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Motivation 1: The Zoo of Logics

Problem
Given the specification of a logic, construct an analytic calculus to
be used in a decision procedure for it!

I Assume the logic is given as a Hilbert-style axiom system.

I Which framework to choose for the calculus: sequents,
hypersequents, nested sequents, display, . . . ?

I How to construct the calculus?

In the spirit of a “smart reuse of resources” we would like to have
general methods to approach this problem.
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Motivation 2: The Zoo of Formalisms
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We need a general theory of derivation systems including results
about which frameworks are appropriate for which logics!
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Hypersequent calculi



Hypersequent Basics

The formulae of normal modal logics are given by

F 3 ϕ ::= pi | ⊥ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ | �ϕ | ♥ϕ | . . .

Sequents are tuples Γ⇒ ∆ of multisets of formulae read as∧
Γ→

∨
∆, and hypersequents are multisets of sequents written

Γ1 ⇒ ∆1 | · · · | Γn ⇒ ∆n

We consider hypersequent calculi with axioms and structural rules:

G | Γ, ϕ⇒ ϕ,∆
Ax

G | Γ⇒ ∆

G | Γ,Σ⇒ ∆,Π
IW

G
G | Γ⇒ ∆

EW

G | ϕ,ϕ, Γ⇒ ∆

G | ϕ, Γ⇒ ∆
ICL

G | Γ⇒ ∆, ϕ, ϕ

G | Γ⇒ ∆, ϕ
ICR

G | Γ⇒ ∆ | Γ⇒ ∆

G | Γ⇒ ∆
EC

G | Γ⇒ ∆, ϕ G | ϕ,Σ⇒ Π

G | Γ,Σ⇒ ∆,Π
Cut



Hypersequent rules with restrictions examples

What could the additional rules look like?
Two (classic) examples from the literature [Avron 1996]:

G | Γ, ϕ⇒ ∆

G | Γ,�ϕ⇒ ∆
T

G | �Γ,Σ⇒ �∆,Π

G | �Γ⇒ �∆ | Σ⇒ Π
MS

The characteristic features of these rules are:

I They might introduce one layer of connectives in the active
part of the conclusion

I One active component per premiss

I Possibly more than one active component in the conclusion

I They copy a restricted part of the contexts of each
component to the premisses

How can we make that precise?



Hypersequent rules with restrictions formally
A context restriction is a tuple 〈F`; Fr 〉 of sets of formulae. It
restricts a sequent Γ⇒ ∆ by allowing only substitution instances
of formulae from F` (resp. Fr ) in Γ (resp. ∆).

Hypersequent rules with context restrictions are of the form

(Γ1 ⇒ ∆1; C11 . . . C1n) . . . (Γm ⇒ ∆m; Cm1 . . . Cmn )

Σ1 ⇒ Π1 | · · · | Σn ⇒ Πn

with C ij context restrictions and Γi ,∆i ⊆ Var and Σi ,Πi ⊆ �(Var).
Simple rules use only 〈∅, ∅〉, 〈{p}, {p}〉, 〈{�p}, ∅〉.

In an application the premiss with restriction C i1 . . . C in copies the
context of the jth component restricted by C ij .

Example:

(⇒ ; 〈{�p}; {�p}〉 〈{p}; {p}〉)
⇒ | ⇒

 
G | �Γ,Σ⇒ �∆,Π

G | Ω,�Γ⇒ �∆,Θ | Σ⇒ Π



Cut elimination

Theorem
Every

right-substitutive, single-conclusion right, right-contraction
closed, mixed-cut permuting, principal cut closed

set of rules with
restrictions has cut elimination.

Proof idea: Adapt the proof of [Ciabattoni, Metcalfe, Montagna
2010]: push cuts up to the left, then right.

.⇒ ., ϕ | Γ⇒ ∆

.⇒ ., ϕ | .⇒ ., ϕ
R

.⇒ ., ϕ
EC

Σ⇒ Π
ϕ, .⇒ . | ϕ, .⇒ .

Q

ϕ, .⇒ .
EC

., .⇒ ., .
Cut
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Cut elimination

Theorem
Every right-substitutive, single-conclusion right, right-contraction
closed, mixed-cut permuting, principal cut closed set of rules with
restrictions has cut elimination.

Proof idea: Adapt the proof of [Ciabattoni, Metcalfe, Montagna
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., .⇒ ., . | Γ⇒ ∆

., .⇒ ., . | .⇒ ., ϕ
R

., .⇒ ., . | Γ⇒ ∆ Σ⇒ Π

., .⇒ ., . | Γ′,Σ′ ⇒ ∆′,Π′
Cut

ϕ, .⇒ . | ., .⇒ ., . | ., .⇒ ., .
cut(R,Q)

., .⇒ ., . | ., .⇒ ., . | ., .⇒ ., . | ., .⇒ ., .
Cut

., .⇒ ., .
EC



Decidability and Complexity

Theorem
Derivability in a cut-free, contraction-closed, bounded conclusion
and tractable rule set is decidable in EXPSPACE.

Proof idea: Modify the rules to make contraction admissible, e.g.:

G | �Γ′,Σ⇒ p

G | Γ,�Γ′,�Σ⇒ �p,∆
4

 
G | Γ,�Γ′,�Σ⇒ �p,∆ | �Γ′,�Σ,Σ⇒ p

G | Γ,�Γ′,�Σ⇒ �p,∆

and perform
backwards
proof search:

G

∃ rule

∀ prem . . . ∀ prem ∀ prem

∃ rule

∀ prem

2poly(|G|)



Axioms and Rules



Axioms and Interpretations

We assume that the specification of a logic is given as a Hilbert
system, i.e. by a set A of axioms and the rules

` ϕ
` ϕσ US

` ϕ ` ϕ→ ψ

` ψ MP
` ϕ→ ψ

` ♥ϕ→ ♥ψ Mon

We want to interpret a hypersequent as a formula – but the
interpretation for | is not clear! So let’s make it a parameter:

An interpretation for a logic L is a set {ϕn(p1, . . . , pn) : n ∈ N} of
formulae such that |=L ψ iff |=L ϕ1(ψ) (regularity) and which
respects the structural rules:

I |=L ϕn(ξ1, ξ2, ~χ) iff |=L ϕn(ξ2, ξ1, ~χ)

I If |=L ϕn(~χ) then |=L ϕn+1(ξ, ~χ)

I similarly for external contraction, cut, etc.

Example: ι� = {
∨

i≤n�pi : n ∈ N} for reflexive normal modal
logics or ι� = {

∨
i≤n(pi ∧�pi ) : n ∈ N} for normal modal logics.



Axioms vs Rules

Consider the axiom for S4.3:

(.3) �(�p → q) ∨�(�q → p)

 

Γ,

�p ⇒ |

Σ,

�q ⇒

The ι�-simple axioms corresponding to simple hypersequent rules
for ι� = {

∨
i≤n�pi : n ∈ N} are given by the following grammar:

S ::= ϕn(L→ R, . . . , L→ R)

L ::= L ∧ L | ♥Pr | ψ` | > | ⊥ R ::= R ∨ R | ♥P` | ψr | > | ⊥
Pr ::= Pr ∨ Pr | Pr ∧ Pr | P` → Pr | ψr | pi | ⊥ | >
P` ::= P` ∨ P` | P` ∧ P` | Pr → P` | ψ` | pi | ⊥ | >

with ♥ ∈ Λ ∪ {ε}

and ψ` ∈ {qi ,�qi : i ∈ N}, ψr ∈ {ri : i ∈ N}
such that every ψ`, ψr occurs

under ϕn

once on the top level and
at least once under a modality.
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Pr ::= Pr ∨ Pr | Pr ∧ Pr | P` → Pr | ψr | pi | ⊥ | >
P` ::= P` ∨ P` | P` ∧ P` | Pr → P` | ψ` | pi | ⊥ | >

with ♥ ∈ Λ ∪ {ε}

and ψ` ∈ {qi ,�qi : i ∈ N}, ψr ∈ {ri : i ∈ N}
such that every ψ`, ψr occurs under ϕn once on the top level and
at least once under a modality.



Axioms vs Rules
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with ♥ ∈ Λ ∪ {ε} and ψ` ∈ {qi ,�qi : i ∈ N}, ψr ∈ {ri : i ∈ N}
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Caveat

The translations between axioms and rules use the rules for K:

G | Γ⇒ q

G | �Γ⇒ �q
RK

But soundness of these is not necessarily preserved in extensions!

Theorem
If K ⊆ L and ι is a regular interpretation for L, then:

RK is sound for (L, ι) iff
ι(G, ϕ)

ι(G,�ϕ)
is admissible in L

and both hold for ι = ι� if L is transitive or extensible.

(Here L is extensible if given by a class of frames closed under
“adding a predecessor to everyone”).

This seems to suggest that hypersequent calculi are mainly suited
for transitive or extensible logics!



Applications



Applications: Simple Frame Properties

All the calculi for logics given by simple frame properties based on
K or K4 in [Lahav:2013] fit our framework and satisfy the criteria
for cut elimination and decidability. E.g. linearity:

∀w1,w2∃u(w1Ru ∧ w2 = u) ∨ (w2Ru ∧ w1 = u)

 
G | Σ, Γ′ ⇒ Π G | Γ,Σ′ ⇒ ∆

G | Γ,�Γ′ ⇒ ∆ | Σ,�Σ′ ⇒ Π

Thus we purely syntactically reprove cut elimination and have

Theorem
Logics given by simple frame properties are decidable in
EXPSPACE.

The correspondence between simple rules and ι�-simple axioms
also gives (under some conditions) Hilbert systems for these logics.



Applications: S5
Modal logic S5 is given by the axioms for KT and the simple axiom

(5) ♦p → �♦p ≡ �p ∨�¬�p  
G | p, Γ⇒ ∆

G | �p ⇒ | Γ⇒ ∆

Adding contraction-absorbing contexts and dropping derivable
rules yields the rules from [Restall:2007]:

G | Σ,�p ⇒ Π | p, Γ⇒ ∆

G | Σ,�p ⇒ Π | Γ⇒ ∆
5

G | Γ⇒ �p,∆ | ⇒ p

G | Γ⇒ �p,∆
nec

Theorem
Backwards proof search in this calculus runs in coNP.

Algorithm:

Work on set-based hypersequents; apply nec to obtain a “genuinely
new” component; apply Prop and 5 all possible ways (universally
guessing the premiss); repeat until you hit axiom or no new
components are found.
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Applications: K4.2

Modal logic K4.2 is K plus (4) �p → ��p plus (.2) ♦�p → �♦p.

Bad News: ι� is not regular for K4.2...

Good News: ... but ι� = {
∨

i≤n(pi ∧�pi ) : n ≥ 1} is.

Lemma
The following are frame equivalent over transitive frames:
♦�p → �♦p and �(¬p ∨ ¬�q) ∨�(p ∨ ¬�¬q).

( .
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.

. ) ( .

.

.

.6=
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.
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)

Translating the latter axiom gives the rules:

G | Ω,�Γ,Θ,�∆⇒ Ξ,Υ G | �Γ,Σ,�∆,Π⇒
G | Ω,�Γ,�Σ⇒ Ξ | Θ,�∆,�Π⇒ Υ

2

Theorem
The calculus K4 + 2 is cut-free complete and sound for (K4.2, ι�).



Summing Up

We have

I identified a general format of rules in a hypersequent calculus
for modal logics

I general syntactic criteria for uniform cut elimination and
decidability / complexity results

I identified a class of Hilbert axioms corresponding to such rules

I applied these results in the construction of analytic calculi for
several logics.

Thank you for your attention!
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