinall, Christoph Lüth, and Daniel Winterstein. A framework for interactive
proof. In Manuel Kauers, Manfred Kerber, Robert Miner, and Wolfgang Windsteiger, ed-
itors, Towards Mechanized Mathematical Assistants, 14th Symposium, Calculemus 2007,
6th International Conference, MKM 2007, Hagenberg, Austria, June 27-30, 2007, Pro-
ceedings, volume 4573 of Lecture Notes in Computer Science, pages 161–175. Springer,
2007.

[4] Matthias Baaz, Stefan Hetzl, Alexander Leitsch, Clemens Richter, and Hendrik Spohr.
Proof transformation by CERES. In Jonathan M. Borwein and William M. Farmer, edi-
tors, Mathematical Knowledge Management, 5th International Conference, MKM 2006,
Wokingham, UK, August 11-12, 2006, Proceedings, volume 4108 of Lecture Notes in
Computer Science, pages 82–93. Springer, 2006.

[5] Matthias Baaz, Stefan Hetzl, Alexander Leitsch, Clemens Richter, and Hendrik Spohr.
CERES: An analysis of Fürstenberg’s proof of the infinity of primes. Theoretical Com-
puter Science, 403(2-3):160–175, 2008.

[6] Matthias Baaz and Alexander Leitsch. On skolemization and proof complexity. Funda-
menta Informaticae, 20(4):353–379, 1994.

[7] Matthias Baaz and Alexander Leitsch. Cut-elimination and redundancy-elimination by
resolution. Journal of Symbolic Computation, 29(2):149–177, 2000.

[8] Matthias Baaz and Alexander Leitsch. Towards a clausal analysis of cut-elimination.
Journal of Symbolic Computation, 41(3-4):381–410, 2006.

[9] Christoph Benzmüller. Higher-order automated theorem provers. In David Delahaye and
Bruno Woltzenlogel Paleo, editors, All about Proofs, Proof for All, Mathematical Logic
and Foundations, pages 171–214. College Publications, London, UK, 2015.

137

[10] Christoph Benzmüller, Chad Brown, and Michael Kohlhase. Cut-simulation and impred-
icativity. Logical Methods in Computer Science, 5(1:6):1–21, 2009.

[11] Christoph Benzmüller and Michael Kohlhase. LEO – a higher-order theorem prover. In
Claude Kirchner and Hélène Kirchner, editors, Automated Deduction - CADE-15, 15th
International Conference on Automated Deduction, Lindau, Germany, July 5-10, 1998,
Proceedings, number 1421 in LNCS, pages 139–143. Springer, 1998.

[12] Christoph Benzmüller and Dale Miller. Automation of higher-order logic. In Dov M.
Gabbay, Jörg H. Siekmann, and John Woods, editors, Handbook of the History of Logic,
Volume 9 — Computational Logic, pages 215–254. North Holland, Elsevier, 2014.

[13] Christoph Benzmüller, Lawrence C. Paulson, Nik Sultana, and Frank Theiß. The higher-
order prover LEO-II. Journal of Automated Reasoning, 55(4):389–404, 2015.

[14] Christoph Benzmüller, Florian Rabe, and Geoff Sutcliffe. THF0 – the core of the TPTP
language for classical higher-order logic. In Alessandro Armando, Peter Baumgartner,
and Gilles Dowek, editors, Automated Reasoning, 4th International Joint Conference,
IJCAR 2008, Sydney, Australia, August 12-15, 2008, Proceedings, volume 5195 of LNCS,
pages 491–506. Springer, 2008.

[15] Christoph Benzmüller and Nik Sultana. Update report: LEO-II version 1.5. CoRR,
abs/1303.3761, 2013.

[16] Christoph Benzmüller, Frank Theiss, Lawrence Paulson, and Arnaud Fietzke. LEO-II -
a cooperative automatic theorem prover for higher-order logic (system description). In
Alessandro Armando, Peter Baumgartner, and Gilles Dowek, editors, Automated Reason-
ing, 4th International Joint Conference, IJCAR 2008, Sydney, Australia, August 12-15,
2008, Proceedings, volume 5195 of LNCS, pages 162–170. Springer, 2008.

[17] Ulrich Berger, Wilfried Buchholz, and Helmut Schwichtenberg. Refined program extrac-
tion form classical proofs. Annals of Pure and Applied Logic, 114(1-3):3–25, 2002.

[18] Ulrich Berger, Kenji Miyamoto, Helmut Schwichtenberg, and Monika Seisenberger. Min-
log - A tool for program extraction supporting algebras and coalgebras. In Andrea Corra-
dini, Bartek Klin, and Corina Cîrstea, editors, Algebra and Coalgebra in Computer Sci-
ence - 4th International Conference, CALCO 2011, Winchester, UK, August 30 - Septem-
ber 2, 2011. Proceedings, volume 6859 of Lecture Notes in Computer Science, pages
393–399. Springer, 2011.

[19] Mirjana Borisavljević. Two measures for proving gentzen’s hauptsatz without mix.
Archive for Mathematical Logic, 42(4):371–387, 2003.

[20] Chad E. Brown. Satallax: An automatic higher-order prover. In Bernhard Gramlich,
Dale Miller, and Uli Sattler, editors, IJCAR, volume 7364 of Lecture Notes in Computer
Science, pages 111–117. Springer, 2012.

138

[21] Chad E. Brown. Reducing higher-order theorem proving to a sequence of SAT problems.
Journal of Automated Reasoning, 51(1):57–77, 2013.

[22] Alan J. Cain. Deus ex machina and the aesthetics of proof. The Mathematical Intelli-
gencer, 32(3):7–11, 2010.

[23] Casc competition 2016 results, website. http://www.cs.miami.edu/~tptp/CASC/J8/
WWWFiles/DivisionSummary1.html.

[24] Alonzo Church. A formulation of the simple theory of types. Journal of Symbolic Logic,
5(2):56–68, 1940.

[25] Leonardo Mendonça de Moura and Nikolaj Bjørner. Efficient E-matching for SMT
solvers. In Frank Pfenning, editor, Automated Deduction - CADE-21, 21st International
Conference on Automated Deduction, Bremen, Germany, July 17-20, 2007, Proceedings,
volume 4603 of Lecture Notes in Computer Science, pages 183–198. Springer, 2007.

[26] David Detlefs, Greg Nelson, and James B. Saxe. Simplify: a theorem prover for program
checking. Journal of the ACM, 52(3):365–473, 2005.

[27] Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G Tollis. Algorithms
for drawing graphs: an annotated bibliography. Computational Geometry, 4(5):235–282,
1994.

[28] Daniel J. Dougherty. Higher-order unification via combinators. Theoretical Computer
Science, 114(2):273–298, 1993.

[29] Gilles Dowek, Thérèse Hardin, and Claude Kirchner. Theorem proving modulo. Journal
of Automated Reasoning, 31(1):33–72, 2003.

[30] Gilles Dowek and Benjamin Werner. Proof normalization modulo. Journal of Symbolic
Logic, 68(4):1289–1316, 2003.

[31] Cvetan Dunchev. Automation of cut-elimination in proof schemata. PhD thesis, Vienna
University of Technology, 2012.

[32] Cvetan Dunchev, Gabriel Ebner, Stefan Hetzl, Tomer Libal, Bernhard Mallinger, Se-
bastian Szivota, Giselle Reis, Martin Riener, Mikheil Rukhaia, Daniel Weller, and
Bruno Woltzenlogel-Paleo. Generic Architecture for Proofs – github development page.
https://github.com/gapt/gapt.

[33] Cvetan Dunchev, Gabriel Ebner, Stefan Hetzl, Tomer Libal, Bernhard Mallinger,
Sebastian Szivota, Giselle Reis, Martin Riener, Mikheil Rukhaia, Daniel Weller,
and Bruno Woltzenlogel-Paleo. Generic Architecture for Proofs – webpage.
http://www.logic.at/gapt.

139

http://www.cs.miami.edu/~tptp/CASC/J8/WWWFiles/DivisionSummary1.html
http://www.cs.miami.edu/~tptp/CASC/J8/WWWFiles/DivisionSummary1.html

[34] Cvetan Dunchev, Alexander Leitsch, Tomer Libal, Martin Riener, Mikheil Rukhaia,
Daniel Weller, and Bruno Woltzenlogel-Paleo. PROOFTOOL: a GUI for the GAPT
framework. In Cezary Kaliszyk and Christoph Lüth, editors, UITP, volume 118 of
EPTCS, pages 1–14, 2013.

[35] Cvetan Dunchev, Alexander Leitsch, Mikheil Rukhaia, and Daniel Weller. CERES for
first-order schemata. The Computing Research Repository, abs/1303.4257, 2013.

[36] Gabriel Ebner, Stefan Hetzl, Giselle Reis, Martin Riener, Simon Wolfsteiner, and Sebas-
tian Zivota. System description: GAPT 2.0. In Olivetti and Tiwari [76], pages 293–301.

[37] Michael Färber and Chad E. Brown. Internal guidance for satallax. In Olivetti and Tiwari
[76], pages 349–361.

[38] Harvey Friedman. Classically and intuitionistically provably recursive functions. In
Gert H. Müller and Dana S. Scott, editors, Higher Set Theory: Proceedings, Oberwolfach,
Germany, April 13–23, 1977, pages 21–27. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 1978.

[39] Gerhard Gentzen. Untersuchungen über das logische Schließen. I, II. Mathematische
Zeitschrift, 39(1):176–210, 405–431, December 1935.

[40] Jean-Yves Girard. Proof theory and logical complexity, volume 1 of Studies in Proof
Theory. Bibliopolis, Napoli, Italy, 1987.

[41] Jean-Yves Girard, Paul Taylor, and Yves Lafont. Proofs and Types. Cambridge University
Press, New York, NY, USA, 1989.

[42] Kurt Gödel. Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes.
Dialectica, 12(3-4):280–287, 1958.

[43] Mike Gordon. From LCF to HOL: a short history. In Gordon D. Plotkin, Colin Stirling,
and Mads Tofte, editors, Proof, Language, and Interaction, Essays in Honour of Robin
Milner, pages 169–186. The MIT Press, 2000.

[44] Mike Gordon, Robin Milner, Lockwood Morris, Malcolm Newey, and Christopher
Wadsworth. A metalanguage for interactive proof in LCF. In Proceedings of the 5th
ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages, POPL,
pages 119–130, New York, NY, USA, 1978. ACM.

[45] Georg Gottlob and Alexander Leitsch. On the efficiency of subsumption algorithms.
Journal of the ACM, 32(2):280–295, April 1985.

[46] Godfrey Harold Hardy. A mathematician’s apology. Canto. Cambridge University Press,
Cambridge, UK, 1940.

140

[47] Stefan Hetzl, Alexander Leitsch, Giselle Reis, Janos Tapolczai, and Daniel Weller. In-
troducing quantified cuts in logic with equality. In Stéphane Demri, Deepak Kapur, and
Christoph Weidenbach, editors, Automated Reasoning - 7th International Joint Confer-
ence, IJCAR 2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Aus-
tria, July 19-22, 2014. Proceedings, volume 8562 of Lecture Notes in Computer Science,
pages 240–254. Springer, 2014.

[48] Stefan Hetzl, Alexander Leitsch, and Daniel Weller. CERES in higher-order logic. Annals
of Pure and Applied Logic, 162(12):1001–1034, 2011.

[49] Stefan Hetzl, Alexander Leitsch, Daniel Weller, and Bruno Woltzenlogel-Paleo. Her-
brand sequent extraction. In Serge Autexier, John Campbell, Julio Rubio, Volker Sorge,
Masakazu Suzuki, and Freek Wiedijk, editors, AISC/MKM/Calculemus, volume 5144 of
Lecture Notes in Computer Science, pages 462–477. Springer, 2008.

[50] Stefan Hetzl, Tomer Libal, Martin Riener, and Mikheil Rukhaia. Understanding Resolu-
tion Proofs through Herbrand’s Theorem. In Didier Galmiche and Dominique Larchey-
Wendling, editors, Automated Reasoning with Analytic Tableaux and Related Methods
(Tableaux 2013), volume 8123 of Lecture Notes in Computer Science, pages 157–171,
2013.

[51] Yozo Hida, John O. Lamping, and Ramana B. Rao. Tree visualization system and method
based upon a compressed half-plane model of hyperbolic geometry, 2005. Patent Number
US 6901555 B2.

[52] Mao Lin Huang, Quang Vinh Nguyen, Wei Lai, and Xiaodi Huang. Three-dimensional
EncCon tree. In Ebad Banissi, Muhammad Sarfraz, and Natasha Dejdumrong, editors,
CGIV’07: Proceedings of the Computer Graphics, Imaging and Visualisation, pages 429–
433. IEEE Computer Society, 2007.

[53] Gérard Huet, Gilles Kahn, and Christine Paulin-Mohring. The Coq Proof Assistant : A
Tutorial : Version 6.1. Rapport de recherche RT-0204, INRIA, August 1997. Projet COQ.

[54] Gérard P. Huet. The undecidability of unification in third order logic. Information and
Control, 22(3):257–267, 1973.

[55] Gérard P. Huet. A unification algorithm for typed lambda-calculus. Theoretical Computer
Science, 1(1):27–57, 1975.

[56] Thomas Johnsson. Lambda lifting: Treansforming programs to recursive equations. In
Jean-Pierre Jouannaud, editor, Functional Programming Languages and Computer Archi-
tecture, FPCA 1985, Nancy, France, September 16-19, 1985, Proceedings, volume 201
of Lecture Notes in Computer Science, pages 190–203. Springer, 1985.

[57] Jean-Pierre Jouannaud. Higher-order rewriting: Framework, confluence and termination.
In Aart Middeldorp, Vincent van Oostrom, Femke van Raamsdonk, and Roel C. de Vrijer,
editors, Processes, Terms and Cycles: Steps on the Road to Infinity, Essays Dedicated to

141

Jan Willem Klop, on the Occasion of His 60th Birthday, volume 3838 of Lecture Notes in
Computer Science, pages 224–250. Springer, 2005.

[58] Gerwin Klein, Tobias Nipkow, and Larry Paulson. The archive of formal proofs. http:
//afp.sourceforge.net.

[59] Donald E. Knuth. Optimum binary search trees. Acta Informatica, 1(1):14–25, 1971.

[60] John Lamping, Ramana Rao, and Peter Pirolli. A focus+context technique based on
hyperbolic geometry for visualizing large hierarchies. In Irvin R. Katz, Robert Mack,
Linn Marks, Mary Beth Rosson, and Jakob Nielsen, editors, CHI’95: Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, pages 401–408. ACM
Press/Addison-Wesley Publishing Co., 1995.

[61] Alexander Leitsch and Matthias Baaz. Methods of Cut-Elmination, volume 34 of Trends
in Logic. Springer-Verlag New York, Inc., New York, NY, USA, 2011.

[62] Tomer Libal, Martin Riener, and Mikheil Rukhaia. Advanced proof viewing in ProofTool.
In Christoph Benzmüller and Bruno Woltzenlogel Paleo, editors, Proceedings Eleventh
Workshop on User Interfaces for Theorem Provers, UITP 2014, Vienna, Austria, 17th
July 2014., volume 167 of EPTCS, pages 35–47, 2014.

[63] Lars Linsen and Sabine Behrendt. Linked treemap: A 3D treemap-nodelink layout for
visualizing hierarchical structures. Computational Statistics, 26(4):679–697, 2011.

[64] Anela Lolic. Herbrand sequents and the skolem-free ceres method. Master’s thesis,
Vienna University of Technology, 2015.

[65] Shoji Maehara. On the interpolation theorem of Craig. Sûgaku, 12(4):235–237, 1960.

[66] Harry G. Mairson. A simple proof of a theorem of Statman. Theoretical Computer
Science, 103(2):387–394, 1992.

[67] Alberto Martelli and Ugo Montanari. An efficient unification algorithm. ACM Transac-
tions on Programming Languages and Systems, 4:258–282, April 1982.

[68] Richard Mayr and Tobias Nipkow. Higher-order rewrite systems and their confluence.
Theoretical Computer Science, 192(1):3–29, 1998.

[69] The Coq development team. The Coq proof assistant reference manual. LogiCal Project,
2004. Version 8.0.

[70] John Meier and Clifford A. Reiter. Fractal representations of Cayley graphs. Computers
and Graphics, 20(1):163–170, 1996.

[71] Dale A Miller. Proofs in higher-order logic. PhD thesis, University of Pennsylvania,
1984.

[72] Dale A. Miller. A compact representation of proofs. Studia Logica, 46(4):347–370, 1987.

142

http://afp.sourceforge.net
http://afp.sourceforge.net

[73] Nobuyoshi Motohashi. Interpolation theorem and characterization theorem. Annals of
the Japan Association for Philosophy of Science, 4(2):85–150, 1972.

[74] Tamara Munzner. H3: laying out large directed graphs in 3D hyperbolic space. In John
Dill and Nahum D. Gershon, editors, InfoVis’97: Proceedings of the IEEE Symposium on
Information Visualization, pages 2–10. IEEE Computer Society, 1997.

[75] Tobias Nipkow, Markus Wenzel, and Lawrence C. Paulson. Isabelle/HOL: A Proof As-
sistant for Higher-order Logic. Springer-Verlag, Berlin, Heidelberg, 2002.

[76] Nicola Olivetti and Ashish Tiwari, editors. Automated Reasoning - 8th International
Joint Conference, IJCAR 2016, Coimbra, Portugal, June 27 - July 2, 2016, Proceedings,
volume 9706 of Lecture Notes in Computer Science. Springer, 2016.

[77] Grace D Paterson. The aesthetics of mathematical proofs. Master’s thesis, University of
Alberta, 2013.

[78] Lawrence C Paulson. Isabelle: A generic theorem prover, volume 828 of Lecture Notes
in Computer Science. Springer Verlag Berlin Heidelberg, 1994.

[79] Diana Ratiu and Trifon Trifonov. Exploring the computational content of the infinite
pigeonhole principle. Journal of Logic and Computation, 22(2):329–350, 2012.

[80] Giselle N. Reis. Cut-elimination by resolution in intuitionistic logic. PhD thesis, Univer-
sity of Technology Vienna, 2014.

[81] John A. Robinson. A machine-oriented logic based on the resolution principle. Journal
of the ACM, 12(1):23–41, January 1965.

[82] James Rosindell and Luke J. Harmon. OneZoom: A fractal explorer for the Tree of Life.
Public Library of Science Biology, 10(10):1–5, 2012.

[83] Mikheil Rukhaia. CERES in proof schemata. PhD thesis, Vienna University of Technol-
ogy, 2012.

[84] Adrian Rusu and Confesor Santiago. A practical algorithm for planar straight-line grid
drawings of general trees with linear area and arbitrary aspect ratio. In Ebad Banissi,
Remo Aslak Burkhard, Georges Grinstein, Urska Cvek, Marjan Trutschl, Liz Stuart,
Theodor G. Wyeld, Gennady Andrienko, Jason Dykes, Mikael Jern, Dennis Groth, and
Anna Ursyn, editors, IV’07: Proceedings of the International Conference on Information
Visualisation, pages 743–750. IEEE Computer Society, 2007.

[85] Hans-Jörg Schulz. Treevis.net: A tree visualization reference. IEEE Computer Graphics
and Applications, 31(6):11–15, Nov 2011.

[86] Stephan Schulz. E - a brainiac theorem prover. AI Commun., 15(2-3):111–126, 2002.

143

[87] Stephan Schulz. System description: E 1.8. In Kenneth L. McMillan, Aart Middeldorp,
and Andrei Voronkov, editors, Logic for Programming, Artificial Intelligence, and Rea-
soning - 19th International Conference, LPAR-19, Stellenbosch, South Africa, December
14-19, 2013. Proceedings, volume 8312 of Lecture Notes in Computer Science, pages
735–743. Springer, 2013.

[88] Helmut Schwichtenberg. A direct proof of the equivalence between Brouwer’s fan the-
orem and König’s lemma with a uniqueness hypothesis. Journal of Universal Computer
Science, 11(12):2086–2095, 2005.

[89] Helmut Schwichtenberg. Minlog. In Freek Wiedijk, editor, The Seventeen Provers of the
World, Foreword by Dana S. Scott, volume 3600 of Lecture Notes in Computer Science,
pages 151–157. Springer, 2006.

[90] Helmut Schwichtenberg. Dialectica interpretation of well-founded induction. Mathemat-
ical Logic Quarterly, 54(3):229–239, 2008.

[91] Kurt Schütte. Syntactical and semantical properties of simple type theory. Journal of
Symbolic Logic, 25(4):305–326, 12 1960.

[92] Ben Shneiderman. Tree visualization with tree-maps: A 2-d space-filling approach. ACM
Transactions on Graphics, 11:92–99, 1991.

[93] Jörg Siekmann, Stephan Hess, Christoph Benzmüller, Lassaad Cheikhrouhou, Detlef
Fehrer, Armin Fiedler, Helmut Horacek, Michael Kohlhase, Karsten Konrad, Andreas
Meier, Erica Melis, and Volker Sorge. LOUI: A distributed graphical user interface
for the interactive proof system ΩMEGA. In Proceedings of the International Work-
shop "User Interfaces for Theorem Provers 1998 (UITP’98), pages 130–138, Eindhoven,
Netherlands, 1998.

[94] Wayne Snyder and Jean H. Gallier. Higher-order unification revisited: Complete sets of
transformations. Journal of Symbolic Computation, 8(1/2):101–140, 1989.

[95] Morten Heine Sørensen and Pawel Urzyczyn. Lectures on the Curry-Howard Isomor-
phism, volume 149 of Studies in Logic and the Foundations of Mathematics. Elsevier
Science Inc., New York, NY, USA, 2006.

[96] Hendrik Spohr, Stefan Hetzl, and Daniel Weller. HLK website. http://logic.at/hlk.

[97] John Stasko and Eugene Zhang. Focus+context display and navigation techniques for
enhancing radial, space-filling hierarchy visualizations. In Jock D. Mackinlay, Steven F.
Roth, and Daniel A. Keim, editors, InfoVis’00: Proceedings of the IEEE Symposium on
Information Visualization, pages 57–65. IEEE Computer Society, 2000.

[98] Richard Statman. The typed lambda-calculus is not elementary recursive. Theoretical
Computer Science, 9:73–81, 1979.

144

http://logic.at/hlk

[99] Geoff Sutcliffe. TPTP syntax BNF. http://www.cs.miami.edu/~tptp/TPTP/SyntaxBNF.
html.

[100] Geoff Sutcliffe. TPTP, TSTP, CASC, etc. In Volker Diekert, Mikhail V. Volkov, and
Andrei Voronkov, editors, Proceedings of the 2nd International Computer Science Sym-
posium in Russia, number 4649 in Lecture Notes in Computer Science, pages 7–23.
Springer-Verlag, 2007.

[101] Geoff Sutcliffe. The TPTP Problem Library and Associated Infrastructure: The FOF and
CNF Parts, v3.5.0. Journal of Automated Reasoning, 43(4):337–362, 2009.

[102] Geoff Sutcliffe. The TPTP World - Infrastructure for Automated Reasoning. In Ed-
mund M. Clarke and Andrei Voronkov, editors, Proceedings of the 16th International
Conference on Logic for Programming Artificial Intelligence and Reasoning, number
6355 in Lecture Notes in Artificial Intelligence, pages 1–12. Springer-Verlag, 2010.

[103] William W. Tait. Normal derivability in classical logic. In Jon Barwise, editor, The Syn-
tax and Semantics of Infinitary Languages, pages 204–236. Springer Berlin Heidelberg,
Berlin, Heidelberg, 1968.

[104] Gaisi Takeuti. On a generalized logic calculus. Japanese Journal of Mathematics, 23:39–
96, 1953.

[105] Gaisi Takeuti. Proof Theory. North-Holland, Elsevier, Amsterdam, 1975.

[106] Steven Trac, Yury Puzis, and Geoff Sutcliffe. An interactive derivation viewer. In Serge
Autexier and Christoph Benzmüller, editors, Proceedings of the 7th Workshop on User
Interfaces for Theorem Provers, UITP 2006, Seattle, Washington, USA, volume 174(2) of
Electronic Notes in Theoretical Computer Science, pages 109 – 123, 2007. Proceedings
of the 7th Workshop on User Interfaces for Theorem Provers (UITP 2006).

[107] Andrzej et. al. Trybulec. Mizar home page. http://www.mizar.org.

[108] Christian Urban. Classical logic and computation. PhD thesis, University of Cambridge,
October 2000.

[109] Femke van Raamsdonk. Higher-order rewriting. In Paliath Narendran and Michaël Rusi-
nowitch, editors, Rewriting Techniques and Applications, 10th International Conference,
RTA-99, Trento, Italy, July 2-4, 1999, Proceedings, volume 1631 of Lecture Notes in
Computer Science, pages 220–239. Springer, 1999.

[110] Jan von Plato. A proof of gentzen’s hauptsatz without multicut. Archive for Mathematical
Logic, 40(1):9–18, 2001.

[111] Daniel Weller. CERES in Higher-Order Logic. PhD thesis, Vienna University of Tech-
nology, 2010.

145

http://www.cs.miami.edu/~tptp/TPTP/SyntaxBNF.html
http://www.cs.miami.edu/~tptp/TPTP/SyntaxBNF.html
http://www.mizar.org

[112] Makarius Wenzel. Isabelle/jedit - A prover IDE within the PIDE framework. In Johan
Jeuring, John A. Campbell, Jacques Carette, Gabriel Dos Reis, Petr Sojka, Makarius
Wenzel, and Volker Sorge, editors, Intelligent Computer Mathematics - 11th International
Conference, AISC 2012, 19th Symposium, Calculemus 2012, 5th International Workshop,
DML 2012, 11th International Conference, MKM 2012, Systems and Projects, Held as
Part of CICM 2012, Bremen, Germany, July 8-13, 2012. Proceedings, volume 7362 of
Lecture Notes in Computer Science, pages 468–471. Springer, 2012.

[113] Charles Wetherell and Alfred Shannon. Tidy drawings of trees. IEEE Transactions on
Software Engineering, SE-5(5):514–520, 1979.

[114] W. Windsteiger. Theorema 2.0: A Graphical User Interface for a Mathematical Assistant
System. In Cezary Kaliszyk and Christoph Lueth, editors, Proceedings 10th International
Workshop On User Interfaces for Theorem Provers, Bremen, Germany, July 11th 2012,
volume 118 of Electronic Proceedings in Theoretical Computer Science, pages 72–82.
Open Publishing Association, 2012. doi 10.4204/EPTCS.118.5.

[115] Jing Yang, Matthew O. Ward, and Elke A. Rundensteiner. InterRing: An interactive tool
for visually navigating and manipulating hierarchical structures. In Pak Chung Wong and
Keith Andrews, editors, InfoVis’02: Proceedings of the IEEE Symposium on Information
Visualization, pages 77–84. IEEE Computer Society, 2002.

[116] Hee Yong Youn and Adit D. Singh. Near optimal embedding of binary tree architecture
in VLSI. In ICDCS’88: Proceedings of the International Conference on Distributed
Computing Systems, pages 86–93. IEEE Computer Society, 1988.

146

APPENDIX A

The n-Tape Input Proof, version 3

A.1 Type Declarations

var i, i1, i2, j, j1, k, n, s, x, x1, y, y1, z, n0, n1 :ι
var α, β, δ, γ, κ, ν, σ :ι
const f :ι ą ι
const AX, T :o
const ARITH1, ARITH2 :o
const ARITH3 :ι ą ι ą o
const ARITH4 :ι ą o
const ARITH5 :ι ą ι ą ι ą o
const BIF0, BIF1 :o ą ι ą ι ą o
const IIF0, IIF1 :ι ą ι ą ι ą o
const C,MONstep :o
const IF0, IF1 :ι ą ι ą o
const MONstepa1,MONstepa2,MONstepa3,MONstepa41 ,MONstepa4 :o
const MONstepa5,MONstepa6,MONstepa7 :o
const NOCCstep,NOCCstepa, NOCCstepb, INFTAPE, TAPEPROOF, π1:o
const BASE, STEP,MAIN, TRIV IAL :ι ą o
const MON :pι ą ιq ą ι ą o
const NOCC :pι ą ιq ą ι ą ι ą o
const t :pι ą ιq ą ι ą ι ą ι ą ι
const A, I :ι ą o
const ite :ι ą ι ą ι ą ι
const be :o ą ι
const ie :ι ą ι
var P,X :o
var Y :ι ą o
var h, h1, h1 :ι ą ι
const 0, 1 :ι
const ˚,`, bm :ι ą ι ą ι
const ă :ι ą ι ą o
const A1, A2, A3, A4, A5, A6, A7, A8, A9, A10 :o
const A11, A12, A13, A14, A15, A16, A17, A18, A19, A20 :o
const A21, A22, A23, A24, A30, A31, A32, A33, A34, A35, A36, IND :o

147

A.2 Definitions
MONph, nq ” p@i@jpi ă n` 1^ j ă n` 1^ i ă j Ñ hpiq ă hpjqqq
NOCCph, n, sq ” p@ipi ă n` 1 Ñ fphpiqq “ sqq
C ” p@nDhpMONph, nq ^ pDsNOCCph, n, sqqqq
Apxq ” p@nDhpMONph, nq ^NOCCph, n, xqqq
T ” p@npfpnq “ 0_ fpnq “ 1qq
Ipsq ” p@xDypx ă y ^ fpyq “ sqq
tph, n, x, yq ” if zx ă n` 1{ then hpxq else y
xiy ” 1 ´ i
if xiy then x else y ” xiy ˚ x` p1 ´ xiyq ˚ y
if zX{ then x else y ” zX{ ˚ x` p1 ´ zX{q ˚ y

A.3 Theory Axioms
Arithmetic:

Basic Axioms:

A1 $ px` 1 “ 0q
A2 $ x “ 0_ pDkx “ k ` 1q
A3 $ x` 1 “ y ` 1 Ñ x “ y
A4 $ x “ y Ñ x` 1 “ y ` 1
A5 $ 0 ˚ x “ 0
A6 $ px` 1q ˚ y “ px ˚ yq ` y
A7 $ px ă 0q
A8 $ x ă y Ñ pDkpx` kq ` 1 “ yq
A9 $ x ă y _ x “ y _ y ă x
A30 $ x` 0 “ x
A31 $ 0` x “ x

Derived Axioms:

A10 $ x ă y ` 1 Ñ px ă y _ x “ yq
A11 $ x “ y _ x ă y Ñ x ă y ` 1
A12 $ x` y “ y ` x
A13 $ x` py ` zq “ px` yq ` z
A14 $ x ˚ y “ y ˚ x
A15 $ x ˚ py ˚ zq “ px ˚ yq ˚ z
A16 $ x “ y Ñ x` z “ y ` z
A17 $ x` z ă y ` z Ñ x ă y
A36 $ x ă y Ñ x` z ă y ` z
A18 $ x “ 0_ pDyy ă xq
A19 $ 0 ă x` 1
A32 $ x ă y Ñ x` 1 ă y ` 1
A33 $ px ă xq
A34 $ x ă y ^ y ă z Ñ x ă z
A35 $ x` 1 ă y ` 1 Ñ x ă y

Induction, bounded subtraction and encoding of truth values:

IND $p@Y p0q ^ p@npY pnq Ñ Y pn` 1qqq Ñ p@nY pnqqq
A20 $p@xp0 ´ x “ 0qq
A21 $p@xpx´ 0 “ xqq
A22 $p@x@yppx` 1q´ py ` 1q “ x´ yqq
A23 $p@P pP Ñ zP { “ 1qq
A24 $p@P p P Ñ zP { “ 0qq

Unused: A4, A11, A14, A15, A16, A18;

148

P
ro

o
f

o
f

C

pIN
F
T
A
P
E
q

A
X
,T
$I
p0q
,I
p1q

D:
r

A
X
,T
$p
Ds
I
psq
q,I
p1q

D:
r

A
X
,T
$p
Ds
I
psq
q,p
Ds
I
psq
q
c
:
r

A
X
,T
$p
Ds
I
psq
q

pM
A
I
N
pσ
qq

A
X
,I
pσ
q$

C
D:

l
A
X
,pe
x
is
ts
sI
psq
q$

C
cu
t

A
X
,A
X
,T
$C

c
:
l

A
X
,T
$C

pT
A
P
E
P
R
O
O
F
q

M
a
in

pB
A
S
E
pσ
qq

A
X
,I
pσ
q$
pDh
pM

O
N
ph
,0
q^

N
O
C
C
ph
,0
,σ
qqq

pS
T
E
P
pσ
qq

A
X
,I
pσ
q,p
Dh
pM

O
N
ph
,n
q^

N
O
C
C
ph
,n
,σ
qqq
$p
Dh
pM

O
N
ph
,n
`
1q
^
N
O
C
C
ph
,n
`
1,
σ
qqq

Ñ
:
r

A
X
,I
pσ
q$
pDh
pM

O
N
ph
,n
q^

N
O
C
C
ph
,n
,σ
qqq
Ñ
pDh
pM

O
N
ph
,n
`
1
q^

N
O
C
C
ph
,n
`
1
,σ
qqq

@:
r

A
X
,I
pσ
q$
p@
n
ppD
h
pM

O
N
ph
,n
q^

N
O
C
C
ph
,n
,σ
qqq
Ñ
pDh
pM

O
N
ph
,n
`
1
q^

N
O
C
C
ph
,n
`
1
,σ
qqq
qq

^
:
r

A
X
,I
pσ
q$
pDh
pM

O
N
ph
,0
q^

N
O
C
C
ph
,0
,σ
qqq
^
p@
n
ppD
h
pM

O
N
ph
,n
q^

N
O
C
C
ph
,n
,σ
qqq
Ñ
pDh
pM

O
N
ph
,n
`
1q
^
N
O
C
C
ph
,n
`
1,
σ
qqq
qq

M
O
N
ph

1 ,
n
0
q$

M
O
N
ph

1 ,
n
0
q

N
O
C
C
ph

1 ,
n
0
,σ
q$

N
O
C
C
ph

1 ,
n
0
,σ
q

D:
r

N
O
C
C
ph

1 ,
n
0
,σ
q$
pDs

N
O
C
C
ph

1 ,
n
0
,s
qq

^
:
r

M
O
N
ph

1 ,
n
0
q,N

O
C
C
ph

1 ,
n
0
,σ
q$

M
O
N
ph

1 ,
n
0
q^

pDs
N
O
C
C
ph

1 ,
n
0
,s
qq

^
:
l

M
O
N
ph

1 ,
n
0
q^

N
O
C
C
ph

1 ,
n
0
,σ
q$

M
O
N
ph

1 ,
n
0
q^

pDs
N
O
C
C
ph

1 ,
n
0
,s
qq

D:
r

M
O
N
ph

1 ,
n
0
q^

N
O
C
C
ph

1 ,
n
0
,σ
q$
pDh
pM

O
N
ph
,n

0
q^

pDs
N
O
C
C
ph
,n

0
,s
qqq
q

D:
l

pDh
pM

O
N
ph
,n

0
q^

N
O
C
C
ph
,n

0
,σ
qqq
$p
Dh
pM

O
N
ph
,n

0
q^

pDs
N
O
C
C
ph
,n

0
,s
qqq
q

@:
l

pa
ll
n
pDh
pM

O
N
ph
,n
q^

N
O
C
C
ph
,n
,σ
qqq
q$
pDh
pM

O
N
ph
,n

0
q^

pDs
N
O
C
C
ph
,n

0
,s
qqq
q
@:

r
p@
n
pDh
pM

O
N
ph
,n
q^

N
O
C
C
ph
,n
,σ
qqq
q$
p@
n
pDh
pM

O
N
ph
,n
q^

pDs
N
O
C
C
ph
,n
,s
qqq
qq

d
ef

p@
n
pDh
pM

O
N
ph
,n
q^

N
O
C
C
ph
,n
,σ
qqq
q$

C
Ñ

:
l

A
X
,I
pσ
q,p
Dh
pM

O
N
ph
,0
q^

N
O
C
C
ph
,0
,σ
qqq
^
p@
n
ppD
h
pM

O
N
ph
,n
q^

N
O
C
C
ph
,n
,σ
qqq
Ñ
pDh
pM

O
N
ph
,n
`
1q
^
N
O
C
C
ph
,n
`
1
,σ
qqq
qq
Ñ
p@
n
pDh
pM

O
N
ph
,n
q^

N
O
C
C
ph
,n
,σ
qqq
q$

C
A
X
I
O
M

:
I
N
D

:
su
bpY

“
pλ
x
pD
h
ppM

O
N
ph
,x
q^

N
O
C
C
ph
,x
,σ
qqq
qqq

A
X
,I
pσ
q$

C

pM
A
I
N
pσ
qq

In
d
u
ct

io
n

B
a
se

δ
ă

0
`
1
$δ
ă

0
`
1

pδ
`
κ
q`

1
“

0
`
1
$p
δ
`
κ
q`

1
“

0
`
1

δ
“

0
$δ
“

0

δ
“
ν
`
1
$δ
“
ν
`
1

pν
`
κ
q`

1
“

0
$p
pν
`
κ
q`

1
“

0q

:
l

pν
`
κ
q`

1
“

0,
 p
pν
`
κ
q`

1
“

0
q$

A
X
I
O
M

:
A
1

A
X
,pν

`
κ
q`

1
“

0
$

E
Q
A
X

:
A
1
3
:
ν
`
pκ
`

1
q“

pν
`
κ
q`

1
A
X
,ν
`
pκ
`
1q
“

0
$

E
Q
A
X

:
A
1
2
:
1
`
κ
“
κ
`

1
A
X
,ν
`
p1
`
κ
q“

0
$

E
Q
A
X

:
A
1
3
:
ν
`
p1
`
κ
q“

pν
`

1
q`

κ
A
X
,pν

`
1
q`

κ
“

0
$

“:
l

A
X
,δ
`
κ
“

0,
δ
“
ν
`
1
$

D:
l

A
X
,δ
`
κ
“

0,
pDk
pδ
“
k
`
1
qq
$

_
:
l

A
X
,δ
`
κ
“

0,
δ
“

0
_
pDk
pδ
“
k
`
1
qq
$δ
“

0
A
X
I
O
M

:
A
2

A
X
,δ
`
κ
“

0
$δ
“

0
Ñ

:
l

A
X
,pδ
`
κ
q`

1
“

0
`
1
,pδ
`
κ
q`

1
“

0
`
1
Ñ
δ
`
κ
“

0
$δ
“

0
A
X
I
O
M

:
A
3

A
X
,pδ
`
κ
q`

1
“

0
`
1
$δ
“

0
D:

l
A
X
,pD

k
ppδ
`
k
q`

1
“

0
`
1qq

$δ
“

0
Ñ

:
l

A
X
,δ
ă

0
`
1
,δ
ă

0
`
1
Ñ
pDk
ppδ
`
k
q`

1
“

0
`
1qq

$δ
“

0
A
X
I
O
M

:
A
8

A
X
,δ
ă

0
`
1
$δ
“

0

pπ
1
q

pπ
1
q

A
X
,δ
ă

0
`
1
$δ
“

0

γ
ă

0
$γ

ă
0

:
l

 γ
ă

0,
γ
ă

0
$

A
X
I
O
M

:
A
7

A
X
,γ
ă

0
$

“:
l

A
X
,δ
ă

0
`
1,
γ
ă
δ
$

w
:
l

A
X
,γ
ă

0
`
1
,δ
ă

0
`
1,
γ
ă
δ
$

w
:
r

A
X
,γ
ă

0
`
1,
δ
ă

0
`
1,
γ
ă
δ
$α

ă
α

^
:
l

A
X
,γ
ă

0
`
1
,δ
ă

0
`
1
^
γ
ă
δ
$α

ă
α

^
:
l

A
X
,γ
ă

0
`
1
^
δ
ă

0
`
1
^
γ
ă
δ
$α

ă
α

Ñ
:
r

A
X
$γ

ă
0
`
1
^
δ
ă

0
`
1
^
γ
ă
δ
Ñ
α
ă
α

@:
r

A
X
$p
@j
pγ
ă

0
`
1
^
j
ă

0
`
1
^
γ
ă
j
Ñ
α
ă
α
qq

@:
r

A
X
$p
@i@

jpi
ă

0
`
1
^
j
ă

0
`
1
^
i
ă
j
Ñ
α
ă
α
qq

d
ef

A
X
$M

O
N
ppλ

x
pα
qq,

0q

f
pα
q“

σ
$f
pα
q“

σ
w

:
l

f
pα
q“

σ
,β
ă

0
`
1
$f
pα
q“

σ
Ñ

:
r

f
pα
q“

σ
$β

ă
0
`
1
Ñ
f
pα
q“

σ
@:

r
f
pα
q“

σ
$p
@ip
i
ă

0
`
1
Ñ
f
pα
q“

σ
qq

d
ef

f
pα
q“

σ
$N

O
C
C
ppλ

x
pα
qq,

0,
σ
q
^

:
r

A
X
,f
pα
q“

σ
$M

O
N
ppλ

x
pα
qq,

0
q^

N
O
C
C
ppλ

x
pα
qq,

0
,σ
q
D:

r
A
X
,f
pα
q“

σ
$p
Dh
pM

O
N
ph
,0
q^

N
O
C
C
ph
,0
,σ
qqq

w
:
l

A
X
,0
ă
α
,f
pα
q“

σ
$p
Dh
pM

O
N
ph
,0
q^

N
O
C
C
ph
,0
,σ
qqq

^
:
l

A
X
,0
ă
α
^
f
pα
q“

σ
$p
Dh
pM

O
N
ph
,0
q^

N
O
C
C
ph
,0
,σ
qqq

D:
l

A
X
,pD

y
p0
ă
y
^
f
py
q“

σ
qq
$p
Dh
pM

O
N
ph
,0
q^

N
O
C
C
ph
,0
,σ
qqq

@:
l

A
X
,p@

x
Dy
px
ă
y
^
f
py
q“

σ
qq
$p
Dh
pM

O
N
ph
,0
q^

N
O
C
C
ph
,0
,σ
qqq

d
ef

A
X
,I
pσ
q$
pDh
pM

O
N
ph
,0
q^

N
O
C
C
ph
,0
,σ
qqq

pB
A
S
E
pσ
qq

2

In
d
u
ct

io
n

S
te

p

pM
O
N
st
ep
q

A
X
,h

1 pn
qă

α
,M

O
N
ph

1 ,
n
q$

i 1
ă
pn
`
1q
`

1
^
j 1
ă
pn
`
1
q`

1
^
i 1
ă
j 1
Ñ
tph

1 ,
n
,i

1
,α
qă

tph
1 ,
n
,j

1
,α
q

@:
r

A
X
,h

1 pn
qă

α
,M

O
N
ph

1 ,
n
q$
p@
jpi

1
ă
pn
`
1q
`

1
^
j
ă
pn
`
1
q`

1
^
i 1
ă
j
Ñ
tph

1 ,
n
,i

1
,α
qă

tph
1 ,
n
,j
,α
qqq

@:
r

A
X
,h

1 pn
qă

α
,M

O
N
ph

1 ,
n
q$
p@
i@j
pi
ă
pn
`
1
q`

1
^
j
ă
pn
`
1q
`

1
^
i
ă
j
Ñ
tph

1 ,
n
,i
,α
qă

tph
1 ,
n
,j
,α
qqq

d
ef

A
X
,h

1 pn
qă

α
,M

O
N
ph

1 ,
n
q$

M
O
N
ppλ

x
ptp
h

1 ,
n
,x
,α
qqq
,n
`
1
q

pN
O
C
C
st
ep
q

A
X
,h

1 pn
qă

α
,f
pα
q“

σ
,N

O
C
C
ph

1 ,
n
,σ
q$

N
O
C
C
ppλ

x
ptp
h

1 ,
n
,x
,α
qqq
,n
`
1,
σ
q
^

:
r

A
X
,h

1 pn
qă

α
,f
pα
q“

σ
,M

O
N
ph

1 ,
n
q,N

O
C
C
ph

1 ,
n
,σ
q$

M
O
N
ppλ

x
ptp
h

1 ,
n
,x
,α
qqq
,n
`
1q
^
N
O
C
C
ppλ

x
ptp
h

1 ,
n
,x
,α
qqq
,n
`
1,
σ
q
D:

r
A
X
,h

1 pn
qă

α
,f
pα
q“

σ
,M

O
N
ph

1 ,
n
q,N

O
C
C
ph

1 ,
n
,σ
q$
pDh
pM

O
N
ph
,n
`
1q
^
N
O
C
C
ph
,n
`
1
,σ
qqq

^
:
l

A
X
,h

1 pn
qă

α
^
f
pα
q“

σ
,M

O
N
ph

1 ,
n
q,N

O
C
C
ph

1 ,
n
,σ
q$
pDh
pM

O
N
ph
,n
`
1
q^

N
O
C
C
ph
,n
`
1,
σ
qqq

D:
l

A
X
,pD

y
ph

1 pn
qă

y
^
f
py
q“

σ
qq,
M
O
N
ph

1 ,
n
q,N

O
C
C
ph

1 ,
n
,σ
q$
pDh
pM

O
N
ph
,n
`
1q
^
N
O
C
C
ph
,n
`
1
,σ
qqq

@:
l

A
X
,p@

x
Dy
px
ă
y
^
f
py
q“

σ
qq,
M
O
N
ph

1 ,
n
q,N

O
C
C
ph

1 ,
n
,σ
q$
pDh
pM

O
N
ph
,n
`
1q
^
N
O
C
C
ph
,n
`
1,
σ
qqq

d
ef

A
X
,I
pσ
q,M

O
N
ph

1 ,
n
q,N

O
C
C
ph

1 ,
n
,σ
q$
pDh
pM

O
N
ph
,n
`
1q
^
N
O
C
C
ph
,n
`
1,
σ
qqq

^
:
l

A
X
,I
pσ
q,M

O
N
ph

1 ,
n
q^

N
O
C
C
ph

1 ,
n
,σ
q$
pDh
pM

O
N
ph
,n
`
1
q^

N
O
C
C
ph
,n
`
1
,σ
qqq

D:
l

A
X
,I
pσ
q,p
Dh
pM

O
N
ph
,n
q^

N
O
C
C
ph
,n
,σ
qqq
$p
Dh
pM

O
N
ph
,n
`
1
q^

N
O
C
C
ph
,n
`
1,
σ
qqq

pS
T
E
P
pσ
qq

4
M

O
N

st
e
p

i 1
ă
n
`
1
$i

1
ă
n
`
1

j 1
ă
pn
`
1q
$j

1
ă
n
`
1

i 1
ă
j 1
$i

1
ă
j 1

^
:
r

j 1
ă
pn
`
1
q,i

1
ă
j 1
$j

1
ă
n
`
1
^
i 1
ă
j 1

^
:
r

j 1
ă
pn
`
1q,

i 1
ă
j 1
,i

1
ă
n
`
1
$i

1
ă
n
`
1
^
j 1
ă
n
`
1
^
i 1
ă
j 1

h
1 pi

1
qă

h
1 pj

1
q$

h
1 pi

1
qă

h
1 pj

1
q
Ñ

:
l

i 1
ă
n
`
1
^
j 1
ă
n
`
1
^
i 1
ă
j 1
Ñ
h

1 pi
1
qă

h
1 pj

1
q,j

1
ă
pn
`
1
q,i

1
ă
j 1
,i

1
ă
n
`
1
$h

1 pi
1
qă

h
1 pj

1
q

w
:
l

A
X
,i

1
ă
n
`
1
^
j 1
ă
n
`
1
^
i 1
ă
j 1
Ñ
h

1 pi
1
qă

h
1 pj

1
q,j

1
ă
pn
`
1q,

i 1
ă
j 1
,i

1
ă
n
`
1
$h

1 pi
1
qă

h
1 pj

1
q

pM
O
N
st
ep

a
4

1 q

pB
I
F
1pj

1
ă
n
`
1,
h

1 pj
1
q,α
qq

A
X
$p
j 1
ă
n
`
1q
Ñ
if

zj
1
ă
n
`
1
{
th
en

h
1 pj

1
qe
ls
e
α
“
h

1 pj
1
q

j 1
ă
n
`
1
$j

1
ă
n
`
1

if
zj

1
ă
n
`
1{
th
en

h
1 pj

1
qe
ls
e
α
“
h

1 pj
1
q$

if
zj

1
ă
n
`
1
{
th
en

h
1 pj

1
qe
ls
e
α
“
h

1 pj
1
q
Ñ

:
l

j 1
ă
n
`
1
,pj

1
ă
n
`
1q
Ñ
if

zj
1
ă
n
`
1
{
th
en

h
1 pj

1
qe
ls
e
α
“
h

1 pj
1
q$

if
zj

1
ă
n
`
1
{
th
en

h
1 pj

1
qe
ls
e
α
“
h

1 pj
1
q
cu
t

A
X
,j

1
ă
n
`
1
$i
f
zj

1
ă
n
`
1{
th
en

h
1 pj

1
qe
ls
e
α
“
h

1 pj
1
q

pM
O
N
st
ep

a
4

1 q
A
X
,i

1
ă
n
`
1
^
j 1
ă
n
`
1
^
i 1
ă
j 1
Ñ
h

1 pi
1
qă

h
1 pj

1
q,j

1
ă
pn
`
1q,

i 1
ă
j 1
,i

1
ă
n
`
1
$h

1 pi
1
qă

h
1 pj

1
q

@:
l

A
X
,p@

jpi
1
ă
n
`
1
^
j
ă
n
`
1
^
i 1
ă
j
Ñ
h

1 pi
1
qă

h
1 pj
qqq
,j

1
ă
pn
`
1
q,i

1
ă
j 1
,i

1
ă
n
`
1
$h

1 pi
1
qă

h
1 pj

1
q
@:

l
A
X
,p@

i@j
pi
ă
n
`
1
^
j
ă
n
`
1
^
i
ă
j
Ñ
h

1 pi
qă

h
1 pj
qqq
,j

1
ă
pn
`
1
q,i

1
ă
j 1
,i

1
ă
n
`
1
$h

1 pi
1
qă

h
1 pj

1
q
d
ef

A
X
,M

O
N
ph

1 ,
n
q,j

1
ă
pn
`
1q,

i 1
ă
j 1
,i

1
ă
n
`
1
$h

1 pi
1
qă

h
1 pj

1
q
“:

r
A
X
,M

O
N
ph

1 ,
n
q,j

1
ă
pn
`
1q,

i 1
ă
j 1
,i

1
ă
n
`
1
$h

1 pi
1
qă

pif
zj

1
ă
n
`
1
{
th
en

h
1 pj

1
qe
ls
e
α
q

pM
O
N
st
ep

a
4
q

pB
I
F
0pn

`
1
ă
n
`
1
,h

1 pj
1
q,α
qq

A
X
$

n
`
1
ă
n
`
1
Ñ
if

zn
`
1
ă
n
`
1{
th
en

h
1 pj

1
qe
ls
e
α
“
α

n
`
1
ă
n
`
1
$n

`
1
ă
n
`
1

:
l

 n
`
1
ă
n
`
1,
n
`
1
ă
n
`
1
$

:
r

 n
`
1
ă
n
`
1
$

n
`
1
ă
n
`
1

if
zn
`
1
ă
n
`
1{
th
en

h
1 pj

1
qe
ls
e
α
“
α
$i
f
zn
`
1
ă
n
`
1{
th
en

h
1 pj

1
qe
ls
e
α
“
α

Ñ
:
l

 n
`
1
ă
n
`
1,
 n

`
1
ă
n
`
1
Ñ
if

zn
`
1
ă
n
`
1{
th
en

h
1 pj

1
qe
ls
e
α
“
α
$i
f
zn
`
1
ă
n
`
1{
th
en

h
1 pj

1
qe
ls
e
α
“
α

cu
t

A
X
,
n
`
1
ă
n
`
1
$i
f
zn
`
1
ă
n
`
1{
th
en

h
1 pj

1
qe
ls
e
α
“
α

A
X
I
O
M

:
A
3
3

A
X
$i
f
zn
`
1
ă
n
`
1
{
th
en

h
1 pj

1
qe
ls
e
α
“
α

pM
O
N
st
ep

a
6
q

i 1
ă
n
`
1
$i

1
ă
n
`
1

pA
R
I
T
H

1
q

A
X
$p
@n
pn
ă
n
`
1
qq

n
ă
n
`
1
$n

ă
n
`
1

@:
l

p@
n
pn
ă
n
`
1qq

$n
ă
n
`
1

cu
t

A
X
$n

ă
n
`
1

i 1
ă
n
$i

1
ă
n
^

:
r

A
X
,i

1
ă
n
$n

ă
n
`
1
^
i 1
ă
n
^

:
r

A
X
,i

1
ă
n
`
1
,i

1
ă
n
$i

1
ă
n
`
1
^
n
ă
n
`
1
^
i 1
ă
n

h
1 pi

1
qă

h
1 pn
q$

h
1 pi

1
qă

h
1 pn
q

h
1 pn
qă

α
$h

1 pn
qă

α
^

:
r

h
1 pn
qă

α
,h

1 pi
1
qă

h
1 pn
q$

h
1 pi

1
qă

h
1 pn
q^

h
1 pn
qă

α
h

1 pi
1
qă

α
$h

1 pi
1
qă

α
Ñ

:
l

h
1 pn
qă

α
,h

1 pi
1
qă

h
1 pn
q,h

1 pi
1
qă

h
1 pn
q^

h
1 pn
qă

α
Ñ
h

1 pi
1
qă

α
$h

1 pi
1
qă

α
A
X
I
O
M

:
T
R
A
N
S
L
T

A
X
,h

1 pn
qă

α
,h

1 pi
1
qă

h
1 pn
q$

h
1 pi

1
qă

α
Ñ

:
l

A
X
,h

1 pn
qă

α
,i

1
ă
n
`
1
^
n
ă
n
`
1
^
i 1
ă
n
Ñ
h

1 pi
1
qă

h
1 pn
q,i

1
ă
n
`
1,
i 1
ă
n
$h

1 pi
1
qă

α
w

:
l

A
X
,h

1 pn
qă

α
,i

1
ă
n
`
1
^
n
ă
n
`
1
^
i 1
ă
n
Ñ
h

1 pi
1
qă

h
1 pn
q,i

1
ă
n
`
1,
i 1
ă
n
,i

1
ă
j 1
$h

1 pi
1
qă

α

pM
O
N
st
ep

a
7
q

j 1
“
n
`
1
$j

1
“
n
`
1

pM
O
N
st
ep

a
6
q

A
X
$i
f
zn
`
1
ă
n
`
1{
th
en

h
1 pj

1
qe
ls
e
α
“
α

i 1
ă
n
`
1
$i

1
ă
n
`
1

pM
O
N
st
ep

a
7
q

A
X
,h

1 pn
qă

α
,i

1
ă
n
`
1
^
n
ă
n
`
1
^
i 1
ă
n
Ñ
h

1 pi
1
qă

h
1 pn
q,i

1
ă
j 1
,i

1
ă
n
`
1
,i

1
ă
n
$h

1 pi
1
qă

α
@:

l
A
X
,h

1 pn
qă

α
,p@

jpi
1
ă
n
`
1
^
j
ă
n
`
1
^
i 1
ă
j
Ñ
h

1 pi
1
qă

h
1 pj
qqq
,i

1
ă
j 1
,i

1
ă
n
`
1
,i

1
ă
n
$h

1 pi
1
qă

α
@:

l
A
X
,h

1 pn
qă

α
,p@

i@j
pi
ă
n
`
1
^
j
ă
n
`
1
^
i
ă
j
Ñ
h

1 pi
qă

h
1 pj
qqq
,i

1
ă
j 1
,i

1
ă
n
`
1
,i

1
ă
n
$h

1 pi
1
qă

α
d
ef

A
X
,h

1 pn
qă

α
,M

O
N
ph

1 ,
n
q,i

1
ă
j 1
,i

1
ă
n
`
1,
i 1
ă
n
$h

1 pi
1
qă

α

i 1
“
n
$i

1
“
n

h
1 pn
qă

α
$h

1 pn
qă

α
“:

r
h

1 pn
qă

α
,i

1
“
n
$h

1 pi
1
qă

α
_

:
l

A
X
,h

1 pn
qă

α
,M

O
N
ph

1 ,
n
q,i

1
ă
j 1
,i

1
ă
n
`
1
,i

1
ă
n
_
i 1
“
n
$h

1 pi
1
qă

α
Ñ

:
l

A
X
,h

1 pn
qă

α
,M

O
N
ph

1 ,
n
q,i

1
ă
j 1
,i

1
ă
n
`
1,
i 1
ă
n
`
1
Ñ
i 1
ă
n
_
i 1
“
n
$h

1 pi
1
qă

α
A
X
I
O
M

:
A
1
0

A
X
,h

1 pn
qă

α
,M

O
N
ph

1 ,
n
q,i

1
ă
j 1
,i

1
ă
n
`
1
$h

1 pi
1
qă

α
“:

r
A
X
,h

1 pn
qă

α
,M

O
N
ph

1 ,
n
q,i

1
ă
j 1
,i

1
ă
n
`
1
$h

1 pi
1
qă

pif
zn
`
1
ă
n
`
1
{
th
en

h
1 pj

1
qe
ls
e
α
q
“:

r
A
X
,h

1 pn
qă

α
,M

O
N
ph

1 ,
n
q,j

1
“
n
`
1,
i 1
ă
j 1
,i

1
ă
n
`
1
$h

1 pi
1
qă

pif
zj

1
ă
n
`
1{
th
en

h
1 pj

1
qe
ls
e
α
q

pM
O
N
st
ep

a
5
q

pM
O
N
st
ep

a
4
q

A
X
,M

O
N
ph

1 ,
n
q,j

1
ă
pn
`
1q,

i 1
ă
j 1
,i

1
ă
n
`
1
$h

1 pi
1
qă

pif
zj

1
ă
n
`
1{
th
en

h
1 pj

1
qe
ls
e
α
q

pM
O
N
st
ep

a
5
q

A
X
,h

1 pn
qă

α
,M

O
N
ph

1 ,
n
q,j

1
“
pn
`
1q,

i 1
ă
j 1
,i

1
ă
n
`
1
$h

1 pi
1
qă

pif
zj

1
ă
n
`
1{
th
en

h
1 pj

1
qe
ls
e
α
q
_

:
l

A
X
,h

1 pn
qă

α
,M

O
N
ph

1 ,
n
q,j

1
ă
pn
`
1q
_
j 1
“
pn
`
1q,

i 1
ă
j 1
,i

1
ă
n
`
1
$h

1 pi
1
qă

pif
zj

1
ă
n
`
1{
th
en

h
1 pj

1
qe
ls
e
α
q

pM
O
N
st
ep

a
3
q

3

pB
I
F
1
pi 1
ă
n
`
1,
h

1 pi
1
q,α
qq

A
X
$i

1
ă
n
`
1
Ñ
pif

zi
1
ă
n
`
1{
th
en

h
1 pi

1
qe
ls
e
α
q“

h
1 pi

1
q

i 1
ă
n
`
1
$i

1
ă
n
`
1

pif
zi
1
ă
n
`
1{
th
en

h
1 pi

1
qe
ls
e
α
q“

h
1 pi

1
q$
pif

zi
1
ă
n
`
1{
th
en

h
1 pi

1
qe
ls
e
α
q“

h
1 pi

1
q
Ñ

:
l

i 1
ă
n
`
1
,i

1
ă
n
`
1
Ñ
pif

zi
1
ă
n
`
1
{
th
en

h
1 pi

1
qe
ls
e
α
q“

h
1 pi

1
q$
pif

zi
1
ă
n
`
1{
th
en

h
1 pi

1
qe
ls
e
α
q“

h
1 pi

1
q
cu
t

A
X
,i

1
ă
n
`
1
$p
if

zi
1
ă
n
`
1{
th
en

h
1 pi

1
qe
ls
e
α
q“

h
1 pi

1
q

pM
O
N
st
ep

a
2
q

pM
O
N
st
ep

a
2
q

A
X
,i

1
ă
n
`
1
$p
if

zi
1
ă
n
`
1
{
th
en

h
1 pi

1
qe
ls
e
α
q“

h
1 pi

1
q

j 1
ă
pn
`
1q
`

1
$j

1
ă
pn
`
1q
`

1
j 1
ă
pn
`
1q
_
j 1
“
pn
`
1
q$

j 1
ă
pn
`
1
q_

j 1
“
pn
`
1q

Ñ
:
l

j 1
ă
pn
`
1
q`

1,
j 1
ă
pn
`
1
q`

1
Ñ
j 1
ă
pn
`
1
q_

j 1
“
pn
`
1q
$j

1
ă
pn
`
1q
_
j 1
“
pn
`
1q

w
:
l

A
X
,j

1
ă
pn
`
1
q`

1,
j 1
ă
pn
`
1q
`

1
Ñ
j 1
ă
pn
`
1q
_
j 1
“
pn
`
1q
$j

1
ă
pn
`
1q
_
j 1
“
pn
`
1
q
A
X
I
O
M

:
A
1
0

A
X
,j

1
ă
pn
`
1q
`

1
$j

1
ă
pn
`
1q
_
j 1
“
pn
`
1q

pM
O
N
st
ep

a
3
q

A
X
,h

1 pn
qă

α
,M

O
N
ph

1 ,
n
q,j

1
ă
pn
`
1q
_
j 1
“
pn
`
1
q,i

1
ă
j 1
,i

1
ă
n
`
1
$h

1 pi
1
qă

pif
zj

1
ă
n
`
1
{
th
en

h
1 pj

1
qe
ls
e
α
q
cu
t

A
X
,A
X
,h

1 pn
qă

α
,M

O
N
ph

1 ,
n
q,j

1
ă
pn
`
1q
`

1,
i 1
ă
j 1
,i

1
ă
n
`
1
$h

1 pi
1
qă

pif
zj

1
ă
n
`
1{
th
en

h
1 pj

1
qe
ls
e
α
q
c
:
l

A
X
,h

1 pn
qă

α
,M

O
N
ph

1 ,
n
q,j

1
ă
pn
`
1q
`

1,
i 1
ă
j 1
,i

1
ă
n
`
1
$h

1 pi
1
qă

pif
zj

1
ă
n
`
1{
th
en

h
1 pj

1
qe
ls
e
α
q
“:

r
A
X
,h

1 pn
qă

α
,M

O
N
ph

1 ,
n
q,j

1
ă
pn
`
1q
`

1,
i 1
ă
j 1
,i

1
ă
n
`
1
$p
if

zi
1
ă
n
`
1{
th
en

h
1 pi

1
qe
ls
e
α
qă

pif
zj

1
ă
n
`
1
{
th
en

h
1 pj

1
qe
ls
e
α
q

pM
O
N
st
ep

a
1
q

pA
R
I
T
H

5
pi 1
,j

1
,n
qq

A
X
,i

1
ă
j 1
,j

1
ă
pn
`
1q
`

1
$i

1
ă
n
`
1

pM
O
N
st
ep

a
1
q

A
X
,h

1 pn
qă

α
,M

O
N
ph

1 ,
n
q,j

1
ă
pn
`
1
q`

1,
i 1
ă
j 1
,i

1
ă
n
`
1
$p
if

zi
1
ă
n
`
1
{
th
en

h
1 pi

1
qe
ls
e
α
qă

pif
zj

1
ă
n
`
1{
th
en

h
1 pj

1
qe
ls
e
α
q
cu
t

A
X
,A
X
,h

1 pn
qă

α
,M

O
N
ph

1 ,
n
q,j

1
ă
pn
`
1
q`

1,
i 1
ă
j 1
,i

1
ă
j 1
,j

1
ă
pn
`
1
q`

1
$p
if

zi
1
ă
n
`
1
{
th
en

h
1 pi

1
qe
ls
e
α
qă

pif
zj

1
ă
n
`
1
{
th
en

h
1 pj

1
qe
ls
e
α
q
c
:
l

A
X
,h

1 pn
qă

α
,M

O
N
ph

1 ,
n
q,j

1
ă
pn
`
1q
`

1,
i 1
ă
j 1
$p
if

zi
1
ă
n
`
1{
th
en

h
1 pi

1
qe
ls
e
α
qă

pif
zj

1
ă
n
`
1{
th
en

h
1 pj

1
qe
ls
e
α
q

w
:
l

A
X
,h

1 pn
qă

α
,M

O
N
ph

1 ,
n
q,j

1
ă
pn
`
1q
`

1
,i

1
ă
pn
`
1q
`

1,
i 1
ă
j 1
$p
if

zi
1
ă
n
`
1{
th
en

h
1 pi

1
qe
ls
e
α
qă

pif
zj

1
ă
n
`
1{
th
en

h
1 pj

1
qe
ls
e
α
q
d
ef

A
X
,h

1 pn
qă

α
,M

O
N
ph

1 ,
n
q,i

1
ă
pn
`
1q
`

1,
j 1
ă
pn
`
1q
`

1,
i 1
ă
j 1
$p
if

zi
1
ă
n
`
1{
th
en

h
1 pi

1
qe
ls
e
α
qă

tph
1 ,
n
,j

1
,α
q
d
ef

A
X
,h

1 pn
qă

α
,M

O
N
ph

1 ,
n
q,i

1
ă
pn
`
1q
`

1,
j 1
ă
pn
`
1q
`

1,
i 1
ă
j 1
$t
ph

1 ,
n
,i

1
,α
qă

tph
1 ,
n
,j

1
,α
q

^
:
l

A
X
,h

1 pn
qă

α
,M

O
N
ph

1 ,
n
q,i

1
ă
pn
`
1
q`

1
,j

1
ă
pn
`
1q
`

1
^
i 1
ă
j 1
$t
ph

1 ,
n
,i

1
,α
qă

tph
1 ,
n
,j

1
,α
q

^
:
l

A
X
,h

1 pn
qă

α
,M

O
N
ph

1 ,
n
q,i

1
ă
pn
`
1q
`

1
^
j 1
ă
pn
`
1q
`

1
^
i 1
ă
j 1
$t
ph

1 ,
n
,i

1
,α
qă

tph
1 ,
n
,j

1
,α
q

Ñ
:
r

A
X
,h

1 pn
qă

α
,M

O
N
ph

1 ,
n
q$

i 1
ă
pn
`
1q
`

1
^
j 1
ă
pn
`
1q
`

1
^
i 1
ă
j 1
Ñ
tph

1 ,
n
,i

1
,α
qă

tph
1 ,
n
,j

1
,α
q

pM
O
N
st
ep
q

5
N

O
C

C
st

e
p

pB
I
F
1pi

2
ă
n
`
1
,h

1 pi
2
q,α
qq

A
X
$i

2
ă
n
`
1
Ñ
pif

zi
2
ă
n
`
1
{
th
en

h
1 pi

2
qe
ls
e
α
q“

h
1 pi

2
q

i 2
ă
n
`
1
$i

2
ă
n
`
1

pif
zi
2
ă
n
`
1
{
th
en

h
1 pi

2
qe
ls
e
α
q“

h
1 pi

2
q$
pif

zi
2
ă
n
`
1{
th
en

h
1 pi

2
qe
ls
e
α
q“

h
1 pi

2
q

i 2
ă
n
`
1
$i

2
ă
n
`
1

f
ph

1 pi
2
qq
“
σ
$f
ph

1 pi
2
qq
“
σ
Ñ

:
l

i 2
ă
n
`
1
Ñ
f
ph

1 pi
2
qq
“
σ
,i

2
ă
n
`
1
$f
ph

1 pi
2
qq
“
σ

@:
l

p@
ipi
ă
n
`
1
Ñ
f
ph

1 pi
qq
“
σ
qq,
i 2
ă
n
`
1
$f
ph

1 pi
2
qq
“
σ

d
ef

N
O
C
C
ph

1 ,
n
,σ
q,i

2
ă
n
`
1
$f
ph

1 pi
2
qq
“
σ
“:

r
N
O
C
C
ph

1 ,
n
,σ
q,i

2
ă
n
`
1,
pif

zi
2
ă
n
`
1{
th
en

h
1 pi

2
qe
ls
e
α
q“

h
1 pi

2
q$

f
pif

zi
2
ă
n
`
1{
th
en

h
1 pi

2
qe
ls
e
α
q“

σ
Ñ

:
l

N
O
C
C
ph

1 ,
n
,σ
q,i

2
ă
n
`
1,
i 2
ă
n
`
1,
i 2
ă
n
`
1
Ñ
pif

zi
2
ă
n
`
1{
th
en

h
1 pi

2
qe
ls
e
α
q“

h
1 pi

2
q$

f
pif

zi
2
ă
n
`
1{
th
en

h
1 pi

2
qe
ls
e
α
q“

σ
c
:
l

N
O
C
C
ph

1 ,
n
,σ
q,i

2
ă
n
`
1
,i

2
ă
n
`
1
Ñ
pif

zi
2
ă
n
`
1
{
th
en

h
1 pi

2
qe
ls
e
α
q“

h
1 pi

2
q$

f
pif

zi
2
ă
n
`
1{
th
en

h
1 pi

2
qe
ls
e
α
q“

σ
cu
t

A
X
,N

O
C
C
ph

1 ,
n
,σ
q,i

2
ă
n
`
1
$f
pif

zi
2
ă
n
`
1
{
th
en

h
1 pi

2
qe
ls
e
α
q“

σ

pN
O
C
C
st
ep

a
q

pB
I
F
0
pn
`
1
ă
n
`
1,
h

1 pn
`
1q,

α
qq

A
X
$

n
`
1
ă
n
`
1
Ñ
if

zn
`
1
ă
n
`
1{
th
en

h
1 pn
`
1q
el
se
α
“
α

n
`
1
ă
n
`
1
$n

`
1
ă
n
`
1

:
l

 n
`
1
ă
n
`
1,
n
`
1
ă
n
`
1
$

:
r

 n
`
1
ă
n
`
1
$

n
`
1
ă
n
`
1

if
zn
`
1
ă
n
`
1{
th
en

h
1 pn
`
1q
el
se
α
“
α
$i
f
zn
`
1
ă
n
`
1{
th
en

h
1 pn
`
1q
el
se
α
“
α

f
pα
q“

σ
$f
pα
q“

σ
“:

r
f
pα
q“

σ
,i
f
zn
`
1
ă
n
`
1
{
th
en

h
1 pn
`
1
qe
ls
e
α
“
α
$f
pif

zn
`
1
ă
n
`
1
{
th
en

h
1 pn
`
1
qe
ls
e
α
q“

σ
Ñ

:
l

f
pα
q“

σ
,
n
`
1
ă
n
`
1
,
n
`
1
ă
n
`
1
Ñ
if

zn
`
1
ă
n
`
1{
th
en

h
1 pn
`
1q
el
se
α
“
α
$f
pif

zn
`
1
ă
n
`
1{
th
en

h
1 pn
`
1q
el
se
α
q“

σ
cu
t

A
X
,f
pα
q“

σ
,
n
`
1
ă
n
`
1
$f
pif

zn
`
1
ă
n
`
1{
th
en

h
1 pn
`
1q
el
se
α
q“

σ
A
X
I
O
M

:
A
3
3

A
X
,f
pα
q“

σ
$f
pif

zn
`
1
ă
n
`
1{
th
en

h
1 pn
`
1q
el
se
α
q“

σ

pN
O
C
C
st
ep

b
q

i 2
ă
pn
`
1q
`

1
$i

2
ă
pn
`
1
q`

1

pN
O
C
C
st
ep

a
q

A
X
,N

O
C
C
ph

1 ,
n
,σ
q,i

2
ă
n
`
1
$f
pif

zi
2
ă
n
`
1{
th
en

h
1 pi

2
qe
ls
e
α
q“

σ

i 2
“
pn
`
1
q$

i 2
“
pn
`
1q

i 2
“
pn
`
1
q$

i 2
“
pn
`
1q

pN
O
C
C
st
ep

b
q

A
X
,f
pα
q“

σ
$f
pif

zn
`
1
ă
n
`
1{
th
en

h
1 pn
`
1q
el
se
α
q“

σ
“:

r
A
X
,f
pα
q“

σ
,i

2
“
pn
`
1q
$f
pif

zn
`
1
ă
n
`
1{
th
en

h
1 pi

2
qe
ls
e
α
q“

σ
“:

r
A
X
,f
pα
q“

σ
,i

2
“
pn
`
1
q$

f
pif

zi
2
ă
n
`
1{
th
en

h
1 pi

2
qe
ls
e
α
q“

σ
_

:
l

A
X
,f
pα
q“

σ
,N

O
C
C
ph

1 ,
n
,σ
q,i

2
ă
n
`
1
_
i 2
“
pn
`
1q
$f
pif

zi
2
ă
n
`
1{
th
en

h
1 pi

2
qe
ls
e
α
q“

σ
Ñ

:
l

A
X
,f
pα
q“

σ
,N

O
C
C
ph

1 ,
n
,σ
q,i

2
ă
pn
`
1q
`

1,
i 2
ă
pn
`
1
q`

1
Ñ
pi 2
ă
n
`
1
_
i 2
“
pn
`
1qq

$f
pif

zi
2
ă
n
`
1
{
th
en

h
1 pi

2
qe
ls
e
α
q“

σ
A
X
I
O
M

:
A
1
0

A
X
,f
pα
q“

σ
,N

O
C
C
ph

1 ,
n
,σ
q,i

2
ă
pn
`
1q
`

1
$f
pif

zi
2
ă
n
`
1{
th
en

h
1 pi

2
qe
ls
e
α
q“

σ
d
ef

A
X
,f
pα
q“

σ
,N

O
C
C
ph

1 ,
n
,σ
q,i

2
ă
pn
`
1
q`

1
$f
ptp
h

1 ,
n
,i

2
,α
qq
“
σ

Ñ
:
r

A
X
,f
pα
q“

σ
,N

O
C
C
ph

1 ,
n
,σ
q$

i 2
ă
pn
`
1q
`

1
Ñ
f
ptp
h

1 ,
n
,i

2
,α
qq
“
σ

@:
r

A
X
,f
pα
q“

σ
,N

O
C
C
ph

1 ,
n
,σ
q$
p@
ipi
ă
pn
`
1q
`

1
Ñ
f
ptp
h

1 ,
n
,i
,α
qq
“
σ
qq

d
ef

A
X
,f
pα
q“

σ
,N

O
C
C
ph

1 ,
n
,σ
q$

N
O
C
C
ppλ

x
ptp
h

1 ,
n
,x
,α
qqq
,n
`
1
,σ
q

w
:
l

A
X
,h

1 pn
qă

α
,f
pα
q“

σ
,N

O
C
C
ph

1 ,
n
,σ
q$

N
O
C
C
ppλ

x
ptp
h

1 ,
n
,x
,α
qqq
,n
`
1,
σ
q

pN
O
C
C
st
ep
q

4

6
L

e
m

m
a
s

fo
r

if
-t

h
e
n
-e

ls
e

$γ
“
γ

E
Q
A
X

:
A
3
1
:
0
`
γ
“
γ

A
X
$0
`
γ
“
γ

E
Q
A
X

:
A
5
:
0
˚γ

“
0

A
X
$p

0
˚γ
q`

γ
“
γ

E
Q
A
X

:
A
6
:
p0
`

1
q˚

γ
“
p0
˚γ
q`

γ
A
X
$p

0
`
1
q˚

γ
“
γ

E
Q
A
X

:
A
3
1
:
0
`

1
“

1
A
X
$1
˚γ

“
γ

E
Q
A
X

:
A
2
1
:
1

´
0
“

1
A
X
$p

1
´
0
q˚

γ
“
γ

E
Q
A
X

:
A
3
1
:
0
`
pp1

´
0
q˚

γ
q“

pp1
´

0
q˚

γ
q

A
X
$0
`
pp1

´
0
q˚

γ
q“

γ
E
Q
A
X

:
A
5
:
0
˚β

“
0

A
X
$p

0
˚β
q`

pp1
´
0q
˚γ
q“

γ

pIF
0pβ

,γ
qq

$β
“
β

E
Q
A
X

:
A
3
1
:
0
`
β
“
β

A
X
$0
`
β
“
β

E
Q
A
X

:
A
5
:
0
˚β

“
0

A
X
$p

0
˚β
q`

β
“
β

E
Q
A
X

:
A
6
:
p0
`

1
q˚

β
“
p0
˚β
q`

β
A
X
$p

0
`
1q
˚β

“
β

E
Q
A
X

:
A
3
1
:
0
`

1
“

1
A
X
$1
˚β

“
β

E
Q
A
X

:
A
3
0
:
p1
˚β
q`

0
“

1
˚β

A
X
$p

1
˚β
q`

0
“
β

E
Q
A
X

:
A
5
:
0
˚γ

“
0

A
X
$p

1
˚β
q`

p0
˚γ
q“

β
E
Q
A
X

:
A
2
0
:
0

´
0
“

0
A
X
$p

1
˚β
q`

pp0
´
0
q˚

γ
q“

β
E
Q
A
X

:
A
2
2
:
p0
`

1
q´

p0
`

1
q“

0
´

0
A
X
$p

1
˚β
q`

ppp
0
`
1q

´
p0
`
1qq
˚γ
q“

β
E
Q
A
X

:
A
3
0
:
0
`

1
“

1
A
X
$p

1
˚β
q`

ppp
0
`
1
q´

1
q˚

γ
q“

β
E
Q
A
X

:
A
3
0
:
0
`

1
“

1
A
X
$p

1
˚β
q`

pp1
´
1q
˚γ
q“

β

pIF
1pβ

,γ
qq

X
$X

:
l

 X
,X

$

:
r

 X
$

X
zX

{“
0
$z
X
{“

0
Ñ

:
l

 X
,
X
Ñ

zX
{“

0
$z
X
{“

0
A
X
I
O
M

:
A
2
4

A
X
,
X
$z
X
{“

0

X
$X

:
l

 X
,X

$

:
r

 X
$

X
zX

{“
0
$z
X
{“

0
Ñ

:
l

 X
,
X
Ñ

zX
{“

0
$z
X
{“

0
A
X
I
O
M

:
A
2
4

A
X
,
X
$z
X
{“

0

pIF
0pα

,β
qq

A
X
$0
˚α

`
p1

´
0q
˚β

“
β
“:

r
A
X
,
X
$0
˚α

`
p1

´
zX

{q
˚β

“
β
“:

r
A
X
,
X
$z
X
{˚
α
`
p1

´
zX

{q
˚β

“
β

d
ef

A
X
,
X
$i
f
zX

{
th
en

α
el
se
β
“
β

Ñ
:
r

A
X
$

X
Ñ
if

zX
{
th
en

α
el
se
β
“
β

pB
I
F
0pX

,α
,β
qq

X
$X

zX
{“

1
$z
X
{“

1
Ñ

:
l

X
,X

Ñ
zX

{“
1
$z
X
{“

1
A
X
I
O
M

:
A
2
3

A
X
,X

$z
X
{“

1

X
$X

zX
{“

1
$z
X
{“

1
Ñ

:
l

X
,X

Ñ
zX

{“
1
$z
X
{“

1
A
X
I
O
M

:
A
2
3

A
X
,X

$z
X
{“

1

pIF
1pα

,β
qq

A
X
$1
˚α

`
p1

´
1
q˚

β
“
α

“:
r

A
X
,X

$z
X
{˚
α
`
p1

´
1q
˚β

“
α

“:
r

A
X
,X

$z
X
{˚
α
`
p1

´
zX

{q
˚β

“
α

d
ef

A
X
,X

$i
f
zX

{
th
en

α
el
se
β
“
α

Ñ
:
r

A
X
$X

Ñ
if

zX
{
th
en

α
el
se
β
“
α

pB
I
F
1
pX
,α
,β
qq

xα
y“

0
$x
α
y“

0

xα
y“

0
$x
α
y“

0

pIF
0pβ

,γ
qq

A
X
$0
˚β

`
p1

´
0q
˚γ

“
γ
“:

r
A
X
,x
α
y“

0
$0
˚β

`
p1

´
xα
yq
˚γ

“
γ
“:

r
A
X
,x
α
y“

0
$x
α
y˚
β
`
p1

´
xα
yq
˚γ

“
γ

d
ef

A
X
,x
α
y“

0
$p
if

xα
y
th
en

β
el
se
γ
q“

γ
Ñ

:
r

A
X
$x
α
y“

0
Ñ
pif

xα
y
th
en

β
el
se
γ
q“

γ

pII
F
0pα

,β
,γ
qq

xα
y“

1
$x
α
y“

1

xα
y“

1
$x
α
y“

1

pIF
1pβ

,γ
qq

A
X
$1
˚β

`
p1

´
1q
˚γ

“
β
“:

r
A
X
,x
α
y“

1
$1
˚β

`
p1

´
xα
yq
˚γ

“
β
“:

r
A
X
,x
α
y“

1
$x
α
y˚
β
`
p1

´
xα
yq
˚γ

“
β

d
ef

A
X
,x
α
y“

1
$p
if

xα
y
th
en

β
el
se
γ
q“

β
Ñ

:
r

A
X
$x
α
y“

1
Ñ
pif

xα
y
th
en

β
el
se
γ
q“

β

pII
F
1
pα
,β
,γ
qq

7
A

ri
th

m
e
ti

c

0
ă

0
`
1
$0

ă
0
`
1

A
X
I
O
M

:
A
1
9
:
0
ă
x
`

1
A
X
$0

ă
0
`
1

α
ă
α
`
1
Ñ
α
`
1
ă
pα
`
1q
`

1
$α

ă
α
`
1
Ñ
α
`
1
ă
pα
`
1q
`

1
A
X
I
O
M

:
A
3
2
:
x
ă
y
Ñ
x
`

1
ă
y
`

1
A
X
$α

ă
α
`
1
Ñ
α
`
1
ă
pα
`
1
q`

1
@:

r
A
X
$p
@n
pn
ă
n
`
1
Ñ
n
`
1
ă
pn
`
1
q`

1qq
^

:
r

A
X
$0

ă
0
`
1
^
pp@

n
pn
ă
n
`
1
Ñ
n
`
1
ă
pn
`
1
q`

1qq
q

p@
n
pn
ă
n
`
1
qq
$p
@n
pn
ă
n
`
1
qq

Ñ
:
l

A
X
,0
ă

0
`
1
^
pp@

n
pn
ă
n
`
1
Ñ
n
`
1
ă
pn
`
1
q`

1qq
qÑ

p@
n
pn
ă
n
`
1qq

$p
@n
pn
ă
n
`
1qq

A
X
I
O
M

:
I
N
D

:
su
bpY

“
pλ
x
px
ă
x
`

1
qqq

A
X
$p
@n
pn
ă
n
`
1qq

pA
R
I
T
H

1
q

0
`
1
ă

0
$0
`
1
ă

0

:
l

 0
`
1
ă

0,
0
`
1
ă

0
$

:
r

 0
`
1
ă

0
$

0
`
1
ă

0
A
X
I
O
M

:
A
1
:
 p
x
`

1
ă

0
q

A
X
$

0
`
1
ă

0

pn
`
1q
`

1
ă
n
`
1
$p
n
`
1
q`

1
ă
n
`
1

n
`
1
ă
n
$n

`
1
ă
n
Ñ

:
l

pn
`
1q
`

1
ă
n
`
1
Ñ
n
`
1
ă
n
,pn

`
1q
`

1
ă
n
`
1
$n

`
1
ă
n

:
l

pn
`
1q
`

1
ă
n
`
1
Ñ
n
`
1
ă
n
,
n
`
1
ă
n
,pn

`
1q
`

1
ă
n
`
1
$

:
r

pn
`
1
q`

1
ă
n
`
1
Ñ
n
`
1
ă
n
,
n
`
1
ă
n
$

pn
`
1q
`

1
ă
n
`
1

Ñ
:
r

pn
`
1q
`

1
ă
n
`
1
Ñ
n
`
1
ă
n
$

pn
`
1
ă
n
qÑ

 p
pn
`
1q
`

1
ă
n
`
1
q
A
X
I
O
M

:
A
3
5
:
x
`

1
ă
y
`

1
Ñ
x
ă
y

A
X
$

pn
`
1
ă
n
qÑ

 p
pn
`
1
q`

1
ă
n
`
1q

@:
r

A
X
$p
@n
p
pn
`
1
ă
n
qÑ

 p
pn
`
1
q`

1
ă
n
`
1qq
q
^

:
r

A
X
$

0
`
1
ă

0
^
p@
n
p
pn
`
1
ă
n
qÑ

 p
pn
`
1
q`

1
ă
n
`
1qq
q

p@
n
p
n
`
1
ă
n
qq
$p
@n
p
n
`
1
ă
n
qq

Ñ
:
l

A
X
,p

0
`
1
ă

0
^
p@
n
p
pn
`
1
ă
n
qÑ

 p
pn
`
1q
`

1
ă
n
`
1
qqq
qÑ

p@
n
p
pn
`
1
ă
n
qqq
$p
@n
p
n
`
1
ă
n
qq

A
X
I
O
M

:
I
N
D

:
su
bpY

“
pλ
x
p
x
`

1
ă
x
qqq

A
X
$p
@n
p
n
`
1
ă
n
qq

pA
R
I
T
H

2
q

x
1
ă
y 1
^
y 1
ă
x
1
$x

1
ă
y 1
^
y 1
ă
x
1

x
1
ă
x
1
$x

1
ă
x
1

:
l

 x
1
ă
x
1
,x

1
ă
x
1
$

Ñ
:
l

 x
1
ă
x
1
,x

1
ă
y 1
^
y 1
ă
x
1
,x

1
ă
y 1
^
y 1
ă
x
1
Ñ
x
1
ă
x
1
$

A
X
I
O
M

:
A
3
3
:
I
R
R
E
F
L
T

A
X
,x

1
ă
y 1
^
y 1
ă
x
1
,x

1
ă
y 1
^
y 1
ă
x
1
Ñ
x
1
ă
x
1
$

A
X
I
O
M

:
A
3
4
:
T
R
A
N
S
L
T

A
X
,x

1
ă
y 1
^
y 1
ă
x
1
$

:
r

A
X
$

px
1
ă
y 1
^
y 1
ă
x
1
q

pA
R
I
T
H

3
px

1
,y

1
qq

5

x
1
`
1
ă
x
1
`
0
$x

1
`
1
ă
x
1
`
0

1
ă

0
$1

ă
0

:
l

1
ă

0,
 1

ă
0
$

A
X
I
O
M

:
A
7

A
X
,1
ă

0
$

Ñ
:
l

A
X
,x

1
`
1
ă
x
1
`
0
Ñ

1
ă

0,
x
1
`
1
ă
x
1
`
0
$

E
Q
A
X

:
1
`
x
1
“
x
1
`

1
A
X
,1
`
x
1
ă
x
1
`
0
Ñ

1
ă

0,
x
1
`
1
ă
x
1
`
0
$

E
Q
A
X

:
0
`
x
1
“
x
1
`

0
A
X
,1
`
x
1
ă

0
`
x
1
Ñ

1
ă

0,
x
1
`
1
ă
x
1
`
0
$

A
X
I
O
M

:
A
1
7
:
C
A
N
C
E
L
P
L
U
S

A
X
,x

1
`
1
ă
x
1
`
0
$

E
Q
A
X

:
A
3
0
:
x
1
`

0
“
x
1

A
X
,x

1
`
1
ă
x
1
$

:
r

A
X
$

x
1
`
1
ă
x
1

pA
R
I
T
H

4
px

1
qq

j
ă
pn
`
1q
`

1
$j
ă
pn
`
1
q`

1

i
ă
j
$i
ă
j

j
ă
n
`
1
$j
ă
n
`
1
^

:
r

i
ă
j,
j
ă
n
`
1
$i
ă
j
^
j
ă
n
`
1

i
ă
n
`
1
$i
ă
n
`
1
Ñ

:
l

i
ă
j,
j
ă
n
`
1
,i
ă
j
^
j
ă
n
`
1
Ñ
i
ă
n
`
1
$i
ă
n
`
1

A
X
I
O
M

:
A
3
4

A
X
,i
ă
j,
j
ă
n
`
1
$i
ă
n
`
1

j
“
n
`
1
$j
“
n
`
1

i
ă
n
`
1
$i
ă
n
`
1
“:

l
i
ă
j,
j
“
n
`
1
$i
ă
n
`
1
_

:
l

A
X
,i
ă
j,
j
ă
n
`
1|j
“
n
`
1
$i
ă
n
`
1
Ñ

:
l

A
X
,i
ă
j,
j
ă
pn
`
1
q`

1,
j
ă
pn
`
1q
`

1
Ñ
pj
ă
n
`
1|j
“
n
`
1q
$i
ă
n
`
1

A
X
I
O
M

:
A
1
0

A
X
,i
ă
j,
j
ă
pn
`
1
q`

1
$i
ă
n
`
1

pA
R
I
T
H

5
pi,
j,
n
qq

0
ă
pn

1
`
1q
$0

ă
pn

1
`
1q

A
X
I
O
M

:
A
1
9

A
X
$0

ă
pn

1
`
1q

0
`
n
0
ă
pn

1
`
1q
`
n
0
$0
`
n
0
ă
pn

1
`
1
q`

n
0
Ñ

:
l

A
X
,0
ă
pn

1
`
1q
Ñ

0
`
n
0
ă
pn

1
`
1q
`
n
0
$0
`
n
0
ă
pn

1
`
1q
`
n
0

A
X
I
O
M

:
A
3
6

A
X
$0
`
n
0
ă
pn

1
`
1q
`
n
0

E
Q
A
X

:
A
1
2
:
pn

1
`

1
q`

n
0
“
n
0
`
pn

1
`

1
q

A
X
$0
`
n
0
ă
n
0
`
pn

1
`
1q

E
Q
A
X

:
A
3
1
:
0
`
n
0
“
n
0

A
X
$n

0
ă
n
0
`
pn

1
`
1q

E
Q
A
X

:
A
1
3
:
n
0
`
pn

1
`

1
q“

pn
0
`
n
1
q`

1
A
X
$n

0
ă
pn

0
`
n
1
q`

1

pL
T
S
U
M
pn

0
,n

1
qq

pL
T
S
U
M
pn

0
,n

1
qq

A
X
$n

0
ă
pn

0
`
n
1
q`

1

pL
T
S
U
M
pn

1
,n

0
qq

A
X
$n

1
ă
pn

1
`
n
0
q`

1
E
Q
A
X

:
A
1
2
:
n
1
`
n
0
“
n
0
`
n
1

A
X
$n

1
ă
pn

0
`
n
1
q`

1

f
ppn

0
`
n
1
q`

1q
“

0
$f
ppn

0
`
n
1
q`

1q
“

0
f
ppn

0
`
n
1
q`

1
q“

1
$f
ppn

0
`
n
1
q`

1q
“

1
_

:
l

f
ppn

0
`
n
1
q`

1q
“

0
_
f
ppn

0
`
n
1
q`

1q
“

1
$f
ppn

0
`
n
1
q`

1q
“

1,
f
ppn

0
`
n
1
q`

1q
“

0
@:

l
p@
x
pf
px
q“

0
_
f
px
q“

1qq
$f
ppn

0
`
n
1
q`

1q
“

1,
f
ppn

0
`
n
1
q`

1q
“

0
d
ef

T
$f
ppn

0
`
n
1
q`

1q
“

1,
f
ppn

0
`
n
1
q`

1q
“

0
^

:
r

A
X
,T
$f
ppn

0
`
n
1
q`

1q
“

1,
pn

1
ă
pn

0
`
n
1
q`

1q
^
f
ppn

0
`
n
1
q`

1q
“

0
^

:
r

A
X
,T
$p
n
0
ă
pn

0
`
n
1
q`

1
q^

f
ppn

0
`
n
1
q`

1q
“

1,
pn

1
ă
pn

0
`
n
1
q`

1q
^
f
ppn

0
`
n
1
q`

1q
“

0
D:

r
A
X
,T
$p
n
0
ă
pn

0
`
n
1
q`

1
q^

f
ppn

0
`
n
1
q`

1q
“

1,
pDy
ppn

1
ă
y
q^

f
py
q“

0
qq

D:
r

A
X
,T
$p
Dy
ppn

0
ă
y
q^

f
py
q“

1qq
,pD

y
ppn

1
ă
y
q^

f
py
q“

0qq
@:

r
A
X
,T
$p
Dy
ppn

0
ă
y
q^

f
py
q“

1qq
,p@

x
Dy
ppx

ă
y
q^

f
py
q“

0
qq

@:
r

A
X
,T
$p
@x
Dy
ppx

ă
y
q^

f
py
q“

1qq
,p@

x
Dy
ppx

ă
y
q^

f
py
q“

0qq
d
ef

A
X
,T
$p
@x
Dy
ppx

ă
y
q^

f
py
q“

1
qq,
I
p0q

d
ef

A
X
,T
$I
p1q
,I
p0q

pIN
F
T
A
P
E
q

6

APPENDIX B

Resolution refutations of the CSS

B.1 Version 2, Prover 9 refutation

set (prolog_style_variables) .

============================== PROOF =================================

%´´´´´´´´ Comments from original proof´´´´´´´´
% Proof 1 at 0.01 (+ 0.00) seconds.
% Length of proof is 32.
% Level of proof is 9.
% Maximum clause weight is 21.000.
% Given clauses 61.

1 f (A) != 1 | ´(s26(q2) < s26(q2) + 1) | ´(s25(q2,s26(q2)) < B) | ´(s25(q2,s26(q2)) < B) | f (B) != 1 # label (sequent0) # label (axiom
). [assumption].

2 f (A) != 1 | ´(s26(q2) < s26(q2) + 1) | ´(s25(q2,s26(q2)) < B) | f (B) != 1. [copy(1) ,merge(d)].
5 f (A) != 0 | ´(s10(q1) < s10(q1) + 1) | ´(s9(q1,s10(q1)) < B) | ´(s9(q1,s10(q1)) < B) | f (B) != 0 # label (sequent2) # label (axiom).

[assumption].
6 f (A) != 0 | ´(s10(q1) < s10(q1) + 1) | ´(s9(q1,s10(q1)) < B) | f (B) != 0. [copy(5) ,merge(d)].
9 f ((A + B) + 1) = 0 | f ((A + B) + 1) = 1 # label (sequent4) # label (axiom). [assumption].
13 0 + A = A # label (sequent7) # label (axiom). [assumption].
16 A + B = B + A # label (sequent9) # label (axiom). [assumption].
17 0 + A < (B + 1) + A # label (sequent10) # label (axiom). [assumption].
18 A < (B + 1) + A. [copy(17) , rewrite ([13(2)])].
20 A + (B + 1) = (A + B) + 1 # label (sequent13) # label (axiom). [assumption].
21 1 + (A + B) = A + (B + 1) . [copy(20) , rewrite ([16(6)]) , flip (a)].
23 f (A) != 1 | ´(s26(q2) < 1 + s26(q2)) | ´(s25(q2,s26(q2)) < A). [factor (2, a ,d) , rewrite ([16(9)])].
24 f (A) != 0 | ´(s10(q1) < 1 + s10(q1)) | ´(s9(q1,s10(q1)) < A). [factor (6, a ,d) , rewrite ([16(9)])].
25 f(1 + (A + B)) = 0 | f(1 + (A + B)) = 1. [back_rewrite (9) , rewrite ([16(3) ,16(9)])].
27 A < 1 + A. [para(13(a ,1) ,18(a ,2,1))].
30 f (A) != 0 | ´(s9(q1,s10(q1)) < A). [back_unit_del (24) , unit_del (b,27)].
31 f (A) != 1 | ´(s25(q2,s26(q2)) < A). [back_unit_del (23) , unit_del (b,27)].
32 (A + 1) + B = 1 + (B + A). [para(21(a ,2) ,16(a ,1)) , flip (a)].
33 1 + (A + B) = B + (A + 1) . [para(16(a ,1) ,21(a ,1,2))].
37 1 + (1 + (A + B)) = A + (1 + (B + 1)) . [para(21(a ,2) ,21(a ,1,2)) , rewrite ([16(9)])].
39 f(1 + A) = 0 | f(1 + A) = 1. [para(13(a ,1) ,25(a ,1,1,2)) , rewrite ([13(8)])].
46 f ((A + 1) + s9(q1,s10(q1))) != 0. [resolve (30,b ,18, a)].
48 f ((A + 1) + s25(q2,s26(q2))) != 1. [resolve (31,b ,18, a)].
58 f(1 + (s9(q1,s10(q1)) + A)) != 0. [para(16(a ,1) ,46(a ,1,1)) , rewrite ([21(7, R)])].
69 (A + 1) + B = 1 + (A + B). [para(16(a ,1) ,32(a ,2,2))].
77 f(1 + (A + s25(q2,s26(q2)))) != 1. [back_rewrite (48) , rewrite ([69(7)])].
82 f (A + (1 + s25(q2,s26(q2)))) != 1. [para(21(a ,1) ,77(a ,1,1)) , rewrite ([16(6)])].
96 f(1 + (1 + (A + s9(q1,s10(q1))))) != 0. [para(33(a ,2) ,58(a ,1,1,2))].
101 f ((1 + s25(q2,s26(q2))) + A) != 1. [para(16(a ,1) ,82(a ,1,1))].
174 f(1 + (1 + ((1 + s25(q2,s26(q2))) + A))) != 1. [para(37(a ,2) ,101(a ,1,1))].
210 f(1 + (1 + (A + s9(q1,s10(q1))))) = 1. [resolve (39,a ,96, a)].
211 $F. [resolve (210,a ,174, a)].

============================== end of proof ==========================

154

B.2 Version 3, Prover 9 refutation

set (prolog_style_variables) .

============================== PROOF =================================

%´´´´´´´´ Comments from original proof´´´´´´´´
% Proof 1 at 0.01 (+ 0.00) seconds.
% Length of proof is 19.
% Level of proof is 6.
% Maximum clause weight is 25.000.
% Given clauses 19.

1 0 + A < (B + 1) + A # label (sequent0) # label (axiom). [assumption].
2 A + (B + 1) = (A + B) + 1 # label (sequent1) # label (axiom). [assumption].
3 (A + B) + 1 = A + (B + 1) . [copy(2) , flip (a)].
4 f ((A + B) + 1) = 0 | f ((A + B) + 1) = 1 # label (sequent2) # label (axiom). [assumption].
5 f (A + (B + 1)) = 0 | f (A + (B + 1)) = 1. [copy(4) , rewrite ([3(3) ,3(9)])].
7 f (A) != B | ´(s10(q1(B)) < s10(q1(B)) + 1) | ´(s9(q1(B),s10(q1(B))) < C) | f (C) != B # label (sequent4) # label (axiom). [

assumption].
8 A + B = B + A # label (sequent5) # label (axiom). [assumption].
9 0 + A = A # label (sequent6) # label (axiom). [assumption].
11 f (A) != B | ´(s10(q1(B)) < 1 + s10(q1(B))) | ´(s9(q1(B),s10(q1(B))) < A). [factor (7, a ,d) , rewrite ([8(8)])].
12 1 + (A + B) = A + (B + 1) . [back_rewrite (3) , rewrite ([8(3)])].
13 A < (B + 1) + A. [back_rewrite (1) , rewrite ([9(2)])].
15 f ((A + 1) + B) = 0 | f (B + (A + 1)) = 1. [para (8(a ,1) ,5(a ,1,1))].
27 f ((A + 1) + s9(q1(B),s10(q1(B)))) != B | ´(s10(q1(B)) < 1 + s10(q1(B))) . [resolve (13,a ,11, c)].
31 A < 1 + A. [para (9(a ,1) ,13(a ,2,1))].
33 f ((A + 1) + s9(q1(B),s10(q1(B)))) != B. [back_unit_del (27) , unit_del (b,31)].
52 f(1 + (s9(q1(A),s10(q1(A))) + B)) != A. [para (8(a ,1) ,33(a ,1,1)) , rewrite ([12(7, R)])].
60 f(1 + (s9(q1(0) ,s10(q1(0))) + A)) = 1. [resolve (15,a ,33, a) , rewrite ([12(9, R)])].
76 f(1 + (A + s9(q1(B),s10(q1(B))))) != B. [para (8(a ,1) ,52(a ,1,1,2))].
77 $F. [resolve (76,a ,60, a)].

============================== end of proof ==========================

155

APPENDIX C

Full resolution simulation example for chapter

@xP px, sq $@xP px, sq
w : r@xP px, sq $@xP px, sq,@xP px, tq
Ñ: r$@xP px, sq,@xP px, sq Ñ @xP px, tq

w : l@XpXpsq Ñ Xptqq $@xP px, sq,@xP px, sq Ñ @xP px, tq
pπ1q

〈P pv, sq〉λxP px,sq $〈P pv, sq〉λxP px,sq
@
sk : l@xP px, sq $〈P pv, sq〉λxP px,sq
w : r

@xP px, sq $〈P pv, sq〉λxP px,sq,@xP px, tq
Ñ: r

$〈P pv, sq〉λxP px,sq,@xP px, sq Ñ @xP px, tq
w : l

@XpXpsq Ñ Xptqq $〈P pv, sq〉λxP px,sq,@xP px, sq Ñ @xP px, tq
pπ2q

〈P pd, sq〉λxP px,sq $〈P pd, sq〉λxP px,sq
@
sk : l@xP px, sq $〈P pd, sq〉λxP px,sq
w : r

@xP px, sq $〈P pd, sq〉λxP px,sq,@xP px, tq
Ñ: r

$〈P pd, sq〉λxP px,sq,@xP px, sq Ñ @xP px, tq
w : l

@XpXpsq Ñ Xptqq $〈P pd, sq〉λxP px,sq,@xP px, sq Ñ @xP px, tq
pπ3q

Y psq $Y psq Y ptq $ Y ptq
Ñ: l

Y psq, Y psq Ñ Y ptq $ Y ptq
@
sk : l

Y psq,@XpXpsq Ñ Xptqq $ Y ptq
w : r

Y psq,@XpXpsq Ñ Xptqq $ Y ptq,@xP px, sq Ñ @xP px, tq
pπ4q

156

@xP px, sq $@xP px, sq @xP px, tq $ @xP px, tq
Ñ: l@xP px, sq,@xP px, sq Ñ @xP px, tq $ @xP px, tq
@
sk : l@xP px, sq,@XpXpsq Ñ Xptqq $ @xP px, tq

w : r@xP px, sq,@XpXpsq Ñ Xptqq $ @xP px, tq,@xP px, sq Ñ @xP px, tq
pπ5q

@xP px, sq $@xP px, sq
〈P pu, tq〉λxP px,tq $ 〈P pu, tq〉λxP px,tq

@
sk : l@xP px, tq $ 〈P pu, tq〉λxP px,tq

Ñ: l
@xP px, sq,@xP px, sq Ñ @xP px, tq $ 〈P pu, tq〉λxP px,tq

@
sk : l@xP px, sq,@XpXpsq Ñ Xptqq $ 〈P pu, tq〉λxP px,tq

w : r

@xP px, sq,@XpXpsq Ñ Xptqq $ 〈P pu, tq〉λxP px,tq,@xP px, sq Ñ @xP px, tq
pπ6q

@xP px, sq $@xP px, sq
〈P pc, tq〉λxP px,tq $ 〈P pc, tq〉λxP px,tq

@
sk : l@xP px, tq $ 〈P pc, tq〉λxP px,tq

Ñ: l
@xP px, sq,@xP px, sq Ñ @xP px, tq $ 〈P pc, tq〉λxP px,tq

@
sk : l@xP px, sq,@XpXpsq Ñ Xptqq $ 〈P pc, tq〉λxP px,tq

w : r

@xP px, sq,@XpXpsq Ñ Xptqq $ 〈P pc, tq〉λxP px,tq,@xP px, sq Ñ @xP px, tq
pπ7q

@xP px, tq $@xP px, tq
w : l@xP px, tq,@xP px, sq $@xP px, tq
Ñ: r@xP px, tq $@xP px, sq Ñ @xP px, tq

w : l@xP px, tq,@XpXpsq Ñ Xptqq $@xP px, sq Ñ @xP px, tq
pπ8q

P pc, tq $P pc, tq
@ : r

P pc, tq $@xP px, tq
w : l

P pc, tq,@xP px, sq $@xP px, tq
Ñ: r

P pc, tq $@xP px, sq Ñ @xP px, tq
w : l

P pc, tq,@XpXpsq Ñ Xptqq $@xP px, sq Ñ @xP px, tq
pπ9q

pπ7q
@xP px, sq,@XpXpsq Ñ Xptqq $P pc, tq,@xP px, sq Ñ @xP px, tq

pπ9q
P pc, tq,@XpXpsq Ñ Xptqq $@xP px, sq Ñ @xP px, tq

cut@xP px, sq,@XpXpsq Ñ Xptqq,@XpXpsq Ñ Xptqq $@xP px, sq Ñ @xP px, tq,@xP px, sq Ñ @xP px, tq
c : l@xP px, sq,@XpXpsq Ñ Xptqq $@xP px, sq Ñ @xP px, tq,@xP px, sq Ñ @xP px, tq

c : r@xP px, sq,@XpXpsq Ñ Xptqq $@xP px, sq Ñ @xP px, tq
pπ10q

157

P pd, sq $P pd, sq
@
sk : r

P pd, sq $@xP px, sq
〈P pc, tq〉λxP px,tq $〈P pc, tq〉λxP px,tq

@
sk : l@xP px, tq $〈P pc, tq〉λxP px,tq

Ñ: l
P pd, sq,@xP px, sq Ñ @xP px, tq $〈P pc, tq〉λxP px,tq

@
sk : l

P pd, sq,@XpXpsq Ñ Xptqq $〈P pc, tq〉λxP px,tq
w : r

P pd, sq,@XpXpsq Ñ Xptqq $〈P pc, tq〉λxP px,tq,@xP px, sq Ñ @xP px, tq
pπ9q

P pc, tq,@XpXpsq Ñ Xptqq $@xP px, sq Ñ @xP px, tq
cut

P pd, sq,@XpXpsq Ñ Xptqq,@XpXpsq Ñ Xptqq $@xP px, sq Ñ @xP px, tq,@xP px, sq Ñ @xP px, tq
c : l

P pd, sq,@XpXpsq Ñ Xptqq $@xP px, sq Ñ @xP px, tq,@xP px, sq Ñ @xP px, tq
c : r

P pd, sq,@XpXpsq Ñ Xptqq $@xP px, sq Ñ @xP px, tq
pπ11q

pπ3q
@XpXpsq Ñ Xptqq $P pd, sq,@xP px, sq Ñ @xP px, tq

pπ11q
P pd, sq,@XpXpsq Ñ Xptqq $@xP px, sq Ñ @xP px, tq

cut@XpXpsq Ñ Xptqq,@XpXpsq Ñ Xptqq $@xP px, sq Ñ @xP px, tq,@xP px, sq Ñ @xP px, tq
c : l@XpXpsq Ñ Xptqq $@xP px, sq Ñ @xP px, tq,@xP px, sq Ñ @xP px, tq

c : r@XpXpsq Ñ Xptqq $@xP px, sq Ñ @xP px, tq
pπ12q

158

APPENDIX D

LLK LATEXStyle

The file is also for download at http://www.logic.at/staff/riener/static/llk.sty.

\NeedsTeXFormat{LaTeX2e}
\ProvidesPackage{llk}

\RequirePackage{bussproofs}

\newcommand{\lkproves}[0]{\ensuremath{\vdash}}
\renewcommand{\fCenter}{\lkproves}
\newcommand{\apply}[1]{#1}

\newcommand{\AX}[2]{\AxiomC{\ensuremath{#1} \fCenter \ensuremath{#2}}}
\newcommand{\UI}[2]{\UnaryInfC{\ensuremath{#1} \fCenter \ensuremath{#2}}}
\newcommand{\BI}[2]{\BinaryInfC{\ensuremath{#1} \fCenter \ensuremath{#2}}}
\newcommand{\LL}[1]{\LeftLabel{\footnotesize \ensuremath{#1}}}
\newcommand{\RL}[1]{\RightLabel{\footnotesize \ensuremath{#1}}}
\newcommand{\RLN}[1]{\RightLabel{#1}}

% labels
\newcommand{\SALLL}{\RL{\forall:l}}
\newcommand{\SALLR}{\RL{\forall:r}}
\newcommand{\SEXL}{\RL{\exists:l}}
\newcommand{\SEXR}{\RL{\exists:r}}
\newcommand{\SALLSKL}{\RL{\forall^{sk}:l}}
\newcommand{\SALLSKR}{\RL{\forall^{sk}:r}}
\newcommand{\SEXSKL}{\RL{\exists^{sk}:l}}
\newcommand{\SEXSKR}{\RL{\exists^{sk}:r}}
\newcommand{\SANDL}{\RL{\land:l}}
\newcommand{\SANDR}{\RL{\land:r}}
\newcommand{\SORL}{\RL{\lor:l}}
\newcommand{\SORR}{\RL{\lor:r}}
\newcommand{\SIMPL}{\RL{\impl:l}}
\newcommand{\SIMPR}{\RL{\impl:r}}
\newcommand{\SNEGL}{\RL{\neg:l}}
\newcommand{\SNEGR}{\RL{\neg:r}}
\newcommand{\SEQL}{\RL{=:l}}
\newcommand{\SEQSKL}{\RL{=_{sk}:l}}
\newcommand{\SEQLA}{\RL{=:l_1}}
\newcommand{\SEQLB}{\RL{=:l_2}}
\newcommand{\SEQR}{\RL{=:r}}
\newcommand{\SEQSKR}{\RL{=_{sk}:r}}
\newcommand{\SEQRA}{\RL{=:r_1}}

159

http://www.logic.at/staff/riener/static/llk.sty

\newcommand{\SEQRB}{\RL{=:r_2}}
\newcommand{\SWEAKL}{\RL{w:l}}
\newcommand{\SWEAKR}{\RL{w:r}}
\newcommand{\SWEAKRL}{\RL{w:∗}}
\newcommand{\SCONTRL}{\RL{c:l}}
\newcommand{\SCONTRR}{\RL{c:r}}
\newcommand{\SCONTRRL}{\RL{c:∗}}
\newcommand{\SCUT}{\RL{cut}}
\newcommand{\SDEF}{\RL{def}}
\newcommand{\SBETA}{\RL{\beta}}
\newcommand{\SINSTLEMMA}[1]{\RL{LEMMA: #1}}
\newcommand{\SINSTAXIOM}[1]{\RL{AXIOM: #1}}
\newcommand{\SEQAXIOM}[1]{\RL{EQAX: #1}}

%lk rules
\newcommand{\ALLL} [3]{\ SALLL \UI{#2}{#3} }
\newcommand{\ALLR} [3]{\ SALLR \UI{#2}{#3} }
\newcommand{\EXL} [3]{\ SEXL \UI{#2}{#3} }
\newcommand{\EXR} [3]{\ SEXR \UI{#2}{#3} }
\newcommand{\ALLSKL} [3]{\SALLSKL \UI{#2}{#3} }
\newcommand{\ALLSKR} [3]{\SALLSKR \UI{#2}{#3} }
\newcommand{\EXSKL} [3]{\ SEXSKL \UI{#2}{#3} }
\newcommand{\EXSKR} [3]{\ SEXSKR \UI{#2}{#3} }
\newcommand{\ANDL} [2]{\ SANDL \UI{#1}{#2} }
\newcommand{\ANDR} [2]{\ SANDR \BI{#1}{#2} }
\newcommand{\ORL} [2]{\ SORL \BI{#1}{#2} }
\newcommand{\ORR} [2]{\ SORR \UI{#1}{#2} }
\newcommand{\IMPL} [2]{\ SIMPL \BI{#1}{#2}}
\newcommand{\IMPR} [2]{\ SIMPR \UI{#1}{#2}}
\newcommand{\NEGL} [2]{\ SNEGL \UI{#1}{#2}}
\newcommand{\NEGR} [2]{\ SNEGR \UI{#1}{#2}}
\newcommand{\EQL} [2]{\ SEQL \BI{#1}{#2}}
\newcommand{\EQSKL} [2]{\SEQSKL \BI{#1}{#2}}
\newcommand{\EQLA} [2]{\ SEQLA \BI{#1}{#2}}
\newcommand{\EQLB} [2]{\ SEQLB \BI{#1}{#2}}
\newcommand{\EQR} [2]{\ SEQR \BI{#1}{#2}}
\newcommand{\EQSKR} [2]{\SEQSKR \BI{#1}{#2}}
\newcommand{\EQRA} [2]{\ SEQRA \BI{#1}{#2}}
\newcommand{\EQRB} [2]{\ SEQRB \BI{#1}{#2}}
\newcommand{\WEAKL} [2]{\SWEAKL \UI{#1}{#2}}
\newcommand{\WEAKR} [2]{\SWEAKR \UI{#1}{#2}}
\newcommand{\CONTRL} [2]{\SCONTRL \UI{#1}{#2}}
\newcommand{\CONTRR} [2]{\SCONTRR \UI{#1}{#2}}
\newcommand{\CUT} [2]{\ SCUT \BI{#1}{#2}}
\newcommand{\DEF} [2]{\ SDEF \UI{#1}{#2}}
\newcommand{\BETA} [2]{\ SBETA \UI{#1}{#2}}
\newcommand{\INSTLEMMA}[3]{\SINSTLEMMA{#1} \UI{#2}{#3}}
\newcommand{\INSTAXIOM}[3]{\SINSTAXIOM{#1} \UI{#2}{#3}}
\newcommand{\EQAXIOM} [3]{\SEQAXIOM{#1} \UI{#2}{#3}}

\newcommand{\CONTINUEWITH}[1]{
\noLine

160

\UnaryInfC{\ensuremath{(#1)}}
}

\newcommand{\CONTINUEFROM}[3]{
\AxiomC{\ensuremath{(#1)}}
\noLine
\UI{#2}{#3}

}

% unary equational rules
\newcommand{\SEQUL}{\RL{=:ul}}
\newcommand{\SEQUR}{\RL{=:ur}}
\newcommand{\UEQR}[2]{\SEQUR \UI{#1}{#2}}
\newcommand{\UEQL}[2]{\SEQUL \UI{#1}{#2}}

% environments
\newenvironment{declaration}[0]{
\ section {Type Declarations }
$
\begin{array}{ll@{ : }l}
}{
\end{array}
$
}
\newenvironment{theoryaxioms}[0]{
\ section {Theory Axioms}
}{
}

\newenvironment{ definitions }[0]{
\ section { Definitions }
$
\begin{array}{l@{\;\equiv \; }l}
}{
\end{array}
$
}

\newcommand{\TYPEDEC}[3]{ #1 & #2 & #3 \\}
\newcommand{\CONSTDEC}[2]{\TYPEDEC{const}{#1}{#2}}
\newcommand{\VARDEC}[2]{\TYPEDEC{var}{#1}{#2}}

\newcommand{\AXIOMDEC}[3]{#1 & #2 & #3 \\}
\newcommand{\SEQUENT}[2]{{\ensuremath{#1 \lkproves #2}} }
\newcommand{\SEQUENTLINE}[2]{\ensuremath{#1 \lkproves #2};\\ }

\newcommand{\PREDDEF}[2]{#1 & #2 \\}
\newcommand{\FUNDEF}[2]{#1 & #2 \\}

\newcommand{\ienc}[1]{\ensuremath{\ulcorner{#1}\urcorner}}
\newcommand{\benc}[1]{\ensuremath{\llcorner{#1}\ lrcorner}}

161

\newcommand{\impl}{\ensuremath{\rightarrow}}
\newcommand{\dimpl}{\ensuremath{\leftrightarrow}}
\newcommand{\bm}{\ensuremath{\dotdiv}}
\newcommand{\spc}[0]{\mbox{ }}
\newcommand{\ite}[3]{\ensuremath{if\spc #1\spc then \spc #2\spc else \spc #3}}

\newcommand{\MON}[2]{(\forall i \forall j (i<#2+1 \land j<#2+1 \land i<j \impl #1(i)<#1(j))) }
\newcommand{\NOCC}[3]{(\forall i (i<#2+1 \impl f(#1(i))=#3)) }

% Ral %

\newcommand{\SSUB}[0]{\RL{Sub}}
\newcommand{\SNEGT}[0]{\RL{\neg^T}}
\newcommand{\SORT}[0]{\RL{\lor^T}}
\newcommand{\SANDLT}[0]{\RL{\land^T_l}}
\newcommand{\SANDRT}[0]{\RL{\land^T_r}}
\newcommand{\SIMPT}[0]{\RL{\impl^T}}
\newcommand{\SALLT}[0]{\RL{\forall^T}}
\newcommand{\SEXISTST}[0]{\RL{\exists^T}}
\newcommand{\SNEGF}[0]{\RL{\neg^F}}
\newcommand{\SORLF}[0]{\RL{\lor^F_l}}
\newcommand{\SORRF}[0]{\RL{\lor^F_r}}
\newcommand{\SANDF}[0]{\RL{\land^F}}
\newcommand{\SIMPLF}[0]{\RL{\impl^F_l}}
\newcommand{\SIMPRF}[0]{\RL{\impl^F_r}}
\newcommand{\SALLF}[0]{\RL{\forall^F}}
\newcommand{\SEXISTSF}[0]{\RL{\exists^F}}
\newcommand{\SEQF}[0]{\RL{=^F}}
\newcommand{\SEQT}[0]{\RL{=^T}}
\newcommand{\SEQFF}[0]{\RL{=^F_{flip}}}
\newcommand{\SEQFT}[0]{\RL{=^T_{flip}}}

\newcommand{\SUB}[2]{\SSUB \UI{#1}{#2}}
\newcommand{\NEGT}[2]{\SNEGT \UI{#1}{#2}}
\newcommand{\ORT}[2]{\SORT \UI{#1}{#2} }
\newcommand{\ANDLT}[2]{\SANDLT \UI{#1}{#2}}
\newcommand{\ANDRT}[2]{\SANDRT \UI{#1}{#2}}
\newcommand{\IMPT}[2]{\SIMPT \UI{#1}{#2}}
\newcommand{\ALLT}[3]{\SALLT \UI{#2}{#3}}
\newcommand{\EXISTST}[3]{\SEXISTST \UI{#2}{#3}}
\newcommand{\NEGF}[2]{\SNEGF \UI{#1}{#2}}
\newcommand{\ORLF}[2]{\SORLF \UI{#1}{#2}}
\newcommand{\ORRF}[2]{\SORRF \UI{#1}{#2}}
\newcommand{\ANDF}[2]{\SANDF \UI{#1}{#2}}
\newcommand{\IMPLF}[2]{\SIMPLF \UI{#1}{#2}}
\newcommand{\IMPRF}[2]{\SIMPRF \UI{#1}{#2}}
\newcommand{\ALLF}[3]{\SALLF \UI{#2}{#3}}
\newcommand{\EXISTSF}[3]{\SEXISTSF \UI{#2}{#3}}
\newcommand{\EQF}[2]{\SEQF \BI{#1}{#2}}
\newcommand{\EQT}[2]{\SEQF \BI{#1}{#2}}
\newcommand{\EQFF}[2]{\SEQFF \BI{#1}{#2}}

162

\newcommand{\EQFT}[2]{\SEQFT \BI{#1}{#2}}

\endinput

163

APPENDIX E

GAPT Proof Analysis Script

The file is also available as examples/ntape/nTape.scala within the examples of the
GAPT distribution.

package at . logic . gapt . proofs .ceres_omega

import at . logic . gapt . expr ._
import at . logic . gapt . expr . hol . universalClosure
import at . logic . gapt . formats . tptp .TPTPHOLExporter
import at . logic . gapt . proofs .expansion._
import at . logic . gapt . proofs . lk ._
import at . logic . gapt . expr . fol .{ reduceHolToFol, replaceAbstractions , undoHol2Fol }
import at . logic . gapt . formats . llk .ExtendedProofDatabase
import at . logic . gapt . proofs . ceres ._
import at . logic . gapt . proofs .{ HOLClause, HOLSequent, Sequent }
import at . logic . gapt . proofs . resolution .{ Resolution2RalWithAbstractions , ResolutionToLKProof }
import at . logic . gapt . provers . eprover .EProver
import at . logic . gapt . provers . prover9 .Prover9
import at . logic . gapt . utils .{ TimeOutException, withTimeout }

import scala . concurrent . duration .Duration

/∗∗
∗ The generic template for using ceres_omega to analyze a proof . It performs the following steps :
∗
∗ 1) eliminate definitions ([[AnalysisWithCeresOmega.input_proof]]
∗
∗ 2) eliminate definitions ([[AnalysisWithCeresOmega.preprocessed_input_proof1]]
∗
∗ 3) expand non´atomic axioms ([[AnalysisWithCeresOmega.preprocessed_input_proof2]])
∗
∗ 4) make the proof regular ([[AnalysisWithCeresOmega.preprocessed_input_proof]])
∗
∗ 5) convert it to lk_sk ([[AnalysisWithCeresOmega.lksk_proof]])
∗
∗ 6) compute the struct , css and projections ([[AnalysisWithCeresOmega.css]],
∗
∗ [[AnalysisWithCeresOmega.projections]], [[AnalysisWithCeresOmega.struct]])
∗
∗ 7) map the css to first ´order by lambda lifting and erasure of types
∗ ([[AnalysisWithCeresOmega.fol_css]])
∗
∗ 8) try to find a refutation of the css

164

∗ ([[AnalysisWithCeresOmega. fol_refutation]])
∗
∗ 9) reintroduce types (might fail because type erasure is a heuristic which is unsound in general)
∗ (no method available , included in step 11)
∗
∗ 10) reintroduce terms abstracted away by lambda lifting
∗ (no method available , included in step 11)
∗
∗ 11) construct an r_al proof from the refutation
∗ ([[AnalysisWithCeresOmega. ral_refutation]])
∗
∗ 12) construct the acnf
∗ ([[AnalysisWithCeresOmega.acnf]])
∗
∗ 13) construct the expansion proof (with atomic cuts)
∗ ([[AnalysisWithCeresOmega.expansion_proof]])
∗
∗ 14) print statistics
∗ ([[AnalysisWithCeresOmega. printStatistics]])
∗/

abstract class AnalysisWithCeresOmega {
/∗∗ The proof database to start from. ∗/
def proofdb() : ExtendedProofDatabase

/∗∗ The name of the root proof to start with ∗/
def root_proof () : String

/∗∗ Determines if and which cuts should be taken into accoutn for cut´elimination . Default :
propositional cuts are skipped . ∗/

def skip_strategy () = CERES.skipPropositional(_)

/∗∗
∗ Timeout for call to theorem provers .
∗
∗ @return the timeout as duration . default : 60 seconds
∗/

def timeout () : Duration = Duration("10s")

/∗∗
∗ The input LK proof , extracted by the name [[root_proof]] from the proof database ([[proofdb]])
∗/

lazy val input_proof = proofdb proof root_proof

/∗∗
∗ The input proof (TAPEPROOF) after preprocessing step 1: definition elimination
∗/

lazy val preprocessed_input_proof1 = eliminateDefinitions (proofdb. Definitions) (input_proof)

/∗∗
∗ The input proof after preprocessing step 2: expansion of logical axioms to atomic axioms
∗/

lazy val preprocessed_input_proof2 = AtomicExpansion(preprocessed_input_proof1)

165

/∗∗
∗ The input proof preprocessing step 3: regularization
∗/

lazy val preprocessed_input_proof3 = regularize (preprocessed_input_proof2)

/∗∗
∗ The input proof (TAPEPROOF) after definition elimination ([[preprocessed_input_proof1]], expansion

of logical axioms
∗ to atomic axioms ([[preprocessed_input_proof2]]) and regularization ([[preprocessed_input_proof3

]])
∗/

lazy val preprocessed_input_proof = preprocessed_input_proof3

/∗∗
∗ The processed input proof converted to LKsk.
∗/

lazy val lksk_proof = skolemizeInferences (preprocessed_input_proof)

/∗∗
∗ The struct of the proof . It is an intermediate representation of the characteristic sequent set .
∗/

lazy val struct = extractStruct (lksk_proof , skip_strategy ())

/∗∗
∗ The set of projections of the [[preprocessed_input_proof]].
∗/

lazy val projections = Projections (lksk_proof , skip_strategy ())

/∗∗
∗ The characteristic sequent set of the [[preprocessed_input_proof]].
∗/

lazy val css = StandardClauseSet(struct)

/∗∗
∗ The characteristic sequent set ([[css]]) after removal of labels and subsumption
∗/

lazy val preprocessed_css : List [HOLSequent] = {
val stripped_css = css
subsumedClausesRemoval(stripped_css. toList)

}

/∗∗
∗ The first order export of the preprocessed characteristic sequent set ([[preprocessed_css]]) ,

together with the map of
∗ replacing constants .
∗/

lazy val (abstracted_constants_map , fol_css) = {
val css_nolabels = preprocessed_css // remove labels from css
val (abs_consts , abs_css) = replaceAbstractions (css_nolabels)
/∗ map types to first order∗/
val fol_css = reduceHolToFol(abs_css)
/∗ converting to clause form, this is cleaner than casting ∗/
val fol_ccs = fol_css map {

166

case Sequent(ant , succ) =>
HOLClause(

ant map { case atom @ FOLAtom(_, _) => atom },
succ map { case atom @ FOLAtom(_, _) => atom }

)
}
(abs_consts , fol_ccs)

}

/∗∗
∗ The first order refutation of the first order characteristic sequent set ([[fol_css]])
∗/

lazy val fol_refutation = {
val some_rp = try {

val css = fol_css // evaluate lazy val , otherwise the thread stays blocked
withTimeout(timeout ()) { Prover9 . getResolutionProof (css) }

} catch {
case e: TimeOutException =>

println (s"Could not refute the clause set within ${timeout () }.")
throw e

}

some_rp match {
case None =>

throw new Exception("Could not refute clause set !")
case Some(rp) =>

rp
}

}

/∗∗
∗ The expansion proof of the first ´order refutation ([[fol_refutation]]) .
∗/

lazy val fol_refutation_expansion_proof = {
val lk_rp = ResolutionToLKProof(fol_refutation)
LKToExpansionProof(lk_rp)

}

/∗∗
∗ Exports the preprocessed characteristic sequent ([[preprocessed_css]]) set to the TPTP THF

format
∗
∗ @param filename The name of the file to export to
∗/

def export_thf (filename : String) : Unit = {
TPTPHOLExporter(preprocessed_css, filename)

}

/∗∗
∗ The ral version of the first ´order refutation ([[fol_refutation]]) , with all necessary

simplifications undone
∗/

lazy val ral_refutation = {

167

val signature = undoHol2Fol.getSignature (lksk_proof , identity [Formula])

val converter = Resolution2RalWithAbstractions (signature , abstracted_constants_map)

converter (fol_refutation)
}

/∗∗
∗ The simulation of the [[ral_refutation]] on the [[projections]] i .e . an LKsk proof where cuts only

work on atom formulas
∗/

lazy val acnf = CERES(lksk_proof.conclusion, projections , ral_refutation)

/∗∗
∗ The expansion proof of the cut´free proof [[acnf]].
∗/

lazy val expansion_proof = LKToExpansionProof(acnf)

/∗∗
∗ A first ´order conversion of the deep formula of the [[expansion_proof]].
∗/

lazy val expansion_proof_fol_deep = reduceHolToFol(replaceAbstractions (expansion_proof .
expansionSequent.deep. toImplication))

/∗∗
∗ The proof of the deep formula of the [[expansion_proof]].
∗/

lazy val reproved_deep = {
EProver getResolutionProof expansion_proof_fol_deep match {

case None => throw new Exception("Could not reprove deep formula!")
case Some(p) => p

}
}

def thf_reproving_deep (filename : Option[String]) : String = {
filename match {

case Some(fn) =>
TPTPHOLExporter.apply(expansion_proof.expansionSequent, fn , true , true)

case None =>
()

}

TPTPHOLExporter.export(expansion_proof.expansionSequent, true , true)
}

def printStatistics () = {
println ("´´´´´´´´´´´´ Proof sizes ´´´´´´´´´´´´´´")
println (s"Input proof : ${input_proof . treeLike . size}")
println (s"Preprocessed input : ${ preprocessed_input_proof . treeLike . size}")
println (s"LKsk input proof : ${lksk_proof . treeLike . size}")
println (s"ACNF output proof : ${acnf . treeLike . size}")
println ("´´´´´´´´´´´´ ")
println (s"Css size : ${css . size}")

168

println (s"Preprocessed css size : ${preprocessed_css . size}")
println ("´´´´´´´´´´´´ ")
println (s" Refutation size (dag) : ${ fol_refutation .dagLike. size}")
println (s" Refutation size (tree) : ${ fol_refutation . treeLike . size}")
println (s" Refutation depth : ${ fol_refutation .depth}")
println ("´´´´´´´´´´´´ ")
println (s"Reproved deep formula proof size (dag) : ${reproved_deep.dagLike. size}")
println (s"Reproved deep formula proof size (tree) : ${reproved_deep. treeLike . size}")

}

/∗∗
∗ Prints the preprocessed characteristic sequent set in TPTP THF format. Use [[export_thf]] to write

it to a file .
∗/

def print_css_thf () : Unit = {
println (TPTPHOLExporter.export_negative(preprocessed_css))

}

}

169

	1 Introduction
	1.1 Methodology

	2 State of the Art
	2.1 Simply Typed Lambda Calculus and Elementary Type Theory
	2.1.1 Expressivity of Simply Typed Lambda Calculus
	2.1.2 Skolem Terms in Elementary Type Theory

	2.2 Sequent Calculus LK
	2.2.1 Formula Occurrences and Paths

	2.3 Expansion Proofs
	2.3.1 Extracting Expansion Proofs from LK
	2.3.2 Skolem Expansion Proofs

	2.4 Reductive Cut-Elimination
	2.5 CERES
	2.6 CERES
	2.6.1 The Sequent Calculi LKsk and LKskc
	2.6.2 Proof Projections
	2.6.3 The Resolution Calculus Ral
	2.6.4 CERES
	From Projections and an Ral refutation to an LKskc Proof
	From LKskc PCNFs to LKsk
	From LKsk to LK

	2.6.5 Soundness and Completeness Results

	2.7 Automated Higher-Order Theorem Proving
	2.7.1 Higher-Order Unification
	2.7.2 Cut-simulation
	2.7.3 Leo II

	3 Proof Formalization Techniques
	3.1 CERES=
	3.1.1 General observations on labels
	3.1.2 Without Labels
	3.1.3 LKsk with labels
	3.1.4 Simulating Equality rules in Ral
	The CSS and the Projections
	Simulating an equality rule

	3.1.5 Simulating first order equality proofs
	3.1.6 CERES can produce quantified cuts
	3.1.7 A failed translation
	3.1.8 Relative completeness

	3.2 Unary versus Binary Equality Rules in CERES
	3.2.1 The CS and Projection for Unary Equality Rules
	3.2.2 GAPT Integration

	3.3 Some Properties of Skolem Expansion Trees
	3.4 Extracting Expansion Proofs from LKsk Proofs
	3.5 Extracting Expansion Proofs from LK Proofs with Propositional Cuts
	3.6 Definition Elimination
	3.7 Encoding Computations in Arithmetic
	3.7.1 Conditionals (If-then-else)
	3.7.2 Recursion

	3.8 Reducing the characteristic sequent set during construction
	3.9 A simple First Order Embedding
	3.10 A CERES based LK conversion of Resolution Proofs
	3.11 Implementation of the techniques in GAPT and ProofTool
	3.12 The LLK Input Format
	3.13 Using Sunburst Trees to navigate large proofs
	3.13.1 Criteria for Visualizing Sequent Calculus Proofs
	3.13.2 Choosing the proper tree visualization
	3.13.3 Integration in ProofTool
	3.13.4 Further Directions

	4 Case Study: A proof of the n-occurrences pigeon hole principle
	4.1 Practical Aspects of the Analysis Process
	4.2 Choosing a Problem
	4.3 The Infinite Pigeon Hole Principle
	4.4 The n-occurrences Pigeon Hole Principle
	4.5 Formalization
	4.6 Expectations
	4.6.1 Axioms
	4.6.2 Definitions
	4.6.3 General Input Proof Structure

	4.7 Version 1
	4.8 Version 2
	4.8.1 Characteristic Sequent Set
	4.8.2 Analysis
	4.8.3 Running the Experiments in GAPT

	4.9 Version 3
	4.9.1 Analysis
	4.9.2 Running the Experiments in GAPT

	4.10 Version 4
	4.10.1 Analysis
	4.10.2 Running the Experiments in GAPT

	4.11 Version 5
	4.11.1 Running the Experiments in GAPT

	4.12 Experiments with the If-then-else axiomatization
	4.12.1 Running the Experiments in GAPT

	4.13 Comparison to A-Translation with modified Realizability
	4.13.1 The method
	4.13.2 Formulation of the Infinite Pigeonhole Principle
	4.13.3 Proof and Extracted Programs

	4.14 Comparison
	4.15 Discussion

	5 Conclusion
	5.1 Summary
	5.2 Future Work
	5.2.1 Open Problems
	5.2.2 Beyond CERES=

	Bibliography
	A The n-Tape Input Proof, version 3
	A.1 Type Declarations
	A.2 Definitions
	A.3 Theory Axioms

	B Resolution refutations of the CSS
	B.1 Version 2, Prover 9 refutation
	B.2 Version 3, Prover 9 refutation

	C Full resolution simulation example for chapter
	D LLK LaTeXStyle
	E GAPT Proof Analysis Script

