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Abstract

This paper describes a new feature of the GAPT framework, namely the ability to im-
port refutations obtained from external automated theorem provers. To cope with coarse-
grained, under-specified and non-standard inference rules used by various theorem provers,
the technique of proof replaying is employed. The refutations provided by external theo-
rem provers are replayed using GAPT’s built-in resolution prover (TAP), which generates
refutations that use only three basic fine-grained inference rules (resolution, factoring and
paramodulation) and are therefore more suitable for manipulation by the proof-theoretic
algorithms implemented in GAPT.

1 Introduction

GAPT1 (General Architecture for Proof Theory) is a framework that aims at provid-
ing data structures, algorithms and user interfaces for analyzing and transforming formal
proofs. GAPT was conceived to replace and expand the scope of the CERES system2

beyond the original focus on cut-elimination by resolution for first-order logic [BL00].
Through a more flexible implementation based on basic data structures for simply-typed
lambda calculus and for sequent and resolution proofs, in the hybrid functional object-
oriented language Scala [OSV10], GAPT has already allowed the generalization of the cut-
elimination by resolution method to proofs in higher-order logic [HLW11] and to schematic
proofs [DLRW12]. Furthermore, methods for structuring and compressing proofs, such as
cut-introduction [HLW12] and Herbrand Sequent Extraction [HLWWP08] have recently
been implemented.

However, due to GAPT’s focus on flexibility and generality, efficiency is only a sec-
ondary concern. Therefore, it is advantageous for GAPT to delegate proof search to
specialized external automated theorem provers (ATPs), such as Prover9 [McC10a], Vam-
pire [RV02] or Otter3. This poses the technical problem of importing proofs from ATPs
into GAPT, which is less trivial than it might seem, because different ATPs use different in-
ference rules and some inference rules are too coarse-grained, under-specified, not precisely
documented [BW11] and possibly not so standard from a proof-theoretical point of view.
As an example, take the explanation of the rewrite rule from Prover9’s manual [McC10b]:

rewrite([38(5,R),47(5),59(6,R)]) – rewriting (demodulation) with equa-
tions 38, 47, then 59; the arguments (5), (5), and (6) identify the positions of

1GAPT: http://code.google.com/p/gapt/
2CERES: http://www.logic.at/ceres/
3Other well-known and very efficient provers such as E and SPASS have not received much of our attention

yet, because their output seemed not as easy to understand and parse.
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the rewritten subterms (in an obscure way), and the argument R indicates that
the demodulator is used backward (right-to-left).

The use of coarse-grained, under-specified and non-standard inference rules is especially
problematic for GAPT, because its proof transformation algorithms require that the proofs
adhere to strict and minimalistic calculi, as is usually the case in proof theory. To solve
this problem in a robust manner, the technique of proof replaying was implemented in
GAPT.

In GAPT’s historical predecessor CERES, a more direct translation of each of Prover9’s
inference rules into pre-defined corresponding sequences of resolution and paramodulation
steps had been implemented. Recomputing missing unifiers and figuring out the obscure
undocumented ways in which Prover9 assigns numbers to positions made this direct trans-
lation particularly hard. Thanks to the technique of proof replaying, these problems were
avoided in GAPT.

The main purpose of this paper is to document how GAPT’s internal resolution prover
(TAP) was extended to support proof replaying and to report our overall experience with
this technique. TAP outputs resolution proofs containing only fine-grained resolution,
factoring and paramodulation steps, as desired.

Proof replaying is a widely used technique, and the literature on the topic is vast
(see e.g. [Fuc97, Amj08, PB10, ZMSZ04, Mei00]). One thing that distinguishes the work
presented here is that proofs are replayed into a logical system whose main purpose differs
substantially from the typical purposes (e.g. proving theorems, checking proofs) of most
logical systems. GAPT’s ongoing goal of automating the analysis and transformation of
proofs can be seen as complementary and posterior to the goals of most other systems.

The rest of the paper is organized as follows: Section 2 describes the general algorithm
for proof replay in our system and explains in more details how we implemented this
algorithm for Prover9 output. In Section 3 we give a concrete example. The final section
concludes our work and discusses some future improvements.

2 Proof Replaying in GAPT

The aim of this section is to describe how a proof from an external theorem prover is re-
played in GAPT. At our disposal is the interactive prover TAP, which implements Robin-
son’s resolution calculus [Rob65] and paramodulation. It is not efficient enough to prove
complex theorems, but provided with an external proof it is often able to derive, for each
inference step, the conclusion clause from its premises. In principle, if the conclusion clause
C is not a tautology, a clause will be derived subsuming C by the forward computation of
resolution (see [Lee67]). It works for any calculus with tautology-deletion. For our pur-
poses, the specialized coarse-grained inference steps used in proofs output by optimized
theorem provers have to be translated into a series of simple resolution and paramodulation
steps. If this series is not too long, TAP will find it and use it instead of the specialized
inference rule used by the external prover.

Prover9 proof TAP commandsParser Pure resolution proofReplayingGAPT TPTP formatExporter ATP (Prover9)Input Output

Figure 1: Flowgraph of the Transformation

The complete transformation process is visualized in Figure 1. The theorem to be
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proved is exported into TPTP format [Sut11, Sut09] and passed to the external theorem
prover. For the sake of this paper, we chose to use Prover9 as the external theorem prover.
In principle, any prover whose proof output can be parsed by GAPT can be used in place
of Prover9, and we plan to add support for more external provers in the future. In the case
of a successful result, the proof output is usually a text file, containing for each inference
step its ID, a clause which was derived and a list of the rules which were applied4. The
output file is then parsed into commands which steer TAP to replay the proof.

The API of TAP has two main modules: the search algorithm and the proof replay.
The search space consists of elements called configurations. Each configuration consists of
a state, a stream of scheduled commands, additional arbitrary data and a result (possibly
empty) which is a resolution proof. The state consists of the persistent data of the config-
uration and might be shared between different configurations. A command transforms a
configuration to a list of successor configurations.

The so called “engine function” takes a configuration, executes the first of its scheduled
commands and inserts the newly generated configurations into the search space. By default,
the prover explores the search space using breadth-first search, but this is configurable.

We now describe the commands used for replay in more detail. In principle, we could
replay an input proof purely using the Replay command. However, the actual implemen-
tation treats Prover9’s inference rules assumption, copy and factor specially because they
do not create new proofs and are therefore translated directly into TAP commands. In
the first case, a proof of the assumption without premises is inserted into the list of de-
rived clauses. In the second case, the guidance map containing the association of proofs to
Prover9’s inference identifiers is updated. Factoring is treated as a copy rule, because it
is integrated into the resolution rule like in Robinson’s original resolution calculus[Rob65].
Therefore we postpone the factoring of a clause until its next use in a resolution step. All
other Prover9 inferences are replayed. The commands are grouped into different tasks:
initialization, data manipulation and configuration manipulation. Guided commands are
a subset of data commands. Table 1 provides an overview over the commands necessary
for replay (commands in italics were specifically added for replaying).

Initialization Commands Replay Commands Data Commands
Prover9Init Replay SetTargetClause

SetClauseWithProof
Configuration Commands Guided Commands Variants
SetStream AddGuidedInitialClause Factor
PrependOnCond AddGuidedClauses DeterministicAnd
RefutationReached GetGuidedClauses Resolve

IsGuidedNotFound Paramodulation
InsertResolvent

Table 1: Selection of TAP Commands

The initialization commands interface TAP with an external prover. At the moment,
there is only one command handling Prover9. It exports the given clause set to TPTP
format, hands it over to Prover9, processes its output with the Prooftrans utility to anno-
tate the inference identifiers, clauses and rule names with XML tags and uses Scala’s XML

4Some provers have scripts translating their proof format to XML or TSTP. Since TSTP does not fix the
set of inference rules, some adjustments to the replaying have to be made for the different provers. In the actual
system, a postprocessing to XML format is used which already separates the inference identifiers from the rule
name and the list of clauses, but which does not apply any proof tranformations.
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library to parse the resulting proof into the system. Each assumption is registered together
with its inference ID and put into the set of derived clauses (using AddGuidedInitialClause
and InsertResolvent). The copy and the factor rules are treated by adding the proof with
the new ID to the guidance map (using AddGuidedClauses). For all other rules, the replay
command is issued.

The configuration commands allow control over the proof search process. It is possible
to schedule insertion of additional commands into certain configurations and to stop the
prover when a (desired) resolution deduction is found.

All the data commands transform a configuration to a (finite) list of successor configu-
rations. A simple example is SetTargetClause which configures with which derived clause
to stop the prover. Also the commands for the usual operations of variant generation,
factoring, paramodulation and resolution are in this group. It also contains commands to
insert a found proof into the set of already found derivations and a command for executing
two commands after each other on the same state.

The purpose of the guided commands is the bookkeeping of derived proofs. It allows
storage of the proof of a clause in a guidance map which is part of the state. When a
guided inference is retrieved, the proof is put into the list of derived clauses within that
state. There is also a special command looking for the result of a guided inference and
inserting it into the set of derived clauses.

Replaying a rule first needs to retrieve the proofs of the parent clauses from the guidance
map. Then it creates a new TAP instance, which it initializes with these proofs as already
derived clauses and the reflexivity axiom for equality. The conclusion clause of the inference
step to be replayed is set as target clause and the prover is configured to use a strategy
which tries alternating applications of the resolution and paramodulation rule on variants of
the input clauses. Also forward and backward subsumption are applied after each inference
step. In this local instance neither applications of the replay rule nor access to the guidance
map is necessary. If the local TAP instance terminates with a resolution derivation, it is
put into the global guidance map and returned as part of the configuration. In case TAP
can not prove the inference, the list of successor states is empty. Since the scheduled replay
commands are consecutive transformations on the same configuration, this also means the
global TAP instance will stop without result.

3 An Example

In this section we explain with a simple example how our algorithm works for a concrete
proof. Consider the clause set from Figure 2, which was obtained from an analysis of a
mathematical proof [BHL+06].

cnf( sequent0,axiom,’f’(’+’(X1, X0)) = ’0’ | ’f’(’+’(X0, X1)) = ’1’).
cnf( sequent1,axiom,~’f’(’+’(X2, X1)) = ’0’ | ~’f’(’+’(’+’(’+’(X2, X1), ’1’), X0)) = ’0’).
cnf( sequent2,axiom,~’f’(’+’(X2, X1)) = ’1’ | ~’f’(’+’(’+’(’+’(X2, X1), ’1’), X0)) = ’1’).

Figure 2: Example of a clause set in TPTP format

We give this clause set to Prover9, which outputs the refutation given on Figure 3.
We see that the information contained in a rule description is incomplete – the unifier is
normally left out and the variable names in the resulting clause are normalized. In many
cases (such as in the last step) more than one step is applied at once. Clause 22 is rewritten
twice into clause 3 (back rewrite(3),rewrite([22(2),22(8)])), yielding two equational
tautologies (xx(a),xx(b)) which are deleted, resulting in the empty clause.

In our approach each (nontrivial) step is translated into a series of commands to the
internal prover. The series of commands starts by initializing the prover with only those
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1 f(plus(A,B)) = zero | f(plus(B,A)) = one # label(sequent0) # label(axiom).
[assumption].
2 f(plus(A,B)) != zero | f(plus(plus(plus(A,B),one),C)) != zero # label(sequent1) #
label(axiom). [assumption].
3 f(plus(A,B)) != one | f(plus(plus(plus(A,B),one),C)) != one # label(sequent2) #
label(axiom). [assumption].
5 f(plus(A,B)) != zero | f(plus(C,plus(plus(A,B),one))) = one. [resolve(2,b,1,a)].
11 f(plus(A,plus(plus(B,C),one))) = one | f(plus(C,B)) = one. [resolve(5,a,1,a)].
16 f(plus(A,B)) = one | f(plus(C,D)) != one. [resolve(11,a,3,b)].
20 f(plus(A,B)) = one | f(plus(C,D)) = one. [resolve(16,b,11,a)].
22 f(plus(A,B)) = one. [factor(20,a,b)].
24 $F. [back rewrite(3),rewrite([22(2),22(8)]),xx(a),xx(b)].

Figure 3: Example of a Prover9 refutation of the clause set

clauses contributing to the current inference and then schedules the resolution derivation.
The last command of the series inserts the proof of the resolution step into the already
replayed derivation tree.

In the example above, all steps except the last one are trivial steps and TAP returns
exactly the same inferences. For the last step the following command is created:

List(ReplayCommand(List(0, 3, 22, 22), 24, ([], [])), InsertResolvent())

which says that from the reflexivity predicate 0, clauses 3 and variants of 22 it should
derive clause 24, i.e. the empty clause.

A full output of TAP for this example is too big to fit nicely on a page.5 Since the only
interesting case is the last step, Figure 4 displays the corresponding generated resolution
derivation – in this case of the empty clause.

4 Conclusion

In this paper we described GAPT’s new feature of replaying refutations output by ATPs.
Our approach is based on interpreting coarse-grained, under-specified and non-standard
inference rules as streams of commands for GAPT’s built-in prover TAP. By executing
these commands, TAP generates resolution refutations containing only inference rules that
are fine-grained and standard enough for GAPT’s purposes. This approach is simpler
to implement and more robust. The drawback is that its reliance on proof search by a
non-optimized prover (TAP) makes replaying less efficient than a direct translation.

In the future, we plan to add support for the TSTP proof format, in order to benefit not
only from Prover9 but from any prover using this format. As GAPT’s algorithms for proof
analysis and proof compression mature, we expect them to be of value in post-processing
the proofs obtained by ATPs.
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Figure 4: Replayed resolution tree of the last step of the example
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