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Abstract

As part of a general research programme into the expressive power of different generalisations of the sequent
framework we investigate hypersequent calculi given by rules of the newly introduced format of hypersequent
rules with context restrictions. The introduced rule format is used to prove uniform syntactic cut elimination,
decidability and complexity results. We also introduce transformations between hypersequent rules of this
format and Hilbert axioms, entailing a result about the limits of such rules. As case studies, we apply our
methods to several modal logics and obtain e.g. a complexity-optimal decision procedure for the logic S5
and new calculi for the logic K4.2 as well as combinations of modal logics in the form of simply dependent
bimodal logics.

Keywords: Structural Proof Theory, Hypersequents, Modal Logic, Hilbert Axioms, Cut Elimination,
Decidability

1. Introduction

The automatic construction of reasoning systems and decision procedures from specifications for various
logics is an important emerging area in the field of automated reasoning. Results in this area provide general
decision procedures and complexity results applicable to specific logics in the spirit of Logic Engineering [48],
and also yield deeper insights into strengths, weaknesses, and fundamental properties of different types of
calculi used for reasoning systems. However, also from the perspective of producing such systems for specific
logics investigating the connections between specifications and different frameworks is important, since this
allows to choose the most efficient framework for the logic at hand. Beginnings of this research programme
with its shift of focus from the investigation of calculi for specific logics towards general procedures and results
for wide classes of logics were carried out e.g. in [35], where connections between Hilbert-style axioms for
modal (tense) logics and display calculi where established, or in [16], where the connection between axioms
for substructural logics and structural rules in a sequent or hypersequent framework was investigated.

Here we contribute to this research programme and investigate the framework of hypersequent calculi
for extensions of classical propositional logic. Hypersequents offer one of the simplest generalisations of the
original sequent framework and capture several logics for which no cut-free sequent or tableau system seems
to exist. The prime example of such a logic of course is the modal logic S5, which so far has several different
cut-free hypersequent calculi, but no cut-free sequent calculus. On the specification side, we take the logics
to be given by a set of Hilbert axioms. This allows for a (almost) purely syntactic treatment independent of
a basic semantics, and thus in principle also allows us to capture non-normal modal logics. The objective of
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our investigation is twofold. On the one hand we aim for correspondence results stating which specifications
(i.e., Hilbert axioms) correspond to which rules in a hypersequent calculus. Such results would yield a
method to construct hypersequent calculi for a certain class of specifications and conversely characterise
those logics which can not be captured in a hypersequent calculus. On the other hand we would like to
develop a general decision procedure where we can “plug in” the constructed calculi to obtain a decision
procedure for the original logic.

Of course the kind of correspondence results and general decision procedures envisaged in this project
demand general results about hypersequent calculi, which in turn necessitates a clarification of which kind
of calculi we consider. To this aim we introduce the format of hypersequent rules with context restrictions
which is general enough to capture many existing calculi, e.g. for modal logics S5 [4, 54] and S4.3 [31] as well
as for modal logics without symmetry given by simple frame properties [37]. We obtain sufficient conditions
for (syntactic) cut elimination, decidability, and complexity results for such systems. The results apply e.g.
to the calculi for extensions of K or K4 from [37]. We also show a correspondence between rules of our
format and axioms of a certain syntactical form (Def. 5.25). This yields general decidability and complexity
results for modal logics axiomatised this way, and as a byproduct finite axiomatisations for modal logics
given by certain simple frame properties. Moreover, we can use the correspondence result to show limitative
results about which logics can not be captured by hypersequent rules of the given format. As application
we consider a number of case studies including a closer analysis of a recent calculus for S5 together with
a complexity-optimal decision procedure based on this calculus. Furthermore, we investigate a number of
convergent or connected modal logics and construct a simple and apparently new hypersequent calculus for
the logic K4.2. A further case study treats combinations of modal logics in the form of simply dependent
bimodal logics [24].

Related Work. This work is a continuation of previous work done in the sequent framework [38, 40, 41]. In
particular, in [40] we considered the format of sequent rules with context restrictions on which the format
of hypersequent rules with context restrictions is based and constructed rules from axioms. Limits of this
rule format were shown in [41], where it is shown that the logic S5 cannot be captured using a certain
format of sequent rules. Perhaps the first result linking rules with axioms of a specific format in modal
logics is [35], in which translations between primitive axioms for modal tense logics and structural rules of
a display calculus in the style of [7] are given. The construction of the rules was later generalised in [21]
to a wide class of logics including also intermediate and substructural logics. In contrast to these methods,
the methods presented in this article do not rely on the existence of a residuum for the modal connectives
and apply also to non-normal modal logics. The connection between Hilbert axioms and structural rules in
the sequent or hypersequent framework was explored in [16, 17], which are among the basis for the present
article. Subsequent work extended the construction of rules from axioms to logical rules and intermediate
logics [19] or paraconsistent logics [18]. While the algorithm for the construction of rules from axioms given
in [18] could in principle be used to treat modal axioms as well, the format of the axioms is very much geared
towards axioms for paraconsistent logics, and the resulting rules are in the sequent framework instead of
the hypersequent framework. The general proof of cut elimination given in Sec. 4 of the present article is
based on the cut elimination procedure for modal extensions of the fuzzy logic MTL given in [20]. While
for the propositional part of these logics cut elimination can be shown by applying general criteria such as
substitutivity and reductivity [44], no general criteria for the modal part are given in [20].

Systematic constructions of rules specifically for modal logics from semantic specifications instead of
Hilbert axioms were given e.g. in [58, 47]. In these works semantic characterisations in terms of frame
conditions were taken as the starting point, and the resulting rules were structural rules in a labelled sequent
calculus. While this automatically gives cut-free calculi, termination of proof search needs to be shown for
every constructed calculus separately and there seem to be no general complexity results. Most relevant
for the present article is the recent [37], where the rules for cut-free hypersequent calculi for modal logics
are constructed from simple frame conditions in a systematic way. While there is some overlap between the
logics which can be treated using this approach and the one of the present article, the characterisations of the
logics (frame conditions vs. axioms) as well as the methods (semantic vs. syntactic) are different, and each
of the approaches captures some logics which are not treated by the other. More details regarding this will
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be given in Sec. 6.1. Cut-free calculi for some standard modal and tense logics are also given in a systematic
fashion in the framework of nested sequents or tree-hypersequents, see e.g. [33, 12, 52] or the recent [43]
for modular calculi for intuitionistic modal logics. However, the focus in this area seems to be more on
good calculi for the standard modal logics instead of procedures for the systematic construction of such
calculi from axioms. A methodology for constructing and identifying sequent calculi satisfying the bounded
proof property (a weaker version of the subformula property) was given in [8, 9] and later extended to the
hypersequent framework in [10]. Since the constructed calculi are not expected to satisfy cut elimination, a
much more general conversion of axioms into rules suffices in these works.

Plan of the paper. After fixing some notation in Sec. 2 we will extract the format of a hypersequent rule
with context restrictions from some standard rules in Sec. 3. The following Sec. 4 then presents some
general criteria for cut elimination and as an application of cut-free calculi in Sec. 4.1 a method of making
the contraction rules admissible and a general decidability and complexity result. The connection between
Hilbert axioms and hypersequent rules with context restrictions is explored in Sec. 5, including a general
perspective on the formula interpretation of a hypersequent as well as translations from rules to axioms in
Sec. 5.2 and vice versa in Sec. 5.3 for normal modal logics, followed by an extension to non-normal modal
logics and restrictions in Sec. 5.4 and an application of these methods to show some limits of the rule format
in Sec. 5.5. Finally, Sec. 6 contains a number of case studies, including modal logics given by simple frame
properties in Sec. 6.1, modal logic S5 in Sec. 6.2, convergent and connected modal logics in Sec. 6.3 and
simply dependent bimodal logics in Sec. 6.4.

This article is a revised and substantially extended version of [39] containing more details and explana-
tions, examples, full proofs and a number of new results. In particular: the complexity bound of Thm. 4.26
has been lowered from double exponential time to exponential space; Sec. 5.4 concerning non-normal modal-
ities and context restrictions and Sec. 5.5 presenting a limitative result are new; the case studies have been
extended to include Sec. 6.2 on S5 containing a complexity optimal decision procedure, Sec. 6.3 with a
discussion of convergent and connective modal logics containing a new hypersequent calculus for the logic
K4.2, and Sec. 6.4 containing a result about combining modal logics to simply dependent bimodal logics
entailing an exponential time lower bound for the general decision procedure. The section on the calculus for
the Logic of Uniform Deontic Frames from [55] is no longer included, since unfortunately there is a problem
with the soundness of the rules.

2. Preliminaries and Notation

In the following we write N for {0, 1, 2, . . . }. We take V to be a countable set of propositional variables.
The set of boolean connectives is ΛB := {∧,∨,→}. For a set Λ ⊆ ΛU∪ΛB with ΛU a set of unary connectives
the set F(Λ) of formulae over Λ is defined by F(Λ) 3 ϕ ::= p | ⊥ | ♥ϕ | ϕ ◦ ϕ with p ∈ V,♥ ∈ Λ ∩ ΛU

and ◦ ∈ Λ∩ΛB. The connectives ↔ and ¬ are introduced as abbreviations as usual. Connectives in ΛU are
called modalities. The set {�} ∪ΛB is denoted Λ�. We sometimes abbreviate ¬�¬ to ♦ and use the strong
box notation �ϕ for ϕ ∧ �ϕ. For F ⊆ F(Λ) we write Λ(F ) for {♥ϕ : ♥ ∈ Λ \ ΛB and ϕ ∈ F} ∪ {ϕ ◦ ψ :
◦ ∈ Λ∩ΛB and ϕ,ψ ∈ F}. The modal rank of a formula ϕ, denoted mrk (ϕ), is the maximum nesting depth
of modalities in ϕ, and its complexity |ϕ| is the number of symbols occurring in it. Sequences ϕ1, . . . , ϕn of
formulae are written ~ϕ, and ||~ϕ|| denotes the length of ~ϕ. Similarly ∗ϕ1, . . . , ∗ϕn is written ~∗ϕ for ∗ ∈ Λ.

A multiset Γ over a set F of formulae is a function F → N with finite support, and we write ϕ ∈ Γ for
Γ(ϕ) > 0. The union of multisets Γ and ∆ is denoted by Γ,∆ and defined by (Γ,∆)(ϕ) := Γ(ϕ)+∆(ϕ). We
also write

⊔n
i=1 Γn for Γ1, . . . ,Γn and ϕ for the multiset containing only one occurrence of ϕ. We write H

for the hypersequent version of a standard context-sharing sequent calculus for classical logic [41] with the
standard external and internal weakening and contraction rules [4], see Table 2. The standard modal rules
of RK, RKT and RK4 are given in Table 3.

A Λ-logic is a set L of formulae over Λ closed under modus ponens (if ϕ ∈ L and ϕ → ψ ∈ L, then
ψ ∈ L) and uniform substitution (if ϕ ∈ L, then ϕσ ∈ L for every substitution σ : V → F(Λ)) and containing
classical propositional logic. A modality ♥ of a logic L is congruential (also called classical) if L is closed
under the rule of congruence (if ϕ↔ ψ ∈ L, then ♥ϕ↔ ♥ψ ∈ L) for ♥, and monotone if L is closed under
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the rule of monotonicity (if ϕ→ ψ ∈ L, then ♥ϕ→ ♥ψ ∈ L). The modality ♥ is normal if L contains the
axiom ♥(p→ q) ∧ ♥p→ ♥q and is closed under the rule of necessitation (if ϕ ∈ L, then ♥ϕ ∈ L). If every
modality of a logic is congruential, resp. monotone, resp. normal we also call the logic itself congruential,
resp. monotone, resp. normal. For a set A of formulae, LA is the smallest congruential Λ-logic containing
A. We call the formulae in A axioms of the logic LA. For a Λ-logic L and ϕ ∈ F(Λ) we write L ⊕ ϕ for
the smallest congruential Λ-logic L′ with L ∪ {ϕ} ⊆ L′. We also write |=L ϕ for ϕ ∈ L. For the standard
notions of modal logic see [11, 15]. In some results we use basic notions of complexity theory, see e.g. [49].

3. Hypersequent Rules with Restrictions

Our first goal is to identify a general format of rules in the hypersequent framework. Since this format
should capture as many existing hypersequent calculi for modal logics as possible, we will extract its features
from existing calculi such as the one for modal logic S5. This will allow us to define the general notions
of applications of such rules, derivations and derivability using sets of rules. As a first consequence of the
definition of the rule format we will obtain admissibility of weakening. Let us start with the basic notions.

The hypersequent framework, first employed in the area of modal logics in [45, 46, 53, 4], can be seen
as one of the simplest extensions of the original sequent framework introduced by Gentzen [27]. While the
main object of the latter are sequents, i.e., structures build from formulae in a specific way, the main idea
in the hypersequent framework is to consider sequents not only in isolation, but also in the context of other
sequents. This opens up the possibility of interaction between different sequents and adds another layer of
structure (and with it expressivity) to the framework. Formally the definition is as follows.

Definition 3.1. Let F ⊆ F(Λ) be a set of formulae over a set Λ of connectives. A sequent over F is a pair
of multisets over F , written as Γ ⇒ ∆. We write S(F ) for the set of all sequents over F . A hypersequent
over F is a multiset G of sequents over F , written as Γ1 ⇒ ∆1 | · · · | Γn ⇒ ∆n. Each of the sequents
Γi ⇒ ∆i is called a component of the hypersequent G.

Perhaps the prime example of a modal logic for which this additional structure seems to be necessary is
that of modal logic S5. While this logic can be captured using a sequent calculus with the analytic cut rule
[57], so far no satisfactory fully analytic (i.e., cut-free) sequent calculus for it has been discovered. Moreover,
it can be shown that under some restrictions to the format of the rules no sequent calculus for S5 can exist
[41]. In one of the first proposed hypersequent calculi for this logic [4] the additional hypersequent structure
is interpreted by

Γ1 ⇒ ∆1 | · · · | Γn ⇒ ∆n 7→ �(
∧

Γ1 →
∨

∆1) ∨ · · · ∨�(
∧

Γn →
∨

∆n)

and the modal rules are given as follows, where G is an arbitrary side hypersequent :

G | Γ, ϕ⇒ ∆

G | Γ,�ϕ⇒ ∆
T

G | �Γ⇒ ϕ

G | �Γ⇒ �ϕ 4
G | �Γ,Σ⇒ �∆,Π

G | �Γ⇒ �∆ | Σ⇒ Π
MS

We will set the interpretation of the hypersequents aside for the moment (different interpretations will be
considered in Sec. 5) and first concentrate on extracting the general format of rules. The above rule set for
S5 illustrates a number of features common to most hypersequent calculi: usually at most one layer of logical
connectives is introduced in the conclusion; only one component in the premisses is active, i.e., not part of
the side hypersequent; the rules allow for an unrestricted side hypersequent; and each premiss may copy the
whole or a syntactically restricted part of the context of each of the active components in the conclusion. Of
the three rules the rule MS is the only rule which genuinely makes use of the hypersequent framework, since
it involves more than one active component in the conclusion. In order to cast these observations into an
abstract rule format we make use of the following notion, originally introduced in the sequent framework.

Definition 3.2 (Context restrictions [40, 41]). For F ⊆ F(Λ) the set of context restrictions over F is
C(F ) := {〈F1, F2〉 : F1, F2 ⊆ F}. If the set F is clear from the context we also write C for C(F ). For a
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sequent Γ⇒ ∆ and a context restriction C = 〈F1, F2〉 the restriction of Γ⇒ ∆ according to C is the sequent
(Γ⇒ ∆)�C defined as Γ�F1⇒ ∆�F2 where for a multiset Σ and F ⊆ F(Λ) the multiset Σ�F contains exactly
those formulae from Σ which are substitution instances of formulae in F (respecting multiplicities).

Example 3.3. The following context restrictions will feature extensively in the rest of the article.

1. Since no formula is a substitution instance of a formula in the empty set, the context restriction
C∅ := 〈∅, ∅〉 intuitively deletes the whole context: For every sequent Γ⇒ ∆ the sequent (Γ⇒ ∆)�C∅ is
the empty sequent ⇒ .

2. Since every formula is a substitution instance of the formula p, the context restriction Cid := 〈{p}, {p}〉
intuitively copies the whole context: For every sequent Γ⇒ ∆ the sequent (Γ⇒ ∆)�Cid is Γ⇒ ∆.

3. Since only formulae of the form �A are substitution instances of �p, the context restriction C� :=
〈{�p}, ∅〉 copies only the boxed formulae on the left side of the context. E.g., we have (�A,�B,�A,¬C ⇒
�C)�C� = �A,�B,�A⇒ .

This allows us to formulate the restrictions on the contexts in the rules 4 and MS considered above.
Since the active part of the premiss might contain parts of several active components of the conclusion (as
in the rule MS), in every premiss we need one restriction for each of these. Together with the other features
identified above we obtain the following notion.

Definition 3.4 (Rule with restrictions). Anm-premiss hypersequent rule with context restrictions, writ-
ten as (

Γ1 ⇒ ∆1 ; 〈F 1
1 , G

1
1〉, . . . , 〈Fn

1 , G
n
1 〉
)

. . .
(

Γm ⇒ ∆m ; 〈F 1
m, G

1
m〉, . . . , 〈Fn

m, G
n
m〉
)

Σ1 ⇒ Π1 | · · · | Σn ⇒ Πn

is given by a natural number n > 0 together with:

• a sequence Σ1 ⇒ Π1 | · · · | Σn ⇒ Πn called principal part consisting of sequents Σi ⇒ Πi ∈ S(Λ(V))
of modalised variables

• a set of premisses, where each premiss
(

Γi ⇒ ∆i; 〈F 1
i , G

1
i 〉, . . . , 〈Fn

i , G
n
i 〉
)

consists of a sequent Γi ⇒
∆i ∈ S(V) of propositional variables and a sequence 〈F 1

i , G
1
i 〉, . . . , 〈Fn

i , G
n
i 〉 of context restrictions, one

for each component of the principal part,

subject to the variable condition: every variable occurs at most once in the principal part and it occurs in
the principal part whenever it occurs in the premisses.

While for technical reasons we take the principal part of a rule to be a sequence instead of a hypersequent,
we stipulate that sets of rules are closed under permutation of the components in the principal part. Thus
for all practical purposes the principal part can be seen as a hypersequent. Since the precise names of the
variables occurring in a rule are not relevant we also stipulate that sets of rules are closed under renaming
of the variables. For space reasons we may sometimes write the premisses of such a rule in set notation as
{(Γi ⇒ ∆i ; ~Ci) : i ≤ m} where ~Ci is the sequence 〈F 1

i , G
1
i 〉, . . . , 〈Fn

i , G
n
i 〉 of context restrictions.

Before considering examples of rules with restrictions, note that the formulation of rules given in the
previous definition does not make use of metavariables for formulae or sequents as tacitly used in the
description of the rules for S5 above. We obtain such a more standard formulation by considering applications
of hypersequent rules in our sense, given by substituting formulae for the variables occurring in the principal
part and the sequents in the premisses of the rule and adding a side hypersequent as well as a context to
each component of the principal part. The context restrictions associated with a premiss then determine
which part of the context sequents from each active component in the conclusion of such an application is
copied into the premiss. Formally:
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Table 1: Examples of hypersequent rules with context restrictions and their applications

∧L
(p, q ⇒ ; Cid)
p ∧ q ⇒

G | Γ, ϕ, ψ ⇒ ∆

G | Γ, ϕ ∧ ψ ⇒ ∆

Kn
(p1, . . . , pn ⇒ q ; C∅)
�p1, . . . ,�pn ⇒ �q

G | ϕ1, . . . , ϕn ⇒ ψ

G | Γ,�ϕ1, . . . ,�ϕn ⇒ �ψ,∆

4n
(p1, . . . , pn ⇒ q ; C�)

�p1, . . . ,�pn ⇒ q

G | �Γ, ϕ1, . . . , ϕn ⇒ ψ

G | Σ,�Γ,�ϕ1, . . . ,�ϕn ⇒ �ψ,∆
(no formula in Σ is boxed)

MS
(⇒ ; 〈{�p}, {�p}〉, Cid)

⇒ | ⇒
G | �Γ,Ω⇒ �∆,Ξ

G | Σ,�Γ⇒ �∆,Π | Ω⇒ Ξ
(no formula in Σ tΠ is boxed)

5
(p⇒ ; C∅, Cid)
�p⇒ | ⇒

G | ϕ,Ω⇒ Ξ

G | Γ,�ϕ⇒ ∆ | Ω⇒ Ξ

Definition 3.5 (Rule application). An application of the m-premiss rule{
(Γi ⇒ ∆i ; 〈F 1

i , G
1
i 〉, . . . , 〈Fn

i , G
n
i 〉) : i ≤ m

}
Σ1 ⇒ Π1 | · · · | Σn ⇒ Πn

is given by a substitution σ : V → F(Λ), a side hypersequent G and a sequence Ω1 ⇒ Υ1 | · · · | Ωn ⇒ Υn of
context sequents with Ωi ⇒ Υi ∈ S(F(Λ)) for i ≤ n. It is written as{

G | Ω1�F 1
i
, . . . ,Ωn�Fn

i
,Γiσ ⇒ ∆iσ,Υ1�G1

i
, . . . ,Υn�Gn

i
: i ≤ m

}
G | Ω1,Σ1σ ⇒ Π1σ,Υ1 | · · · | Ωn,Σnσ ⇒ Πnσ,Υn .

Rules and applications of rules are also written inline using “/” to separate premisses and conclusion.

Example 3.6. The format of hypersequent rules with context restrictions encompasses most rules com-
monly used in hypersequent calculi for modal logics including the above mentioned rules for S5, but also
the standard hypersequent versions of the logical rules for the propositional connectives. Some examples of
hypersequent rules with context restrictions together with exemplary applications are given in Table 1. The
side conditions for the applications of the rules 4n and MS stem from the fact that the restrictions C� resp.
〈{�p}, {�p}〉 copy all the boxed formulae from the respective sides of the context sequent into the premiss.
The rule 5 is from a different hypersequent calculus for S5 given in [54] (it is called (�L) there).

The rules given in the previous example resp. Table 1 will serve as running examples throughout the arti-
cle. In particular, the rules MS and 5 will be used to reconstruct and analyse different possibilities for a
hypersequent calculus for the logic S5.

We base our calculi on the standard hypersequent rules for the propositional connectives together with
initial hypersequents or axioms (A), the cut rule (Cut) and the standard structural rules of external weakening
(EW), internal weakening (IW), external contraction (EC) and internal contraction (ICL and ICR) as given
in Table 2 and write H for the set of these rules without the cut rule Cut and HCut for the set including
this rule. While axioms, the cut rule and the structural rules are not rules with context restrictions, the
notion of an application of these rules is the standard one. The notions of derivation and derivability now
are defined in the usual way:

Definition 3.7 (Derivation, derivability). LetR be a set of hypersequent rules with context restrictions
or structural rules, let H be a hypersequent and S a set of hypersequents. A derivation of H in R from S is
a finite labelled tree with leaves labelled with initial hypersequents G | Γ, ϕ⇒ ϕ,∆ or elements of S and all
other nodes labelled with a hypersequent which follows from the labels of its children by an application of a
rule in R. A hypersequent is derivable in R from S if there is a derivation of it. If S is empty and the rule
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Table 2: The propositional and structural rules of H

(p⇒ ; Cid) (q ⇒ ; Cid)
p ∨ q ⇒

∨L
(p, q ⇒ ; Cid)
p ∧ q ⇒

∧L
(q ⇒ ; Cid) (⇒ p ; Cid)

p→ q ⇒
→L

⊥ ⇒ ⊥L

(⇒ p, q ; Cid)
⇒ p ∨ q

∨R
(⇒ p ; Cid) (⇒ q ; Cid)

⇒ p ∧ q
∧R

(p⇒ q ; Cid)
⇒ p→ q

→R

G | Γ, ϕ⇒ ∆, ϕ
A

G | Γ⇒ ∆

G | Γ,Σ⇒ ∆,Π
IW

G | Γ, ϕ, ϕ⇒ ∆

G | Γ, ϕ⇒ ∆
ICL

G | Γ⇒ ∆ | Γ⇒ ∆

G | Γ⇒ ∆
EC

G | Γ⇒ ∆, ϕ G | Σ, ϕ⇒ Π

G | Γ,Σ⇒ ∆,Π
Cut

G
G | Γ⇒ ∆

EW
G | Γ⇒ ∆, ϕ, ϕ

G | Γ⇒ ∆, ϕ
ICR

Table 3: The standard modal rule sets

(p1, . . . , pn ⇒ q; C∅)
�p1, . . . ,�pn ⇒ �q

Kn

(p1, . . . , pn ⇒ ; C∅)
�p1, . . . ,�pn ⇒

Dn

(p1, . . . , pn ⇒ ; Cid)
�p1, . . . ,�pn ⇒

Tn

(p1, . . . , pn ⇒ q; C�)

�p1, . . . ,�pn ⇒ �q
4n

RK := {Kn : n ≥ 0} RKT := RK ∪ {Tn : n ≥ 1} RKD4 := RKD ∪RK4

RKD := RK ∪ {Dn : n ≥ 1} RK4 := RK ∪ {4n : n ≥ 0} RKT4 := RKT ∪RK4

set clear from the context we simply talk about a derivation and say that a hypersequent is derivable. The
depth of a derivation is the depth of the underlying tree, i.e., the maximum number of nodes in a branch
minus one. Finally, a hypersequent rule with context restrictions R is derivable in R if for all its applications
the conclusion is derivable in R from the premisses and admissible if whenever the premisses are derivable
in R, then so is the conclusion.

By the definition of rule applications we now immediately obtain admissibility of weakening in the
systems where these rules are not taken as primitive.

Lemma 3.8 (Admissibility of weakening). The external and internal weakening rules are depth-preserving
admissible: If hypersequents G resp. G | Γ⇒ ∆ are derivable with derivations of depth at most n not using
IW,EW, then so are the hypersequents G | Σ⇒ Π resp. G | Γ,Ω⇒ ∆,Ξ.

Proof. By a standard induction on the depth of the derivation.

In the following we are also going to consider extensions of the standard modal logics K,KD,KT,K4 and
combinations. The hypersequent versions of the standard sequent rules for these logics (see e.g. [52, 59])
are given in Table 3. Note that the rules Tn permit to treat multiple formulae at the same time. While an
application of the rule Tn could be replaced with n applications of the rule T1, for the sake of uniformity of
the rule sets we adopt this presentation.

Remark 3.9 (Multiple active components in a premiss). While most calculi make use of rules with
only one active component per premiss, there are calculi which use rules with more than one active compo-
nent. E.g., in the calculus for S4.3 from [30] the possible choices of the principal formula of the standard
right rule for � in sequent calculi for S4 are collected in a single rule to obtain a confluent calculus. The
resulting rule (⇒ �) has applications as shown below left.

G | �Γ⇒ ϕ1 | · · · | �Γ⇒ ϕn

G | Σ,�Γ⇒ Π,�ϕ1, . . .�ϕn
(⇒ �)

G | �Γ⇒ ϕ1 . . . G | �Γ⇒ ϕn

G | Σ,�Γ⇒ Π,�ϕ1, . . . ,�ϕn
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However, using external weakening and contraction this rule can be seen to be equivalent to the rule with
applications as shown above right, where the active components in the premiss are distributed over different
premisses. The latter rule in turn can be simplified to the rule with restrictions (⇒ p; C�)/ ⇒ �p.

In general, consider a rule R with principal part H and premisses P ∪ {P}, where the premiss P has
active components Γ1 ⇒ ∆1 | · · · | Γn ⇒ ∆n. In the presence of external weakening and contraction this
rule is interderivable with the set {R1, . . . , Rn} of rules, where for 1 ≤ i ≤ n the rule Ri differs from R only
in that instead of premiss P with active components Γ1 ⇒ ∆1 | · · · | Γn ⇒ ∆n it contains a premiss with
the single active component Γi ⇒ ∆i. The derivation of Ri using R is shown below left and that of R using
the Ri below right (writing double lines for repeated applications of the same rule).

G | Γi ⇒ ∆i

G | Γ1 ⇒ ∆1 | · · · | Γn ⇒ ∆n
EW P

G | H R

G | Γ1 ⇒ ∆1 | Γ2 ⇒ ∆2 | · · · | Γn ⇒ ∆n P
G | H | Γ2 ⇒ ∆2 | · · · | Γn ⇒ ∆n

R1

....
G | H | · · · | H | Γn ⇒ ∆n P

G | H | · · · | H | H
Rn

G | H EC

By iterating this process every rule with more than one active component in a premiss can be seen to be
equivalent (modulo the structural rules) to a rule with at most one active component per premiss. Thus in
terms of expressivity the stipulation that every premiss of a rule with restrictions contains only one active
component is not a restriction.

4. Cut Elimination and Applications

Now that we have identified a general rule format, the next step is to identify criteria for cut elimination
in such calculi and prove a general cut elimination result. For this we will go through a suitable cut
elimination proof and extract conditions which ensure that this particular proof goes through. After this in
Sec. 4.1 we will consider slight modifications of the resulting cut-free calculi which ensure admissibility of
the contraction rules and lead to general decidability and complexity results.

We obtain sufficient criteria for cut elimination by generalising the cut elimination proof in [20]. The
cut elimination strategy is to permute a cut into the premisses of the last applied rule on the left until the
cut formula is principal in the last applied rule. Then the cut is permuted into the premisses on the right
until it is principal here as well, in which case it is reduced to cuts on formulae of smaller complexity. To
state the condition used to reduce principal cuts we use the notion of a cut between rules, where intuitively
a new rule is constructed from two rules by cutting their conclusions on a formula ♥p and eliminating p
from the premisses by cutting on p in all possible ways (compare [38, 40] for the sequent case). In addition,
for permuting the cut into the context on the right we need a condition on the context restrictions which
ensures that whenever the cut formula satisfies a context restriction, then so does the whole left premiss of
the cut, i.e., that we can permute mixed cuts upwards. To make these notions precise, define the union of
two sequences ~C = 〈F1, G1〉, . . . , 〈Fn, Gn〉 and ~D = 〈F ′1, G′1〉, . . . , 〈F ′n, G′n〉 of restrictions component-wise as

the sequence of restrictions ~C ∪ ~D := 〈F1 ∪ F ′1, G1 ∪G′1〉, . . . , 〈Fn ∪ F ′n, Gn ∪G′n〉.

Definition 4.1 (Cuts between rules, principal-cut closed, mixed-cut permuting). For sets P1,P2

of premisses and rules R1 = P1/Σ1 ⇒ Π1 | · · · | Σn−1 ⇒ Πn−1 | Σn ⇒ Πn,♥p and R2 = P2/♥p,Ω1 ⇒
Θ1 | Ω2 ⇒ Θ2 | · · · | Ωk ⇒ Θk the cut between R1 and R2 on (the displayed occurrence of) ♥p is the rule
cut(R1, R2,♥p) given by{

(Γ,Γ′ ⇒ ∆,∆′ ; ~C ∪ ~D) : (Γ⇒ ∆, p ; ~C), (p,Γ′ ⇒ ∆′ ; ~D) ∈ P
}
∪

{
(Γ⇒ ∆ ; ~C) ∈ P : p /∈ Γ,∆

}
Σ1 ⇒ Π1 | · · · | Σn−1 ⇒ Πn−1 | Σn,Ω1 ⇒ Πn,Θ1 | Ω2 ⇒ Θ2 | . . .Ωk ⇒ Θk
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where the set P contains the premisses of R1 and R2 combined in the form

P :=
{

(Γ⇒ ∆ ; ~C, C∅, (k−1)-times. . . , C∅) : (Γ⇒ ∆ ; ~C) ∈ P1

}
∪
{

(Γ⇒ ∆ ; C∅, (n−1)-times. . . , C∅, ~D) : (Γ⇒ ∆ ; ~C) ∈ P2

}
.

A set R of rules is principal-cut closed if it is closed under the addition of cuts between rules. It is
mixed-cut permuting if for all R1, R2 ∈ R: if Γ ⇒ ∆,♥p is a component of the principal part of R1 and
(♥p⇒ )�C = ♥p⇒ for a restriction C of R2, then (Γ⇒ ∆)�C = Γ⇒ ∆ and (Σ⇒ Π)�D�C = (Σ⇒ Π)�D
for every restriction D for this component in R1 and for every sequent Σ⇒ Π.

Example 4.2. 1. The cut between the rules Kn and Km+1 as shown below left and middle on the formula
�q is the rule cut(Kn,Km+1,�q) given below right.

(p1, . . . , pn ⇒ q ; C∅)
�p1, . . . ,�pn ⇒ �q

Kn

(q, q1, . . . , qm ⇒ r) ; C∅)
�q,�q1, . . . ,�qm ⇒ �r

Km+1
(p1, . . . , pn, q1, . . . , qm ⇒ r ; C∅)
�p1, . . . ,�pn,�q1, . . . ,�qm ⇒ �r

Since modulo renaming of the variables this is the rule Kn+m, the standard rule set RK = {Kn : n ∈ N}
for modal logic K from Table 3 is principal-cut closed. In contrast, the rule set consisting only of the
single rule K2 is not principal-cut closed, since it does not contain the rule K3.

2. The cut between the rules Kn and 5 as shown below left and middle on the formula �q is the rule
cut(Kn, 5,�q) given below right. We also call this rule 5n.

(p1, . . . , pn ⇒ q ; C∅)
�p1, . . . ,�pn ⇒ �q

Kn

(q ⇒ ; C∅, Cid)
�q ⇒ | ⇒ 5

(p1, . . . , pn ⇒ ; C∅, Cid)
�p1, . . . ,�pn ⇒ | ⇒

5n

Applications of this rule have the form G | ϕ1, . . . , ϕn,Γ⇒ ∆ / G | Σ,�ϕ1, . . . ,�ϕn ⇒ Π | Γ⇒ ∆. It
is straightforward to see that the rule set RKT5 := RKT ∪ {5n : n ≥ 1} is principal-cut closed. Note
that this produces precisely the multi-set-based versions of the rules for modal logic S5 from [37].

3. The cut between the rules 4n and 5 as shown below left and middle on �q is the rule cut(4n, 5,�q)
given below right. We also call this rule 45n.

(p1, . . . , pn ⇒ q ; C�)

�p1, . . . ,�pn ⇒ �q
4n

(q ⇒ ; C∅, Cid)
�q ⇒ | ⇒ 5

(p1, . . . , pn ⇒ ; C�, Cid)
�p1, . . . ,�pn ⇒ | ⇒

45n

Applications of this rule have the form G | �Σ, ϕ1, . . . , ϕn,Γ ⇒ ∆ / G | Ω,�Σ,�ϕ1, . . . ,�ϕn ⇒ Π |
Γ ⇒ ∆, where no formula in Ω is boxed. Again, the rule set RKT45 := RKT4 ∪ {45n : n ≥ 0} is
principal-cut closed. Note that starting with the rule 40 this produces the rule 450, which is precisely
the version of the modal splitting rule for modal logic S5 from [36].

Example 4.3. The rule sets RK, RKT5 and RKT45 from the previous example are also mixed-cut permuting.
As one of the more interesting cases consider the rules 4n = (~p ⇒ q ; C�) / ~�p ⇒ �q and 45m = (~r ⇒
; C�, Cid) / ~�r ⇒ | ⇒ from RKT45. The sequent ~�p ⇒ �q is part of the principal part of 4n and we
have (�q ⇒ )�C� = �q ⇒ with the restriction C� occurring in 45m. Thus we need to check first that

( ~�p ⇒ )�C� = ~�p ⇒ , which obviously is the case. Furthermore, the only restriction of 4n which refers

to the component ~�p ⇒ �q of the principal part is the restriction C�, so we also need to check that for
every sequent Σ⇒ Π we have (Σ ⇒ Π)�C��C� = (Σ ⇒ Π)�C� which again is the case. Together these two
properties ensure that a cut on �q occurring in the principal part of 4n and as part of the context in the
left component of 45m can be permuted into the premiss of the rule 45m.

As a non-example, consider the rule set containing the rules RK4 and the single additional rule {( ⇒
q; 〈{�p}, {�p}〉)}/ ⇒ �q. It is not mixed-cut permuting since the principal part of the additional rule
contains the component ⇒ �q and for the restriction C� occurring in the rule 4n we have (�q ⇒ )�C�=
�q ⇒ , but e.g. for the sequent �Σ⇒ �Π we have (�Σ⇒ �Π)�〈{�p},{�p}〉�C�= (�Σ⇒ �Π)�C�= �Σ⇒ ,
which is not the same as (�Σ⇒ �Π)�〈{�p},{�p}〉= �Σ⇒ �Π.
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In the sequent case, the analogue of the principal-cut closure condition for rules with one principal
formula is known as reductivity [22] or coherence [5], and it corresponds to Belnap’s condition C8 for display
calculi [7]. The two properties of Def. 4.1 ensure that we can eliminate topmost instances of a restricted
version of multicut, where the cut formula occurs only once in the left premiss (and is principal in the last
applied rule there), but several times in several components in the right premiss, by induction on the depth
of the derivation of the right premiss and the maximal complexity of a cut formula occurring in the whole
derivation. Allowing the cut formula to occur more than once on the right is necessary due to the internal
and external contraction rules. The fact that several instances of the cut formula in the right premiss of such
a restricted multicut can be principal also is the reason why we take the cuts between rules of a principal-cut
closed rule set to be in the rule set and not just derivable: we need to be able to replace iterated cuts by a
single rule from the rule set. To give the formal argument we use the following standard definition.

Definition 4.4 (Cut-rank). The cut-rank of a derivation D is the maximal complexity of the cut formulae
occurring in D and is denoted by ρ(D).

In the following we abbreviate m occurrences ϕ, . . . , ϕ of formulae resp. Γ, . . . ,Γ of multisets resp.
G | · · · | G of hypersequents to ϕm resp. Γm resp. Gm.

Lemma 4.5 (Shift right). Let HR be principal-cut closed and mixed-cut permuting. Assume in HRCut we
have derivations

D1....

G | Γ⇒ ∆, ϕ
R

and

D2....
H | Σ1, ϕ

m1 ⇒ Π1 | · · · | Σn, ϕ
mn ⇒ Πn

such that ϕ is principal in the application of R and ρ(D1) < |ϕ| > ρ(D2). Then there is a derivation D in
HRCut of the hypersequent

G | H | Γ,Σ1 ⇒ ∆,Π1 | · · · | Γ,Σn ⇒ ∆,Πn

with ρ(D) < |ϕ|.

Proof. By induction on the depth of D2. The idea is to permute the (multi-)cut into the premisses of the
last applied rule in D2. If the last applied rule in D2 was one of ICL, ICR, IW,EC,EW,Cut,A, then the cut is
permuted into its premisses or replaced with applications of IW,EW. Otherwise, w.l.o.g. assume that every
formula in the component Γ ⇒ ∆, ϕ of the conclusion of the rule R occurs in at least one of its premisses
(formulae for which this is not the case can be omitted now and added back later using IW). Let Q be the
last applied rule in D2. Taking ` as the number of premisses of this rule, for j ≤ ` the j-th premiss can be
written as

Hj | Ω1,j , ϕ
s1,j ⇒ Θ1,j | · · · | Ωkj ,j , ϕ

skj,j ⇒ Θkj ,j

where the displayed ϕi,j are the occurrences of ϕ propagated in the context of the application of Q. Using
the induction hypothesis we have for j ≤ ` derivations Ej of

Ij := G | Hj | Γ,Ω1,j ⇒ ∆,Θ1,j | · · · | Γ,Ωkj ,j ⇒ ∆,Θkj ,j

with ρ(Ej) < |ϕ|. Since the rule set HR is mixed-cut permuting, the formulae in Γ⇒ ∆ satisfy the context
restrictions associated with the different premisses, and we can apply the rule Q (possibly followed by IW
and / or contractions) to the premisses Ij to obtain the conclusion (with m′i ≤ mi)

G | H | Γ, ϕm′1 ,Σ1 ⇒ ∆,Π1 | · · · | Γ, ϕm′n ,Σn ⇒ ∆,Πn

where the remaining displayed occurrences of ϕ are principal in the application of Q. Furthermore, we know
that ϕ is principal in the application of the rule R, and hence by the principal-cut closure condition (or the
standard transformations in the propositional case) there is a (possibly trivial) rule Q′ ∈ HR which allows
to derive the conclusion

G2 | H | Γ2, ϕm′1−1,Σ1 ⇒ ∆2,Π1 | Σ2, ϕ
m′2 ⇒ Π2 | · · · | Σn, ϕ

mn ⇒ Πn
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from premisses obtained by applying Cut to the premisses of R and the premisses Ij . Since ϕ was principal
in the conclusion of R, these newly introduced cuts are on proper subformulae of ϕ and hence on formulae
of complexity strictly less than |ϕ|. Moreover, from the definition of principal-cut closure we obtain that
the remaining displayed occurrences of ϕ are principal also in the application of Q′. Thus, repeating the
argument for every single displayed occurrence of ϕ we obtain a rule Q′′ ∈ HR (again possibly trivial) which
allows to derive the conclusion

Gm
′
1+···+m′n | H | Γm′1 ,Σ1 ⇒ ∆m′1 ,Π1 | . . .Γm′n ,Σn ⇒ ∆m′n ,Πn

from premisses obtained by applying Cut to the premisses ofR and the premisses Ij on formulae of complexity
strictly less than |ϕ|. Finally, applying internal and external contractions yields the desired derivation D of
G | H | Γ,Σ1 ⇒ ∆,Π1 | · · · | Γ,Σn ⇒ ∆,Πn with cut rank strictly less than |ϕ|.

To get to a stage where we can apply the previous lemma we need to ensure that not more than one
instance of the cut formula is principal in the last applied rule of the derivation of the left premiss of the
cut. The following two conditions will guarantee that this is the case.

Definition 4.6. A rule set R is right-contraction closed if applications of internal contraction right (ICR in
Table 2) to the conclusion of a rule are derived by internal contractions on the premisses of that rule followed
by one rule from R. It is single-component right if the principal part of no rule contains Γ⇒ ∆,♥p | Σ⇒
Π,♥q for ♥ ∈ Λ and p, q ∈ V.

Example 4.7. 1. The standard modal rule sets from Table 3 as well as the rule sets H and RKT5 and
RKT45 from Ex. 4.2 are trivially right-contraction closed since the right sides of the sequents in the
principal parts contain at most one formula.

2. The rule set containing the single rule {( ⇒ p1; C�), ( ⇒ p2; C�)}/ ⇒ �p1,�p2 from Remark 3.9 is
not right-contraction closed, since the result of applying internal contraction right to its conclusion is
not derivable using internal contraction followed by the rule itself. It becomes derivable if we add the
rule 40 to the rule set, and hence the rule set containing these two rules is right-contraction closed.

3. The rule sets H as well as RK and RK4 are trivially single-component right since their principal parts
contain only one component.

4. The rule sets RKT5 and RKT45 from Ex. 4.2 are single-component right since no component of the
principal part in the rules 5n resp. 45n introduces a boxed formula on the right hand side.

5. The rule {(⇒ q; C�, C∅), (⇒ p; C∅, C�)}/ ⇒ �p | ⇒ �q is not single-component right.

The notion of right-contraction closed rule sets is the hypersequent version of the restriction of the notion
of contraction-closed rule sets from [40] resp. rule sets satisfying the closure condition from [47] to the right
hand side only. Obviously, if the rule set is single-component right, then the cut formula is not principal in
more than one component in the left premiss of a cut. Furthermore, right-contraction closure prevents the
cut formula from occurring twice in a single component of the principal part:

Lemma 4.8. Let R be right-contraction closed and single-component right. Then whenever there is a
derivation D of a hypersequent G in HCutR, then there is a derivation D′ of G in HCutR with ρ(D′) ≤ ρ(D)
in which in every application of a rule from R the right hand sides of the principal part are fully contracted,
i.e., the right contraction rule ICR cannot be applied to the principal part.

Proof. We show by induction on n: Suppose there is a derivation of G in HCutR with the property (Pn):
whenever the principal part of a rule application contains a component Γ⇒ ∆, ϕ, ϕ, then ϕ has complexity
at most n. Then there is a derivation of G in HCutR where the principal part of no rule application contains
such a component (i.e., the right hand sides of the principal parts are fully contracted).

So suppose we have a derivation with property (Pn+1). Pick a topmost rule application with principal
part containing a component Γ ⇒ ∆, ϕ, ϕ and ϕ of complexity n + 1. Using right-contraction closure
(possibly repeatedly) this is replaced by contractions on the premisses of this application, an application of
a rule from R which does not contain such a component and applications of Weakening to add back missing
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copies of ϕ. Since ϕ was part of the principal part, the newly introduced contractions are on formulae of
complexity at most n. Continuing in this fashion we replace all problematic rule applications. The resulting
derivation has property (Pn) and we are done using the induction hypothesis.

Finally, we impose a further restriction which ensures that cuts with cut formula contextual on the left
can be permuted into the premisses on the left.

Definition 4.9. A rule is right-substitutive if all restrictions occurring in it have the form 〈{p}, {p}〉 or
〈F, ∅〉 for some F ⊆ F(Λ).

Example 4.10. While the logical rules of H as well as the rules 5 from Ex. 3.6 and the rules 5n and 45n
from Ex. 4.2.2 resp. Ex. 4.2.3 are clearly right-substitutive, the modal splitting rule MS from Ex. 3.6 is not
since it contains the restriction 〈{�p}, {�p}〉.

The notion of a right-substitutive rule is an adaption of the notion of a substitutive rule from e.g. [20] to
our framework. Using the above mentioned restrictions we have:

Lemma 4.11 (Shift Left). Let R be right-substitutive, single-component right and right-contraction closed.
Assume in HRCut we have derivations

D1....
G | Γ1 ⇒ ∆1, ϕ

m1 | · · · | Γn ⇒ ∆n, ϕ
mn

and

D2....
H | ϕ,Σ⇒ Π

with ρ(D1) < |ϕ| and ρ(D2) < |ϕ|. Then there is a derivation D in HRCut of the hypersequent

G | H | Γ1,Σ⇒ ∆1,Π | · · · | Γn,Σ⇒ ∆n,Π

with ρ(D) < |ϕ|.

Proof. By induction on the depth of D1. We actually show a slightly stronger statement, namely that
whenever the principal parts of every rule application in D1 and D2 are fully contracted on the right, then
we can find a derivation D with the properties stated in the lemma in which this is again the case. Using
Lemma 4.8 we may assume that the original derivations D1 and D2 are of this form.

If the last applied rule in D1 was one of ICL, ICR,EC, IW,EW,Cut,A, then the cut is permuted into the
premisses of this rule or replaced by applications of IW,EW. Then we are done using Lemma 4.8.

Otherwise, let Q be the last applied rule in D1. Again, taking ` to be the number of its premisses, for
j ≤ ` its j-th premiss can be written as

Gj | Ω1,j ⇒ Θ1,j , ϕ
s1,j | · · · | Ωkj ,j ⇒ Θkj ,j , ϕ

skj,j

where the displayed ϕi,j are propagated in the context from the conclusion. Using the induction hypothesis
again we have for j ≤ ` derivations Ej of

Ij := Gj | H | Ω1,j ,Σ⇒ Θ1,j ,Π | Ωkj ,j ,Σ⇒ Θkj ,j ,Π

with ρ(Ej) < |ϕ|. Since the rule Q is right-substitutive, we can apply it to these premisses to obtain the
conclusion

G | H | Γ1,Σ⇒ ∆1,Π, ϕ
m′1 | · · · | Γn,Σ⇒ ∆n,Π, ϕ

m′n

where the remaining displayed ϕm′i are principal in the application of Q. Since Q is single-component right
we furthermore have m′i 6= 0 for at most one i ≤ n. By right-contraction closure together with Lemma 4.8
and w.l.o.g. taking the i with m′i > 0 to be n we obtain the derivation

D′1....
G | H | Γ1,Σ⇒ ∆1,Π | · · · | Γn−1,Σ⇒ ∆n−1,Π | Γn,Σ⇒ ∆n,Π, ϕ

Q′
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with ρ(D′1) < |ϕ|. Moreover, from the proof of Lemma 4.8 we obtain that the displayed occurrence of ϕ is
principal in the application of the rule Q′. Now using the Shift Right Lemma 4.5 we eliminate the remaining
cut with the hypersequent H | ϕ,Σ⇒ Π on the last occurrence of ϕ to obtain a derivation D′ of

G | H | Γ1,Σ⇒ ∆1,Π | · · · | Γn,Σ⇒ ∆n,Π

with ρ(D′) < |ϕ|. Finally, using Lemma 4.8 we turn this into a derivation D with ρ(D) < |ϕ| in which the
principal parts of all applications of rules are fully contracted on the right.

Theorem 4.12 (Cut elimination). Let HR be right-substitutive, single-component right, right-contraction
closed, principal-cut closed and mixed-cut permuting. Then for every hypersequent G we have:

`HRCut G iff `HR G .

Proof. For a derivation D let #ρ(D) be the number of applications of cut on a cut formula ϕ with |ϕ| =
ρ(D). Let D be a derivation of G in HRCut. The proof is by induction on the tuple (ρ(D),#ρ(D)) in the
lexicographic ordering. Topmost cuts with maximal rank are eliminated using Lemma 4.11, thus reducing
ρ(D) or preserving ρ(D) while reducing #ρ(D).

Corollary 4.13. The hypersequent calculi H,HRK,HRK4,HRKT,HRKT5 and HRKT45 admit cut elimination.

Proof. Inspection of the rules together with Examples 4.2, 4.3, 4.7, and 4.10 shows that these rule sets
satisfy the conditions of Thm. 4.12.

The fact that despite not being right-substitutive the rule set for the logic S5 containing the modal
splitting rule nevertheless does admit cut elimination via a different proof [4] illustrates that the given
criteria for cut elimination are sufficient but not necessary. However, as we will see, they seem to capture
a reasonably large class of logics. Compared to other general methods of cut elimination for hypersequents
such as the one used in [54] this method has the advantage that it allows for more than one principal formula
and for restrictions on the context.

Thm. 4.12 together with the following Lemma also provides the basis of the extension of the method
of cut elimination by saturation from e.g. [38, 40] to the hypersequent framework. In this method cut-free
hypersequent calculi are constructed from given rules by saturating the rule set under the addition of cuts
between rules (Def. 4.1) and contractions of rules, i.e. the result of contracting two principal formulae and the
corresponding variables in the premisses (compare [40, Def. 12]). While the resulting rule set by construction
will be principal-cut closed and contraction closed, we will still need to check that the remaining conditions
of Thm. 4.12 are satisfied. Soundness of the additional rules is ensured by the following Lemma.

Lemma 4.14 (Soundness of cuts between rules). Let R1, R2 be hypersequent rules with context restrictions.
Then the rule cut(R1, R2,♥p) is a derivable rule in HR1R2Cut.

Proof. Suppose we have two rules

R1 =

{
(Γi ⇒ ∆i, p; ~Ci) : i ≤ m

}
∪ P1

Σ1 ⇒ Π1 | · · · | Σn−1 ⇒ Πn−1 | Σn ⇒ Πn,♥p

R2 =

{
(p,Ωj ⇒ Ψj ; ~Dj) : j ≤ `

}
∪ P2

♥p,Υ1 ⇒ Ξ1 | Υ2 ⇒ Ξ2 | · · · | Υk ⇒ Ξk

where p does not occur in P1,P2. Furthermore, writing ~Ci� ~Dj for (~Ci,
k−1 times︷ ︸︸ ︷
C∅, . . . , C∅)∪ (

n−1 times︷ ︸︸ ︷
C∅, . . . , C∅, ~Dj) suppose

we have an application of the cut between these rules on ♥p, i.e., the rule{
(Γi,Ωj ⇒ ∆i,Ψj ; ~Ci � ~Dj) : i ≤ m, j ≤ `

}
∪ P1 ∪ P2

Σ1 ⇒ Π1 | · · · | Σn−1 ⇒ Πn−1 | Σn,Υ1 ⇒ Πn,Ξ1 | Υ2 ⇒ Ξ2 | · · · | Υk ⇒ Ξk
cut(R1, R2,♥p)
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given by a substitution σ, a side hypersequent G and n + k − 1 contexts Θr ⇒ Φr. Thus we have the
premisses from P1,P2 not including p (with context) and the premisses

G | ~Θ�~Ci� ~Dj
Γi,Ωj ⇒ ∆i,Ψj , ~Φ�~Ci� ~Dj

for i ≤ n, j ≤ `. Now setting

χ :=
∨
i≤n

(
∧

~Θ�~Ci�Ck∅
∧
∧

Γi ∧ ¬
∨

~Φ�~Ci�Ck∅
∧¬
∨

∆i)

we can derive the hypersequents
G | ~Θ�~Ci�Ck∅ ,Γi ⇒ ~Φ�~Ci�Ck∅

,∆i, χ

from axioms using propositional logic and the hypersequents

G | ~Θ�Cn∅� ~Dj
, χ,Ωj ⇒ Ψj , ~Φ�Cn∅� ~Dj

from the premisses of cut(R1, R2,♥p). Now applications of R1 and R2 give the hypersequents

G | Θ1,Σ1 ⇒ Φ1,Π1 | · · · | Θn,Σn ⇒ Φn,Πn,♥χ

and
G | Θn,♥χ,Υ1 ⇒ Φn,Ξ1 | · · · | Θn+`,Υ` ⇒ Φn+`,Ξ`

Finally, an application of Cut together with external and internal contractions gives the desired conclusion.

Example 4.15. 1. Since the rules 5n from Ex. 4.2.2 are the result of cuts between the rules Kn and the
rule 5, by Lemma 4.14 they are derivable in HRKT5Cut and hence together with Cor. 4.13 and the fact
that the rule 5 is subsumed by the rule 51 we have

`HRKT5Cut G iff `HRKT5
G

for every hypersequent G.

2. Similarly, for the rule set RKT45 constructed by cutting the rules K4n with 5 we have

`HRKT45Cut G iff `HRKT45
G

for every hypersequent G.

Example 4.16. A further simplification step in the process of cut elimination by saturation permits the
omission of rules which are derivable from other rules from the rule set. A small computation shows that
the rules Kn,Tn and 5n indeed are derivable using the two rules K0 and 5 together with the structural rules.
Moreover, the rule set HK05 satisfies all the conditions of Thm. 4.12. Hence we have:

`HRKT5Cut G iff `HK05 G

for every hypersequent G. Note that this gives precisely the modal rules for the logic S5 from [54].

Further examples of this procedure will be considered in Sec. 6.
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4.1. Applications: Decision Procedures and Complexity Bounds

Now that we have established criteria for cut elimination it is time to consider some applications of
these results. One of the main advantages of cut-free hypersequent calculi of our format is that they satisfy
the subformula property : every formula occurring in a (cut-free) derivation of a hypersequent H must be
a subformula of a formula occurring in H. Indeed, the subformula property is a key ingredient of decision
procedures based on proof search, i.e., on inspecting all possible derivations of a given hypersequent, since it
greatly reduces the search space of possible derivations. However, the cut rule is not the only problematic
rule in this respect: in the presence of the external resp. internal contraction rules it is not clear that we can
limit the size of the hypersequents occurring in a possible derivation, since they might contain arbitrarily
many copies of a single component resp. formula. Thus in order to render our calculi suitable for proof search
techniques we need to modify them slightly so as to take the sting out of the contraction rules. The main idea
is to use a trick introduced by Kleene for the G3 systems in [34] and modify the notion of a rule application
such that the relevant bits of the principal part are copied into the active components of the premisses, and
in addition the whole principal part is copied into each premiss as well. The first modification allows to push
internal contractions between context formulae and active formulae into the premisses and thus we obtain
admissibility of internal contractions, while the second one allows to permute external contractions between
components of the principal part and the side hypersequent upwards. Formally:

Definition 4.17 (Kleene’s Trick). A modified application of a hypersequent rule R = {(Γi ⇒ ∆i; ~Ci) :
i ∈ P}/Σ1 ⇒ Π1 | · · · | Σn ⇒ Πn is given by a side hypersequent G, a substitution σ : V → F and contexts
Θ1 ⇒ Ω1 | · · · | Θn ⇒ Ωn and written as{

G | H | Γiσ,
⊔

j≤n(Σjσ,Θj)�Cji
⇒ ∆iσ,

⊔
j≤n(Πjσ,Ωj)�Cji

: i ∈ P
}

G | Σ1σ,Θ1 ⇒ Π1σ,Ω1 | · · · | Σnσ,Θn ⇒ Πnσ,Ωn
R∗

with H = Σ1σ,Θ1 ⇒ Π1σ,Ω1 | · · · | Σnσ,Θn ⇒ Πnσ,Ωn. Modified applications of the logical rules for
the propositional connectives are defined analogously. For a rule set R we say that a hypersequent is
derivable in H∗R∗ if it is derivable using modified applications of propositional rules and rules in R instead
of applications and without using the internal and external structural rules of Weakening (IW,EW) and the
internal structural rules of Contraction (ICL, ICR).

Example 4.18. A modified application of the rule 45n = {(~p⇒ ; C�, Cid)}/ ~�p⇒ | ⇒ from Ex. 4.2.3 is of
the form

G | Σ,�Γ,�ϕ1, . . . ,�ϕn ⇒ Π | Ω⇒ Ξ | �Γ,�ϕ1, . . . ,�ϕn, ϕ1, . . . , ϕn,Ω⇒ Ξ

G | Σ,�Γ,�ϕ1, . . . ,�ϕn ⇒ Π | Ω⇒ Ξ

Note that the notion of derivability using modified rule sets does allow applications of the external
Contraction rule EC. While this could be strengthened to a notion of derivability not using any structural
rules, we will see below that for the purpose of showing decidability results the current formulation suffices
(Lemma 4.24). In a modified application of a rule in addition to the context formulae all principal formulae
satisfying the corresponding restriction are copied into the premiss, and all components of the principal
part are copied to deal with external contractions between components of the principal part and the side
hypersequent. If internal contractions can be permuted with rules this yields admissibility of internal
contraction. For this we consider the full version of right-contraction closure (Def. 4.6), essentially an
adaption of the notion of contraction-closed rule sets [50, 40] resp. the closure condition [47] from the
sequent to the hypersequent framework.

Definition 4.19. A rule set R is contraction closed if for every rule R ∈ R with principal part G | Γ ⇒
∆,♥p,♥q (resp. G | Γ,♥p,♥q ⇒ ∆) there is a rule R′ ∈ R with principal part G | Γ ⇒ ∆,♥p (resp.
Γ,♥p⇒ ∆) whose premisses are derivable from those of R by renaming q to p and contractions.
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Example 4.20. 1. Renaming q to p in the premiss of the rule Kn+2 = {(p, q, ~r ⇒ s; C∅)}/�p,�q, ~�r ⇒
�s and applying contraction yields the premiss of the rule Kn+1 = {(p, ~r ⇒ s; C∅)}/�p, ~�r ⇒ �s.
Together with the fact that the rule set RK is trivially right-contraction closed (see Ex. 4.7.1) this
gives contraction closure of RK.

2. Similarly, the rule sets HRK4, HRKT and HRKT4{5n : n ∈ N} are contraction closed.

3. The rule set consisting only of the rule K2 = {(p, q ⇒ r; C∅)}/�p,�q ⇒ �r does not contain the
rule K1. Hence it is not contraction closed (see point 1 above).

Lemma 4.21 (Admissibility of internal contraction). For contraction closed R, internal contraction is
admissible in H∗R∗.

Proof. By simultaneous double induction on the complexity of ϕ and the depth of the derivation we show:
whenever `H∗R∗ G | ϕ,ϕ,Γ1 ⇒ ∆1 | · · · | ϕ,ϕ,Γn ⇒ ∆n, then `H∗R∗ G | ϕ,Γ1 ⇒ ∆1 | · · · | ϕ,Γn ⇒ ∆n

and analogously for ϕ on the right. Contractions between context and principal formulae are dealt with by
modified rule applications and the inner induction hypothesis (on the depth of the derivation), those between
principal formulae using contraction closure and the outer induction hypothesis (on the complexity).

To deal with external contractions where both components are part of the principal part we could
formulate an external version of contraction closure. However, inspection of the common hypersequent
calculi reveals that usually the principal parts of the rules in a rule set contain only a bounded number
of components. This already suffices to bound the number of copies of each component in a hypersequent
occurring in a derivation.

Definition 4.22. A rule set R is bounded component if there is c ∈ N such that the principal part of every
rule in R has at most c components.

Example 4.23. 1. A quick inspection of the rules shows that all of the rule sets considered in this article
(apart from the one given below) are bounded component, and often the bound is even as low as 2.

2. Natural examples of rule sets which are not bounded component seem to be hard to find in the
literature. A somewhat artificial example of such a rule set is given by the set of rules

⋃
k≥2 btwk,

where btwk is the set of rules
{

(pi1, . . . , p
i
ni
, pj1, . . . , p

j
nj
⇒ ; C∅, . . . , C∅) : 1 ≤ i < j ≤ k

}
�p11, . . . ,�p

1
n1
⇒ | · · · | �pk1 , . . .�pknk

⇒
: n1 ≥ 1, . . . , nk ≥ 1


from [37]. Since the rule set includes the rule set btwk for every k ≥ 2 and the principal part of every
rule in btwk has k components, the rule set

⋃
k≥2 btwk is not bounded component. However, since

every rule in btw2+n for n ≥ 1 is derivable using a rule in btw2 and external weakening, this rule set
could be replaced with the set btw2, which is clearly bounded component.

Lemma 4.24. Let R be a bounded component set of rules with bound c and let G be a hypersequent with k
components. If G is derivable in H∗R∗, then there is a derivation of G in H∗R∗ in which every hypersequent
contains at most max{c, k} copies of every sequent.

Proof. By induction on the depth of the derivation. If the depth is 0, then since the axiom rule is local we
immediately obtain the statement. If the depth is n+1, then consider the last modified rule application, say
R∗ and assume that we have max{c, k} + 1 copies of the sequent Γ ⇒ ∆. Since modified rule applications
copy the whole principal part into the premisses, every premiss contains at least max{c, k}+ 1 copies of this
sequent. Using the induction hypothesis we thus obtain derivations of the premisses in which the sequent
occurs at most max{c, k} times. Finally, since R is bounded component, at most c copies of the sequent
were in the principal part of this rule application, and thus we may still apply the rule to obtain the desired
conclusion.
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The previous two lemmata together with cut elimination allow us to bound the size of the hypersequents
occurring in a derivation. But to search for a derivation of a hypersequent we also need to be able to recognise
a derivation, and in particular to recognise whether one hypersequent follows from other hypersequents via
a rule application. To be able to do so (and still obtain a reasonable complexity bound) we slightly adjust
the corresponding notion from [40] to the hypersequent framework and restrict the rule sets in such a way
that we can handle them automatically.

Definition 4.25. A rule set R is pspace-tractable if there is an encoding p.q of applications of rules from
R of size polynomial in the size of the conclusion such that given a hypersequent G and an encoding pRq of
a rule application it is decidable in space polynomial in the size of G whether G is the conclusion of R and
it is decidable in space polynomial in the size of pRq whether G is a premiss of the rule application R.

A little thought shows that all of the rules sets considered in this article are indeed pspace-tractable
in this sense. In fact, the polynomial space bounds in the above definition are quite generous and in most
examples can be lowered to polynomial time. However, since the complexity of recognising a rule application
is not the main source of complexity in the proof search procedure we will use the more general definition.
This allows us to perform backwards proof search for such rule sets.

Theorem 4.26 (Decidability and complexity). Let R be a contraction closed, bounded component and
pspace-tractable set of rules. Then derivability in HR is decidable in exponential space.

Proof. Using Weakening and Contraction as well as Lemmas 3.8 and 4.21 derivability in HR is equivalent
to derivability in H∗R∗. Moreover, Lemma 4.21 allows us to equivalently work with hypersequents build
from set-set sequents, i.e., pairs of sets of formulae instead of pairs of multisets of formulae. Now assume
the input consists of the hypersequent G with size n. Using the fact that modified applications of rules copy
the whole conclusion into the premisses, we may w.l.o.g. assume that for every rule application all premisses
properly extend the conclusion. Using Lemma 4.24 we may furthermore assume that every hypersequent
occurring in a derivation of G contains at most max{c, n} =: k copies of each component. Since all the rules
have the subformula property and there are at most n subformulae of formulae occurring in G, the number
of relevant (set-set) sequents thus is bounded by 2n · 2n = 2n

2

, and the number of relevant hypersequents

is bounded by k · 2n2

. Since moreover the size of the relevant (set-set) sequents is bounded by 2n2, the

size of the relevant hypersequents is bounded by k · 2n2 · 2n2. We implement backwards proof search on an
alternating exponential time machine (see [13, 49]), by existentially guessing an encoding of the last rule
application, universally guessing its premisses and recursively checking that these are derivable and properly
extend the conclusion. Since the rule set is pspace-tractable, the size of the encoding of the rule application
is bounded by a polynomial p in the size of its conclusion, and hence the size of the encodings of rule
applications is bounded by p(k · 2n2 · 2n2). Moreover, since PSPACE is the same as alternating polynomial
time [13, 49], checking whether a hypersequent is the conclusion resp. premiss of a rule application can be
done in alternating polynomial time, where the time is bounded by polynomials q1 and q2 in the size of
the hypersequent resp. encoding of the rule application. Thus the time needed for each of these checks is
bounded by q1(k · 2n2 · 2n2) resp. q2(p(k · 2n2 · 2n2)). Since the length of the branches in the search tree is

bounded by the number k · 2n2

of relevant hypersequents, we thus obtain an alternating exponential time
algorithm, which by [13] can be transformed into an exponential space algorithm.

The previous theorem straightforwardly yields EXPSPACE upper bounds for essentially all the logics
considered as examples in this article. In view of the fact that these logics typically are decidable in
PSPACE or even coNP the exponential space bound might seem a bit excessive. It should be clear, however,
that logic-tailored decision procedures can produce much better complexity bounds than general decision
procedures (indeed, an example will be given in Sec. 6.2). At the moment it is not yet clear whether the
EXPSPACE upper bound for logics given in the format considered here can be improved in general, but the
example in Sec. 6.4 will show that it cannot be lowered below EXPTIME.
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5. Axioms and Rules

So far we considered the basic rules of a hypersequent calculus as given. Now we investigate the con-
nection between hypersequent rules with context restrictions and Hilbert-style axiomatisations in a mainly
syntactical way. In order to do so we first take a closer look at the interpretation or formula translation of a
hypersequent in a general way and consider which notions of soundness this gives rise to and what we need
to ensure soundness of the standard rules (Sec. 5.1). Then we will consider translations from rules to axioms
(Sec. 5.2) and from axioms to rules (Sec. 5.3) for normal modal logics and simpler context restrictions, before
giving the general method (Sec. 5.4). Finally, we will apply the translation to show a limitative result about
the rule format (Sec. 5.5).

5.1. Interpretations

In contrast to more semantical approaches such as [37] for this syntactic approach we need to interpret
hypersequents as formulae. While the standard interpretation for modal logics is the already mentioned
interpretation of a hypersequent Γ1 ⇒ ∆1 | · · · | Γn ⇒ ∆n as the formula �(

∧
Γ1 →

∨
∆1)∨· · ·∨�(

∧
Γn ⇒

∆n) from [4], some other interpretations have been suggested as well, although mainly in the context of
hypersequent calculi for substructural and intermediate logics (see e.g. [16]). For this reason we consider
interpretations in an abstract way and view them as a family of formulae, one for each number of components
in a hypersequent. Of course, since we plan to construct extensions of a hypersequent calculus with all the
structural rules, we need to make sure that such an interpretation is compatible with the structural rules.
Formally:

Definition 5.1 (Interpretation). An interpretation for a Λ-logic L is a sequence ι = (ιn(p1, . . . , pn))n≥1
of formulae in F(Λ) which respects the structural rules, i.e. for all n ≥ 1:

1. ι respects (external) exchange: |=L ιn(~ϕ, ψ, χ, ~ξ) iff |=L ιn(~ϕ, χ, ψ, ~ξ)

2. ι respects external Weakening: if |=L ιn(~ϕ), then |=L ιn+1(~ϕ, ψ)

3. ι respects external Contraction: if |=L ιn+1(~ϕ, ψ, ψ), then |=L ιn(~ϕ, ψ)

4. ι respects Cut: if |=L ιn(~ϕ, ψ → χ) and |=L ιm(χ→ ξ, ~ζ), then we have |=L ιn+m−1(~ϕ, ψ → ξ, ~ζ).

The interpretation is regular for L if for all ϕ ∈ F we have |=L ϕ iff |=L ι1(ϕ).

An interpretation ι = (ιn)n≥1 for a logic induces a map ι from hypersequents to formulae defined by

Γ1 ⇒ ∆1 | · · · | Γn ⇒ ∆n 7→ ιn(
∧

Γ1 →
∨

∆1, . . . ,
∧

Γn →
∨

∆n) .

Example 5.2. 1. The above mentioned standard interpretation for normal Λ�-logics from [4] is ι� given
by ι�n (p1, . . . , pn) =

∨n
i=1�pi. It is regular for a normal logic iff �ϕ/ϕ is admissible, in particular if

the axiom (T) �p → p is contained in the logic. It is not regular for e.g. the logic KB of symmetric
frames.

2. The interpretation ι� for normal Λ�-logics is given by the formulae ι�n (ϕ1, . . . , ϕn) =
∨n

i=1(ϕi ∧�ϕi).
It is an interpretation by normality of � and obviously regular.

While in the spirit of [23] it should be possible to obtain general results on the form of interpretations
for a logic from the fact that they respect the structural rules, for the present purpose the general properties
given in Def. 5.1 are enough.

Depending on whether we involve the interpretation we obtain different notions of soundness. Regular
interpretations link these notions and imply soundness of the propositional rules. Recall that a modal logic
is congruential if it is closed under the rules A↔ B/♥A↔ ♥B for every modality ♥.

Definition 5.3 (Soundness, hssp). Let R be a set of rules and ι an interpretation for the logic L. Then
R is hypersequent soundness preserving (briefly: hssp) for (L, ι) if for every application of a rule from R
with n premisses H1, . . . ,Hn and conclusion G: if |=L ι(Hk) for all k ≤ n, then |=L ι(G). The calculus HR
is sound for L, if `HR ⇒ ϕ implies |=L ϕ, and complete for L, if |=L ϕ implies `HR ⇒ ϕ.
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Proposition 5.4. Let L be a congruential logic.

1. If ι is a regular interpretation for L, then H is hssp for (L, ι).
2. If R is hssp for (L, ι) and ι is a regular interpretation for L, then R is sound for L.

Proof. 1. Using the fact that L includes all propositional tautologies, all the modalities have congruence
and thus |=L ιn(~ϕ, ψ) iff |=L ιn(~ϕ,> → ψ) and the properties of a regular interpretation.

2. By induction on the depth of a derivation we have: `R H implies |=L ι(H). Now regularity of ι gives
the statement.

The interpretation ι� is regular not only for reflexive normal Λ�-logics, but also e.g. for normal Λ�-
logics given by a class of Kripke frames closed under the addition of a (reflexive) predecessor to every world
(a simpler version of the notion of extensibility from [32]), or more generally the addition of a suitable
predecessor to certain problematic worlds:

Definition 5.5. A class F of frames is extensible if whenever for a frame F = (W,R) we have F ∈ F then
also F◦ ∈ F where F◦ = (W ∪ {x}, R ∪ {(x, y) : y ∈ W ∪ {x}}) with x /∈ W . A class F of Kripke-frames
is p-extensible if for every frame F = (W,R) ∈ F and world w ∈ W with R−1[{w}] = ∅ there is a frame
Fw = (W ∪ {z}, Rw) such that: Fw ∈ F, z /∈W , Rw �W×W = R, z /∈ Rw[W ], and zRww.

Here as usual we write R[S] for {y ∈ W : ∃x ∈ S xRy} and R−1 for the inverse relation of R. Thus a
class of frames is p-extensible if every frame in the class which includes a world not accessible from within
the frame can be extended to a frame in the class by adding a predecessor to this world not accessible from
within the original frame. Obviously, every extensible class of frames is also p-extensible.

Example 5.6. 1. The classes of serial and transitive frames are extensible, since adding a (reflexive)
world from which every world is accessible again yields a serial resp. transitive frame.

2. The class of euclidean frames, i.e., frames satisfying the property ∀x∀y∀z(xRy∧xRz → yRz) is neither
extensible nor p-extensible. To see this, consider the euclidean frame ({a, b}, {(a, b), (b, b)}). Every
euclidean frame Fa in the sense of the above definition would need to satisfy aRaa by euclideanity,
in contradiction to the stipulation that Ra �{a,b}×{a,b}= R and the fact that aRa does not hold in
the original frame. The same frame and reasoning shows that the class of shift reflexive frames, i.e.,
frames with the property ∀x∀y(xRy → yRy) is not p-extensible.

Lemma 5.7 (Regularity). If F is a p-extensible class of Kripke-frames, then the rule �ϕ/ϕ is admissible
in the logic given by F and hence ι� is a regular interpretation for this logic.

Proof. Let F be a p-extensible class of frames and suppose that ¬ϕ is satisfiable in the frame F ∈ F. Then
for some world w of F and valuation σ we have F, w, σ 6|= ϕ. Thus for the additional world z in Fw we have
Fw, z, σ

′ 6|= �ϕ with σ′ = σ on the worlds of F and arbitrary on the new world z. Since Fw ∈ F we thus have
F 6
 �ϕ. Hence �ϕ/ϕ is admissible. Since the logic given by F is normal, ι� indeed is an interpretation for
it, and regularity follows from admissibility of �ϕ/ϕ.

Corollary 5.8. If L is a normal Λ�-logic defined by an extensible class of frames, then ι� is a regular
interpretation for L. In particular, ι� is a regular interpretation for K,KD,K4 and KD4.

A rather curious fact about hypersequent calculi for normal modal logics with the interpretation ι� or
ι� is that the standard rules RK for modal logic K formulated with a side hypersequent are not always
hssp for extensions of this logic. Intuitively this is due to the fact that the rules operate inside the context
given by the side hypersequent, which makes Hilbert-style rules obtained by replacing their premisses resp.
conclusions with the corresponding formula translations only admissible rules instead of derivable rules in
the Hilbert-system for K. The situation here is maybe similar to that for first-order Gödel-Dummett logic,
where using the communication rule and the standard quantifier rules it is possible to derive the quantifier
shift axiom ∀x(A(x)∨B)→ (∀xA(x)∨B) with x not free in B, which is not valid in the extension of standard
intuitionistic logic with the linearity axiom (A→ B)∨(B → A) corresponding to the communication rule [6].
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Example 5.9. The logics K.2 and KT.2 are given by adding the axiom (.2) = ♦�p → �♦p to K resp.
KT. Equivalently, K.2 (resp. KT.2) is the logic of convergent (resp. convergent and reflexive) frames, i.e.,
(reflexive) frames satisfying the property ∀x∀y∀z(xRy ∧ xRz → ∃w(yRw ∧ zRw)), see e.g. [29] and also
Sec. 6.3. The rule K0 is not hssp for (K.2, ι�) or (KT.2, ι�) as can be seen by considering the hypersequent
H = �¬p ⇒ | ⇒ ¬�p: The interpretation of this is ι�(H) = �¬�¬p ∨ �¬�p ≡ ♦�p → �♦p and thus a
theorem of K.2. But applying the rule K0 with side hypersequent �¬p ⇒ we obtain �¬p ⇒ | ⇒ �¬�p
which has the translation �♦p ∨��♦¬p. The negation of this is satisfiable in the convergent and reflexive
frame ({a, b, c}, {(a, a), (a, b), (b, b), (b, c), (c, c)}) under the valuation making p true at c only.

Example 5.10. Similarly to the last example, setting L := K⊕ (�♦¬p ∨�♦p) and using the same hyper-
sequent as before together with the model based on ({a, b, c}, {(a, b), (b, b), (b, c), (c, c)}) where p holds only
in c we obtain that the rule K0 is not hssp for (L, ι�).

Of course this raises the question for which normal modal logics and interpretations the rules RK are
hssp. The following proposition gives a handy characterisation.

Proposition 5.11 (Soundness of the standard rules). If L is a normal Λ�-logic and ι a regular interpretation
for L, then RK is hssp for (L, ι) iff K0 is hssp for (L, ι).

Proof. Since K0 ∈ RK, the “only if” direction is trivial. For the other direction, while not rules with
restrictions in our sense, the rules with applications

ϕ1, . . . , ϕn ⇒ ψ

G | Γ,�ϕ1, . . . ,�ϕn ⇒ �ψ,∆
K′n

(i.e., which in particular do not copy the side hypersequent into the premiss) are always sound for normal
modal logics. But given that the rule K0 is hssp for (L, ι), the rule Kn is derivable using K′n+1,K0, the
propositional rules and Cut:

G | ϕ1, . . . , ϕn ⇒ ψ

G | ⇒
∧

i≤n ϕi → ψ
∧L,→R

G | ⇒ �(
∧

i≤n ϕi → ψ)
K0

∧
i≤n ϕi → ψ,ϕ1, . . . , ϕn ⇒ ψ

Prop

�(
∧

i≤n ϕi → ψ),�ϕ1, . . . ,�ϕn ⇒ �ψ
K′n+1

G | Γ,�ϕ1, . . . ,�ϕn ⇒ �ψ,∆
Cut

Thus the rules RK are hssp for (L, ι) as well.

Corollary 5.12. If L is a transitive or extensible normal modal logic, then RK is hssp for (L, ι�) as well
as for (L, ι�).

Proof. By the previous Proposition we only need to show that K0 is hssp. But this is equivalent to showing
that for every n ∈ N the rule

∨
i≤n�ϕi ∨ �ψ/

∨
i≤n�ϕi ∨ ��ψ (resp.

∨
i≤n�ϕi ∨ �ψ/

∨
i≤n�ϕi ∨ ��ψ

in the case of ι�) is admissible in L. If the logic is transitive, then it contains the axiom �ψ → ��ψ and
the claim follows immediately. In the extensible case, for the interpretation ι� the negations of the premiss
and conclusion of this rule are equivalent to∧

i≤n

(¬ϕi ∨ ♦¬ϕi) ∧ (¬ψ ∨ ♦¬ψ) and
∧
i≤n

(¬ϕi ∨ ♦¬ϕi) ∧ (♦¬ψ ∨ ♦♦¬ψ)

If the latter is satisfiable on a frame F for an extensible logic, then since the additional world in the frame
F◦ sees every other world, the former is satisfiable in the extension F◦. The reasoning for ι� is the same.

Corollary 5.13. The rules RK are hssp for (KD, ι), (KT, ι), (K4, ι), (KD4, ι), (S4, ι) with ι the interpretation
ι� or ι�.

While the criteria given in Cor. 5.12 are only sufficient and not necessary, they seem to suggest that
regarding modal logics the hypersequent formalism with a reasonable standard formulation of the modal
rules and a standard formula translation is suitable mainly for the treatment of transitive or extensible
logics.
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5.2. From Rules to Axioms

Now that we have fixed the notion of an interpretation we turn to the connections between rules and
axioms. We start with the often less investigated direction from rules to axioms. The objective is to give
a general translation of rules with context restrictions into axioms of a Hilbert style system. The obvious
approach to this problem of course would be to translate an application of a rule with restrictions such as

P1 . . . Pn

H

with premisses P1, . . . ,Pn and conclusion H into the implication

ι(P1) ∧ · · · ∧ ι(Pn)→ ι(H)

While this approach works fine in settings where the only allowed restriction is Cid, e.g. for the hyperse-
quent systems for intermediate logics different from bdk in [19], it breaks down already in settings where
additionally the restriction C∅ can occur. Perhaps the simplest counterexample is provided by the rules RK

for modal logic K, and in particular the modal necessitation rule K0 {( ⇒ p; C∅)}/ ⇒ �p. The result of
translating the application

⇒ ϕ

⇒ �ϕ
of this rule using the above method (under the formula interpretation ι�) would be the axiom �ϕ→ ��ϕ,
i.e., the axiom for transitivity. As this axiom is not a theorem of K it clearly cannot be equivalent to the
rule application.

The construction we use instead is the one applied in [56, 41, 38] to translate certain sequent rules into
axioms, slightly adapted to the hypersequent framework. The main idea of the construction is to turn the
conclusion of a rule into a formula using the interpretation, and then to inject the information contained
in the premisses into this formula via a suitable substitution constructed from the premisses. To illustrate
the method, in this section we only consider the normal modality � and restrict the context restrictions to
{C∅, Cid, C�}. The generalisation to monotone or antitone n-ary modalities and arbitrary context restrictions
will be considered in Sec. 5.4. For technical reasons we need the premisses to contain at least one non-
modalised propositional variable or unrestricted context formula, and thus we need to assume the following
for every premiss (Γ⇒ ∆; ~C):

If Cid /∈ ~C then Γ t∆ 6= ∅ (1)

For the rest of this section we fix a rule R with this property. In presence of HCut we may assume furthermore
w.l.o.g. that the restriction Cid does not occur in R: If it does occur we simply convert R into a rule of this
format by introducing a dummy modality · satisfying ·ϕ↔ ϕ for all formulae and replacing every restriction
Cid by the sequent ⇒ s for a fresh variable s in the premisses and by ⇒ ·s in the corresponding component
in the principal part. By Lemma 4.14 the resulting rule is equivalent to the original one modulo HRdmCut
where Rdm = {(p ⇒ ; Cid)/ · p ⇒ , ( ⇒ p; Cid)/ ⇒ ·p} states equivalence of p and ·p. Together with

property (1) this means that Γ,∆ 6= ∅ for every premiss (Γ⇒ ∆; ~C).

Example 5.14. In order to remove the restriction Cid from the premiss of the rule R5 := (⇒ ; C�, Cid)/ ⇒
| ⇒ , we introduce a fresh variable s in the premiss and the formula ·s in the conclusion to obtain the rule
(⇒ s; C�, C∅)/ ⇒ | ⇒ ·s.

Since the number of context formulae might vary, a rule can not be translated into a formula directly.
This is avoided by fixing the number of context formulae. For normal modalities and the limited restrictions
{C∅, Cid, C�} considered in this section this gives:

Definition 5.15 (Canonical protorule). The canonical protorule for a rule R = {(Γi ⇒ ∆i; C1i , . . . , Cni ) :
i ≤ m}/Σ1 ⇒ Π1 | · · · | Σn ⇒ Πn is given by the context sequents Ω1 ⇒ | · · · | Ωn ⇒ with Ωj = �pj if

Cji = C� for some i and empty otherwise, using fresh variables ~p. An application of the canonical protorule
for R given by G and σ is the same as the application of R given by G, σ and the above contexts.
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Example 5.16. 1. The canonical protorule for the rule 4n from Table 3 is given by the context �p⇒
and has applications G | �χ, ~ϕ⇒ ψ/G | �χ, ~�ϕ⇒ �ψ.

2. The canonical protorule for the version of the rule R5 from Example 5.14 with the dummy modality (⇒
s; C�, C∅)/ ⇒ ·s is given by the contexts�p⇒ | ⇒ and has applications G | �ϕ⇒ ψ/G | �ϕ⇒ | ⇒ ·ψ.

Using the rules for normal modal logics and HCut it is straightforward to see that the canonical protorule
is enough:

Lemma 5.17. R and its canonical protorule are interderivable in HRKCut.

Proof. Using Cut and the fact that the sequents �ϕ1, . . . ,�ϕn ⇒ �
∧

i≤n ϕi and �
∧

i≤n ϕi ⇒
∧

i≤n�ϕi

are derivable in HRK.

Now suppose we have an interpretation ι = {ιn : n ≥ 1} and that

R = {(Γi ⇒ ∆i; ~Ci) : i ≤ m}/Σ1 ⇒ Π1 | · · · | Σn ⇒ Πn

with Cji = 〈F j
i , G

j
i 〉. The canonical protorule R̂ for R is given by the contexts Ω1 ⇒ | · · · | Ωn ⇒ . We first

construct a formula corresponding to its premisses as

ϕprem :=
∧

i≤m

(∧
(Ω1�F 1

i
, . . . ,Ωn�Fn

i
,Γi)→

∨
∆i

)
. (2)

The idea then is to construct a substitution out of this formula, which we then can use to transfer the
information contained in it to a formula corresponding to the conclusion of the rule. For this we adapt the
notion of a projective formula, originally introduced by Ghilardi in the context of unification [28].

Definition 5.18 (Projectivity [28]). A formula ϕ is a projective formula if there is a substitution θ with

1. `HK1Cut ⇒ ϕθ; and

2. the rule G | ⇒ ϕ/G | ⇒ p↔ pθ is a derivable rule in HK1Cut for every variable p.

We then say that the substitution θ witnesses projectivity of ϕ.

Now for the formula ϕprem from (2) above, we define the substitution θR by

θR(x) :=


ϕprem ∧ x x ∈ Γi for some i ≤ m
ϕprem → x x ∈ ∆i for some i ≤ m
x otherwise.

Since by monotonicity w.l.o.g. no variable occurs both in antecedent and succedent of a premiss, θR is
well-defined. Moreover, straightforward (mostly) propositional reasoning gives:

Lemma 5.19. The substitution θR witnesses projectivity of ϕprem.

Using the properties of a projective formula we can now use the substitution θR to construct a hyperse-
quent from the conclusion of R̂ and show equivalence of R̂ to the ground hypersequent obtained from this, i.e.
the set of hypersequents constructed from this single hypersequent by closing under uniform substitution:

Lemma 5.20 (Translation to ground hypersequent). The canonical protorule R̂ above is interderivable over
HK1Cut with the ground hypersequent HR := ⇒ (

∧
(Ω1,Σ1)→

∨
Π1) θR | · · · | ⇒ (

∧
(Ωn,Σn)→

∨
Πn) θR.

Proof. By Lemma 5.19 we have `HK1Cut ⇒ ϕpremθR and thus `HK1Cut ⇒ ϕpremθRσ for every substitution σ.

Now inverting the propositional rules using Cut and an application of R̂ give HRσ. For the other direction,
Lemma 5.19 implies derivability of G | ⇒ ϕprem/G | ⇒ ψ ↔ ψθR in HK1Cut (by induction on the complexity
of ψ). Hence for every substitution σ we have derivability of G | ⇒ ϕpremσ/G | χiθRσ ⇒ χiσ with χi =∧

(Ωi,Σi)→
∨

∆i. From the premisses of an application of R̂ we obtain G | ⇒ ϕpremσ and thus G | χiθRσ ⇒
χiσ, and cutting these and the ground hypersequent HRσ followed by invertibility of the propositional rules
and external Contraction yield the conclusion of this application.
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The ground hypersequentHR now is converted into a formula in the obvious way using the interpretation.

Theorem 5.21 (Soundness). If HRKCutR is hssp for (L, ι), then ι(HR) ∈ L.

Proof. Since HR is derivable in HRKCutR by Lemma 5.20 and HRKCutR is hssp for (L, ι), the former is
hssp for (L, ι) as well (as a zero-premiss rule). Thus ι(HR) ∈ L.

Theorem 5.22 (Completeness). If for sets A of axioms and R of rules HCutR is complete for LA and the
rule ⇒ ϕ1 | · · · | ⇒ ϕn/ ⇒ ιn(ϕ1, . . . , ϕn) is derivable in HCutR, then HCutRR is complete for LA⊕ι(HR).

Proof. By Lemma 5.20 the ground hypersequent HR is derivable in HCutRR, and thus the axiom ι(HR) is
derivable in HCutRR as well. Simulating modus ponens by Cut we thus obtain completeness of this calculus
for LA ⊕ ι(HR).

Example 5.23. 1. The premiss of the canonical protorule for R5 from Ex. 5.16.2 is turned into ϕ =
�p → s. Then with θ defined by θ(p) = p and θ(s) = ϕ → s we obtain H = ⇒ ¬�pθ | ⇒ ·sθ = ⇒
¬�p | ⇒ ·(ϕ→ s). Thus R5 is equivalent under ι� to the axiom ι�(H) = �¬�p∨� · ((�p→ s)→ s)
which modulo propositional reasoning and monotonicity is easily seen to be equivalent (as an axiom)
to �¬�p ∨� ·�p. By idempotency of · this is equivalent to �¬�p ∨��p.

2. The premiss of the canonical protorule p ⇒ s/�p ⇒ | ⇒ ·s for the rule 5 is turned into ϕ = p → s,
and with θ(p) = (p → s) ∧ q and θ(s) = (p → s) → s we obtain H = ⇒ ¬�pθ | ⇒ ·sθ = ⇒
¬�((p → s) ∧ p) | ⇒ ·((p → s) → s). Hence the rule 5 is equivalent under ι� to the axiom
�¬�((p → s) ∧ p) ∨ �((p → s) → s). Moreover, substituting p for s, validity of this axiom implies
validity of the axiom (5) = �¬�p∨�p, and by monotonicity of � validity of the latter implies validity
of the former. Hence the rule 5 is equivalent in a precise sense to the axiom (5).

Crucially, Thm. 5.21 also implies that rules stay hssp in extensions of a logic, provided the rule K1 is
hssp in the extension:

Corollary 5.24. If L1 ⊆ L2, and ι is an interpretation for L1,L2, and HK1Cut is hssp for (L1, ι) and
(L2, ι), then if R is hssp for (L1, ι) it is also hssp for (L2, ι).

Proof. Since R and HR are interderivable over HK1Cut and ι(HR) ∈ L1 ⊆ L2.

5.3. From Axioms to Rules

The translation from axioms to rules proceeds similar to that for sequent rules in [41, 38], but uses the
interpretation to peel away one layer of the formula first. The idea is to treat some subformulae of an axiom
as context formulae and translate the axiom into a protorule (i.e. a rule with a fixed number of context
formulae). To simplify presentation we assume monotonicity of the modalities, i.e., we take the logics to be
closed under the monotonicity rules A→ B/♥A→ ♥B. We now define the class of translatable axioms and
then give the actual translation procedure.

Definition 5.25 (Hypertranslatable). Let C`, Cr ⊆ F(Λ) and V ⊆ V. The class of translatable clauses
for (C`, V, Cr) is defined by the following grammar (starting variable S):

S ::= L→ R

L ::= L ∧ L | ♥Pr | ψ` | > | ⊥ R ::= R ∨R | ♥P` | ψr | > | ⊥
Pr ::= Pr ∨ Pr | Pr ∧ Pr | P` → Pr | ψr | p | ⊥ | >
P` ::= P` ∨ P` | P` ∧ P` | Pr → P` | ψ` | p | ⊥ | >

where ♥ ∈ ΛU, p ∈ V and ψi ∈ Ci for i ∈ {`, r}. A formula is hypertranslatable for an interpretation
ι = {ιn : n ≥ 1} if has the form ιn(χ1, . . . , χn) with χi a translatable clause for (C`, V, Cr) where no distinct
formulae in C` ∪ V ∪Cr share a variable, and every formula in C` ∪Cr occurs in the χi exactly once not in
the scope of a modality and at least once in the scope of a modality.
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The intuition behind this definition is the following. The interpretation ι provides the outermost struc-
tural layer of hypertranslatable axioms, with translatable clauses inside. This is used to convert an axiom
into a ground hypersequent. The next structural layer is given by the variables S,L,R in the grammar
above and is used to convert this ground hypersequent into one which only contains propositional variables,
modalised formulae, formulae from C` on the left hand side and formulae from Cr on the right hand side
(called the ground hypersequent stage below). The formulae in C` (resp. Cr) will play the role of context
formulae on the left (resp. right). Then the formulae under the modalities are moved into the premisses,
thereby moving from the left hand side to the right hand side and vice versa (shaping the conclusion). The
innermost structural layer of hypertranslatable axioms, given by the variables Pr and P` is then used to
eliminate propositional connectives from these premisses (resolving propositional logic). A little thought
shows that hypersequents G | ⇒ ϕ (resp. G | ϕ ⇒ ) with ϕ generated by taking Pr (resp. P`) as starting
variable in the above grammar can be decomposed using invertibility of the propositional rules into sets of
hypersequents G | Γ ⇒ ∆ with Γ ⊆ C` ∪ V and ∆ ⊆ Cr ∪ V . The global conditions on the formulae in
C`, Cr ensure that the context formulae behave in the right way. The translation procedure then also brings
the resulting rules into a nicer shape by eliminating propositional variables occurring in the premisses but
not the conclusion (cleaning the premisses) and by replacing the context formulae with context restrictions
(introducing context restrictions).

We now fix a logic L, an interpretation ι = {ιn : n ≥ 1} and a hypertranslatable formula ϕ for ι and
consider the stages of the translation in detail.

Ground hypersequent stage. We have ϕ = ιn(ϕ1, . . . , ϕn) where ϕi =
∧ ~ψi ∧

∧ ~χi →
∨ ~ξi ∨

∨ ~ζi with
context formulae χi

j ∈ C`, ζ
i
j ∈ Cr and formulae ψi

j (resp. ξij) of the form ♥δj with δj generated by
the above grammar with starting variable Pr (resp. P`). This is turned into the ground hypersequent

Hϕ := ~ψ1, ~χ1 ⇒ ~ξ1, ~ζ1 | · · · | ~ψn, ~χn ⇒ ~ξn, ~ζn which by HCut is hssp for (L, ι).

Shaping the conclusion. We replace each ψi
j = ♥δij with ♥pij where pij ∈ V is fresh and add the premiss

pij ⇒ δij . Analogously we replace ξij = ♥γij with ♥qij and add the premiss γij ⇒ qij . By monotonicity (i.e.,
the rule K1 for �-modalities) and Cut this is equivalent to Hϕ.

Resolving propositional logic. Using invertibility of the propositional rules we replace each of these premisses
by a number of sequents Γ ⇒ ∆ with Γ ⊆ C` ∪ V and ∆ ⊆ Cr ∪ V . In presence of HCut this gives an
equivalent rule.

Cleaning the premisses. To ensure that every variable occurring in the premisses of the rule also occurs in
the conclusion we eliminate the variables from V from the premisses by successively cutting the premisses on
all variables in V as in Def.4.1 disregarding context restrictions. Reasoning as in Lemma 4.14 the resulting
rule is seen to be equivalent to the original rule (compare also [16]).

Introducing context restrictions. The global condition on the context formulae in Def. 5.25 guarantees that
every formula in C`∪Cr occurs exactly once in the conclusion and at least once in the premisses. Moreover,
it occurs always on the same side of the sequent. Thus we now have a rule with a fixed number of context
formulae. Provided the context formulae are normal in the sense that formulae in C` distribute over ∧ and
those in Cr over ∨ we may replace them with context restrictions by turning a premiss χ1, . . . , χm,Γ ⇒
∆, ζ1, . . . , ζk with context formulae χj and ζj occurring in the ij-th component of the conclusion into the

premiss with restriction (Γ⇒ ∆; ~C) where Ci = 〈{χj : ij = i}; {ζj : ij = i}〉 and deleting all context formulae
from the conclusion. Call the resulting rule Rϕ.

Since all steps in the above construction yield rules interderivable with the original ones using HCut
and monotonicity, the rules in H are hssp by Prop. 5.4 and soundness of additional rules is preserved by
Cor. 5.24, we obtain soundness and completeness provided the monotonicity rule K1 stays hssp.

Proposition 5.26 (Soundness and Completeness). Let ι be a regular interpretation for L and let HCutR
be hssp and complete for (L, ι) with the rule ⇒ p1 | · · · | ⇒ pn/ ⇒ ιn(~p) derivable in R. If ϕ is
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hypertranslatable for ι with normal context formulae (C`, Cr), the rules RK are hssp for (L⊕ ϕ, ι), and ι is
a regular interpretation for L ⊕ ϕ then HCutRRϕ is sound and complete for (L ⊕ ϕ, ι).

Example 5.27. 1. Using ι� the axiom �¬�p∨� ·�p from Ex. 5.23 is converted into the ground hyper-
sequent �p⇒ | ⇒ ·�p. Taking �p to be in C` we introduce a fresh variable q and the corresponding
premiss to obtain �p⇒ q/�p⇒ | ⇒ ·q. Using normality of � (for RK) the formula �p is now replaced
with the context restriction 〈{�p}, ∅〉 = C� resulting in the rule (⇒ q; C�, C∅)/ ⇒ | ⇒ ·q. Now a cut
with the left rule for · gives the rule R5.

2. Again using ι� the axiom (5) �¬�p ∨ � · p is converted into the ground hypersequent �p ⇒ | ⇒ ·p.
Taking C` and Cr to be empty we introduce two fresh variables r, s for the two occurrences of p
together with the corresponding premisses to obtain {r ⇒ p, p⇒ s}/�r ⇒ | ⇒ ·s. Now cleaning the
premisses by cutting on the variable p yields the rule r ⇒ s/�r ⇒ | ⇒ ·s and a cut with the left rule
for · gives the rule 5 = {(q ⇒ ; C∅, Cid)}/�q ⇒ | ⇒ from Ex. 4.2.3.

5.4. Non-normal restrictions

In the more general case, where the connectives and context formulae are not normal, the method
still goes through, but now a single axiom corresponds to a rule with a fixed number of context formulae
(compare [38, 40, 41] in the sequent framework). Thus instead of considering the canonical protorule of
Def. 5.15 we need to consider a set of such protorules containing one instance for every number of context
formulae. Formally this is defined as follows.

Definition 5.28 (Protorule). A protorule for a rule R = {(Γi ⇒ ∆i; ~Ci) : 1 ≤ i ≤ m} / Σ1 ⇒ Π1 | · · · |
Σn ⇒ Πn is given by context sequents Θj ⇒ Ωj for 1 ≤ j ≤ n such that

1. no variable occurs more than once in
⊔

j≤n(Θj ,Ωj); and
2. no variable occurs both in

⊔
j≤n(Θj ,Ωj) and in R.

An application of this protorule is given by a substitution σ and a side hypersequent G and is the same as
the application of R given by σ,G and the context sequents Θiσ ⇒ Ωiσ, (i ≤ m).

Example 5.29. In order to analyse the modalised splitting rule MS from Ex. 3.6 we again use the dummy
modality · to replace the restriction Cid by a variable r in the premiss and ·r in the conclusion. A protorule
for this rule then is given e.g. by the context sequents �p ⇒ �q1,�q2 | ⇒ . Its applications have the form
G | �χ⇒ ϕ,�ψ1,�ψ2/G | �χ⇒ �ψ1,�ψ2 | ⇒ ·ϕ.

Now in the translation of rules into axioms from Sec. 5.2 we replace the canonical protorule by the
canonical set of protorules for it where for every context formula and every n ∈ N we introduce n instances
of the context formula with fresh variables each.

Example 5.30. The canonical set of protorules for the rule MS is the set of protorules for MS given by the
set of context sequents �p1, . . . ,�pm ⇒ �q1, . . . ,�qn | ⇒ for m,n ∈ N.

Now equivalence of the original rule and the canonical set of protorules for it is obvious and we may simply
translate every protorule in this set into an axiom. Since the substitution constructed in the translation
relied on the fact that no variable occurs both in the antecedent and succedent of a premiss, we still need
to stipulate monotonicity (or antitonicity) of the connectives in each component. Thus writing Mon for the
set containing for every modality ♥ the monotonicity or the antitonicity rules

(p⇒ q; C∅)
♥p⇒ ♥q Mon♥ resp.

(p⇒ q; C∅)
♥q ⇒ ♥p Ant♥

depending on whether ♥ is monotone or antitone, we have equivalence over HMonCut of the original rule R
with the set of axioms resulting from translating all the protorules in the canonical set of protorules for R.

Similarly, translating a single hypertranslatable formula yields a protorule with exactly one instance of
each context formula in the conclusion. We obtain a proper rule if we start with a set of hypertranslat-
able formulae constructed from a single such formula by uniformly replacing each context formula with a
conjunction resp. disjunction of instances of this formula.
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Definition 5.31 (ω-sets). Let the formula ϕ be hypertranslatable for ι with context formulae in C` =
{ψ1, . . . , ψn} and Cr = {χ1, . . . , χm}. The ω-set for ϕ is the set {ϕi1,...,in,j1,...,jm : ik, jk ∈ N}, where the
formula ϕi1,...,in,j1,...,jm is obtained from ϕ by uniformly replacing the context formulae ψk (resp. χk) by∧ik

s=1 ϕ
s
k (resp.

∨jk
s=1 χ

s
k) for ϕs

k an instance of ϕk with fresh variables and analogously for χk.

It is straightforward to see that translating all protorules in the canonical set of protorules for a rule
yields an ω-set for an axiom and vice versa. Thus in the general case with monotone or antitone connectives
we see that hypersequent rules with context restrictions correspond to ω-sets for hypertranslatable axioms.

Proposition 5.32 (Correspondence between rules and ω-sets). Let R be a rule set containing the mono-
tonicity or antitonicity rules for every connective such that HCutR is hssp and complete for (LA, ι) with ι
regular for LA and such that the rule ⇒ ϕ1 | · · · | ⇒ ϕn/ ⇒ ιn(ϕ1, . . . , ϕn) is derivable in HCutR.

1. If R is a rule with restrictions and B is the set of translations of protorules in the canonical set of
protorules for R, then B is an ω-set for a hypertranslatable axiom for ι, and HCutRR is hssp and
complete for (LAB, ι) provided the monotonicity resp. antitonicity rules are hssp for (LAB, ι).

2. If B is an ω-set for a hypertranslatable axiom for ι such that ι is a regular interpretation for LAB, the
monotonicity resp. antitonicity rules are hssp for (LAB, ι), and R is the translation of B into a rule,
then HCutRR is hssp and complete for (LAB, ι).

Example 5.33. The right context formula �p in the modalised splitting rule {(⇒ ; 〈{�p}, {�p}〉, Cid)}/ ⇒
| ⇒ from Ex. 3.6 is not normal since � does not distribute over disjunctions. Its canonical set of protorules
(after replacing Cid by C∅ using the dummy modality ·) is{

�p1, . . . ,�pn ⇒ �q1, . . . ,�qm, r
�p1, . . . ,�pn ⇒ �q1, . . .�qm | ⇒ ·r

: n,m ∈ N
}

and the corresponding set of axioms under the standard interpretation ι� is the ω-set for the axiom �(�p⇒
�q) ∨ �((�p → �q ∨ r) → r). Using equivalence of this axiom to �(�p → �q) ∨ �¬(�p → �q) we thus
obtain correspondence of the original rule with the ω-set�(

n∧
i=1

�pi →
m∨
j=1

�qj) ∨�¬(

n∧
i=1

�pi →
m∨
j=1

�qj) : n,m ∈ N


for the latter axiom. Moreover, translating this ω-set back into a rule yields exactly the rule MS.

5.5. Applications: Limitative Results

Apart from the more constructive motivation of producing hypersequent calculi from Hilbert-style ax-
iomatisations, the correspondence between axioms and rules also provides the means to show limitative
results stating which logics cannot be captured by hypersequent rules of a specific format. Following [38, 41]
the main idea is to show that the translations of rules of a certain format have a particular syntactic shape,
and that formulae of this shape cannot modally define a given (modally definable) class of Kripke-frames
and hence cannot axiomatise the logic of this class of frames. We need the following simple Lemma.

Lemma 5.34. Let F be a modally definable class of Kripke-frames and A a set of modal formulae. If LKA
is the logic of F, then A modally defines F.

Proof. Since the formulae in A are valid in every frame in F and the modal formulae defining F are derivable
in LKA.

Given a modally definable class of Kripke-frames we may now try to exhibit two frames which cannot
be distinguished by modal formulae of the syntactic shape of translations of hypersequent rules of a certain
format. While the format of hypersequent rules with context restrictions already gives a restriction on the
format of the corresponding axioms, we consider a further (mild) restriction on the rule format.
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Figure 1: The frames used in the proof of Thm. 5.37

Definition 5.35. A hypersequent rule with context restrictions has shallow restrictions if all formulae
occurring in its context restrictions have modal nesting depth at most 1.

Obviously, every rule set involving only the restrictions C∅, Cid, C� has shallow restrictions. The following
(relatively simple) example illustrates the method.

Definition 5.36. A Kripke-frame is 3-transitive if it satisfies

∀x∀y1∀y2∀y3∀z(xRy1 ∧ y1Ry2 ∧ y2Ry3 ∧ y3Rz → ∃w1∃w2(xRw1 ∧ w1Rw2 ∧ w2Rz)) .

The logic given by the class of 3-transitive Kripke-frames is denoted by L3tr.

It is not too hard to see that L3tr is modally defined by the formula ���p→ ����p. While the class
of 3-transitive Kripke-frames is extensible, and thus the interpretation ι� is regular for it, and the rules
RK are hssp for (L3tr, ι�) and (L3tr, ι�), the logic L3tr nevertheless cannot be captured using hypersequent
rules with shallow restrictions satisfying the restriction on the premisses necessary for the translation from
rules to axioms:

Theorem 5.37 (3-transitivity). There is no set of rules with shallow restrictions such that every premiss
either contains a restriction Cid or a variable, which is sound and complete for (L3tr, ι�) or (L3tr, ι�).

Proof. Since the translation from rules to axioms of Sec. 5.2 resp. 5.4 replaces variables in the conclusion
of a rule by formulae with modal nesting depth at most one, the translations of the rules under ι� or ι�
have modal nesting depth at most 3. But formulae of this format cannot distinguish the two frames F1

and F2 of Fig. 1: From a valuation witnessing satisfiability of the negation of such a formula in one of the
frames it is possible to construct a valuation witnessing satisfiability of the same formula in the other frame.
E.g., if for ϕ with modal nesting depth ≤ 3 we have F2, σ̃, x̃ 
 ¬ϕ, then setting σ(v) = σ̃(ṽ) for v 6= z and
σ(z) = σ̃(z̃1) we have F1, σ, x 
 ¬ϕ. The remaining cases are similar. Hence no set A of formulae with
modal nesting depth ≤ 3 modally defines the class of 3-transitive frames, and thus using Lemma 5.34 no
such A axiomatises the logic L3tr.

6. Case Studies

Apart from being useful for showing the limits of expressivity of a specific format of hypersequent rules as
shown above, the methods developed in the previous section are also useful for constructing and investigating
hypersequent calculi for specific logics. We will now consider a number of examples of logics and calculi
which can be treated this way, starting with a recently presented class of semantically given calculi, followed
by a closer look at calculi for the logic S5, logics for convergent and connected frames, and finally certain
combinations of different modal logics.

6.1. Logics for Simple Frame Properties

An interesting class of examples are the rules constructed from simple frame properties for normal modal
logics [37]. We apply our methods to these calculi to obtain cut elimination and complexity results and results
on the translation of such rules into axioms. A simple frame property is a formula ∀w1 . . . ∀wn∃uϕS in the
frame language, with ϕS =

∨
〈SR,S=〉∈S(

∧
i∈SR

wiRu ∧
∧

i∈S=
wi = u) for some non-empty description S

consisting of a set of tuples 〈SR, S=〉 with SR, S= ⊆ {1, . . . , n} and SR ∪ S= 6= ∅. We identify a simple
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frame property with its description. In [37] hypersequent rules corresponding to simple frame properties
based on K,K4 and KB are given and cut admissibility for the calculi based on K or K4 is shown via the
semantics. Here we consider the rules based on K and K4 (those for KB do not fit our rule format). The set
of hypersequent rules induced by S for RK is RS := {Rk1,...,kn

: ki ≥ 0 for i ≤ n} with

Rk1,...,kn
:=

{
(
⊔

j∈SR
pj1, . . . , p

j
kj
⇒ ; C1〈SR,S=〉, . . . , C

n
〈SR,S=〉) : 〈SR, S=〉 ∈ S

}
�p11, . . . ,�p

1
k1
⇒ | · · · | �pn1 , . . . ,�pnkn

⇒

where Cj〈SR,S=〉 = Cid for j ∈ S= and C∅ otherwise. The set of hypersequent rules induced by S for RK4 is

the set R4
S := {R4

k1,...,kn
: ki ≥ 0} with R4

k1,...,kn
the rule Rk1,...,kn with Cj〈SR,S=〉 = Cid for j ∈ S= and C�

for j ∈ SR r S= and C∅ otherwise. Inspection of the rule sets constructed in this way shows that together
with HRK (resp. HRK4) they satisfy all conditions given in Thm. 4.12. Thus we obtain a purely syntactic
analogue to the semantic cut admissibility proof in [37] with an additional complexity bound:

Corollary 6.1 (Cut elimination, complexity). If R is a set of rules induced by simple frame properties for
RK (resp. RK4), then HRKR (resp. HRK4R) has cut elimination and an EXPSPACE-decision procedure.

Using the translation from rules to axioms we furthermore obtain finite axiomatisations from the so
constructed rules, provided we have a regular interpretation and the rules are hssp for this interpretation.
While ι� is always regular, the interpretation ι� gives cleaner axioms. Sometimes regularity of ι� can be
read off the frame properties directly: if SR 6= ∅ 6= S= for all 〈SR, S=〉 ∈ S for one property S, then the logic
is reflexive, and if S= = ∅ for all 〈SR, S=〉 ∈ S for every S, then the logic is extensible (Def. 5.5). Under
certain conditions we may also adjust the original soundness proof to our setting:

Proposition 6.2 (Soundness [37]). If S is a simple frame property and LS resp. L4
S are the logics of the

class of frames (resp. transitive frames) with this property, then:

1. R4
S is hssp for (L4

S , ι�) and (L4
S , ι�)

2. if LS is extensible or if S= 6= ∅ for all 〈SR, S=〉 ∈ S, then RS is hssp for (LS , ι�) and (LS , ι�).

Proof. We show the statement for ι�, the case for ι� is similar but easier. We show that if we have a
model refuting the interpretation of the conclusion of an application of an induced rule, then there is also
a refuting model for the interpretation of one of the premisses. So suppose there is a model (W,R), w, σ
refuting the interpretation ι�(G | Γ1,�Σ1 ⇒ ∆1 | · · · | Γn,�Σn ⇒ ∆n) of the conclusion of a rule induced
by S. Suppose that G = Θ1 ⇒ Ω1 | · · · | Θm ⇒ Ωm. Then w.l.o.g. there are k ≤ m and ` ≤ n and worlds
v1, . . . , v` and w1, . . . , wk with wRvi and wRwj for i ≤ `, j ≤ k such that

• (W,R), w, σ 6

∧

Θj →
∨

Ωj for k < j ≤ m

• (W,R), w, σ 6

∧

Γi ∧
∧
�Σi →

∨
∆i for ` < i ≤ n

• (W,R), wj , σ 6

∧

Θj →
∨

Ωj for 1 ≤ j ≤ k

• (W,R), vi, σ 6

∧

Γi ∧
∧
�Σi →

∨
∆i for 1 ≤ i ≤ `.

Since the frame (W,R) satisfies ∀~v∃uϕS , there is a 〈SR, S=〉 ∈ S and a world u ∈ W such that viRu for
every i ∈ SR, i ≤ ` and vi = u for every i ∈ S=, i ≤ ` and wRu (resp. w = u) if SR ∪ {` + 1, . . . , n} 6= ∅
(resp. S= ∪ {`+ 1, . . . , n} 6= ∅). Hence we have

(W,R), u, σ 6

∧

i∈S=

∧
Γi ∧

∧
j∈SR

∧
Σj →

∨
i∈S=

∆i .

But by construction H := G |
⊔

i∈S=
Γi,
⊔

j∈SR
Σj ⇒

⊔
i∈S=

∆i is a premiss of the (application of the)
rule induced by S for RK. Now if S= 6= ∅ for all 〈SR, S=〉 ∈ S, then either vi = u for some i ≤ n and
we have wRu and hence (W,R), w, σ 6
 �(

∧
i∈S=

∧
Γi ∧

∧
j∈SR

∧
Σj →

∨
i∈S=

∨
∆i); or w = u and hence
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(W,R), w, σ 6

∧

i∈S=

∧
Γi ∧

∧
j∈SR

∧
Σj →

∨
i∈S=

∨
∆i. In both cases we have (W,R), w, σ 6
 ι�(H) and

are done. If on the other hand S= = ∅ for all 〈SR, S=〉 ∈ S, then the class of frames defined by ∀~v∃uϕS

is extensible and for the new world x in (W,R)◦ we have xR◦u and xR◦w as well as xR◦wj for j ≤ m.
Hence for a valuation σ◦ with σ◦�W = σ we have (W,R)◦, x, σ◦ 6
 ι�(H). Finally, in the transitive case the
interpretation of the conclusion has the form ι�(G | Γ1,�Σ1,�Π1 ⇒ ∆1 | · · · | Γn,�Σn,�Πn ⇒ ∆n) and
constructing u in the same way as above by transitivity we have

(W,R), u, σ 6

∧

i∈S=

∧
Γi ∧

∧
j∈SR

(
∧

Σj ∧
∧
�Πj)→

∨
i∈S=

∆i .

But since by transitivity also wRu the model (W,R), w, σ refutes the interpretation of the corresponding
premiss.

To obtain the simplest axioms we observe that given HRKCut (resp. HRK4Cut) by Lemma 4.14 the set of

rules induced by a simple property is equivalent (in both cases!) to a single rule {(
⊔

i∈SR
pi ⇒ ; ~C〈SR,S=〉) :

〈SR, S=〉 ∈ S}/(�p1)ε ⇒ | · · · | (�pn)ε ⇒ with Ci〈SR,S=〉 = Cid for i ∈ S= and C∅ otherwise, and where

(�pi)ε is �pi if there is a 〈SR, S=〉 ∈ S with i ∈ SR and empty otherwise. Translating this rule gives the
corresponding axiom. This restricts the shape of the resulting axioms.

Definition 6.3 (Simple axioms). A ι-simple axiom for an interpretation ι = {ιn : n ≥ 1} is an axiom
ιn(ϕ1, . . . , ϕn) where mrk (ϕi) ≤ 1 and � occurs only negatively in the ϕi.

It is not too hard to see that the translations of rules of the above mentioned form indeed give ι-simple
axioms.

Proposition 6.4 (Translation to simple axioms). Let LS (resp. L4
S) be the logic of the class F of frames

(resp. transitive frames) satisfying the simple frame property S. Then:

1. L4
S is axiomatised over K4 by one ι�-simple axiom

2. L4
S is axiomatised over K4 by one ι�-simple axiom if L4

S is reflexive or F is p-extensible

3. LS is axiomatised over K by one ι�-simple axiom if

(a) F is extensible; or
(b) LS is reflexive and S= 6= ∅ for all 〈SR, S=〉 ∈ S and RK is hssp for (LS , ι�).

Proof. By collecting the conditions for regularity of the interpretation using Lemma 5.7, soundness of the
rules RK from Lemma 5.12 and for the rules induced by S being hssp from Prop. 6.2.

Thus in particular every extension of S4 given by a simple frame property is axiomatised over S4 by a
single ι�-simple axiom. This extends to finite sets of simple frame properties (if using extensibility to show
soundness we need the frame class obtained by adding all properties to be extensible). While seemingly
restrictive, the conditions capture all transitive examples of [37], and most non-transitive ones, including
the following frame conditions:

• Directedness (∀w1∀w2∃u(w1Ru ∧ w2Ru)) with rule {(p1, p2 ⇒ ; C∅, C∅)}/�p1 ⇒ | �p2 ⇒ . The ι�-
simple axiom is �(�((p1 ∧ p2 → ⊥) ∧ p1) → ⊥) ∨�(�((p1 ∧ p2 → ⊥) ∧ p2) → ⊥) which as an axiom
is equivalent to the standard axiom �¬�p ∨�¬�¬p (set p1 = p and p2 = ¬p).

• Universality (∀w1∀w2∃u(w1Ru ∧ w2 = u)); with rule {(p1 ⇒ s; C∅, C∅)}/�p1 ⇒ | ⇒ ·s where · is the
dummy modality replacing the restriction Cid. The axiom is �(�((p1 → s)∧p1)→ ⊥)∨�((p1 → s)→
s) which as an axiom is equivalent to the standard axiom �¬�p ∨�p (set p1 = p and s = p).

• Linearity (∀w1∀w2∃u((w1Ru ∧ w2 = u) ∨ (w2Ru ∧ w1 = u))) with rule {(p1 ⇒ s1; C∅, C∅)}/�p1 ⇒
·s1 | �p2 ⇒ ·s2. The axiom is �(�(ϕ ∧ p1) → (ϕ → s1)) ∨ �(�(ϕ ∧ p2) → (ϕ → s2)) where ϕ is
(p1 → s2)∧ (p2 → s1). As an axiom this is equivalent to the standard axiom �(�p→ q)∨�(�q → p)
(set p1 = s2 = p and p2 = s1 = q).
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• Bounded top width (∀w1 . . . ∀wn∃u
∧

1≤i<j≤n(wiRu ∧ wjRu)) with rule {(pi, pj ⇒ ; C∅, . . . , C∅) : 1 ≤
i < j ≤ n}/�p1 ⇒ | · · · | �pn ⇒ . The axiom is

∨
1≤k≤n�(�(

∧
1≤i<j≤n(pi ∧ pj → ⊥)→ pk)→ ⊥) or

equivalently
∨

1≤k≤n�¬�(
∧

1≤i<j≤n ¬(pi ∧ pj)→ pk).

In the other direction, given a ι�-simple or ι�-simple axiom A, translating the axiom into a set of rules
and applying the saturation procedure using Lemma 4.14 yields a set of rules which can be seen as a set of
rules induced by a set of simple frame properties (provided the interpretation ι� resp. ι� is regular for all
the successively constructed logics). Since the resulting rule sets are saturated and pspace-tractable, this
automatically gives cut elimination and complexity results.

Theorem 6.5 (Simple axioms to rules). Let A be a finite set of ι�-simple formulae and let R4
A be the result

of the translation and saturation process with the rules in RK4. Then HRKTR4
A is sound and complete for

LKT4A, admits cut elimination, and yields an exponential space decision procedure for the respective logic.
The analogous result holds also for ι�-simple axioms with the rules resp. axioms for T omitted and in the
non-transitive case for the result RA of the translation and saturation process with RK provided RK is hssp
for (LKTA, ι�).

Proof. In the case of ι�-simple axiom, reflexivity of the logic yields regularity of ι�. Translations of ι�-simple
resp. ι�-simple axioms introduce only one box on the left hand side of the sequent arrow per component.
Thus saturating under cuts with rules from RK resp. RK4 yields rules in the format of rules induced by
simple frame properties. Now cut elimination and complexity follow as above.

This furthermore provides a method for extracting a semantic characterisation out of a ι�-simple or
ι�-simple axiomatisation of a logic: Use Thm. 6.5 to turn the axioms into a set of rules, and then read of
the corresponding simple frame properties from the rules according to [37].

6.2. Modal Logic S5

Let us briefly come back to perhaps the main example for the use of hypersequents in modal logic, the
logic S5. Starting from a characterisation of S5 as KTB5 (where (B) p → �♦p is the well known axiom
for symmetry) it is also possible to construct the calculus for S5 from [54] for the interpretation ι� in a
direct way. To do this consider the axiom ϕ := �¬�p ∨ �p. Spelling out the definition of � and using
propositional equivalences (and the duality between � and ♦) this is equivalent to the axiom

(♦�p→ �p) ∧ (♦�p→ p) ∧ (¬�p ∨�p) ∧ (�p→ p)

and thus to the conjunction of the axioms (5), (B) and (T). Thus S5 = K ⊕ ϕ and we may simply add the
axiom ϕ to the hypersequent calculus for K under the interpretation ι�. Translating the axiom into a rule
then gives the rule 5 (p⇒ ; C∅, Cid)/�p⇒ | ⇒ from [54], but this time the interpretation is ι� instead of ι�.

Since the rule Kn is derivable using n applications of the rule 5 followed by one application of K0 and a
number of applications of internal Weakening and external Contraction, it is clear that the calculus H5K0

from [54] is a cut-free complete calculus for S5 which is hssp for (S5, ι�) as well as for (S5, ι�). The advantage
of this calculus is that it can be used in a decision procedure of (optimal) coNP complexity (which seems
not to have been considered in [54]):

In a first step, slightly modifying the result of using Kleene’s Trick (Sec. 4.1) and omitting in the modified
application of the rule 5 the copy of the second component in the premiss yields the rule applications 5∗

and K∗0 below left. Then, closing the rule 5∗ under external contraction of the two components of the
principal part (and omitting the superfluous component in the premiss) results in the familiar rule T∗1 with
applications as shown below right.

G | Γ,�ϕ⇒ ∆ | ϕ,Σ⇒ Π

G | Γ,�ϕ⇒ ∆ | Σ⇒ Π
5∗

G | Γ⇒ �ϕ,∆ | ⇒ ϕ

G | Γ⇒ �ϕ,∆
K∗0

G | Γ,�ϕ,ϕ⇒ ∆

G | Γ,�ϕ⇒ ∆
T∗1

Note that the rules 5∗ and K∗0 are used in [54] for a completeness proof via model construction. Note also
that apart from the �p in the premiss of K∗0 this is the calculus given in [51, 52]. Let R∗S5 be {5∗,K∗0,T∗1} and
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let H∗R∗S5 be the calculus given by these rules and the modified versions of the propositional rules, where
similarly the copy of the principal component in the premiss is omitted. Admissibility of all the structural
rules in the rule set without these rules as primitive is now shown as for modified rule applications, with
the only difference that external contractions involving the component Σ ⇒ Π in the rule 5∗ above are
permuted into the premiss using depth-preserving admissibility of internal weakening (the obvious adaption
of Lemma 3.8) and the rule T∗1.

Theorem 6.6. Backwards proof search for the calculus H∗R∗S5 can be implemented in coNP.

Proof. Since internal contraction is admissible, we again work with set-set sequents as in the proof of
Thm. 4.26. The main idea is first that we may fix the order of applications of rules and thus eliminate the
existential guessing steps in the algorithm given in the proof of Thm. 4.26, and second that since the rule
K∗0 is the only rule introducing a new component, the number of new components is bounded by the number
of subformulae of the input hypersequent. In detail the procedure with input hypersequent G is as follows:
apply the rule K∗0 backwards to the first formula which gives rise to a new component; apply the rule 5∗

backwards to all possible pairs of components and formulae such that the premiss of this rule application
properly contains the conclusion; apply rule T∗1 and all possible propositional rules such that each premiss
properly contains the conclusion and universally guess one of the premisses; accept if you see an axiom;
reject if no more rule applications are possible; otherwise go to the first step. If the size of G is n, the rule
K∗0 is applied at most n times, and so the whole loop is executed at most n times. Hence the number of
components in every hypersequent occurring in the procedure is at most 2n. Since there are at most n boxed
formulae occurring on the left hand side of a component, in each iteration of the loop the rule 5∗ is applied
at most (2n)2 · n times. Finally, applying rule T∗1 and all possible propositional rules to all components can
be done in 2n · n · 2n steps. Thus in total we have a polynomial number of steps, and since all guesses were
universal, the algorithm is in coNP.

While this result is nice in the sense that it shows that hypersequent calculi can be used in decision
procedures of optimal complexity it is perhaps not so surprising: As pointed out by R. Kuznets, viewing
hypersequents as flat nested sequents and using the correspondence between nested sequents and prefixed
tableau from [25], this calculus corresponds to the prefixed tableau calculus for S5 given e.g. in [26, p. 54],
and it seems to be accepted in the prefixed tableau community that the latter can be used in a coNP decision
procedure for S5.

6.3. Convergent and connected normal modal logics

The methods developed in this paper allow us to construct in a (almost) purely syntactical way cut-free
hypersequent calculi for extensions of the normal logics K4, KD4 and S4 with additional axioms stating
(weak) connectedness or convergence of the accessibility relation, as given in Table 4 (see e.g. [29]). In
particular we will construct a simple and apparently new hypersequent calculus for the logic K4.2. While
the construction of the rule sets for all the logics is purely syntactical, in the non-reflexive case we appeal to
the semantics to show that the interpretation ι� is indeed regular for the logics under consideration. The
result for the reflexive logics already follows from Thm. 6.5, but the explicit rule sets might be of independent
interest.

Lemma 6.7. The interpretation ι� is regular for the logics KD4.2,S4.2,K4 ⊕ (Lem0),KD4 ⊕ (Lem0) and
S4.3.

Proof. The classes of frames characterising the logics KD4.2,K4⊕(Lem0), and KD4⊕(Lem0) are p-extensible
(Def. 5.5) via the extension

(W,R), w 7→ (W ∪ {z}, R ∪ ({z} ×R[w]) ∪ {(z, w)}) .

Thus Lemma 5.7 gives the result. Finally, since extensions of S4 are reflexive, regularity of ι� for S4.2 and
S4.3 is immediate.
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Table 4: Axioms for convergence and connectedness with the corresponding frame properties

(.2) �¬�p ∨�¬�¬p convergence:
∀x∀y∀z(xRy ∧ xRz → ∃w(yRw ∧ zRw))

(Lem0) �(p ∧�p→ q) ∨�(q ∧�q → p) weak connectedness:
∀x∀y∀z(xRy ∧ xRz ∧ y 6= z → yRz ∨ zRy)

(.3) �(�p→ q) ∨�(�q → p) connectedness:
∀x∀y∀z(xRy ∧ xRz → yRz ∨ zRy)

Table 5: The hypersequent rules for logics of convergence and connectedness

(~p, ~q ⇒ ; C�, C�)

~�p⇒ | ~�q ⇒
24n,m

(⇒ Cid, Cid) (~p⇒ ; C�, Cid) (~q ⇒ ; Cid, C�)

~�p⇒ | ~�q ⇒
Lemn,m

(⇒ ; Cid, Cid) (~p, ~q ⇒ ; C�, C�)

~�p⇒ | ~�q ⇒
42n,m

(~p⇒ ; C�, Cid) (~q ⇒ ; Cid, C�)

~�p⇒ | ~�q ⇒
3n,m

RKD4.2 := RKD4 ∪ {24n,m : n,m ≥ 1} RK4⊕(Lem0) := RK4 ∪ {Lemn,m : n,m ≥ 1}
RS4.2 := RKT4 ∪ {24n,m : n,m ≥ 1} RKD4⊕(Lem0) := RKD4 ∪ {Lemn,m : n,m ≥ 1}
RK4.2 := RK4 ∪ {42n,m : n,m ≥ 1} RS4.3 := RK4 ∪ {.3n,m : n,m ≥ 1}

Moreover, since the logics are transitive, soundness of the rules RK4 follows from Lemma 5.12 and we
can apply the construction of rules corresponding to the axioms from Sec. 5.3. Converting the axioms
(.2), (Lem0) and (.3) into hypersequent rules using regularity of ι� and saturating under cuts yields the rule
sets given in Table 5, with the exception of RK4.2 which will be considered later. Note also that the rules
Tn are derivable in HRS4.3.

Example 6.8. In the systems HRKD.2 and HRS4.2 the axiom (.2) �¬�p ∨ �¬�¬p for convergence from
Table 4 is derived as follows.

p⇒ p
A

p,¬p⇒
¬L

�p⇒ | �¬p⇒
241,1

⇒ ¬�p | ⇒ ¬�¬p
¬R

⇒ �¬�p | ⇒ �¬�¬p K0

⇒ �¬�p,�¬�¬p IW,EC

⇒ �¬�p ∨�¬�¬p ∨R

It is not hard to check that these rule sets are indeed saturated and pspace-tractable, and so we uniformly
obtain syntactic cut elimination and complexity results.

Corollary 6.9. The hypersequent calculi for the logics KD4.2, S4.2, K4⊕ (Lem0), KD4⊕ (Lem0) and S4.3
given in Table 5 are sound and complete for the respective logics, admit cut elimination and yield EXPSPACE
decision procedures for the respective logics.

The rule sets themselves are not new: apart from RK4.2 and modulo structural rules they appear in [37],
the rule sets RK4⊕(Lem0),RK4⊕(Lem0) and RS4.3 appear in [31], and the rule sets R′S4.2 = {T1, 40, 2

4
0,0} and

R′S4.3 = {T1, 40, 30,0} obtained from RS4.2 resp. RS4.3 by omitting derivable rules are introduced in [36].
However, the method above gives a (almost) purely syntactic and uniform construction of these rules from
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the corresponding axioms. In contrast, the rules in [37] are constructed semantically, whereas in [31] and [36]
no description of the construction is given, and only [36] mentions the interpretation of a hypersequent as
a single formula. The fact that the semantic and syntactic constructions of calculi for these logics give the
same results can be seen as an argument for the naturalness of the constructed calculi.

Remark 6.10 (Non-regularity). Seriality (axiomatically captured by (D) ♦>) seems to be necessary for
regularity of ι� in convergent logics: The formula ϕ1 = ♦> and the degenerate frame ({a}, ∅) witness that
the rule �ϕ/ϕ is not admissible in any logic L with K.2 ⊆ L ⊆ K4.2. The axiom (G0) = ♦(p∧�q)→ �(p∨♦q)
which captures weak convergence (∀x∀y∀z(xRy∧xRz∧ y 6= z → ∃w(yRw∧ zRw))), see e.g. [29], also seems
problematic: The formula ϕ2 = �♦> and the frame ({a, b}, {(a, b)}) witness non-admissibility of �ϕ/ϕ.
Similarly, the formula ϕ3 = �p → p and the frame ({a} ∪ N,≤N ∪{(a, n) : n ∈ N} with valuation σ such
that σ(p) = N witness the same for every logic L with K.3 ⊆ L ⊆ KD4.3

While by the previous remark there is little hope of using the standard interpretation ι� for the logic
K4.2, it is possible to reformulate the axiom (.2) in such a way that we can use the interpretation ι�:

Lemma 6.11. Let ϕ := �(¬p ∨ ¬�q) ∨�(p ∨ ¬�¬q). Then K4.2 = K4⊕ ϕ.

Proof. Spelling out the definition of � and omitting the tautologous conjunct we have that adding the axiom
ϕ to K4 is equivalent to adding the axioms

(G0) := �(¬p ∨ ¬�q) ∨�(p ∨ ¬�¬q) and ψ := p ∧�q → �(p ∨ ♦q) .

Both of these are (equivalent to) Sahlqvist formulae and using the standard methods (see e.g. [11]) can be
seen to correspond to the frame properties ∀x∀y∀z(xRy ∧ xRz ∧ y 6= z → ∃w(yRw ∧ zRw)) (also called
weak convergence) and ∀x∀y(xRy ∧ x 6= y → ∃w(xRw ∧ yRw)). Thus writing Φ for the latter property,
K4 ⊕ ϕ is the logic given by the class of transitive weakly convergent frames with Φ. Similarly, the axiom
(.2) corresponds to the property of convergence given by ∀x∀y∀z(xRy ∧ xRz → ∃w(yRw ∧ zRw)), and thus
K4.2 is the logic of transitive frames with this property. We show that these two classes coincide.

If F = (W,R) is a transitive convergent frame, then trivially it is also weakly convergent. To see that Φ
holds, assume that for x, y ∈W we have xRy and x 6= y. By convergence there is a w ∈W with yRw, and
since R is transitive we also have xRw. Thus F satisfies Φ. For the other direction, assume that F = (W,R)
is a transitive weakly convergent frame with Φ. To show that F is convergent we only need to investigate
the case that x, y, z ∈W with xRy and xRy and y = z. If y 6= x, then using Φ we have a w ∈W with xRw
and in particular yRw, thus witnessing convergence. If y = x, then we know that xRx and clearly we have
a w with yRw. Thus F is convergent.

Thus we have that a formula is in K4.2 iff it is valid in all transitive convergent frames iff it is valid in
all transitive weakly convergent frames with Φ iff it is in K4⊕ ϕ.

Theorem 6.12. The hypersequent calculus HRK4.2 is hssp and cut-free complete for (K4.2, ι�) and yields
an EXPSPACE decision procedure for K4.2.

Proof. Since K4.2 is transitive, by Lemma 5.12 the rules RK are hssp for (K4.2, ι�), and obviously the
interpretation ι� is regular. Using the previous Lemma we have that K4.2 = K4⊕ϕ for ϕ = �(¬p∨¬�q)∨
�(p∨¬�¬q), and converting the latter axiom into a hypersequent rule gives the rule {(⇒ ; Cid, Cid), (p, q ⇒
; C∅, C∅)}/�p,�q ⇒ . Finally, saturating under cuts with the rules RK4 yields the rules 42n,m given in
Table 5.

This result is particularly interesting because the logic K4.2 is not given by a simple frame property and
thus is not covered by the results in [37] (in particular since it is not serial it does not coincide with the logic
of transitive directed frames considered there). Apart from the tableau system for this logic mentioned in
[2] and apparently contained in [1] there seems not to be any sequent or hypersequent calculus for this yet.
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6.4. Simply dependent bimodal logics

The method of cut elimination by saturation also allows for fairly straightforward combinations of dif-
ferent logics. As an example consider simply dependent bimodal logics [24]. Such logics are the combination
of two normal modal logics L1 and L2 with modalities ♥ and � respectively into a bimodal logic given by
the fusion of the two logics (i.e. the logic given by the union of the axioms) together with the additional
inclusion axiom �p→ ♥p. Following [24] we write L1 ⊕⊆ L2 for the resulting logic LL1∪L2∪{�p→♥p}. Here
we consider the logic KT ⊕⊆ S5 as an example. Since � is an S5-modality it is reflexive, and hence the
interpretation ι� is regular for L1⊕⊆S5. Thus we may add the rules RKT for ♥ and the ground hypersequent
⇒ �p→ ♥p to the hypersequent calculus HRKT4{5n:n∈N} for � to obtain a calculus for KT⊕⊆ S5. Note that
the inclusion axiom together with the fact that in presence of transitivity for � the rules RK for � are hssp
for (S5, ι�) implies that the rules RKT for ♥ are hssp for (KT ⊕⊆ S5, ι�). Translating the inclusion axiom
⇒ �p → ♥p then yields the hypersequent rule (p ⇒ q; C∅)/�p ⇒ ♥q and saturating under cuts between
rules yields the additional rules

(~p, ~q ⇒ r; C�)

~♥p, ~�q ⇒ ♥r
(||~p||, ||~q|| ≥ 0) and

(~p, ~q ⇒; Cid)
~♥p, ~�q ⇒

(||~p||+ ||~q|| ≥ 1) (3)

with ||~p||, ||~q|| ≥ 0. Adding these to the rules for ♥ and � we obtain a saturated and hence cut-free
hypersequent calculus for KT ⊕⊆ S5. While the logic is known to be EXPTIME-complete [24], the decision
procedure resulting from this calculus and Thm. 4.26 only yields an EXPSPACE bound and thus is of
suboptimal complexity. But this example shows that the complexity bound of Thm. 4.26 cannot be lowered
beneath EXPTIME.

Remark 6.13. Similar to the construction of the rule set for the logic T ⊕⊆ S5 above it is possible to
construct cut free hypersequent calculi for e.g. the family of simply dependent bimodal logics S4⊕⊆ L with
L ∈ {S4.2,S4.3,S5} which is considered in [36]. The only difference to the rules for KT⊕⊆ S5 above is that
the context restriction C� in the left rule of (3) above is replaced with the restriction C♥� = 〈{♥p,�p}, ∅〉
and that the rules RKT4{5n:n∈N} for � are replaced with the rules RS4.2 or RS4.3 from Table 5, depending
on the logic. The calculi from [36] are then easily obtained by omitting the derivable rules.

7. Conclusion

In this article we introduced the rule format of a hypersequent rule with context restrictions and estab-
lished general theorems about fundamental properties such as cut elimination, decidability and complexity
for calculi given by such rules. Furthermore, we constructed translations from Hilbert axioms into such rules
and vice versa and used these results to establish some limits of this rule format. Finally, we applied the
methods to a number of specific logics to obtain syntactical counterparts of the semantically driven results
about modal logics given by simple frame conditions from [37], a closer analysis of hypersequent calculi for
the logic S5, a systematic construction of calculi for modal logics of convergent or connected frames including
a novel calculus for the logic K4.2 and calculi for simply dependent modal logics [24].

Future Work. The work presented here only forms a small piece of the research programme mentioned in
the Introduction, and so there are many avenues for future research. One of the more obvious ones is the
extension of the results in this article to logics with additional connectives based on intuitionistic instead
of classical propositional logic. The corresponding results in the sequent framework [38, 40] suggest that
this should be quite straightforward. Another such avenue is the adaption of the methods to successively
more expressive frameworks such as nested sequents resp. tree-hypersequents [12, 52] or display calculi [7].
Such extensions will have to face the difficulty that unlike in the hypersequent or sequent framework where
all the active components in a rule have the same “modal depth”, in the nested formalism the active parts
of the premisses might have different modal depth, and thus it will be difficult to use projective formulae
in the translation from rules to axioms. While in the display formalism due to the display property this
seems not to be a problem, in this case it is not clear whether logical rules of the form constructed by the
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method allow to capture more properties than purely structural rules in the spirit of [21], since the layer
of logical connectives introduced in the conclusion might be converted into a layer of structural connectives
instead. These questions are subject of ongoing research. A bit closer to the work presented in this article,
it would be interesting to consider a more general format of hypersequent rules allowing to capture e.g. the
rules for symmetric modal logic from [37]. While these calculi in general do not have full cut elimination,
proving syntactically that analytic cuts suffice and identifying the class of axioms corresponding to such rules
would fit in another piece of the puzzle concerning the expressivity of the different frameworks. On a more
computational side, the huge disparity between the EXPSPACE complexity of the general decision algorithm
from Thm. 4.26 and the coNP complexity of the algorithm for S5 prompts the question for general criteria
as to when the complexity of the general algorithm can be lowered. It might also be possible to obtain
better computational behaviour by adapting recent approaches applying the techniques of focusing [3] to
nested sequent systems for modal logics [14, 42]. Finally, it is still an open question whether the exponential
space bound on the general decision procedure of Thm. 4.26 is optimal or whether it can be sharpened to
exponential time in general.
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