
Instantiation for Theory Reasoning in
Vampire

Giles Reger Martin Riener

φormalµethodsγ roup

Theory Reasoning in saturation provers

Previous approaches to reasoning with theories (such as integer or real
arithmetic) in saturation-based theorem provers include:

I Adding axioms (e.g. x + y = y + x)

I Evaluating ground expressions

I Using an SMT solver to decide ground sub-problems

Only axioms deal with quantifiers but they are explosive in proof search
and in many cases are only useful when used to generate consequences
of the theory in an undirected way.

Where instantiation helps

Theory axiom reasoning does not find useful instances of clauses which
can be very useful. For example, if we can guess the instance x = 7 for
the clause

14x 6= x2 + 49 ∨ p(x)

we obtain the simpler instance

p(7)

The literal 14 · 7 6= 7 · 7 + 49 can be deleted because it is inconsistent
with integer arithmetic.

Instantiation can be too specific

When we consider the clause

x 6= y + 1 ∨ p(x , y)

we could use the instantiation x = 1, y = 0 to infer p(1, 0). But using
equality resolution to infer

p(y + 1, y)

covers all instances while still simplifying the clause.

Trivial literals

We do not want to consider literals that only have overly specific
instantiations. A simple criterion is triviality.

A literal is trivial if. . .

I it is of the form x 6= t (x does not occur in t)

I and it is pure

I and in all other literals of the clause, when x appears the clause is
either trivial or not pure

Instantiation Rule

P ∨ D

Dθ

I Pθ unsatisfiable in the background theory

I P does not contain uninterpreted symbols

I P does not contain trivial literals

Using SMT solvers for instantiation

We use an SMT solver to find a θ such that Pθ is unsatisfiable by
finding a model of ¬P . Note that this only works because P only
contains symbols that have a single interpretation in the given theory
e.g. arithmetic functions.

Literals with small sets of solutions

y = 14x ; y = x2 + 49

x = 7

y = 14x + 13; y = x2 + 49

x1 = 3, x2 = 11

Abstraction

The problem passed to the SMT solver needs to be pure but most
literals are not. Abstraction introduces fresh variables for subterms to
separate theory from non-theory literals.
The clause set

{r(14y); r(x2 + 49) ∨ p(x)}
is abstracted to

{u 6= 14y ∨ r(u); v 6= x2 + 49 ∨ r(v) ∨ p(x)}
Applying abstraction generally interferes with proof search in various
ways. Our solution is to extend unification apply abstraction lazily by
producing constraints under which theory subterms unify. For example,
r(14y) and r(x2 + 49) ∨ p(x) unify to give 14y 6= x2 + 49 ∨ p(x).

Vampire

I Automated first-order theorem prover

I Based on superposition

I Supports theories, datatypes, AVATAR

I Available at https://github.com/vprover/vampire

Experiments

SMT-LIB

Logic New solutions Uniquely solved

ALIA 1 0

LIA 14 0

LRA 4 0

UFDTLIA 5 0

UFLIA 28 14

UFNIA 13 4

TPTP

Category New solutions Uniquely solved

ARI 13 0

NUM 1 1

SWW 3 1

References

Laura Kovács and Andrei Voronkov.
First-order theorem proving and Vampire.
In CAV 2013, volume 8044 of LNCS, pages 1–35, 2013.

Giles Reger, Nikolaj Bjørner, Martin Suda, and Andrei Voronkov.
AVATAR modulo theories.
In GCAI 2016, volume 41 of EPiC Series in Computing, pages 39–52. EasyChair,
2016.

Giles Reger and Martin Suda.
Set of support for theory reasoning.
In IWIL Workshop and LPAR Short Presentations, volume 1 of Kalpa Publications
in Computing, pages 124–134. EasyChair, 2017.

Giles Reger, Martin Suda, and Andrei Voronkov.
Unification with abstraction and theory instantiation in saturation-based reasoning.
In TACAS, 2018.

https://github.com/vprover/vampire

