
Symmetry Avoidance in MACE-Style Finite
Model Finding ?

Giles Reger1, Martin Riener1, and Martin Suda2

1 University of Manchester, Manchester, UK
2 Czech Technical University in Prague, Czech Republic

Abstract. This work considers the MACE-style approach to finite model finding
for (multi-sorted) first-order logic. This existing approach iteratively assumes in-
creasing domain sizes and encodes the corresponding model existence problem
as a SAT problem. The original MACE tool and its successors have considered
techniques for avoiding introducing symmetries in the resulting SAT problem,
but this has never been the focus of the previous work and has not received con-
centrated attention. In this work we formalise the symmetry avoiding problem,
characterise the notion of a sound symmetry breaking heuristic, propose a num-
ber of such heuristics and evaluate them experimentally with an implementation
in the Vampire theorem prover. Our results demonstrate that these new heuris-
tics improve performance on a number of benchmarks taken from SMT-LIB and
TPTP. Finally, we show that direct symmetry breaking techniques could be used
to improve finite model finding, but that their cost means that symmetry avoid-
ance is still the preferable approach.

1 Introduction

Finding finite models of first-order problems can be useful in a number of applications.
The most prominent of these being in program verification, where models correspond
to bug traces under most common program encodings. This paper considers an existing
finite model finding technique and how it can be optimised to handle larger and more
complex problems (which correspond to programs in the previous example application).

MACE-style finite model finding (introduced in [13] and extended in [4, 16]) aims to
build finite models of first-order problems by reduction to SAT. The general idea behind
this approach is as follows. To determine whether a (suitably preprocessed) first-order
problem has a model of size n we first instantiate the problem with n fresh constants to
produce a ground problem. This ground problem is then translated into a SAT problem
such that a model of the SAT problem can be translated back to a model of the first-order
problem. To find finite models we then iteratively repeat this process for larger values
of n. A well known issue with this approach is that the encoding introduces inherent
symmetries into the SAT problem. That is, if the SAT problem has a model then it
actually has n! isomorphic models for the different permutations of fresh constants.
This can have a significant impact on the finite model finding process as to find a model

? This work was supported by EPSRC Grant EP/P03408X/1. Martin Suda was supported by the
ERC Consolidator grant AI4REASON 649043.

of size n in the iterative setting, we must first refute the preceding n− 1 cases and this
tends to be much harder in the presence of symmetries.

The problem of introducing symmetries in the encoding process is orthogonal to the
well-known problem of identifying existing symmetries in the original problem. In the
main part of this paper we look at avoiding introducing symmetries in our encoding. At
the end of the paper we consider existing work on identifying and breaking symmetries.
The starting point of our work is that the process of processing each produced SAT
problem to identify symmetries (many of which we introduce ourselves) is likely to
introduce unnecessary overhead. Our experimental analysis finds that, in general, this
is true, but there may be something gained on some problems by exploring a close
integration of these techniques into the finite model finding process.

Previous work has considered methods for avoiding symmetries in the SAT encod-
ing, but the topic has not received concentrated attention. The main approach (also taken
here) is to introduce additional constraints that restrict the ways in which elements of
the model may be mapped to the fresh constants. The contributions of this paper are

– a characterisation of the symmetry avoidance problem in our context (Section 3).
This is an extension of restricted functional symmetry from Paradox [4] which was
previously stated in a restricted way and without proof;

– a number of heuristic symmetry breaking constraints (Section 4);
– an experimental evaluation using the Vampire theorem prover [12] demonstrating

their effectiveness at speeding up the finite model finding process (Section 5);
– an experimental study examining the use of static symmetry breaking techniques in

our process and comparing these to symmetry avoidance (Section 6).

Before we present these contributions we briefly revisit the definition of MACE-style
finite model finding (Section 2).

A note on terminology. In this paper we have chosen to call the addition of additional
constraints to avoid symmetries introduced by our own encoding symmetry avoidance
as we are avoiding adding symmetries. This is in contrast to the act of symmetry break-
ing where inherent symmetries are identified and additional constraints added to break
them. We note that prior work [4] used the term symmetry breaking for what we call
symmetry avoidance.

2 MACE-Style Finite Model Building for First-Order Logic

In this section we describe the finite model finding procedure (in a single-sorted setting),
which is a variation of the approach taken by Paradox [4]. Our presentation here follows
the one given in our previous work extending this approach to the multi-sorted setting
[16]. For simplicity, we only consider the single-sorted setting here (but our later results
lift to the multi-sorted setting).

Given a first-order problem S, the general idea is to create, for each integer n ≥ 1, a
SAT problem that is satisfiable if and only if problem S has a finite model of size n. To
find a finite model we iterate over the domain sizes n = 1, 2, 3, Below we introduce
the key conceptual details and the previous work [16] provides further examples.

First-Order Logic. We consider first-order logic with equality. A term is either a vari-
able, a constant, or a function symbol applied to terms. A literal is either a propositional
symbol, a predicate applied to terms, an equality of two terms, or a negation of either.
The set of function and predicate symbols with associated arities defines the signature
of a problem (constants are treated as function symbols with arity zero).

We assume all formulas are clausified using standard techniques (e.g. [14] and our
recent work in [17]). A clause is a disjunction of literals where all variables are uni-
versally quantified (existentially quantified variables get replaced by Skolem functions
during clausification). We assume familiarity with the notion of an interpretation and
model of a set of clauses.

DC-Models. Let S be a set of clauses. Let us fix an integer n ≥ 1. We extend the
language by a set of distinct constants DC = {d1, . . . , dn} not occurring in S. We will
call these domain constants. An interpretation is a DC -interpretation, if (i) its domain
is DC and (ii) it interprets every domain constant as itself. Every model of S that is
also a DC -interpretation will be called a DC -model of S. If S has a model of size n,
then it also has a DC -model. We say that S is n-satisfiable if it has a model of size n.

A DC -instance of a clauseC is a ground clause obtained by replacing every variable
in C by a constant in DC . A clause with k different variables has exactly nk DC -
instances, where n is the current number of domain constants. Let us denote by S∗ the
set of all DC -instances of the clauses in S.

Theorem 1. Let I be a DC -interpretation and C a clause. Then C is true in I if and
only if all DC -instances of C are true in I .

Principal Terms. We cannot yet encode the existence of models of size n as a SAT prob-
lem, as DC -instances can contain complex terms.3 By a principal term we mean either
a constant or an application of a function symbol of arity greater than zero to domain
constants. A ground atom is called principal if it is either a predicate symbol applied to
domain constants or an equality between a principal term and a domain constant. We
lift this notion to literals.

Theorem 2. Let I1, I2 be DC -interpretations. If they satisfy the same principal atoms,
then I1 coincides with I2.

Theorem 1 reduces n-satisfiability of S to the existence of a DC -interpretation of the
set S∗ of ground clauses. Theorem 2 shows that DC -interpretations can be identified
by the set of principal atoms true in them. Next we introduce a propositional variable
for every principal atom and reduce the existence of a DC -model of S∗ to satisfiability
of a set of clauses using only principal literals.

The SAT Encoding. The main step in the reduction is to transform every C into an
equivalent clause C ′ such that DC -instances of C ′ consist (almost) only of principal
literals (the exceptions are equalities between domain constants, which can be trivially

3 An alternative to encoding the problem into SAT is to target the EUF logic and use an SMT
solver instead. This approach has been explored by Vakili and Day [21].

removed). This transformation is known as flattening and ensures that all literals are of
the form p(x1, . . . , xm), f(x1, . . . , xm) = y, or x = y or their negation. Every DC -
instance of a flat literal is either a principal literal (for the first two cases), or an equality
di = dj between domain constants. We produce the DC -instances of each flattened
clause where we immediately remove inconsistent domain constant equalities and omit
instances that are tautologous due to equalities between the same constants.

The DC -instances by themselves do not sufficiently constrain the SAT problem
as they do not capture what it means to be a function. To do this we add two further
kinds of constraints. For each principal term p and distinct domain constants di, dj we
produce the functionality axiom p 6= di ∨ p 6= dj . These clauses guarantee that all
function symbols are interpreted as (partial) functions. For each principal term p we
produce the totality axiom p = d1 ∨ . . . ∨ p = dn. These clauses guarantee, together
with functionality axioms, that all function symbols are interpreted as total functions.

The following theorem underpins the SAT-based finite model building method:

Theorem 3. Let S be a set of flat clauses and S′ be the set of clauses obtained from
S∗ as described above. More specifically, S′ consists of 1) the non-tautologous DC -
instances of the flattened versions of clauses in S∗, 2) the functionality axioms corre-
sponding to the principal terms, and 3) the totality axiom corresponding to them. Then
(i) all literals in S′ are principal and (ii) S is n-satisfiable if and only if S′ is proposi-
tionally satisfiable (when understanding principal atoms as propositional variables).

3 Characterising Symmetry Avoidance

The SAT problem produced above necessarily contains many symmetries. In particular,
every permutation of DC applied to a DC -model will give a DC -model, and there are
n! such permutations. This gives the SAT solver more work to do when refuting a model
size (which it has to do k − 1 times if the smallest model is of size k) as every possible
interpretation needs to be refuted.

Isomorphic DC -Models. Let M be a DC -interpretation and σ a permutation of DC ,
i.e. a bijective function from DC to itself. There is always a DC -interpretation Mσ

obtained by “relabelling” the domain constants in M according to σ such that σ is an
isomorphism between M and Mσ .4 For example, consider the clauses

f(f(x)) = x a 6= b

that have four possible DC -models captured by the following table

a b f(d1) f(d2)
1 d1 d2 d1 d2
2 d1 d2 d2 d1
3 d2 d1 d1 d2
4 d2 d1 d2 d1

4 This means that for every function symbol f of arity a we have M(f)(d1, . . . , da) = d if
and only if Mσ(f)(σ(d1), . . . , σ(da)) = σ(d) and for every predicate symbol p of arity b we
have M(p)(d1, . . . , db) if and only if Mσ(p)(σ(d1), . . . , σ(db)).

where the first line captures the model M represented5 by the set {a = d1, b =
d2, f(d1) = d1, f(d2) = d2}. The last line is then Mσ for σ = {d1 7→ d2, d2 7→ d1}.
Similarly, the models represented by lines 2 and 3 are isomorphic under σ.

We can now characterise what we want to achieve via symmetry avoidance: the
removal of isomorphic interpretations. To appreciate the following definition, recall
that no domain constant d ∈ DC occurs in S (but some may occur in the introduced
constraint C).

Definition 1 (Symmetry Avoidance). A set of clauses C is said to be a symmetry
avoiding constraint (SAC) if

(i) not every DC -interpretation is a model of C,
(ii) for every set of clauses S and for every DC-model M of S there is a permutation σ

of DC such that Mσ is a DC-model of S ∪ C.

For the previous example the constraint a = d1 would remove the isomorphic
models represented by lines 3 and 4. This constraint satisfies (i) as we have two DC -
interpretations that are not models of it, and (ii) if we focus on this particular set of
clauses for S we can see that we have already identified the necessary σ.

The question is then what form the constraint C should take in general. Here we
follow the work of Paradox [4]. We begin by assuming a total ordering on domain con-
stants. We then fix a (finite) sequence of principal terms P and use this sequence to
constrain the permissible DC -models. Let P = p1, . . . , pm. We want to restrict DC -
models such that principal terms are assigned to domain constants in order, starting
with p1 = d1. As S may imply equalities between principal terms we cannot straight-
forwardly assign pi = di. Instead, we wish to specify that a principal term pi is only
interpreted as one of the first i domain constants, and, moreover, that the principal term
pi should only be interpreted as dk if there is some principal term pj such that j < i and
pj is interpreted as dk−1. This naturally leads to the addition of two kinds of clauses.
The first kind is

pi = d1 ∨ . . . ∨ pi = di (1)

for i ≤ min(m,n). Notice that these take a form of strengthened totality constraints for
the respective pi. The second kind translates to

pi 6= dj ∨ p1 = dj−1 ∨ . . . ∨ pi−1 = dj−1 (2)

for 1 < i ≤ m and 2 < j ≤ i.6 Together these capture the above notion of order. Let
CP be the set of all such clauses.

In our previous example, given P as p1 = a, p2 = b we would add the clauses

a = d1, b = d1 ∨ b = d2,

which would exclude the models represented by lines 3 and 4 in the previous table. Note
that in this case we did not need constraints of the second kind (as previously observed).

5 Recall that a DC -interpretation can be identified by the set of principal atoms true in it.
6 For j = 2 the clauses contain p1 = d1 which is always true given (1). For j > i the literal
pi 6= dj and thus the corresponding constraint (2) follow from (1) and the functionality axioms.

Previously [4], this concept was introduced for ordering constants and extended to
functions in a restricted sense. However, this previous work did not provide a proof that
the approach is sound (does not exclude a possible model).

Let us, for the sake of clarity, also first consider the constant-only setting to later
explain how it can be generalized.

Theorem 4. Let P = p1, . . . , pm be a non-empty sequence of constant symbols from
the problem signature. Then CP is a symmetry avoiding constraint.

Proof. We show both parts of Definition 1. For (i), notice that since P is non-empty,
CP contains the unit clause p1 = d1 as an instance of (1) which is not satisfied by those
DC -interpretations that do not map p1 to d1. For (ii), given a DC -model M of S we
construct σ, a permutation of DC , such that the isomorphic model Mσ additionally
satisfies CP . We do this by describing a construction of the inverse mapping σ−1. This
is obviously equivalent, but makes the intuition more transparent.

Let us consider PM = {M(pi) | pi ∈ P}, the set of domain constants that are in-
terpretation by M of some element of P , and denote its size by k = |PM |.7 We set
σ−1(d1) = M(p1) and for every 1 < i ≤ k we pick σ−1(di) = M(pj) for the small-
est j such that M(pj) is not among {σ−1(d1), . . . , σ−1(di−1)}. By construction, this
function is injective and we can complete it to a permutation on DC , if necessary (i.e. if
k < n), by arbitrarily “pairing up” the remaining {dk+1, . . . , dn} with the remaining
values from DC \ PM . This construction implements the intuitive idea of using the
smallest “unused” domain constant di for interpreting a term pi unless it is in the model
already taking a value of some “used” domain constant. It is easy to verify that Mσ

satisfies both the constraints (1) and (2) and CP is therefore a SAC. ut

The intuition for using general principal terms in P rather than just constants is
that they provide another way of denoting domain elements in the model and may thus
help us avoid further symmetries. E.g., we may not have enough constants, or the right
constants. However, since non-constant principal terms directly refer to domain con-
stants as arguments, we have an extra complication to deal with: while the construction
from the proof of Theorem 4 is making sure it satisfies CP in Mσ , it is looking at the
original model M to decide what to do with each next pi. Thus its natural extension to
non-constant terms cannot proceed, unless the arguments of pi have already established
value in M via the partially constructed σ−1.

As an example of this complication, consider the one-element sequence P with
p1 = f(d1). Until we decide what d1 from Mσ refers to in M , i.e. until we define
σ−1(d1), the construction cannot proceed.8 Thus we pick σ−1(d1) arbitrarily at which
moment it becomes “used”. But if f does not happen to map this domain constant to
itself in M , i.e. if M(f)(σ−1(d1)) 6= σ−1(d1), the smallest “unused” domain constant
for p1 in Mσ is d2, i.e. we set σ−1(d2) = M(f)(σ−1(d1)). All in all, in this example,
we can only restrict the symmetries by adding the following clause of the first kind (1)
to CP on behalf of p1:

f(d1) = d1 ∨ f(d1) = d2,

7 We necessarily have k ≤ m and k < m implies M(pi) =M(pj) for some i 6= j.
8 Speculating what this value could be if we proceed anyway is an interesting direction for

further research not covered in this paper.

but not the stronger f(d1) = d1. (It is easy to see how this would become unsound by
considering an input problem containing the unit clause f(x) 6= x.)

Even if we require that in the sequence P a domain constant dj does not occur
as an argument of a principal term pi unless i > j (which solves the above com-
plication), it is not generally sound to add clauses of the second kind (2) for non-
constant principal terms. To see this, consider the sequence P with p1 = a, p2 =
f(d1), p3 = f(d2) and assume that after the straightforward σ−1(d1) = M(a), we
learn that M(f)(σ−1(d1)) = σ−1(d1) and thus we do not need to “use” a new do-
main constant to process p2. However, similarly to the previous example, we are now
forced to define σ−1(d2) before we can proceed to p3. Moreover, it is easy to imagine
a model M in which any choice of such next element results in M(f)(σ−1(d2)) /∈
{σ−1(d1), σ−1(d2)} and we are forced to define σ−1(d3) = M(f)(σ−1(d2)). Thus
the new model Mσ will satisfy f(d2) = d3, but also f(d1) 6= d2 and a 6= d2.

The following theorem reflects these observations and formalises and further gen-
eralises the results reported in [4].

Theorem 5. Let P = p1, . . . , pm be a non-empty sequence of principal terms such
that whenever a domain constant dj occurs as an argument of a principal term pi then
j < i.9 Moreover, let the domain constants appear in P “in order”, i.e. if dj for j > 0
occurs in pi then there is i′ ≤ i such that dj−1 occurs in pi′ . Let DP consist of all the
clauses of the first kind (1) and of the clauses of the second kind (2) for any 1 < i ≤ m
and 2 < j ≤ i such that dj−1 does not occur in any pi′ for 1 ≤ i′ ≤ i. Then DP is a
symmetry avoiding constraint.

Proof. Let us immediately focus on the sole non-trivial point of Definition 1, namely
point (ii). As in the proof of Theorem 4 we recursively construct a permutation σ used
for relabelling the elements of a given model M such that Mσ additionally satisfies
DP . And as before, we describe the construction of σ−1. Let us by σ−1i denote the
partial permutation obtained after processing the sequence P up to element pi and let
us initiate the construction with σ−10 as the empty mapping.

We now consider the i-th step of the construction for some 1 ≤ i ≤ m assuming
σ−1i−1 is already defined. First, if there is a domain constant d which occurs in pi that is
not in the domain of σ−1i−1, we pick an arbitrary domain constant e not in the range of
σ−1i−1 and set σ′−1i = σ−1i−1 ∪ {d 7→ e}. If this happens, we say that d enters the domain
of σ−1 to define an argument of pi. We may need to repeat this several times until
we obtain τ−1i , an extension of σ−1i−1, whose domain contains all the domain constants
occurring in pi. Let pi = f(d1, . . . , da) and let e =M(f)(τ−1i (d1), . . . , τ

−1
i (da)). If e

is in the range of τ−1i we set σ−1i = τ−1i . Otherwise, let d be the least domain constant
not in the domain of τ−1i and we set σ−1i = τ−1i ∪ {d 7→ e}. In this case we say that
d enters the domain of σ−1 to stand for the value of pi. As in the proof of Theorem 4,
we obtain the final σ−1 from σ−1m by “pairing up” the remaining domain constants “not
yet” in the domain of σ−1m with the remaining domain constants “not yet” in its range
arbitrarily. These domain constants are said to enter the domain of σ−1 to finish it up.

Let us now verify that Mσ satisfies DP . We first look at clauses of the first kind
(1). These are satisfied, because our construction maintains that the domain of σ−1i ,

9 In particular, p1 must be a constant.

which contains Mσ(pi), is always a subset of {d1, . . . , di}. To see this, we proceed
by induction. First, the domain σ−10 is the empty set. Next, assuming that the domain
of σ−1i−1 is a subset of {d1, . . . , di−1} (the induction hypothesis), we check that the
domain of τ−1i is always a subset of {d1, . . . , di−1} using the assumption that whenever
a domain constant dj occurs as an argument of a principal term pi then j < i. To finish,
we recall that the construction only possibly adds one more element when extending
τ−1i to σ−1i and this is always the least domain constant “not yet” in the domain of τ−1i .

Finally, we look at the clauses of the second kind (2). Let 1 < i ≤ m and 2 < j ≤ i
and let

C = (pi 6= dj ∨ p1 = dj−1 ∨ . . . ∨ pi−1 = dj−1)

be one such clause. Let us assume that C is false in Mσ . Because Mσ(pi) = dj , neither
the domain constant dj nor dj−1 did enter the domain of σ−1 to finish it up. Moreover,
since Mσ(pi′) 6= dj−1 for 1 ≤ i′ < i the domain constant dj−1 did not enter the
domain of σ−1 to stand for the value for any of these pi′ . Thus dj−1 must have entered
the domain of σ−1 to define an argument of some pi′ for 1 ≤ i′ ≤ i. But then dj−1
occurs in some pi′ for 1 ≤ i′ ≤ i and C thus cannot be part of DP . ut

4 Symmetry Avoidance Heuristics

The previous section characterised the notion of a symmetry breaking constraint deter-
mined by a list of principal terms P . In this section we propose a number of heuristics
for selecting a good P . The underlying idea is that as we can only add n clauses of
the ‘first kind’ (1) we want to pick the ‘best’ n principal terms, i.e. those that avoid
most symmetries. The best set P is such that S together with CP ensures that each ele-
ment of P must be interpreted by a distinct domain constant. However, checking this is
impractical and therefore we introduce heuristics for this.

To ensure completeness, we optionally enforce the constraints set out in Theorems
4 and 5 from the previous section by limiting the principal terms added to P where
they would otherwise break these constraints. Note that the diagonal approach below
naturally preserves these constraints in all cases and in most cases it is not necessary to
restrict P . We preserve the option to run in an incomplete mode where it is no longer
possible to report that a model cannot be found.

Ordering function symbols. The first heuristic considers how function symbols should
be ordered. Consider the problem S = {a = b, a = c, a 6= d}, selecting p1 = a, p2 = b
will not be as effective as selecting p1 = a, p2 = d. In the first case, the equality a = b
induces a stronger constraint than the ordering. In the second case, the ordering con-
straint is stronger than that induced by the inequality a 6= d. We consider the following
variations:

– Occurrence. By default, function symbols are ordered by their order of appearance
in the input problem. This may perform poorly if similar functions (those whose
interpretations overlap significantly e.g. principal terms are interpreted as the same
domain constants) are defined close together in the input file; conversely it may
perform well if differing function symbols are defined close together.

– Input Usage Frequency. This orders symbols by their frequency in the input.
– Preprocessed Usage Frequency. This orders symbols by their frequency in the pre-

processed clauses (pre-processing may copy some symbols many times).
– Arity. This orders symbols from the smallest to largest arity. The reasoning here is

that it is simpler to show that functions with lower arity are distinct.

The hypothesis around using frequency is that the most used symbols are likely to be
distinct. In case the opposite is true, in both frequency cases we also add their reverse.
We also consider a randomised order.

Ordering the construction of principal terms. We consider how complex principal
terms are ordered. One approach is to put all principal terms for one function before
those for the other. But if the problem contains, e.g. f(x) = a, all principal f - terms
already have the same interpretation and cannot be strictly ordered. Conversely, we may
wish to order by argument value (all those with d1 before those with d2). But if the prob-
lem contains, e.g. f(x) = g(x) then again the interpretation of the principal f -terms
must agree with the succeeeding g-term in the sequence f(d1), g(d1), f(d2), g(d2), . . .
such that their ordering constraint becomes ineffective. Based on these observations
we consider the following variations which make use of an ordering <f on function
symbols and the ordering <DC on domain constants.

– Function First. Orders principal term by <f and then <DC

– Argument First. Orders principal terms by <DC and then <f
– Diagonal. Orders principal terms for each function by<DC and then for each func-

tion symbol in turn (according to <f) selects the next principal term starting with
the ith term for the ith function e.g. we may have f(d1), g(d2), h(d3), f(d2),

We also consider a randomised order.

Restricting Symmetry Avoidance Clauses. This heuristic does not consider the order of
P but the clauses we add for P . Given principal terms P and a target model size n,
we add n clauses of the first kind and |P| × n clauses of the second kind. The large
number of these second kind of clauses may become too expensive for the SAT solver.
Therefore, by default we restrict P to have at most n elements and we can optionally
add a multiplier k (such that k ≤ |P| × n) to this.

5 Experimental Evaluation

In this section we experimentally address a number of research questions, evaluating
the effectiveness of the techniques introduced earlier. Vampire relies on a schedule of
strategies for attacking a problem and our evaluation reflects our desire to identify op-
tions of complementary strengths, as discussed elsewhere [15].

Experimental Setup. We considered problems from the TPTP [20] library (version 7.0)
in the FOF or CNF format that were either (counter-)satisfiable or belong to the effec-
tively propositional (Bernays–Schönfinkel) fragment (as this process is complete for

-fmbsso -fmbswo -fmbse
occurrence function first 0 = P as defined
input usage argument first 1 = empty P
preprocessed usage diagonal 2 = P restricted to constants
random random
reverse input usage
reverse preprocessed usage
arity

Fig. 1. Option values for symmetry avoiding strategies (defaults in bold).

this fragment). We removed all problems known to only have infinite models (deter-
mined by Infinox [3]). This led to a set of 2790 problems of which 1512 are known to
be satisfiable, 969 are known to be unsatisfiable and 23 are open problems.

The techniques described in the previous sections were implemented in the Vam-
pire theorem prover.10 The version of Vampire used in these experiments can be found
online.11 Experiments were run on the StarExec cluster [19], whose nodes are equipped
with Intel Xeon 2.4GHz processors and 128 GB of memory. For each experiment we
will report the number of problems solved with the time limit of 600 seconds.

The options related to symmetry avoidance covered were the order of symbols
(-fmbsso) and the enumeration strategies between functions applied to domain con-
stants only (-fmbswo). Further, we added options to turn off symmetry avoidance alto-
gether (-fmbse 1) and to order only constants (-fmbse 2). We also limited vampire’s
proof search strategy to MACE style finite model finding (-sa fmb). Figure 1 sum-
marises the options and their values (which correspond directly to those described in
Section 4).

Summary. We ran 30 experiments with sensible12 combinations of the above options.
Across all experiments we solved 1901 out of 2790 problems. Out of these 1150 were
shown to be satisfiable and 734 were shown to be unsatisfiable. The mean solution time
for satisfiable problems was 8.3 seconds and for unsatisfiable problems it was 9.2 sec-
onds. Table 1 provides some general statistics. On the left we see the best, mean, and
worst solving times for problems. This means that the majority of problems are solved
quickly by some strategy. But, only 58 problems were solved by all experiments. There
were 264 problems that took longer than 10 seconds to solve where the difference be-
tween best and worst experiment was at least 5 seconds. These are interesting problems
as they demonstrate real differences in solution times. Within this set, there is consider-
able variation between the best and worst solving times. Figure 2 illustrates the distri-
bution of the speedup between best and worst strategy on this set. Very large speedups
are seen where problems are solved in minutes by one strategy and seconds by another.

10 https://vprover.github.io/
11 https://derivation.org/frocos2019
12 Some combinations are not sensible. For example, randomising the ordering of principal terms

means that any ordering of function symbols will be ignored.

Table 1. General statistics about problems solved.

problems solved in X time
< 10s < 30s < 1m < 5m Total

Best 1715 1797 1828 1888 1901
Mean 1673 1773 1817 1885 1901
Worst 1593 1686 1753 1859 1901

problems solved in X experiments
All < 25 < 20 < 10 < 5 1

Satisfiable 46 1119 21 15 15 10
Unsatisfiable 12 724 63 2 2 0

Fig. 2. Histograms of speedups comparing best and worst strategies and no avoidance with best
strategy for our 264 interesting problems.

Which Ordering Heuristics Perform Best? Table 2 presents the results for comparing
the different ordering heuristics introduced earlier. Since testing all combinations of
options would lead to 84 constellations, we always vary one option and leave all others
at their respective defaults. In each case we record how many problems that option
was the best (fastest) for and what the mean speedup (over the second best) was in the
case where the option was the best. Note that each line includes all strategies where
that option was selected i.e. more than one experiment. Here we focus explicitly on
problems taking > 10s as these are the ones that are, in principle, the harder problems.

Here we can see that the performance of different values is varied. Note that the
speedup value addresses the question of how much we gain by adding a single strategy
on top of the rest. However, this hides particular outlier cases. For example, the prob-
lem HWV052-1.007.004 was solved in 13s with the diagonal approach, the other
principal term orders take at least 535s, a speedup of a factor of almost 38. Conversely,
for NLP077-1.p the diagonal approach took 10% longer.

Of the function ordering options, the reverse frequency options fared worse than
the standard frequency options, which supports a hypothesis that it is better to avoid
symmetries on common symbols. Interestingly, randomising the order was hardly ever
the best approach, suggesting that there is a benefit from our heuristic orderings. We are
surprised that the arity option did not fare well. However, this may be attributable to the
fact that the majority of functions in problems are typically of low arity anyway.

Of the principal term ordering options, the best approach was the function-first ap-
proach. This suggests that problems typically contain functions which are distinct in
their arguments. It is interesting to note that the randomisation approach here fared very
well. This suggests that there are orderings that perform well outside of our heuristics

Table 2. Comparing the different options for ordering heuristics for problems > 10s.

Value Best Mean Speedup
occurrence 61 1.04
input usage 49 1.89
reverse input usage 11 1.16
preprocess usage 44 1.04
reverse preprocess usage 13 1.03
arity 12 1.04
random 2 1.01

Value Best Mean Speedup
function first 72 1.06
argument first 27 1.03
diagonal 36 2.22
random 57 1.03

and we should inspect what elements of these random orders were beneficial and at-
tempt to encode them in new heuristics.

Table 3. Comparing the different values for lim-
iting symmetry avoiding clauses.

Value Solved Best Mean Speedup
1 1884 67 5.12
5 1882 127 4.03
10 1883 130 7.71
100 1886 88 4.23
1000 1886 131 9.37

What is the Effect of Limiting Symmetry
Avoidance Clauses? Table 3 compares
the results of limiting the size of P as
some multiple of n. Here we can see that
the number of solved problems increases
monotonically. However, the amount of
time taken to find solutions varies and in
some cases restricting to n provides the
best (fastest) solution, whereas including more and more values in P can help in other
situations. It is interesting to note that for the largest multiplier we see the biggest
speedup. This suggests that where a large multiplier can be of use it will make a large
difference. We will keep this option and the various values for strategy building.

Does Symmetry Avoidance Always Help? Next we question whether adding symmetry
avoidance constraints is always helpful. Overall, there were 96 problems where the
fastest solution was to not add symmetry avoiding constraints. On average the next
fastest solution was 24% slower. The majority of these were short runs (under 10s), but
in some cases the difference was significant. For example, problem ALG333-1.p was
solved in 32s without symmetry avoiding constraints, but the next best solution solved
it in 54s.

Furthermore, there were many problems only solved using symmetry avoidance.
Without symmetry avoidance we only solve 173 of our 264 interesting problems (with
91 unsolved). On these problems, the resulting speedups are given in Figure 2. Again,
we see that symmetry avoidance brings large performance gains. Although there are 12
problems where solving without symmetry avoidance is the best (fastest) strategy.

Our final question is whether restricting symmetry avoiding constraints to constants
only has any benefit, or conversely whether there are cases where we need to avoid
symmetries on non-constant terms. There were 55 problems where it was better (i.e. the
solution was faster) to exclude non-function symbols from symmetry avoiding. This
means that ordering principal terms is an interesting research question.

How does this compare to Paradox? Finally, we compare our results to Paradox. Over-
all, Paradox solves 48 problems that we do not solve and we solve 54 problems unsolved

by Paradox. All 54 of these problems rely on symmetry avoidance options. Of the in-
teresting problems, roughly half (145) are solved more quickly by Paradox and the rest
are solved more quickly by Vampire, out of these 36 problems are solved at least 10
times faster with Vampire.

Discussion. The above experimental results show that the issue of symmetry avoiding
is important and that a portfolio solver such as Vampire needs many options available
to it. These experiments have allowed us to prioritise options within our portfolio and
suggest further exploration is required. In particular, we need to explore the correlation
between the success of symmetry avoiding heuristics and the structure of properties,
especially the number and distribution of function symbols with different arities.

6 Comparing Symmetry Breaking and Symmetry Avoidance

So far we have focussed on avoiding introducing new symmetries into the SAT problem.
There also exist tools for identifying symmetries in SAT problems. In the final part of
this paper we utilise one such tool to answer the following two questions:

1. Could incorporating static symmetry breaking improve the performance of finite
model finding?

2. Are symmetry avoidance and symmetry breaking complementary (i.e. do the avoid-
ance constraints help symmetry breaking) or is avoidance subsumed by breaking?

The Symmetry Breaking Problem. The symmetry breaking problem is similar to the
symmetry avoiding one, but in a more general setting. Slightly informally, given a SAT
problem S is it possible to produce some constraints C such that the models of S and
S ∪ C are the same up to isomorphism, but there are fewer models of S ∪ C. The
problem of symmetries has been studied extensively in the constraint programming, the
ASP and the SAT communities [10, 9, 18]. The main differentiation of the techniques
lies between dynamic [22, 23, 2] and static [1, 7] symmetry breaking. The dynamic set-
ting aims to identify and break symmetries during the solving process whilst the static
setting updates the problem directly. In this work we focus on one of the best existing
static symmetry breaking tools BreakID [7].

Experimental Setup. We select the same 2970 problems as in Section 5 and run finite-
model finding on each problem for 60 seconds, recording the SAT problems produced
for each model size in the DIMACS format [11]. Note that for each problem where we
explore up to model size n we will produce at least n− 1 unsatisfiable SAT problems.
Therefore, the majority of the SAT problems will be unsatisfiable.

We then run the BreakID static symmetry breaker [7] on each SAT problem for 60
seconds. BreakID produces a copy of the problem with additional constraints added
that break identified symmetries in the problem. This will cover both symmetries in
the original problem and any symmetries introduced via our encoding. Finally, we run
Minisat [8] on each SAT problem (this is the SAT solver used by Vampire internally).

We repeat the above experiment for different heuristics. To establish a baseline,
we start without symmetry avoidance and investigate symbol orders by occurrence and

Table 4. Comparing solving with and without breaking. T/O means timeout and BiD means
BreakID.

Without Breaking With Breaking Gained Lost Loss / Gain
Sat Unsat T/O Sat Unsat T/O (BiD) T/O (Sat) Sat Unsat Sat Unsat

1,194 12,919 423 954 11,991 1,435 156 3 191 262 1,171 7.39

Table 5. Solving statistics by SAT problem. T/O means timeout and BiD means BreakID.

Without BreakID With BreakID Gained Lost Loss/
Options Total Sat Unsat T/O Sat Unsat T/O T/O Sat Unsat Sat Unsat Gain

(BiD) (Sat)
prepro, ff 13,791 1,289 12,242 260 1,067 11,441 1,062 221 4 15 230 831 55.84
occ, ff 13,788 1,272 12,254 262 1,062 11,421 1,063 221 2 15 224 861 63.82

preprocessed usage that fared well before (see Table 2). In both cases we construct
terms by functions first. The system used for the experiments is an Intel Xeon E5520
with 2.27GHz and 16GB memory.

6.1 The Effect of Symmetry Breaking

First we look at the effect that static symmetry breaking can have on the finite-model
finding process independently of our symmetry avoidance heuristics. Running finite-
model finding using the default strategy (without symmetry avoidance) produces 14,536
SAT problems. Table 4 reports the difference between running with and without static
symmetry breaking. Overall, more problems are solved without symmetry breaking
than with. However, this is mainly due to the timing out of the static symmetry breaking
process. There are 194 SAT problems that are solved with static symmetry breaking that
were not solved without it. This represents an opportunity for making further progress
in the finite model finding process. As expected, this has a far greater effect on the
unsatisfiable problems, which will partly be due to the fact that over 80% of problems
are unsatisfiable and partly due to the fact that these are fundamentally harder.

In this we spent 60 seconds on static symmetry breaking and 60 seconds on SAT
solving. The next question to ask is whether the time spent on static symmetry breaking
can be justified. In 1,811 experiments the time spent on breaking and solving combined
is roughly equivalent to that of solving by itself without breaking. In 1,062 problems
the solution was faster without breaking, leaving 56 problems where the combination
of breaking and solving performed faster than solving without breaking.

This experiment shows that whilst static symmetry breaking can help on a small
number of problems, in general it reduces performance.

6.2 Comparing Breaking and Avoidance

Next we want to see what happens when we combine the symmetry avoiding heuris-
tics with static symmetry breaking. To do this we run the two best symmetry avoiding
strategies from the previous section and repeat the above experiment.

Table 5 reports only 13,791 and 13,788 generated files. This is due to the time
spent in symmetry avoidance. Compared to the baseline, there are fewer time-outs and
solved unsatisfiable problems, but more satisfiable ones. The rate of time-outs (1,062
and 1,063) during symmetry breaking is also similar, which leads to a high number of
lost solutions. However, the number of solutions gained by symmetry breaking over
avoidance is significantly lower (19 and 17). This suggests that symmetry avoidance
was already having a significant impact on solving times.

It is possible that the distinction between solutions gained and lost is too rough.
Next we investigate the speed-ups in timing between problems of unsatisfiable solutions
for pairs of symmetry-avoidance and symmetry-breaking options. We also restrict the
problems to those where the model size is larger than the number of constants. In these
cases, not all domain constants can be assigned to input constants which leaves room
for the different symmetry orders with regard to functions. Table 6 shows the number
of problems that were solved faster and slower. The time for BreakID includes the
time taken for static symmetry breaking. Most timings were sufficiently close that jitter
effects could tip the balance either way. For this reason all results within 2 seconds were
excluded.

When applying BreakId, about 10% of the SAT problems cannot be processed
within the 60 seconds time limit of the full input problem. This leads to a high ratio
of problems lost due to symmetry breaking against the new solutions gained. There
is also a consistent disparity in the gain/loss ratio between satisfiable and unsatisfi-
able problems. Two factors could contribute to this phenomenon. First, the separation
into symmetry breaking and SAT solving comes with a significant overhead in parsing
and duplication of data structures. Moreover, BreakId itself depends on the automor-
phism library saucy[5, 6] which leads to another duplication of data-structures. Second,
we need to take the whole sequence of models generated into account. When BreakId
times out already for small model sizes the larger model sizes are likely to follow. This
artificially amplifies the number of lost unsatisfiable solutions. On the other hand, the
satisfiable solutions depend more strongly on the heuristics of the SAT solver which
leads to less predictable timings.

As a consequence, we compare the gains and losses between the baseline and the
two symmetry orders as well. The baseline loses about 7 times as many problems as
gained by symmetry breaking. Both the preprocessed and occurrence symmetry order
retain a similar number of lost problems. Also the number of satisfiable problems gained
is similar to the baseline. The main improvement of symmetry avoidance lies with the
unsatisfiable lost problems where more than 90% of the problems gained versus the
baseline can be recovered by the heuristics.

Most results are indistinguishable. Both symmetry avoidance options tend to speed
solving up more than slowing it down when compared to the baseline, but they them-
selves are indistinguishable. Even without time-outs, symmetry breaking tends to be
slower than symmetry avoidance. Combining symmetry breaking and symmetry avoid-
ance mostly improves the solving times. Again there is no distinguishable difference
between the two avoidance options.

Table 6. Pairwise comparison of SAT problems with model size > number of constants

A B A slower than B A faster than B Too Close
baseline preprocessed, ff 147 16 1,063
baseline occ, ff 145 16 1,064
preprocessed, ff occ, ff 0 0 1,640
baseline baseline+BreakId 56 1,062 1,811
preprocessed, ff preprocessed, ff+BreakId 13 408 1,139
occ, ff preprocessed, ff+BreakId 13 405 1,139
baseline+BreakId preprocessed, ff+BreakId 279 7 877
baseline+BreakId occ, ff+BreakId 276 7 870
preprocessed, ff+BreakId occ, ff+BreakId 0 0 1550

6.3 Discussion

We summarise answers to our two initial research questions. Symmetry breaking can
help solve more problems, but in the majority of cases, the cost of static symmetry
breaking is higher than symmetry avoidance. When considered alongside symmetry
avoidance, the benefits of symmetry breaking are more modest, suggesting that overall
the effort of incorporating these techniques directly into the finite model finding process
may not be worthwhile.

7 Conclusion and Future Work

In this paper, we have characterised the symmetry avoidance problem for MACE-
style finite model finding, suggested a number of sound heuristics for symmetry avoid-
ance, and experimentally evaluated these heuristics. We found that some of these vari-
ations can significantly speed up the finite model finding process. Finally, we looked at
whether directly identifying and breaking symmetries in the SAT problems would give
any further improvements. In further work we would like to explore further heuristics
and the correlation between the ordering heuristics and the signature of a problem.

Acknowledgement. We thank the anonymous reviewers for critically reading the paper
and suggesting substantial improvements.

References

1. F. A. Aloul, I. L. Markov, and K. A. Sakallah. Shatter: efficient symmetry-breaking for
boolean satisfiability. In Proceedings of the 40th Design Automation Conference, DAC 2003,
Anaheim, CA, USA, June 2-6, 2003, pp. 836–839, 2003.

2. G. Audemard and L. Henocque. The extended least number heuristic. In Automated Rea-
soning, First International Joint Conference, IJCAR 2001, Siena, Italy, June 18-23, 2001,
Proceedings, pp. 427–442, 2001.

3. K. Claessen and A. Lillieström. Automated inference of finite unsatisfiability. J. Autom.
Reasoning, 47(2):111–132, 2011.

4. K. Claessen and N. Sörensson. New techniques that improve MACE-style model finding. In
CADE-19 Workshop: Model Computation - Principles, Algorithms and Applications, 2003.

5. P. T. Darga, H. Katebi, M. Liffiton, I. L. Markov, and K. Sakallah. Saucy Homepage.
http://vlsicad.eecs.umich.edu/BK/SAUCY.

6. P. T. Darga, M. H. Liffiton, K. A. Sakallah, and I. L. Markov. Exploiting structure in sym-
metry detection for CNF. In Proceedings of the 41th Design Automation Conference, DAC
2004, San Diego, CA, USA, June 7-11, 2004, pp. 530–534. ACM, 2004.

7. J. Devriendt, B. Bogaerts, M. Bruynooghe, and M. Denecker. Improved static symmetry
breaking for SAT. In SAT 20127, pp. 104–122, 2016.

8. N. Eén and N. Sörensson. An extensible SAT-solver. In Theory and Applications of Satisfia-
bility Testing, 6th International Conference, SAT 2003. Santa Margherita Ligure, Italy, May
5-8, 2003 Selected Revised Papers, pp. 502–518, 2003.

9. M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. Answer Set Solving in Practice.
Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool
Publishers, 2012.

10. I. P. Gent, K. E. Petrie, and J. Puget. Symmetry in constraint programming. In Handbook of
Constraint Programming, pp. 329–376. 2006.

11. S. C. Homepage. SAT Competition 2009: Benchmark Submission Guidelines.
https://www.satcompetition.org/2009/format-benchmarks2009.html.

12. L. Kovács and A. Voronkov. First-order theorem proving and Vampire. In CAV 2013, vol.
8044 of Lecture Notes in Computer Science, pp. 1–35, 2013.

13. W. Mccune. A Davis-Putnam Program and its Application to Finite First-Order Model
Search: Quasigroup Existence Problems. Technical report, Argonne National Laboratory,,
1994.

14. A. Nonnengart and C. Weidenbach. Computing small clause normal forms. In Handbook of
Automated Reasoning (in 2 volumes), pp. 335–367. 2001.

15. G. Reger, M. Suda, and A. Voronkov. The challenges of evaluating a new feature in vampire.
In Proceedings of the 1st and 2nd Vampire Workshops, vol. 38 of EPiC Series in Computing,
pp. 70–74. EasyChair, 2016.

16. G. Reger, M. Suda, and A. Voronkov. Finding finite models in multi-sorted first-order logic.
In Theory and Applications of Satisfiability Testing – SAT 2016, pp. 323–341. Springer In-
ternational Publishing, 2016.

17. G. Reger, M. Suda, and A. Voronkov. New techniques in clausal form generation. In GCAI
2016. 2nd Global Conference on Artificial Intelligence, vol. 41 of EPiC Series in Computing,
pp. 11–23. EasyChair, 2016.

18. K. A. Sakallah. Symmetry and satisfiability. In Handbook of Satisfiability, pp. 289–338.
2009.

19. A. Stump, G. Sutcliffe, and C. Tinelli. StarExec, a cross community logic solving service.
https://www.starexec.org, 2012.

20. G. Sutcliffe. The TPTP problem library and associated infrastructure. J. Autom. Reasoning,
43(4):337–362, 2009.

21. A. Vakili and N. A. Day. Finite model finding using the logic of equality with uninterpreted
functions. In FM 2016: Formal Methods - 21st International Symposium, Limassol, Cyprus,
November 9-11, 2016, Proceedings, vol. 9995 of Lecture Notes in Computer Science, pp.
677–693, 2016.

22. J. Zhang and H. Zhang. SEM: a system for enumerating models. In IJCAI 95, pp. 298–303,
1995.

23. J. Zhang and H. Zhang. System description: Generating models by SEM. In Auto-
mated Deduction - CADE-13, 13th International Conference on Automated Deduction, New
Brunswick, NJ, USA, July 30 - August 3, 1996, Proceedings, pp. 308–312, 1996.

