
CERES for Propositional Proof Schemata∗

C. Dunchev1, A. Leitsch1, M. Rukhaia1, and D. Weller2

1 Institute of Computer Languages, Vienna University of Technology.
2 Institute of Discrete Mathematics and Geometry, Vienna University of

Technology.

Abstract
The cut-elimination method CERES (for first- and higher-order classical logic) is based on the
notion of a characteristic clause set, which is extracted from an LK-proof and is always unsatis-
fiable. A resolution refutation of this clause set can be used as a skeleton for a proof with atomic
cuts only (atomic cut normal form). This is achieved by replacing clauses from the resolution
refutation by the corresponding projections of the original proof.

We present a generalization of this method to propositional proof schemata and define a
schematic version of propositional sequent calculus called LKS, and a notion of proof schema
based on primitive recursive definitions. A method is developed to extract schematic characteris-
tic clause sets and schematic projections from these proof schemata. We also define a schematic
resolution calculus for refutation of schemata of clause sets, which can be applied to refute the
schematic characteristic clause sets. Finally the projection schemata and resolution schemata are
plugged together and a schematic representation of the atomic cut normal forms is obtained. An
algorithmic handling of the schematic cut-elimination method is supported by a recent extension
of the CERES system.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases schemata, cut-elimination, resolution

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

Cut-elimination was originally introduced by G. Gentzen in [12] as a theoretical tool from
which results like decidability and consistency could be proven. Cut-free proofs are compu-
tationally explicit objects from which interesting information such as Herbrand disjunctions
and interpolants can be easily extracted. When viewing formal proofs as a model for math-
ematical proofs, cut-elimination corresponds to the removal of lemmata, which leads to
interesting applications (such as one described below).

For such applications to mathematical proofs, the cut-elimination method CERES (cut-
elimination by resolution) was developed [7, 9, 13]. It essentially reduces cut-elimination for
a proof π to a theorem proving problem: the refutation of the characteristic clause set CL(π).
Given a resolution refutation γ of CL(π), an essentially cut-free proof can be constructed
by a proof-theoretic transformation. In contrast to the usual Gentzen-style approach to
cut-elimination, the CERES method performs a global instead of a local analysis of the
proof.

The present work is motivated by an application of CERES to (a formalization of) a
mathematical proof: Fürstenberg’s proof of the infinity of primes [1, 6]. Since cut-elimination

∗ Supported by the FWF project I383.

© C. Dunchev, A. Leitsch, M. Rukhaia and D. Weller;
licensed under Creative Commons License NC-ND

Conference title on which this volume is based on.
Editors: Billy Editor, Bill Editors; pp. 1–15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 CERES for Propositional Proof Schemata

in the presence of induction is problematic, the proof was formalized as a sequence of proofs
(πk)k∈N showing that the assumption that there exist exactly k primes is contradictory.
The application was performed in a semi-automated way: CL(πk) was computed for some
small values of k and from this, a general scheme CL(πn), where n is a formal parameter,
was constructed and subsequently analyzed by hand. The analysis finally showed that from
Fürstenberg’s proof, which makes use of topological concepts, Euclid’s elementary proof
could be obtained by cut-elimination. It was unsatisfactory that the parameterized object
CL(πn) was constructed ad-hoc and by hand, instead of being computed automatically from
a parameterized representation of the sequence (πk)k∈N. Further, for lack of a formalism,
the analysis of CL(πn) could not be performed in a computer-aided way.

Hence the present work is concerned with the investigation of a formal concept of proof
schema. The aim is to define a CERES method for proof schemata that will yield a schematic
representation of CL(πk). This can be regarded as a generalization of CERES from proofs
π to sequences of proofs (πk)k∈N that are given by such a proof schema. Not only will
this close the gap in the application described above (and in future ones) by automatically
computing the correct schema CL(πn), but it will also allow (semi-)automated application
of the method using theorem provers and proof assistants based on the formal definitions.

A central aspect of our notion of proof schema is its treatment of inductive reasoning.
In other approaches [14, 10, 16], induction rules are considered. Usually, such a rule allows
to infer, from proofs of ϕ(0) and ϕ(n) ⊃ ϕ(n+ 1), the statement ϕ(n). In a sense, inductive
reasoning is done on the level of formulas. In our approach, the treatment of induction is
on the level of proofs: for example, we allow in a proof of ϕ(n+ 1) a reference or proof link
to a proof of ϕ(n). This is similar to the cyclic approach taken in [15, 11].

We start our investigation into proof schemata with the case of propositional logic. A
notion of formula schema was introduced and investigated in [2, 4]. The subclass of regular
schemata was identified and shown decidable, and a tableau calculus stab was defined and
implemented [3]. In this paper, we will focus on this class of schemata, although it can in
principle be applied to more expressive classes of formulas (this is clear in the propositional
case, and the extension to first-order schemata will be investigated in the future).

This paper is structured in the following way: In Section 2, we introduce formula and
proof schemata. Sections 3 and 4 are devoted to the data structures central to the CERES
method: the characteristic clause term and the proof projection term respectively. In Sec-
tion 5, a schematic resolution calculus is defined and the main theoretical result on the
CERES method is stated. Finally, in Section 6, we apply the method semi-automatically to
a proof that an n-bit adder is commutative.

2 Schematic Language

The aim of this section is to introduce a notion of propositional proof schema. Following [4]
we first introduce the syntax of propositional formula schemata on which we then build our
notion of schematic sequent calculus proof. To the best of our knowledge, there does not
yet exist a sequent calculus for propositional formula schemata, although cyclic proofs which
are similar to our proof schemata have been considered in the literature [15, 11].

We assume a countably infinite set of index variables (intended to be interpreted over
N), and a countably infinite set of propositional symbols. As we will see later in this section,
index variables can be free or bound. Free index variables are called parameters. The set
of arithmetic expressions is defined inductively from the constant 0 and the index variables
over the signature s,+ (note that all our arithmetic expressions are linear). We will denote

C. Dunchev, A. Leitsch, M. Rukhaia, and D. Weller 3

elements of N by α, β, . . ., bound index variables by i, j, l, . . ., parameters by k,m, n, . . ., and
arithmetic expressions by a, b, We will identify α ∈ N with the numeral sα(0). We say
that an arithmetic expression a is ground if a does not contain variables. We make use of
the standard rewrite system for arithmetic expressions, consisting of a+ 0→ a, a+ s(b)→
s(a+b) and so forth. This rewrite system is confluent and terminating for ground arithmetic
expressions, and for simplicity we will identify such expressions with their normal forms
sα(0). A substitution is a function mapping every (free) index variable to an arithmetic
expression.

I Definition 2.1 (Indexed proposition). An expression of the form pa, where a is an arithmetic
expression and p a propositional symbol, is called an indexed proposition.

I Definition 2.2 (Formula schemata). We define formula schemata inductively in the following
way:

An indexed proposition is an (atom) formula schema.
If φ1 and φ2 are formula schemata, then so are φ1 ∨ φ2, φ1 ∧ φ2 and ¬φ1.
If φ is a formula schema, a, b are arithmetic expressions and i is an index variable not
bound in φ, then

∧b
i=a φ and

∨b
i=a φ are formula schemata such that i is bound in both

formula schemata.
We denote formula schemata by A,B, The notation A(k) is used to indicate a parameter
k in A, and A(a) then denotes A {k ← a}.

2.1 Proof schemata
In this section we define a version of the classical propositional sequent calculus LK. It will
differ from LK in two ways: The formulas it will operate on will be formula schemata, and
special initial sequents called proof links will be allowed. Note that already in [2], a calculus
stab for formula schemata is introduced. Our calculus differs from it in some aspects:
most importantly, we include the cut rule, which allows the formalization of proofs that
use lemmata. Furthermore, instead of a looping rule (which is geared towards automated
theorem proving), we use a different approach to the recursive specification of proofs which
is more suited to the formalization of proofs found by humans.

I Definition 2.3 (Calculus LKS). An expression of the form Γ ` ∆, where Γ and ∆ are
multisets of formula schemata, is called a sequent schema (or just sequent). If S is a sequent
schema and a an arithmetic expression, the notation S(a) is defined as for formula schemata.
If Γ ∪∆ consists of atoms only, the sequent is called a clause.

We assume a countably infinite set of proof symbols denoted by ϕ,ψ, If ϕ is a proof
symbol, a is an arithmetic expression, and S a sequent schema, then the expression (ϕ(a))

S
is called a proof link.

An LKS-proof is a tree of sequents such that every leaf is either of the form A ` A
for atomic A, or is a proof link, and that is built according to the usual rules of classical
propositional sequent calculus LK with the proviso that schematic formulas are considered
modulo the equalities A(0) =

∧0
i=0A(i) and (

∧n
i=0A(i)) ∧ A(n + 1) =

∧n+1
i=0 A(i) (and

analogously for
∨
)1.

The notion of auxiliary formula is defined as usual, and all occurrences of formulas in an
LKS-proof are endowed with an ancestor relation in the usual way. If O is a set of formula

1 These equalities are used so that the rules for ∧ and ∨ can be applied to
∧

and
∨

.

4 CERES for Propositional Proof Schemata

occurrences and o is a formula occurrence, then o is an O-ancestor if o is an ancestor of
some o′ ∈ O. o is a cut-ancestor if it is an ancestor of an auxiliary formula of a cut.

The root sequent of an LKS-proof is called its end-sequent. An LKS-proof is called
ground if it does not contain parameters and proof links.
Note that a ground LKS-proof is essentially an LK-proof (obtained by replacing ground∧
,
∨

by a finite number of ∧,∨). We usually denote LKS-proofs by π, ν,
To be of practical use, we add a notion of recursion to the LKS-proofs defined above.

This will yield our notion of proof schemata:
I Definition 2.4 (Proof schemata). Let ψ be a proof symbol and S(n) be a sequent. Then a
proof schema pair for ψ is a pair of LKS-proofs (π, ν(k + 1)) with end-sequents S(0) and
S(k+1) respectively such that π may not contain proof links and ν(k+1) may contain only

proof links of the form (ψ(k))
S(k)

. For such a proof schema pair, we say that a proof link of

the form (ψ(a))
S(a)

is a proof link to ψ. We say that S(n) is the end-sequent of ψ, and we

assume an identification between formula occurrences in the end-sequents of π and ν(k+ 1)
so that we can speak of occurrences in the end-sequent of ψ.

Finally, a proof schema Ψ is a tuple of proof schema pairs 〈p1, . . . , pα〉 for ψ1, . . . , ψα
respectively such that the LKS-proofs in pβ may also contain proof links to ψγ for 1 ≤ β <
γ ≤ α. We also say that the end-sequent of ψ1 is the end-sequent of Ψ.
We make a small detour to consider a possible objection to our definition of proof schema:
that one could define a similar proof system in a simpler way by considering LKS-proofs
together with an induction rule. This is indeed possible, and there are translations between
such a system and our system of proof schemata. The reason that we are considering the
formalism of proof schemata is that on one hand, it is very natural to write proofs in such
a way: the proof π analyzed in [6] is an example. On the other hand, the translation from
proof schemata to the system with an induction rule introduces additional cuts. Since we
are interested in cut-elimination, and furthermore in the elimination of cuts from concrete
proofs, the introduction of additional cuts should be avoided if at all possible. The authors
have experienced this problem when trying to apply the CERES method to a formalization
of π in higher-order logic, using the second-order induction axiom: the characteristic clause
set of the proof was too large to be analyzed either manually of automatically.

Therefore we will continue with our investigation of proof schemata. In the following, we
will consider a fixed proof schema Ψ = 〈(π1, ν1(k + 1)), . . . , (πα, να(k + 1))〉 for ψ1, . . . , ψα.
We now give a syntactic meaning to proof schemata: A proof schema Ψ with end-sequent
S(n) can be considered as a representation of a sequence λ0, λ1, . . . of ground LKS-proofs
that prove the sequents S(0), S(1), For this definition, we consider LKS-proofs as terms
and define a rewrite system for them.
I Definition 2.5 (Evaluation of proof schemata). We define the rewrite rules for proof links

(ψβ(0))
S

→ πβ ,
(ψβ(s(k)))

S
→ νβ(k + 1)

for all 1 ≤ β ≤ α. Now for γ ∈ N we define ψβ ↓γ as a normal form of (ψβ(γ))
S(γ)

under the

rewrite system just given. Further, we define Ψ↓γ= ψ1 ↓γ .

I Example 2.6. Let’s consider the following proof schema Ψ = 〈(π, ν(k+ 1))〉 for ψ, where
π is:

C. Dunchev, A. Leitsch, M. Rukhaia, and D. Weller 5

p0 ` p0 ¬ : l¬p0, p0 ` p1 ` p1 ∨ : l
p0,¬p0 ∨ p1 ` p1

and ν(k + 1):

(ψ(k))
p0,

∧k
i=0(¬pi ∨ pi+1) ` pk+1

pk+1 ` pk+1 ¬ : l¬pk+1, pk+1 ` pk+2 ` pk+2 ∨ : l
pk+1,¬pk+1 ∨ pk+2 ` pk+2

cut
p0,

∧k
i=0(¬pi ∨ pi+1),¬pk+1 ∨ pk+2 ` pk+2

∧ : l
p0,

∧k+1
i=0 (¬pi ∨ pi+1) ` pk+2

Then Ψ ↓0 is just π and Ψ ↓1 is the following proof:

p0 ` p0 ¬ : l¬p0, p0 ` p1 ` p1 ∨ : l
p0,¬p0 ∨ p1 ` p1

p1 ` p1 ¬ : l¬p1, p1 ` p2 ` p2 ∨ : l
p1,¬p1 ∨ p2 ` p2

cut
p0,¬p0 ∨ p1,¬p1 ∨ p2 ` p2 ∧ : l

p0, (¬p0 ∨ p1) ∧ (¬p1 ∨ p2) ` p2

I Proposition 2.7 (Soundness). For every γ ∈ N and 1 ≤ β ≤ α, ψβ ↓γ is a ground LKS-proof
with end-sequent Sβ(γ). Hence Ψ↓γ is a ground LKS-proof with end-sequent S(γ).

Proof. By induction on α − β, we show that (ψβ(γ))
Sβ(γ)

rewrites to a ground LKS-proof

with end-sequent Sβ(γ) for all β ≤ α and all γ. If α = β we proceed by induction on γ: If
γ = 0 then the proof link rewrites to πα which is as desired by definition. If γ > 0 then
the proof link rewrites to να(γ), to which we may apply the induction hypothesis since it
contains only proof links to ψα(γ′) with γ′ < γ. This completes the induction on γ. Now
let 1 ≤ β < α. Again we proceed by induction on γ. If γ = 0 then the proof link rewrites to
πβ , which by definition contains only proof links to ψβ′ with β′ > β, hence we may conclude
by the (outer) induction hypothesis. If γ > 0 then the proof link rewrites to νβ(γ) which
only contains proof links to ψβ′(γ′) with β′ > β, and to ψβ(γ′) with γ′ < γ. The first case
is treated with the outer induction hypothesis, the second case with the inner induction
hypothesis. J

Next, we will consider the problem of cut-elimination for proof schemata. Note that trivially,
for every γ ∈ N we can obtain a cut-free proof of S(γ) by computing Ψ ↓γ , which contains
cuts, and then applying a usual cut-elimination algorithm. What we are interested in here
is rather a schematic description of all the cut-free proofs for a parameter n. It is not
possible to obtain such a description by naively applying Gentzen-style cut-elimination to
the LKS-proofs in Ψ , since it is not clear how to handle the case

(ψ1(a1))
Γ ` ∆, C

(ψ2(a2))
C,Π ` Λ

cutΓ,Π ` ∆,Λ

as this would require “moving the cut through a proof link”. In this paper, we will go a
different route: we will define a CERES method, which will be based on a global analysis of
the proof schema. It will eventually yield the desired schematic description of the sequence
of cut-free proofs, as expressed by Theorem 5.12.

6 CERES for Propositional Proof Schemata

3 Characteristic Clause Term

At the heart of the CERES method lies the characteristic clause set, which describes the
cuts in a proof. The connection between cut-elimination and the characteristic clause set is
that any resolution refutation of the characteristic clause set can be used as a skeleton of a
proof containing only atomic cuts.

The characteristic clause set can either be defined directly as in [7], or it can be obtained
via a transformation from a characteristic clause term as in [8]. We use the second approach
here; the reason for this will be explained later.

Our main aim is to extend the usual inductive definition of the characteristic clause term
to the case of proof links. This will give rise to a notion of schematic characteristic clause
term. As usual, a clause term is a term built inductively from clauses and the binary symbols
⊗,⊕. The usual definition of the characteristic clause term depends upon the cut-status of
the formula occurrences in a proof (i.e. whether a given formula occurrence is a cut-ancestor,
or not). But a formula occurrence in a proof schema gives rise to many formula occurrences
in its evaluation, some of which will be cut-ancestors, and some will not. Therefore we
need some machinery to track the cut-status of formula occurrences through proof links.
Hence we call a set Ω of formula occurrences from the end-sequent of an LKS-proof π a
cut-configuration for π.

We will represent the characteristic clause term of a proof link in our object language:
For all proof symbols ψ and cut-configurations Ω we assume a unique indexed proposition
symbol clΩ,ψ called clause term symbol. The intended semantics of clΩ,ψa is “the characteristic
clause set of ψ(a), with the cut-configuration Ω”.
I Definition 3.1 (Characteristic clause term). Let π be an LKS-proof and Ω a cut-configuration.
In the following, by ΓΩ,∆Ω and ΓC ,∆C we will denote multisets of formulas of Ω- and
cut-ancestors respectively. Let ρ be an inference in π. We define a clause term Θρ(π,Ω)
inductively:

if ρ is an axiom of the form ΓΩ,ΓC ,Γ ` ∆Ω,∆C ,∆, then Θρ(π,Ω) = ΓΩ,ΓC ` ∆Ω,∆C

if ρ is a proof link of the form (ψ(a))
ΓΩ,ΓC ,Γ ` ∆Ω,∆C ,∆

then define Ω′ as the set of

formula occurrences from ΓΩ,ΓC ` ∆Ω,∆C and Θρ(π,Ω) = ` clΩ
′,ψ

a

if ρ is an unary rule with immediate predecessor ρ′, then Θρ(π,Ω) = Θρ′(π,Ω).
if ρ is a binary rule with immediate predecessors ρ1, ρ2, then

if the auxiliary formulas of ρ are Ω- or cut-ancestors, then Θρ(π,Ω) = Θρ1(π,Ω) ⊕
Θρ2(π,Ω),
otherwise Θρ(π,Ω) = Θρ1(π,Ω)⊗Θρ2(π,Ω).

Finally, define Θ(π,Ω) = Θρ0(π,Ω), where ρ0 is the last inference of π, and Θ(π) = Θ(π, ∅).

I Example 3.2. Let’s consider the proof schema Ψ of the sequent p0,
∧n
i=0(¬pi ∨ pi+1) `

pn+1, defined in Example 2.6. We have two relevant cut-configurations: ∅ and {pn+1}. The
characteristic clause terms of Ψ for these cut-configurations are:

Θ(π, ∅) = ` ⊗ `
Θ(π, {pn+1}) = ` ⊗ ` p1

Θ(ν(k + 1), ∅) = ` cl{pn+1},ψ
k ⊕ (pk+1 ` ⊗ `)

Θ(ν(k + 1), {pn+1}) = ` cl{pn+1},ψ
k ⊕ (pk+1 ` ⊗ ` pk+2)

We say that a clause term is ground if it does not contain index variables and clause term
symbols. Analogously to proof schemata, we define a notion of evaluation of characteristic
clause terms:

C. Dunchev, A. Leitsch, M. Rukhaia, and D. Weller 7

I Definition 3.3 (Evaluation). We define the rewrite rules for clause term symbols for all
proof symbols ψβ and cut-configurations Ω:

clΩ,ψβ0 → Θ(πβ ,Ω), clΩ,ψβk+1 → Θ(νβ(k + 1),Ω),

for all 1 ≤ β ≤ α. Next, let γ ∈ N and let clΩ,ψβ ↓γ be a normal form of clΩ,ψβγ under
the rewrite system just given. Then define Θ(ψβ ,Ω) = clΩ,ψβ and Θ(Ψ,Ω) = Θ(ψ1,Ω) and
finally the schematic characteristic clause term Θ(Ψ) = Θ(Ψ, ∅).
Now we can explain why we chose to define the characterstic clause set via the characteristic
clause term: The clause term is closed under the rewrite rules we have given for the clause
term symbols, while the notion of clause set is not (a clause will in general become a formula
when subjected to the rewrite rules). Now, we prove that the notion of characteristic clause
term is well-defined.
I Proposition 3.4. Let γ ∈ N and Ω be a cut-configuration, then Θ(ψβ ,Ω) ↓γ is a ground
clause term for all 1 ≤ β ≤ α. Hence Θ(Ψ) ↓γ is a ground clause term.

Proof. We proceed analogously to the proof of Proposition 2.7. J

Next, we show that evaluation and extraction of characteristic clause terms commute. We
will later use this property to derive results on schematic characteristic clause sets from
standard results on (non-schematic) CERES.
I Proposition 3.5. Let Ω be a cut-configuration and γ ∈ N. Then Θ(Ψ ↓γ ,Ω) = Θ(Ψ,Ω) ↓γ .

Proof. We proceed by induction on γ. If γ = 0, then Θ(Ψ ↓0,Ω) = Θ(π1,Ω) and Θ(Ψ,Ω) ↓0=
Θ(π1,Ω).

IH1: assume γ > 0 and for all β < γ, Θ(Ψ ↓β ,Ω) = Θ(Ψ,Ω) ↓β . We proceed by induction
on the number α of proof symbols in Ψ.

Let α = 1. By the definition of characteristic clause term, constructions of Θ(Ψ ↓γ ,Ω)
and Θ(Ψ,Ω) ↓γ differ only on proof links, i.e. if (ψ1(k)) is a proof link in ν1(k + 1), then
by the definition of evaluation of proof schemata, Θ(ψ1 ↓γ ,Ω) contains the term Θ(ψ1 ↓β
,Ω′) and by the definition of evaluation of term schemata, Θ(Ψ,Ω) ↓γ contains the term
Θ(Ψ,Ω′) ↓β . Then by the assumption Θ(ψ1 ↓β ,Ω′) = Θ(Ψ,Ω′) ↓β and we conclude that
Θ(ψ1 ↓γ ,Ω) = Θ(Ψ,Ω)↓γ .

Now, assume α > 1 and proposition holds for all proof schemata with proof symbols
less than α (IH2). Again, for proof links in ν1(k + 1) of the form (ψ1(k)) the argument
is the same as in the previous case. Let (ψι(a)), 1 < ι ≤ α, be a proof link in ν1(k + 1).
Then, again, by the definition of evaluation of proof schemata, Θ(ψ1 ↓γ ,Ω) contains the
term Θ(ψι ↓λ,Ω′) and by the definition of evaluation of term schemata, Θ(Ψ,Ω)↓γ contains
the term Θ(Φ,Ω′) ↓λ, where Φ = 〈(πι, νι(k + 1)), . . . , (πα, να(k + 1))〉. Clearly, Φ contains
less than α proof symbols, then by IH2, Θ(ψι ↓λ,Ω′) = Θ(Φ,Ω′) ↓λ and we conclude that
Θ(ψ1 ↓γ ,Ω) = Θ(Ψ,Ω)↓γ . J

From the characteristic clause term we finally define the notion of characteristic clause set.
Towards this, we define some operations on (sets of) sequents.
I Definition 3.6. Let Γ ` ∆ and Π ` Λ be arbitrary sequents, then we define Γ ` ∆ × Π `
Λ = Γ,Π ` ∆,Λ. We extend this relation to sets of sequents P,Q in a natural way:
P ×Q = {SP × SQ | SP ∈ P, SQ ∈ Q}.
I Definition 3.7 (Characteristic clause sets). Let Θ be a clause term. Then we define a clause
set |Θ| in the following way:

8 CERES for Propositional Proof Schemata

|Γ ` ∆| = {Γ ` ∆},
|Θ1 ⊗Θ2| = |Θ1| × |Θ2|,
|Θ1 ⊕Θ2| = |Θ1| ∪ |Θ2|.

For an LKS-proof π and cut-configuration Ω, CL(π,Ω) = |Θ(π,Ω)|. We define the stan-
dard characteristic clause set CL(π) = CL(π, ∅) and the schematic characteristic clause set
CL(Ψ,Ω) = |Θ(Ψ,Ω)| and CL(Ψ) = CL(Ψ, ∅).

I Example 3.8. Let’s consider the characteristic clause terms defined in Example 3.2.
Then the sequence of CL(Ψ) ↓0,CL(Ψ) ↓1,CL(Ψ) ↓2, . . . is: {`}, {` p1 ; p1 `}, {` p1 ; p1 `
p2 ; p2 `}, . . .

Now we prove the main result about the characteristic clause set and lift it to the schematic
case.
I Proposition 3.9. Let π be a ground LKS-proof. Then CL(π) is unsatisfiable.

Proof. By the identification of ground LKS-proofs with propositional LK-proofs, the result
follows from Proposition 3.2 in [7]. J

I Proposition 3.10. CL(Ψ) ↓γ is unsatisfiable for all γ ∈ N (i.e. CL(Ψ) is unsatisfiable).

Proof. By Propositions 3.5 and 2.7 CL(Ψ) ↓α= CL(Ψ, ∅) ↓α= CL(Ψ ↓α, ∅) = CL(Ψ ↓α)
which is unsatisfiable by Proposition 3.9. J

The rewrite rules from Definition 3.3 can be used as logical definitions. Hence any
theorem prover for propositional schemata can be used to refute CL(Ψ).

4 Projections

The next step in the schematization of the CERES method consists in the definition of
schematic proof projections. The aim is, in analogy with the preceding section, to construct
a schematic projection term that can be evaluated to a set of ground LKS-proofs. As before,
we introduce formal symbols representing sets of proofs, and again the notion of LKS-proof
is not closed under the rewrite rules for these symbols, which is the reason for introducing
the notion of projection term.

For our term notation we assume for every rule ρ of LKS a corresponding rule symbol
that, by abuse of notation, we also denote by ρ. Given a unary rule ρ and an LKS-proof π,
there are different ways to apply ρ to the end-sequent of π: namely, the choice of auxiliary
formulas is free. Formally, the projection terms we construct will include this information
so that evaluation is always well-defined, but we will surpress it in the notation since the
choice of auxiliary formulas will always be clear from the context.

For every proof symbol ψ and cut-configuration Ω, we assume a unique proof symbol
prΩ,ψ. Now, a projection term is a term built inductively from sequents and terms prΩ,ψ(a),
for some arithmetic expression a, using unary rule symbols, unary symbols wΓ`∆ for all
sequents Γ ` ∆ and binary symbols ⊕,⊗σ for all binary rules σ. The symbols prΩ,ψ are
called projection symbols. The intended interpretation of prΩ,ψ(a) is “the set of characteristic
projections of ψ(a), with the cut-configuration Ω”.
I Definition 4.1 (Characteristic projection term). Let π be an LKS-proof and Ω an arbitrary
cut-configuration for π. Let ΓΩ,∆Ω and ΓC ,∆C be multisets of formulas corresponding to
Ω- and cut-ancestors respectively. We define a projection term Ξρ(π,Ω) inductively:

If ρ corresponds to an initial sequent S, then we define Ξρ(π,Ω) = S.

C. Dunchev, A. Leitsch, M. Rukhaia, and D. Weller 9

If ρ is a proof link in π of the form: (ψ(a))
ΓΩ,ΓC ,Γ ` ∆Ω,∆C ,∆

then, letting Ω′ be the set

of formula occurrences from ΓΩ,ΓC ` ∆Ω,∆C , define Ξρ(π,Ω) = prΩ′,ψ(a).
If ρ is a unary inference with immediate predecessor ρ′, then:

if the auxiliary formula(s) of ρ are Ω- or cut-ancestors, then Ξρ(π,Ω) = Ξρ′(π,Ω),
otherwise Ξρ(π,Ω) = ρ(Ξρ′(π,Ω)).

If σ is a binary inference with immediate predecessors ρ1 and ρ2, then:
if the auxiliary formulas of σ are Ω- or cut-ancestors, let Γi ` ∆i be the ances-
tors of the end-sequent in the conclusion of ρi, for i = 1, 2, and define: Ξσ(π,Ω) =
wΓ2`∆2(Ξρ1(π,Ω))⊕ wΓ1`∆1(Ξρ2(π,Ω)),
otherwise Ξσ(π,Ω) = Ξρ1(π,Ω)⊗σ Ξρ2(π,Ω).

Define Ξ(π,Ω) = Ξρ0(π,Ω), where ρ0 is the last inference of π.

We say that a projection term is ground if it does not contain index variables and projection
symbols.

I Example 4.2. Let’s consider the proof schema Ψ of the sequent p0,
∧n
i=0(¬pi∨pi+1) ` pn+1

defined in Example 2.6 and cut-configurations defined in Example 3.2. Then the projection
terms of Ψ for those cut-configurations are:

Ξ(π, ∅) = ¬l(p0 ` p0)⊗∨l p1 ` p1
Ξ(π, {pn+1}) = ¬l(p0 ` p0)⊗∨l p1 ` p1
Ξ(ν(k + 1), ∅) = ∧l(w¬pk+1∨pk+2`pk+2(pr{pn+1},ψ(k))⊕

wp0,
∧k

i=0
(¬pi∨pi+1)`(¬l(pk+1 ` pk+1)⊗∨l pk+2 ` pk+2))

Ξ(ν(k + 1), {pn+1}) = ∧l(w¬pk+1∨pk+2`(pr{pn+1},ψ(k))⊕
wp0,

∧k

i=0
(¬pi∨pi+1)`(¬l(pk+1 ` pk+1)⊗∨l pk+2 ` pk+2))

We now define the evaluation of projection terms, which is compatible with the respective
definition for clause terms.

I Definition 4.3 (Evaluation). We define the rewrite rules for projection term symbols for all
proof symbols ψβ and cut-configurations Ω:

prΩ,ψβ (0)→ Ξ(πβ ,Ω), prΩ,ψβ (k + 1)→ Ξ(νβ(k + 1),Ω),

for all 1 ≤ β ≤ α. Next, let γ ∈ N and let prΩ,ψβ ↓γ be a normal form of prΩ,ψβ (γ) under
the rewrite system just given. Then define Ξ(ψβ ,Ω) = prΩ,ψβ and Ξ(Ψ,Ω) = Ξ(ψ1,Ω) and
finally the schematic projection term Ξ(Ψ) = Ξ(Ψ, ∅).

I Proposition 4.4. Let Ω be a cut-configuration and γ ∈ N. Then Ξ(Ψ↓γ ,Ω) = Ξ(Ψ,Ω)↓γ .

Proof. We proceed as in the proof of Proposition 3.5. J

We will define a map from ground projection terms to sets of ground LKS-proofs. For
this, we need some auxiliary notation. The discussion regarding the notation for the appli-
cation of rules from the beginning of this section applies here.

I Definition 4.5. Let ρ be an unary and σ a binary rule. Let ϕ, π be LKS-proofs, then ρ(ϕ)
is the LKS-proof obtained from ϕ by applying ρ, and σ(ϕ, π) is the proof obtained from the
proofs ϕ and π by applying σ.

Let P,Q be sets of LKS-proofs. Then ρ(P) = {ρ(π) | π ∈ P}, PΓ`∆ = {πΓ`∆ | π ∈ P},
where πΓ`∆ is π followed by weakenings adding Γ ` ∆, and P ×σ Q = {σ(ϕ, π) | ϕ ∈ P, π ∈
Q}.

10 CERES for Propositional Proof Schemata

I Definition 4.6. Let Ξ be a ground projection term. Then we define a set of ground
LKS-proofs |Ξ| in the following way:
|A ` A| = {A ` A},
|ρ(Ξ)| = ρ(|Ξ|) for unary rule symbols ρ,
|wΓ`∆(Ξ)| = |Ξ|Γ`∆,
|Ξ1 ⊕ Ξ2| = |Ξ1| ∪ |Ξ2|,
|Ξ1 ⊗σ Ξ2| = |Ξ1| ×σ |Ξ2| for binary rule symbols σ.

For ground LKS-proofs π and cut-configurations Ω we define PR(π,Ω) = |Ξ(π,Ω)| and the
standard projection set PR(π) = PR(π, ∅). For γ ∈ N we define PR(Ψ) ↓γ= |Ξ(Ψ) ↓γ |.

The following result describes the relation between the standard projection set and charac-
teristic clause set in the ground case. It will allow us to construct, together with a resolution
refutation of CL(Ψ), essentially cut-free proofs of S(γ) for all γ ∈ N. Finally, the result is
lifted to the schematic case.

I Proposition 4.7. Let π be a ground LKS-proof with end-sequent S, then for all clauses
C ∈ CL(π), there exists a ground LKS-proof π ∈ PR(π) with end-sequent S ◦ C.

Proof. By the identification of ground LKS-proofs with propositional LK-proofs, the result
follows from the Definition 4.6 and Lemma 3.1 in [7]. J

I Proposition 4.8. Let γ ∈ N, then PR(Ψ↓γ) = PR(Ψ) ↓γ .

Proof. This result follows directly from Proposition 4.4. J

I Proposition 4.9. Let γ ∈ N, then for every clause C ∈ CL(Ψ) ↓γ there exists a ground
LKS-proof π ∈ PR(Ψ)↓γ with end-sequent C ◦ S(γ).

Proof. By Proposition 3.5, CL(Ψ) ↓γ= CL(Ψ ↓γ), and by Proposition 4.8, PR(Ψ) ↓γ =
PR(Ψ↓γ). Then the result follows from Proposition 4.7, since Ψ↓γ has end-sequent S(γ) by
definition. J

5 Resolution Schemata

In this section we define a notion of schematic resolution. In fact, schematic resolution
refutations of CL(Ψ), combined with the schematic projections PR(Ψ) allow the construction
of schematic atomic cut normal forms of the original proof schema Ψ – what is precisely the
aim of a schematic CERES-method.

I Definition 5.1 (s-clause). Clause variables are s-clauses, and clauses are s-clauses. If s1, s2
are s-clauses then s1 ◦ s2 is an s-clause. An s-clause over the clause variables X1, . . . , Xα is
an s-clause with clause variables in {X1, . . . , Xα}

I Definition 5.2 (clause schema). A clause schema is a term t(a,X1, . . . , Xα) w.r.t. a rewrite
system R where a is an integer term, X1, . . . , Xα are clause variables and R is of the form

{t(0, X1, . . . , Xα)→ s0; t(i+ 1, X1, . . . , Xα)→ t(i, s1, . . . , sα)}

where s0, . . . , sα are s-clauses over the variables X1, . . . , Xα.

Note that Definition 5.2 admits the representation of clauses of variable length, in con-
trast to the sequents of our input language. We will see in Section 6 that clause variables
will be needed for schematic refutations where the number of atoms in clauses increases with
the parameter n.

C. Dunchev, A. Leitsch, M. Rukhaia, and D. Weller 11

I Example 5.3. Let X,Y be clause variables; then Y ◦ (` p0) ◦ X and (` pi+1) ◦ X are
s-clauses. The term t(n,X, Y) w.r.t

{t(0, X, Y)→ Y ◦ (` p0) ◦X; t(i+ 1, X, Y)→ t(i, (` pi+1) ◦X,Y)}

is a clause schema. The normal forms of the terms t(α, `, ` q0) are just the clauses
` q0, p0, . . . , pα for α ≥ 0.

Below we generalize the concept of resolution deductions to so-called resolution terms,
which define some kind of skeleton for resolution deductions.

I Definition 5.4 (resolution term). We define resolution terms inductively:
s-clauses are resolution terms.
clause schemata are resolution terms.
Let t1 and t2 be resolution terms w.r.t. R1 and R2 and p an indexed atom. Then
r(t1; t2; p) is a resolution term w.r.t. R1 ∪R2.

Let D be a set of clause schemata. A resolution term t based on D is a resolution term
s.t. all s-clauses and clause schemata in t are also in D.

I Example 5.5. Let t(n,X, Y) be the clause schema w.r.t. rewrite system defined in Defi-
nition 5.2. Then

r(r(t(n,X, Y); pn `; pn); q0, q1 `; q0)

is a resolution term. The normal form of this term for n = 1, X = `, Y = ` q0 is
r(r(` q0, p0, p1; p1 `; p1); q0, q1 `; q0). This term even represents a resolution deduction.

r-expressions without clause variables can be evaluated to resolution deductions in the
usual sense:

I Definition 5.6 (resolvent). Let C : C1 ` C2, D : D1 ` D2 be clauses and P an atom. Then
|r(C,D, P)| = C1, D1 \ P ` C2 \ P,D2, where C2 \ P denotes the multi-set of atoms in C2
after removal of all occurrences of P . The clause |r(C,D, P)| is called a resolvent of C and
D on P .

Note that, in case P does not occur in D1 and/or C2 the clause |r(C,D, P)| is not a
resolvent in the usual sense, but a clause which is subsumed by C or D; thus, also in this
case, |r(C,D, P)| is a logical consequence of C and D.

I Definition 5.7 (resolution deduction). If C is a clause then C is a resolution deduction and
ES(C) = C. If %1 and %2 are resolution deductions and ES(%1) = D1, ES(%2) = D2 and
|r(D1, D2, P)| = D then r(%1, %2, P) is a resolution deduction and ES(r(%1, %2, P)) = D.

Let t be a resolution deduction and C be the set of all clauses occurring in t; then t is
called a resolution refutation of C if ES(t)= `.

Any resolution deduction % in Definition 5.7 can easily be transformed into a resolution
tree T (%) in an obvious way.

I Example 5.8. T (r(r(` q0, p0, p1; p1 `; p1); q0, q1 `; q0)) is the resolution tree

` q0, p0, p1 p1 `
` q0, p0 q0, q1 `

q1 ` p0

We define a notion of resolution proof schema in the spirit of Definition 2.4:

12 CERES for Propositional Proof Schemata

I Definition 5.9 (resolution proof schema). A resolution proof schema with clause variables
X1, . . . , Xβ is a structure ((%1, . . . , %α),R) with R : R1 ∪ . . . ∪ Rα, where the Ri (for 0 ≤
i ≤ α) are defined as follows:

Ri = {%i(0, X1, . . . , Xβ)→ si,

%i(k + 1, X1, . . . , Xβ)→ ti[%i(k, s̄i0), %l1(ai1, s̄i1), . . . , %lj(i)(aij(i), s̄ij(i))]}

where
si is a parameter-free resolution term,
ai1, . . . , a

i
j(i) are arithmetic terms,

s̄i0, . . . , s̄
i
j(i) are vectors of clause schemata,

the ti[%i(k, s̄i0), %l1(ai1, s̄i1), . . . , %lj(i)(aij(i), s̄ij(i))] are resolution terms after replacement of
some clause schemata by the terms %i(k, s̄i0), %l1(ai1, s̄i1), . . . , %lr (aij(i), s̄ij(i)) where i <
min{l1, . . . , lj(i)} and max{l1, . . . , lj(i)} ≤ α.

I Definition 5.10 (resolution refutation schema). A resolution proof schema is called a reso-
lution refutation schema of a clause schema C(n) if there exist clauses C1, . . . , Cα s.t., for
every assignment β for n, %1(n,C1, . . . , Cα)↓β is a resolution refutation of C(n)↓β .

I Example 5.11. Let CL(Ψ) be the schema of characteristic clauses from Example 2.6.
Note that CL(Ψ) ↓α= {` p1; p1 ` p2; . . . ; pα−1 ` pα; pα `} for α > 0. The resolution
proof schema ((%, δ),R) is a resolution refutation schema of CL(Ψ), where

R = {%(0)→ `, %(k + 1)→ r(δ(k); pk+1 `; pk+1),
δ(0)→ ` p1, δ(k + 1)→ r(δ(k); pk+1 ` pk+2; pk+1)}.

A refutation of the clause set CL(Ψ)↓α is then defined by the term %(n)↓α.
Note that in this refutation schema we did not make use of clause variables.

Finally, we can summarize the CERES method of cut-elimination for proof schemata by
defining the whole CERES-procedure CERES-s on schemata (where Ψ is a proof schema):

Phase 1 of CERES-s: (schematic construction)
compute CL(Ψ);
compute PR(Ψ);
construct a resolution refutation schema % of CL(Ψ).

Phase 2 of CERES-s: (evaluation, given a number α)
compute CL(Ψ)↓α;
compute PR(Ψ)↓α;
compute %1(n,C1, . . . , Cβ)↓α and Tα : T (%1(n,C1, . . . , Cβ)↓α);
append the corresponding projections in PR(Ψ) ↓α to Tα and propagate the contexts
down in the proof.

I Theorem 5.12. Let Ψ be a proof schema with end-sequent S(n). Then the evaluation of
CERES-s produces for all α ∈ N a ground LKS-proof π of S(α) with at most atomic cuts
such that its size |π| polynomial in |%1(n,C1, . . . , Cβ)↓α | · |PR(Ψ)↓α |.

Proof. Let α ∈ N. By Proposition 4.8 we obtain for any clause in Cα : CL(Ψ) ↓α a cor-
responding projection of the ground proof ψα in PR(Ψ) ↓α. Let R = ((%1, . . . , %β),R) be
a resolution refutation schema for CL(Ψ) constructed in phase 1 of CERES-s and Tα the
corresponding tree. Clearly the length of any projection is at most |PR(Ψ)↓α | and |T (α)|
is polynomial in %1(n,C1, . . . , Cβ′) ↓α. Moreover, the resulting proof πα of S(α) obtained in
the last step of phase 2 contains at most atomic cuts. J

C. Dunchev, A. Leitsch, M. Rukhaia, and D. Weller 13

While the schematic characteristic clause set and the schematic projections could be
obtained fully automatically, this is not the case for the resolution refutation schemata.
For regular schemata, however, it is known that schematic tableaux-proofs can always be
computed (see [5]). In [5] a transformation of the schematic tableaux-proofs to specifications
of resolution proof schemata is given. However, the format of this specification is complex,
hard to read and problematic to human interpretation (which is always the last step in an
application of CERES); hence, a translation to our format of resolution refutation schemata
appears desirable and will be part of future investigations.

6 The Adder Proof

In this section we give a more complex example of schematic cut-elimination. We formalize
a proof of the theorem that a circuit bit adder is commutative and use the lemma that the
carry bits are equal. First we introduce some “shortcuts” for formulas (Ŝ denotes the sum
and Ĉ the carry bit computation):

A⊕B =def (A ∧ ¬B) ∨ (¬A ∧B)
A⇔ B =def (¬A ∨B) ∧ (¬B ∨A)

Ŝi =def Si ⇔ (Ai ⊕Bi)⊕ Ci
Ŝ′i =def S′i ⇔ (Bi ⊕Ai)⊕ C ′i
Ĉi =def Ci+1 ⇔ (Ai ∧Bi) ∨ (Ci ∧Ai) ∨ (Ci ∧Bi)
Ĉ′i =def C ′i+1 ⇔ (Bi ∧Ai) ∨ (C ′i ∧Bi) ∨ (C ′i ∧Ai)

Addern =def

∧n
i=0 Ŝi ∧

∧n
i=0 Ĉi ∧ ¬C0

Adder′n =def

∧n
i=0 Ŝ′i ∧

∧n
i=0 Ĉ′i ∧ ¬C ′0

EqCn =def

∧n
i=0(Ci ⇔ C ′i)

EqSn =def

∧n
i=0(Si ⇔ S′i)

The schematic proof Ψ is defined via the proof symbols ψ ≺ ϕ ≺ φ ≺ χ (by abuse of
notation, we use the same meta symbols for proofs and proof symbols) and the following
definitions:

(ϕ(k))

¬C0,¬C′
0,

∧k

i=0
Ĉi,

∧k

i=0
Ĉ′
i ` EqCk

(χ(k))

EqCk,
∧k

i=0
Ŝi,

∧k

i=0
Ŝ′
i ` EqSk

cut
¬C0,¬C′

0,
∧k

i=0
Ĉi,

∧k

i=0
Ĉ′
i,

∧k

i=0
Ŝi,

∧k

i=0
Ŝ′
i ` EqSk

∧ : l∗
Adderk, Adder

′
k ` EqSk

Because of lack of space we omit all basic cases and the purely propositional parts of the
proofs.2 We define ϕ(k + 1) as:

(ϕ(k))

¬C0,¬C′
0,

∧k

i=0
Ĉi,

∧k

i=0
Ĉ′
i ` EqCk

(φ(k))

¬C0,¬C′
0,

∧k

i=0
Ĉi,

∧k

i=0
Ĉ′
i ` Ck+1 ⇔ C′

k+1
∧ : r, c : l∗

¬C0,¬C′
0,

∧k

i=0
Ĉi,

∧k

i=0
Ĉ′
i ` EqCk+1

∧ : l∗
¬C0,¬C′

0,
∧k+1
i=0

Ĉi,
∧k+1
i=0

Ĉ′
i ` EqCk+1

where φ(k + 1) is:

2 A fully formal proof can be found here: http://www.logic.at/asap/

14 CERES for Propositional Proof Schemata

(φ(k))

¬C0,¬C′
0,

∧k

i=0
Ĉi,

∧k

i=0
Ĉ′
i ` Ck+1 ⇔ C′

k+1

...
Ck+1 ⇔ C′

k+1, Ĉk+1, Ĉ′
k+1 ` Ck+2 ⇔ C′

k+2
cut

¬C0,¬C′
0,

∧k

i=0
Ĉi,

∧k

i=0
Ĉ′
i, Ĉk+1, Ĉ′

k+1 ` Ck+2 ⇔ C′
k+2

∧ : l∗
¬C0,¬C′

0,
∧k+1
i=0

Ĉi,
∧k+1
i=0

Ĉ′
i ` Ck+2 ⇔ C′

k+2

and finally, χ(k + 1) is:

(χ(k))

EqCk,
∧k

i=0
Ŝi,

∧k

i=0
Ŝ′
i ` EqSk

...
Ck+1 ⇔ C′

k+1, Ŝk+1, Ŝ′
k+1 ` Sk+1 ⇔ S′

k+1
∧ : r

EqCk,
∧k

i=0
Ŝi,

∧k

i=0
Ŝ′
i, Ck+1 ⇔ C′

k+1, Ŝk+1, Ŝ′
k+1 ` EqSk+1

∧ : l∗
EqCk+1,

∧k+1
i=0

Ŝi,
∧k+1
i=0

Ŝ′
i ` EqSk+1

The schematic clause term and the projection term of this proof schema can be found
at http://www.logic.at/asap/. Below we give first the sequence of characteristic clause sets
CLα (for CLα = CL(Ψ)↓α) and then a resolution refutation schema R of CL(Ψ).

CLα = {C0 `; C ′0 `} ∪ Dα ∪ Cα. D0 = ∅, D1 = {C1 ` C ′1; C ′1 ` C1}.
Dβ+1 = Dβ ∪ {Cβ+1 ` C ′β+1, Cβ ; C ′β+1 ` Cβ+1, C

′
β ;

C ′β , Cβ+1 ` C ′β+1; Cβ , C ′β+1 ` Cβ+1}.

C0 = {` C0, C
′
0; C0, C

′
0 `}, Cβ+1 = Cβ ◦ {` Cβ+1, C

′
β+1} ∪ Cβ ◦ {Cβ+1, C

′
β+1 `}.

A resolution refutation schema of CL(Ψ) is R = ((%, δ, η),R) where R is the following
system:

{%(0, X) → r(r((` C0, C
′
0) ◦X; C0 `; C0); C ′0 `; C ′0),

%(k + 1, X) → r(r(%(k, (` Ck+1, C
′
k+1) ◦X); η(k); C ′k+1);

r(δ(k); %(k, (Ck+1, C
′
k+1 `) ◦X); C ′k+1);

Ck+1),

δ(0) → C1 ` C ′1,
δ(k + 1) → r(Ck+2 ` C ′k+2, Ck+1; r(δ(k); C ′k+1, Ck+2 ` C ′k+2; C ′k+1); Ck+1),

η(0) → C ′1 ` C1,

η(k + 1) → r(C ′k+2 ` Ck+2, C
′
k+1; r(η(k); Ck+1, C

′
k+2 ` Ck+2; Ck+1); C ′k+1)}

Note that, for the specification of this resolution refutation schema, the use of the clause
variable X is vital. For the derivations δ(n) and η(n) we get ES(δ(n)↓α) = Cα+1 ` C ′α+1,
ES(η(n)↓α) = C ′α+1 ` Cα+1. The resolution refutation of CLα is defined by %(n,`)↓α.

It is easy to verify that, for all α, %α : %(n,`) ↓α is a resolution refutation of CLα. For
%0 this is trivially realized. Assume that %α is a resolution refutation of CLα. Then, using
this induction hypothesis, %α+1 is a resolution refutation if

r(r(` Cα+1, C
′
α+1; C ′α+1 ` Cα+1; C ′α+1);

r(Cα+1 ` C ′α+1; Cα+1, C
′
α+1 `; C ′α+1);

Cα+1)

is a resolution refutation, which it obviously is. That %α+1 is also a refutation of CLα+1
follows from the recursive definition of CLα.

Although the above proof is not of mathematical importance, it has some interesting
properties. First, we observe that for all α ∈ N, CLα contains 2α+2 clauses. Second, while

C. Dunchev, A. Leitsch, M. Rukhaia, and D. Weller 15

the original proof schema (with cuts) used the lemma that all carry bits are equal, from the
resolution refutation (which is a skeleton of the cut-free proof) we can see that the cut-free
proof now derives the equality of the carry bits one-by-one.

Acknowledgment

The authors would like to thank Vincent Aravantinos for many discussions and insightful
remarks on the topic of the present paper.

References
1 Martin Aigner and Günter Ziegler. Proofs from THE BOOK. Springer, 1999.
2 Vincent Aravantinos, Ricardo Caferra, and Nicolas Peltier. A schemata calculus for propo-

sitional logic. In Automated Reasoning with Analytic Tableaux and Related Methods, volume
5607 of Lecture Notes in Computer Science, pages 32–46, 2009.

3 Vincent Aravantinos, Ricardo Caferra, and Nicolas Peltier. RegSTAB: A SAT-Solver for
Propositional Iterated Schemata. In International Joint Conference on Automated Reason-
ing, pages 309–315, 2010.

4 Vincent Aravantinos, Ricardo Caferra, and Nicolas Peltier. Decidability and undecidability
results for propositional schemata. Journal of Artificial Intelligence Research, 40:599–656,
2011.

5 Vincent Aravantinos and Nicolas Peltier. Generating schemata of resolution proofs. In
Martin Giese and Roman Kuznets, editors, TABLEAUX 2011 Workshops, Tutorials, and
Short Papers, pages 16–30, 2011.

6 Matthias Baaz, Stefan Hetzl, Alexander Leitsch, Clemens Richter, and Hendrik Spohr.
CERES: An analysis of Fürstenberg’s proof of the infinity of primes. Theoretical Computer
Science, 403:160–175, 2008.

7 Matthias Baaz and Alexander Leitsch. Cut-elimination and redundancy-elimination by
resolution. Journal of Symbolic Computation, 29(2):149–176, 2000.

8 Matthias Baaz and Alexander Leitsch. Towards a clausal analysis of cut-elimination. Jour-
nal of Symbolic Computation, 41(3-4):381–410, 2006.

9 Matthias Baaz and Alexander Leitsch. Methods of Cut-Elimination, volume 34 of Trends
in Logic. Springer, 2011.

10 David Baelde and Dale Miller. Least and greatest fixed points in linear logic. In LPAR
2007, volume 4790 of LNCS, pages 92–106, 2007.

11 James Brotherston. Cyclic proofs for first-order logic with inductive definitions. In B. Beck-
ert, editor, Automated Reasoning with Analytic Tableaux and Related Methods, volume 3702
of Lecture Notes in Computer Science, pages 78–92, 2005.

12 Gerhard Gentzen. Untersuchungen über das logische Schließen I. Mathematische Zeitschrift,
39(1):176–210, dec 1935.

13 Stefan Hetzl, Alexander Leitsch, and Daniel Weller. CERES in higher-order logic. Annals
of Pure and Applied Logic, 162(12):1001–1034, 2011.

14 Raymond McDowell and Dale Miller. Cut-elimination for a logic with definitions and
induction. Theoretical Computer Science, 232(1–2):91–119, 2000.

15 Christoph Sprenger and Mads Dam. On the structure of inductive reasoning: Circular
and tree-shaped proofs in the µ-calculus. In FOSSACS 2003, volume 2620 of LNCS, pages
425–440, 2003.

16 William W. Tait. Normal derivability in classical logic. In The Syntax and Semantics of
Infinitary Languages, volume 72 of Lecture Notes in Mathematics, pages 204–236. Springer
Berlin, 1968.

	Introduction
	Schematic Language
	Proof schemata

	Characteristic Clause Term
	Projections
	Resolution Schemata
	The Adder Proof

