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Abstract. Motivated by the fact that nearly all conditional logics are axioma-
tised by so-called shallow axioms (axioms with modal nesting depth ≤ 1) we
investigate sequent calculi and cut elimination for modal logics of this type. We
first provide a generic translation of shallow axioms to (one-sided, unlabelled)
sequent rules. The resulting system is complete if we admit pseudo-analytic cut,
i.e. cuts on modalised propositional combinations of subformulas, leading to a
generic (but sub-optimal) decision procedure. In a next step, we show that, for
finite sets of axioms, only a small number of cuts is needed between any two ap-
plications of modal rules. More precisely, completeness still holds if we restrict
to cuts that form a tree of logarithmic height between any two modal rules. In
other words, we obtain a small (PSPACE-computable) representation of an ex-
tended rule set for which cut elimination holds. In particular, this entails PSPACE

decidability of the underlying logic if contraction is also admissible. This leads
to (tight) PSPACE bounds for various conditional logics.

1 Introduction

Cut elimination is without doubt a central theme in proof theory. Not only do cut-free
sequent systems provide for reasonably simple syntactical proofs of results like inter-
polation, they also pave the way for decision procedures via backwards proof search.
While there are a variety of methods to construct a cut-free sequent system for specific
logics (and at least as many different sequent calculi), the general approach is to come
up with a sequent system tailored to the logic at hand, and then show cut elimination for
this particular system. While this approach works very well for specific logics, a good
deal of ingenuity is required to construct the actual system. Since this method consumes
both a lot of time and effort, this raises the question whether there is a generic method
to construct cut-free calculi, and in particular, whether we can delegate the task of con-
structing these systems. Our motivation for investigating this question mainly stems
from automated proof search and questions of complexity, where the shape and struc-
ture of the rules of a cut-free system are not important, as long as we can recognise
rule instances fast enough. Our ultimate aim in this somewhat radical endeavour is to
synthesise algorithms that recognise instances of a cut-free sequent system, given an
axiomatisation of the logic under consideration.

This paper reports on our first results on this programme in the context of modal
logic: we study the question to what extent we can convert a Hilbert-style axiomatisa-
tion of a general, not necessarily normal modal logic into a cut-free sequent system such
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that rule instances are decidable in a moderate complexity class. Our point of departure
is the class of logics that can be axiomatised by shallow axioms, i.e. axioms of modal
nesting depth ≤ 1. These logics are known to be decidable by semantic arguments via
coalgebraic semantics [10] and the finite model property, and (reassuringly) exclude
modal logics that are known to be undecidable [6]. Indeed, one of the questions is to
what extent the decidability of these logics can be reflected purely syntactically.

The motivating examples in this endeavour are the systems of conditional logics.
While there is a plethora of systems [7], nearly all of these are axiomatised by shal-
low axioms. Recent activity in this area has led to methods for constructing (labelled)
sequent systems for some of these systems [8], and to generic cut elimination proofs
for unlabelled systems given by a set of rules [11]. We extend the latter approach by a
generic method to construct rules of an unlabelled sequent system from a set of shallow
axioms. For the system obtained in this way we show two main results, namely com-
pleteness and decidability of the system, where the cut rule is replaced by the pseudo-
analytic cut rule (a variant of the analytic cut rule), and full cut elimination for the
system extended by a tractable set of rules. The latter result breathes the spirit of our
radical approach driven by proof search. The crucial fact is that the extended rule set is
generically constructed and has a small (polysize) representation. We also show that ad-
missibility of the contraction rule in the extended system implies a PSPACE decidability
result for the corresponding logic. While this still leaves the question whether generic
positive results concerning admissibility of contraction hold, we apply our method suc-
cessfully to various conditional logics.

Related work Criteria for cut elimination are discussed for instance in [12] for a wide
class of logics, but not touching upon the automatic construction of rules or calculi
that admit cut elimination. Cut elimination for canonical calculi (where each sequent
rule only allows the introduction of one logical connective) are discussed in [1]. This
approach in general is unsuitable for modal calculi, since these typically introduce more
than one connective at a time. Algorithmic aspects of cut elimination are investigated
in [2] but with a focus on deciding whether a calculus enjoys this property, in contrast
to the main aspect of this paper which aims to construct a calculus that enjoys cut
elimination algorithmically. The present paper is a continuation of work reported in
[11] that gives criteria and a semi-algorithmic method to obtain calculi admitting cut
elimination, and our focus here is to obtain these calculi purely algorithmically.

2 Preliminaries and Notation

Throughout the paper, we consider a modal similarity type Λ consisting of modal oper-
ators with arities and a denumerable set V of propositional variables. Given Λ, the set
of Λ-formulas is given by the grammar

F(Λ) 3 φ, ψ ::= p | ¬φ | φ ∧ ψ | ♥(φ1, . . . , φn)

where p ∈ V and ♥ ∈ Λ is n-ary. We employ a classical reading of the propositional
part of the language and use the standard abbreviations for other propositional connec-
tives. The modal rank of a formula is given inductively by rk (p) = 0, rk (¬φ) = rk (φ),
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rk (φ1 ∧ φ2) = maxi=1,2 rk (φi) and rk (♥(φ1, . . . , φn)) = 1 + max1≤i≤n rk (φi). If
σ : V → F(Λ) is a substitution, we write φσ for the result of replacing every oc-
currence of p in φ by σ(p) and [φ/p] is the substitution defined by [φ/p](q) = φ if
p = q and [φ/p](q) = q otherwise. We denote the propositional variables that occur in
a formula φ by Var(φ). If S ⊆ F(Λ) is a set of formulas, we write Λ(S) for the set
{♥(φ1, . . . , φn) | ♥ ∈ Λ n-ary, φ1, . . . , φn ∈ S} of formulas that arise by applying
precisely one modality ♥ ∈ Λ to formulas in S, and ¬S is the set {¬φ | φ ∈ S}
of negations of formulas in S. Similarly, Prop(S) is the set of propositional combina-
tions of formulas in S. A clause over S is a finite disjunction l1 ∨ · · · ∨ ln of literals
li ∈ S ∪ ¬S (i = 1, . . . , l). If l ∈ S ∪ ¬S, then ∼ l is the normalised negation of l,
given by ∼ l = ¬l if l ∈ S and ∼ l = l′ if l = ¬l′ ∈ ¬S. Two formulas φ, ψ ∈ F(Λ)
are propositionally equivalent if φ ↔ ψ is a substitution instance of a propositional
tautology. To make contraction explicit, we take a Λ-sequent to be a finite multiset
of Λ-formulas. If S ⊆ F(Λ) is a set of formulas, we write S(S) for the set of se-
quents containing only elements in S and S(Λ) for S(F(Λ)). The number of elements
of Γ ∈ S(Λ) counting multiplicities is written as ||Γ ||. We employ usual notation and
identify a formula φ ∈ F(Λ) with the singleton sequent φ and write Γ,∆ for the (multi-
set) union of sequents Γ,∆ ∈ S(Λ). If Γ is a Λ-sequent, Supp (Γ ) denotes the support
of Γ , i.e. the set of Λ-formulas that occur in Γ with positive multiplicity. Substitution
extends to sequents pointwise (preserving multiplicity), that is, Γσ = φ1σ, . . . , φnσ
if Γ = φ1, . . . , φn. A sequent Γ ∈ S(Λ) is propositionally equivalent to a formula
φ ∈ F(Λ) if

∨
Γ ↔ φ is a propositional tautology. A set {Γ1, . . . , Γn} of sequents is a

conjunctive normal form (cnf) of a formula φ ∈ F(Λ) if φ and (
∨
Γ1) ∧ · · · ∧ (

∨
Γn)

are propositionally equivalent. If φ, ψ ∈ F(Λ), we use the shorthand φ = ψ to denote
the set of sequents containing ¬φ, ψ and φ,¬ψ. This convention is extended to chains
of equations φ1 = · · · = φn in the obvious way.

3 From Hilbert Systems to Sequent Systems

Our starting point in this paper is a modal logic axiomatised by shallow axioms (axioms
with modal rank≤ 1) in a Hilbert system that we convert to a set of sequent rules, taking
special care of propositional formulas occurring in the scope of a modality.

Definition 1. A shallow axiom over a similarity type Λ is a formula φ ∈ F(Λ) with
rk (φ) ≤ 1. A shallow clause is of the form c = cp ∨ cd where cp is a clause over
V and cd is a clause over Λ(Prop(V )). A decomposition of a shallow clause c is a
triple (cp, cd, σ) where cp, cd are clauses as above with Var(cd) ∩ Var(cp) = ∅, and
σ : V → Prop(V ) is a substitution with c = cp ∨ cdσ.

Insisting that a modal logic is axiomatised purely in terms of shallow axioms clearly ex-
cludes a large variety of logics (the most basic example is the modal logic K extended
with the transitivity axiom �p→ ��p). On the other hand, nearly all conditional log-
ics studied in the literature are axiomatised using shallow axioms [7]. Technically, the
restriction to (finitely many) shallow axioms implies that all logics under considera-
tion are in fact decidable, a property that fails for logics that are axiomatised by more
general classes of axioms [6].
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Example 2. 1. Over the similarity type Λ = {�}, the axioms defining the modal
logic (K), i.e. �p ∧�q → �(p ∧ q) and �> as well as the reflexivity axiom �p→ p
are shallow. Transitivity ��p→ �p fails to be shallow.

2. The syntax of many conditional logics is given by the similarity type Λ = {>}
where > is a binary operator that we write in infix notation. All of the axioms

(CM) (p > (q ∧ r))→ (p > q) (CC) (p > q) ∧ (p > r)→ (p > (q ∧ r))
(CS) (p ∧ q)→ (p > q) (CA) (p > r) ∧ (q > r)→ ((p ∨ q) > r)

(MP) (p > q)→ (p→ q) (CMon) (p > q) ∧ (p > r)→ ((p ∧ q) > r)

(ID) (p > p) (CV) (p > q) ∧ ¬(p > ¬r)→ ((p ∧ r) > q)

that define e.g. the conditional systems B = {CM,CC,CA,CMon, ID}, SS = B ∪
{CS,MP}, and V = B ∪ {CV} are shallow [7].

We define modal Hilbert systems in the standard way by closing under modus ponens,
uniform substitution and the modal congruence rule. This allows us e.g. to derive the
necessitation rule p/�p for � from the axiom �>.

Definition 3. Suppose A ⊆ F(Λ). The predicate HA ` is the least subset of formulas
containing A and all propositional tautologies that is closed under uniform substitution
(HA ` φσ if HA ` φ), modus ponens (HA ` ψ if HA ` φ → ψ and HA ` φ)
and congruence (HA ` ♥(φ1, . . . , φn) ↔ ♥(ψ1, . . . , ψn) if HA ` φi ↔ ψi for all
i = 1, . . . , n).

Given a set of shallow axioms, we now construct an equivalent sequent system that
extends propositional logic with shallow rules. As we are working in a generic setup, it
is more convenient to have negation as an explicit logical operator rather than dealing
with formulas in negation normal form as the latter would require that the similarity
type Λ is closed under formal duals. Consequently our analysis is based on the system
G consisting of all rule instances

Γ, p,¬p Γ,¬⊥
Γ,¬φ,¬ψ
Γ,¬(φ ∧ ψ)

Γ, φ Γ, ψ

Γ, φ ∧ ψ
Γ, φ

Γ,¬¬φ
where p ∈ V is a propositional variable, φ, ψ ∈ F(Λ) are formulas and Γ ∈ S(Λ) is a
sequent. Here, Γ is the context and a formula that appears in the conclusion but not the
context is called principal. The system G is complete for classical propositional logic
[14]. Extensions of G with weakening, cut, context-sensitive cut and contraction

(W)
Γ

Γ, φ
(Cut)

Γ, φ ∆,¬φ
Γ,∆

(Cutcs)
Γ, φ Γ,¬φ

Γ
(Con)

Γ, φ, φ

Γ, φ

are denoted by suffixing with the respective rule names so that e.g. GWCon is the system
G extended with weakening and contraction. We write Ω `G ∆ if ∆ can be derived in
G from premises inΩ and we use the same notation for extensions of G with a subset of
{W,Con,Cut,Cutcs}. A sequent Γ is a propositional consequence of sequents in Ω if
Ω `GCutCon Γ , this is also denoted by Ω `PL Γ . Shallow axioms are incorporated into
these systems by converting them into sequent rules of a specific form:
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Definition 4. A shallow rule is given by a triple R = (Premc (R) ,Premn (R) , Σ)
consisting of a finite set Premc (R) = {Γ1, . . . , Γl} ⊆ S(V ∪ ¬V ) of contextual
premises, a finite set Premn (R) = {∆1, . . . ,∆m} ⊆ S(V ∪ ¬V ) of non-contextual
premises and a sequent Σ ∈ S(Λ(V ) ∪ ¬Λ(V )) of principal formulas where all vari-
ables that occur in Σ are pairwise distinct. If σ : V → F(Λ) is a substitution and
Γ ∈ S(Λ) is a sequent (the context), then

(Rσ)
Γ, Γ1σ,Σσ . . . Γ, Γlσ,Σσ ∆1σ . . . ∆mσ

Γ,Σσ

is an instance of R. If no confusion between contextual and non-contextual premises
can arise, we write a shallow rule given by the above data in the more suggestive form

(R)
Γ1, Γ,Σ . . . Γl, Γ,Σ ∆1 . . . ∆m

Γ,Σ
.

The principal formulas of a shallow rule R (or rule instance Rσ) of the form above are
the (substituted) elements of Σ, written as PF (R) (resp. PF (Rσ)). We write Prem (R)
(resp. Prem (Rσ)) for the set of (substituted) premises of R, and Concl (Rσ) for the
conclusion of (Rσ). We identify shallow rules modulo injective renaming of variables.

The requirement that the variables in the principal formulas are pairwise distinct poses
no restriction, since we may introduce fresh variables and new premises stating equiv-
alences. The separation between contextual and non-contextual premises is important
for two reasons: first, when passing from rules to instances, the contextual premises not
only copy the context from premise to conclusion, but also the principal formulas. This
is important for admissibility of contraction, as it allows to propagate a contraction be-
tween principal formulas and context. Mutatis mutandis, it is precisely this mechanism
that allows to show admissibility of contraction in a sequent calculus for the modal logic
T , i.e. K extended with the rule Γ,¬φ,¬�φ/Γ,¬�φ. Second, contextual premises re-
ceive special treatment in proof search, as the premise is a superset of the conclusion.

Example 5. Over the similarity types introduced in Section 2, we can form the follow-
ing shallow rules, which we present in the suggestive notation of Definition 4.

1. Over Λ = {�}, both (RK)
¬p,¬q,r ¬r,p ¬r,q
Γ,¬�p,¬�q,�r and (RT)

Γ,¬p,¬�p
Γ,¬�p are shallow.

Here the premises inRK are non-contextual whereas the premise inRT is contextual.
2. OverΛ = {>}, both (RCC)

p1=p2=p3 ¬q,¬r,s ¬s,q ¬s,r
Γ,¬(p1>q),¬(p2>r),(p3>s) and (RCS)

Γ,p Γ,q
Γ,(p>q)

are shallow.

Every set R of shallow rules induces a sequent calculus by augmenting instances of
rules inR with the modal congruence rule and propositional reasoning.

Definition 6. Suppose R is a set of shallow rules. The predicate GR ` is the least set
of sequents closed under the propositional rules of G, instances of shallow rules in R,
and instances of the modal congruence rules

¬φ1, ψ1 ¬ψ1, φ1 . . . ¬φn, ψn ¬ψn, φn
Γ,¬♥(φ1, . . . , φn),♥(ψ1, . . . , ψn)
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where Γ ∈ S(Λ), ♥ ∈ Λ is n-ary and φ1, . . . , φn ∈ F(Λ). Use of additional rules is
indicated by suffixing so that e.g. GRWCutcs ` denotes derivability in GR extended
with weakening and context-sensitive cut.

We employ the usual definitions of a proof (a tree constructed from proof rules), the
depth of a proof (the height of this tree) and (depth-preserving) admissibility of proof
rules [14]. Often, a statement holds for extensions of GRwith several principles. We in-
dicate this using square brackets. For example, a statement involving GR[WCon] holds
for an extension of GR with a (possibly empty) subset of {W,Con}.

Lemma 7 (Admissibility of weakening and inversion). SupposeR is a set of shallow
rules over a similarity type Λ. Then the weakening rule (W) and the rules

Γ, φ ∧ ψ
Γ, φ

Γ, φ ∧ ψ
Γ,ψ

Γ,¬(φ ∧ ψ)
Γ,¬φ,¬ψ

Γ,¬¬φ
Γ, φ

are depth-preserving admissible in GR[CutCutcsWCon].

Proof. Standard by induction on the depth of the proof and the fact that the rules in R
introduce only modalised formulas or their negations. �

Our next goal is to convert shallow axioms into shallow rules and confirm that (for now,
with help of cut and contraction) this does not change the notion of derivability.

Definition 8. Suppose that c is a shallow clause with decomposition (cp, cd, σ) where
Var(cd) = {q1, . . . , qn} and cp = l1 ∨ · · · ∨ lm. If furthermore

– the sequents ∆1, . . . ,∆k are a cnf of
∧n
i=1(qi ↔ σ(qi))

– the sequent Σ ⊆ Λ(V ) ∪ ¬Λ(V ) is propositionally equivalent to cd

then the shallow rule

Γ,∼ l1 . . . Γ,∼ lm ∆1 . . . ∆k

Γ,Σ

is called a rule form of c. A rule form of a shallow axiom φ is a set R = {r1, . . . , rk}
of shallow rules where each ri is a rule form of a shallow clause ci such that

∧n
i=1 ci

and φ are propositionally equivalent. Finally, a rule form of a set A = {φ1, . . . , φn} of
shallow axioms is a setR = R1 ∪ · · · ∪ Rn where eachRi is a rule form of φi.

In other words, a rule form of a shallow axiom φ is constructed by first converting φ
into conjunctive normal form, obtaining shallow clauses c1, . . . , cn. For each shallow
clause, we obtain a rule by replacing propositional formulas φi that occur as arguments
of modal operators by new variables qi and then add the clauses of a conjunctive nor-
mal form of qi ↔ φi to the premises. The operation of adding a context amounts to
considering a shallow clause c = cp ∨ cm as an implication ¬cm → cp that induces a
rule cp → φ/¬cm → φ which is then interpreted as a sequent rule.

Example 9. The rulesRK ,RT ,RCC andRCS presented in Example 5 are rule forms
of the homonymous axioms introduced in Example 2.



Cut Elimination for Shallow Modal Logics 7

As a first sanity check, we confirm that the Hilbert calculus given by a set of shallow
axioms is equivalent to the sequent calculus given by their rule forms, at least as long
as we admit cut and contraction in the latter.

Proposition 10. Suppose thatA is a set of shallow axioms andR is a rule form ofA.

1. GRCutCon ` φ for every φ ∈ A.
2. HA `

∨
Γ0 whenever HA `

∨
Γi (all 1 ≤ i ≤ n) and Γ1 . . . Γn/Γ0 is an

instance of a shallow rule inR.

Proof. 1. W.l.o.g. every axiom in A is a shallow clause. Let c ∈ A with c = l1 ∨ · · · ∨
lm∨σ(q1)∨· · ·∨σ(qn). Taking l1, . . . , lm for the context Γ in the notation of Definition
8, the sequents Γ,∼ li are instances of the propositional axiom rules, and the sequents
∆i[σ(q1) . . . σ(qn)/q1 . . . qn] are derivable in Prop. Applying the rule form for c and
the disjunction rule gives c.

2. IfR is a rule form of a shallow clause c, and Γ1 . . . Γn/Γ0 is an instance ofRwith
HA `

∨
Γi (1 ≤ i ≤ n), then

∨
Γ0 is derived inHA from the appropriate substitution

instance of c using propositional reasoning and congruence. �

In the presence of cut and contraction, equivalence of both systems is then immediate:

Corollary 11. Suppose that A is a set of shallow axioms and R is a rule form of A.
ThenHA `

∨
Γ whenever GRCutCon ` Γ , for all sequents Γ ∈ S(Λ).

Clearly, our goal is the elimination of both cut and contraction where the latter can (at
least in the first instance) be handled on the basis of rule forms.

Definition 12. A setR of shallow rules is contraction closed, if, for every rule instance
(Rσ) with Concl (Rσ) = Γ, φ, φ there exists an instance (Sτ) with Concl (Sτ) = Γ, φ
such that Premc (Rσ) `GWCon ∆ for all ∆ ∈ Premc (Sτ), and Premn (Rσ) `GWCon Π
for all Π ∈ Premn (Sτ).

This definition allows us to propagate contraction over the application of modal rules.
Combined with an induction on the depth of the derivation this yields:

Proposition 13. Suppose thatR is contraction closed. Then GR[Cutcs] ` Γ iff GRCon[Cutcs] `
Γ for all sequents Γ ∈ S(Λ). Moreover, the proof in GR[Cutcs] has at most the same
height, uses the same number of (instances of) shallow rules and the same cut formulas.

Proof. By double induction on the modal rank of the contraction formula and the depth
of the proof. It is standard to propagate contraction over propositional rules using the
inversion lemma without increasing the number of modal rules. In an application of an
instance of a shallow rule, contractions involving the conclusion only can be eliminated
by contraction closure of R and the fact that formulas which occur in the premises but
not in the context have strictly lower modal rank than principal formulas. Contractions
between conclusion and context can be propagated as the conclusion explicitly appears
in all contextual premises (Definition 4). �
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4 Cut-closure And Pseudo-Analytic Cut

We now set out to establish the first main result of this paper, and show that the cut rule
can be restricted to pseudo-analytic cut, i.e. cuts on formulas that arise by applying a
modal operator to a propositional combination of subformulas of the conclusion of the
cut rule, which leads to a generic decidability result for logics axiomatised with shallow
rules. To achieve this, we first normalise shallow rules so that only variables occurring
in the conclusion are allowed in the premise. This way backwards proof search does
not introduce new variables. In a second step, we close a normalised rule set under cuts
between rule conclusions, and observe that this closure process can be simulated with
pseudo-analytic cut. We first analyse the process of eliminating unnecessary variables.

Definition 14. A setR of shallow rules is normalised if in each rule inR all variables
occurring in the premises also occur in the conclusion.

Superfluous variables in the premises of rules are eliminated as follows.

Definition 15 (p-elimination). Let S be a set of sequents and p ∈ V a propositional
variable. The p-elimination of S, written Sp is defined by

Sp = {Γ	p,∆	¬p ∈ N | Γ, p ∈ S and ∆,¬p ∈ S}∪{∆ ∈ S∩N | {p,¬p}∩∆ = ∅}

where Γ 	 φ denotes the sequent Γ with all occurrences of φ removed (in the multiset
sense) andN = {Γ ∈ S(Λ) | Γ∩¬Γ = ∅} is the set of non-axiomatic sequents overΛ.
If p = (p1, . . . , pn) is a finite sequence of variables, we write Sp = (. . . (Sp1) . . . )pn .

In other words, Sp contains all results of multicutting elements of S on p that are not
trivially derivable. The next lemma shows that Sp is propositionally equivalent to S.

Lemma 16. Suppose S ⊆ S(Λ(V )) is a finite set of sequents over Λ(V ) and p ∈ V .
Then all ∆ ∈ Sp are derivable from S in GCutCon with cuts only on p. Moreover,
there exists a formula φ = φ(S, p) such that Γ [φ/p] is derivable from Sp in G for each
Γ ∈ S. The formula φ can be chosen as a conjunction of disjunctions of sequents in Sp.

Proof. The first statement follows directly from the definition of Sp. Now let us con-
struct the formula φ(S, p). It basically states that all the sequents ∆	 ¬p of the above
definition of Sp hold. More formally, let Υ be the set of sequents ∆ 	 ¬p, such that
∆ ∈ S and there is a Γ ∈ S with Γ 	 p,∆	 ¬p ∈ Sp. Then

φ(S, p) :=
∧
∆∈Υ

∨
(∆	 ¬p) .

Now let Γ ∈ S and ∆ ∈ S, where Γ 	 p = Γ ′, ∆ 	 ¬p = ∆′. Then we have
`G ∆′ ∨ ¬φ(S, p), and thus `G ∆[φ(S, p)/p]. On the other hand, since Γ ′, ∆′ is in Sp
or an axiom, we get Sp `G Γ ′, φ(S, p) and therefore also Sp `G Γ [φ(S, p)/p]. �

Rules with unnecessary variables in the premises can therefore be normalised by suc-
cessively eliminating these variables.
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Example 17. If S contains the sequents p = t and q ∧ r = s, then Sr consists of p = t
and ¬s, q. We may therefore replace the rule form of the axiom (CM)(p > (q ∧ r))→
(p > q) on the left

p = t ¬q,¬r, s ¬s, r ¬s, q
Γ,¬(p > s), (t > q)

RCM
p = t ¬s, q

Γ,¬(p > s), (t > q)

with its r-eliminated version (shown on the right).

Lemma 16 allows us to replace shallow rules with their normalised version, and we
will assume from now on that all shallow rules are normalised. We now construct a cut-
closed set cc (R) from a setR of shallow rules: we consider two shallow rules together
with an application of cut to their conclusions as a rule in its own right, but eliminate all
variables that occur in the premises, but not in the conclusion, of (new) rules that arise
in this way. This process then takes the following form:

Definition 18. Let R1, R2 ∈ R be given by (Ωc, Ωn, Γ ) and (Υc, Υn, ∆), respectively
and suppose that σ, τ are renamings such that Γσ = Γ ′,M and ∆τ = ∆′,¬M .
Then cut(R1σ,R2τ,M) is the shallow rule given by ((Υc ∪ Υn ∪ Ωc ∪ Ωn)p, (Υn ∪
Ωn)p, Γ

′, ∆′) if M = ♥p for p = (p1, . . . , pn).

This definition ensures that the new (non-) contextual premises arise from the old (non-
contextual) premises by removing variables that no longer occur in the conclusion.

Example 19. For the rules (RCC) =
p1=p2=p ¬q1,¬q2,q ¬q,q1 ¬q,q2

Γ,¬(p1>q1),¬(p2>q2),(p>q) and (RCM) =
p=r ¬q,s

Γ,¬(p>q),(r>s) fromR(CM) we obtain the rule

(CCm) = cut(RCC, RCM, (p > q)) =
p1 = p2 = r ¬q1,¬q2, s

Γ,¬(p1 > q1),¬(p2 > q2), (r > s)
.

The cut closure of a rule set is then constructed by adding more and more (normalised)
cuts until the set is saturated. Formally we have:

Definition 20. Let R be a set of shallow rules. The cut closure of R is the ⊆-minimal
set cc (R) with R ⊆ cc (R), such that for every R1, R2 ∈ cc (R) and renamings σ, τ
with Concl (R1σ) = Γ,M and Concl (R2τ) = ∆,¬M we have cut(R1σ,R2τ,M) ∈
cc (R).
Not surprisingly, cut is admissible over the cut closure of a rule set.

Proposition 21. GRCutCon ` Γ iff G cc (R)Con ` Γ for all sequents Γ .

Proof. For the left to right direction it suffices to show the statement for multicuts

Γ, φn ∆, (¬φ)m

Γ,∆

(with n,m ∈ N) instead of cuts. This is done by double induction on the size of the cut
formula and the sum of the sizes of the proofs of the premises, where contraction and
the rules in cc (R) cater for multicuts with cut formula principal in the conclusions of
rules inR. For the other direction every instance of a rule in cc (R)rR is replaced by
the corresponding tree of cuts with instances of rules in R at the leaves. By Lemma 16
the premises of these rules can be derived from the premises of the rule in cc (R). �



10 Björn Lellmann and Dirk Pattinson

In general, we may restrict cuts to formulas that arise as φ = φ(p, S) in Lemma 16, i.e.
conjunctions of disjunctions, which allows the following restriction on the cut rule:

Definition 22. A pseudo-analytic cut is a cut
Γ, ϕ ∆,¬ϕ

Γ,∆
, whereϕ = ♥(ψ1, . . . , ψn),

and for 1 ≤ i ≤ n each ψi is a conjunction of disjunctions of formulas occurring possi-
bly negated under a modal operator in Γ,∆. For a set S of sequence rules define SCutpa
to be the set S together with the cut rule restricted to pseudo-analytic cuts.

Corollary 23. GRCutCon ` Γ iff GRCutpaCon ` Γ for all sequents Γ .

Distributivity allows us to restrict to a single layer of conjunctions and disjunctions.

Lemma 24. If GRCutpaCon ` Γ for a set R of shallow rules and a sequent Γ , then
GRCutCon ` Γ with cuts only on modalised conjunctions of disjunctions of possibly
negated subformulas of Γ .

Proof. First note that (φ∨ψ)∧χ ≡GWCon (φ∧χ)∨ (ψ ∧χ) and (φ∧ψ)∨χ ≡GWCon

(φ∨χ)∧(ψ∨χ). Given a proofD of Γ in GRCutpaCon we transform it bottom up into
a proof with cuts only on modalised conjunctions of disjunctions of (possibly negated)
subformulas of Γ by following a branch in D until we reach the first (pseudo-analytic)
cut on a formula not of this format. Then the cut formula τ must be a modalised con-
junction of disjunction of formulas ψ, where each ψ is a (possibly negated) subformula
of Γ or a conjunction of disjunctions of (possibly negated) subformulas of Γ . The for-
mula τ either was introduced in the context of an axiom, in which case we may replace
it with a formula of the right format, or its modality was introduced by a shallow rule.
In this case we use the distributivity laws to transform the formulas occurring under the
modality in τ in the premises of the shallow rule into conjunctions of disjunctions of
(possibly negated) subformulas of Γ . �

As pseudo-analytic cuts suffice, for a conclusion of a cut rule there are only finitely
many possible cut formulas. In order to get a generic decidability result, we need to
assume that the rule set is tractable in the following sense.

Definition 25 (from [13]). A set R of shallow rules is PSPACE-tractable, if there are
multivalued functions f taking sequents to sets of encodings of instances of rules in
R, and g, taking encodings of rule instances to sets of sequents, such that for all se-
quents Γ,∆ and encodings pRσq of a rule instance we have pRσq ∈ f(Γ ) ⇐⇒
Concl (Rσ) = Γ and ∆ ∈ g(pRσq) ⇐⇒ ∆ ∈ Prem (Rσ) , and whose graphs are
decidable in space polynomial in the length of the first argument.

We assume that sequents are encoded as lists of formulas. Note that the length of the
encoding of a sequent is at least the number of formulas in the sequent.

Theorem 26. LetR be a PSPACE-tractable and contraction closed set of shallow rules.
Then the derivability problem for GRConCut is in 3EXPTIME.

Proof. Applying Lemma 24, and using the context-sensitive cut rule and the fact that
contraction is admissible in the resulting system we get that if Γ is derivable, then every
sequent occurring in the proof is fully contracted and contains only subformulas of Γ
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or formulas of the form specified in Lemma 24. Since the set S of sequents of this form

has size 22
2O(w)

, where w is the number of subformulas of Γ , and since R is PSPACE-
tractable, the subset of S consisting of the sequents derivable with GR and the specified
cuts can be computed in 3EXPTIME. �

Example 27. This theorem induces a uniform decidability proof (albeit with a subopti-
mal complexity bound) for all logics axiomatised by finitely many shallow axioms, e.g.
for the conditional logics B, SS and V of Example 2.

5 Cut Elimination Using Small Representations

In the previous section, we have constructed the cut-closure of a given set of shallow
rules, and we have argued that a sequent calculus using this set enjoys cut elimination.
However, the construction of the cut closure does not yield a concrete representation of a
cut-closed rule set. The main result of this section establishes that the rules constituting
a cut-closed set can always be represented in space polynomial in the rule conclusion.
In particular, we demonstrate that instances of cut-closed rule sets can be decided in
PSPACE. This entails that the corresponding derivability problem is decidable in poly-
nomial space. Technically, we show that rules of a cut-closed rule set are represented
by proof trees whose inner nodes are applications of cut, and we give explicit bounds
on the size of these trees, which yield polynomial representability.

Definition 28. A shallow rule R1 = (Ωc, Ωn, Σ) subsumes a shallow rule R2 =
(Ξc, Ξn, Π), if there is a renaming σ with Σσ = Π such that Ξc ∪ Ξn `PL ∆σ
for every ∆ ∈ Ωc, and Ξn `PL Υσ for every Υ ∈ Ωn. Two shallow rules are equivalent
if they mutually subsume each other.

While the pseudo-analytic cut yields decidability, there is room for improvement in
complexity by considering polynomial-size representations of cc (R).

Definition 29. Let R be a set of shallow rules. An R-cut tree with conclusion Γ and
leafs (Riσ) (where 1 ≤ i ≤ n, Ri ∈ R and σi : V → V is a renaming) is a proof of
Γ from the conclusions of the (Riσ) using only cuts on principal formulas of the Riσ.
The number of nodes in a cut tree is denoted by size (D), its height by depth (D).

In the above definition, we emphasise that only applications of cut are allowed in a cut
tree, and the cut formulas have to be principal formulas of the rules at the leafs.

Example 30. The following is a KT -cut-tree for the sequent u,¬�p,¬�q,¬�r:

¬p,¬q, s ¬s, p ¬s, q
¬�p,¬�q,�s (RK)

¬s,¬r, t ¬t, s ¬t, r
¬�s,¬�r,�t (RK)

u,¬t
u,¬�t (RT)

u,¬�s,¬�r
u,¬�p,¬�q,¬�r

Clearly, the cuts introduced in a cut tree may introduce new variables that are present
in the premises of the Riσ, but not in the conclusion Γ . We eliminate these as before.
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Definition 31. Let R be a set of shallow rules, and D an R-cut-tree. The shallow rule
r(D) represented by D is the leaf of D if depth (D) = 0. If depth (D) > 0, then D is
of the form D1 D2

Γ , where Γ arises from the conclusions of D1 and D2 by a cut on
M . In this case, r(D) = cut(r(D1), r(D2),M) where r(D1) and r(D2) are the rules
represented by D1 and D2.

Equivalence of cut trees and cut closure is clear from the definitions:

Lemma 32. A shallow rule lies in cc (R) iff it is represented by anR-cut tree.

Proof. Straightforward from the definitions of cut closure and represented rules. �

Application of Lemma 16 shows that cut trees differing only in the order of the cuts
represent basically the same rule instance, a fact that we record here for later use.

Lemma 33. Let R be a set of shallow rules. Let Γ be a sequent and let D1,D2 be
R-cut-trees with conclusion Γ and leafs R1σ1, . . . , Rnσn. Then the rules represented
by D1 and D2 are equivalent.

Proof. By Lemma 16 we get Prem (r(D1)) `PL ∆[φ1, . . . , φk/p1, . . . , pk] for every
∆ ∈ Prem (Riσi) , (1 ≤ i ≤ n) and suitable φi. The premises of r(D2) now follow
by the appropriate applications of cut. �

The main difficulty that we have to overcome in order to obtain small representations
of cut-closed rules lies in the fact that the number of literals in either premise of an
application of cut may both increase and decrease as we move up a cut tree. This non-
monotonic behaviour disappears if we only consider cuts involving sequents consisting
of at least three elements. This suffices for our purpose, since we can absorb cuts in-
volving smaller sequents into the rule set at very little extra cost.

Definition 34. A shallow rule is small if it has at most two principal formulas. A set
R of shallow rules is 2-cut closed if for every two rules R1, R2 ∈ R with conclusions
Σ1 and Σ2, such that R1 or R2 is small, and any two renamings σ1, σ2 : V → V for
which Σ1σ1 = Γ,M and Σ2σ2 = ∆,¬M there exists a rule R ∈ R that subsumes
cut(R1σ1, R2σ2,M). The 2-cut closure 2cc (R) of a set R of shallow rules is the ⊆-
minimal, 2-cut closed set of shallow rules containingR.

Example 35. The rule set CK containing (RCM), (RCC) and (CCm) is 2-cut closed,
but not cut closed.

Passing from a finite set of shallow rules to its 2-cut closure is a preprocessing step that
adds finitely many missing rules. Crucially, computing a 2-cut closure is independent
of the size of any sequent to which proof search is applied and therefore adds a constant
time overhead. The most important ramification of 2-cut closure is the existence of
small representations of elements in the cut closure of a given set of shallow rules. We
approach this result by means of a sequence of lemmas, the first one establishing that
we may always assume that leafs of a cut tree are labelled with ‘large’ rules.

Lemma 36. Let R be a 2-cut closed set of shallow rules, and let D be an R-cut-tree
with conclusion Γ and leafsR1, σ1, . . . , Rnσn. Then there exists anR-cut-treeD′ with
conclusion Γ and leafs R′1σ

′
1, . . . , R

′
k, σ
′
k such that
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1. if ||Γ || ≤ 2 then D′ has depth 0 (and therefore consists of a single leaf R′1σ
′ only)

2. if ||Γ || > 2 then R′iσ
′ have at least 3 principal formulas each

3. size (D′) ≤ size (D) and the rules represented by D and D′ are equivalent.

Proof. By induction on the size of the cut-tree. The base case is trivial. Suppose the size
of D is n + 1, and that the premises of the lowermost cut are Γ1,M and Γ2,¬M . Let
D1 and D2 be the induced R-cut-trees with conclusions Γ1,M respectively Γ2,¬M .
Using the induction hypothesis we get R-cut-trees D′1 and D′2 with conclusions Γ1,M
and Γ2,¬M , which have the desired properties. If both r(D′1) and r(D′2) have at least
three principal formulas, then we are done. Otherwise, let w.l.o.g. ||PF (r(D′1)) || ≤ 2.
Then D′1 consists only of a leaf with conclusion Γ1,M . By permuting the cut on M up
to the appropriate leaf in D′2, and the fact, that R is 2-cut closed, we get a cut-tree D′
with the desired properties. Lemma 33 together with the definition of 2-cut closed rule
sets ensures that the represented rules are equivalent. �

Since cuts between sequents of length at least three increase the length of the sequent,
the size of the cut-tree is bounded in terms of the conclusion of the represented rules.

Corollary 37. LetR be a 2-cut closed set of shallow rules, and let Γ be a sequent with
||Γ || ≥ 3. Then every rule in cc (R) with conclusion Γ is represented by an R-cut tree
of size ≤ 2||Γ || − 5.

A bound on the depth of a cut tree is obtained from the following adaption of the 2-3-
Lemma of [5]. Here for a tree T and a node x in T the subtree of T generated by x is
denoted by Tx, and the number of nodes in T by |T |.

Lemma 38. Let k ∈ N and T be a tree, such that k+1 < |T | and each node has at most

k children. Then there is a node x in T , such that
⌈

1
k+2 · |T |

⌉
≤ |Tx| ≤

⌊
k+1
k+2 · |T |

⌋
.

Proof. We construct a series (x0, x1, . . . , xd) of nodes in T , such that x0 is the root,
and xd is a leaf in the following way. Let x0 be the root. For i ≥ 0 and xi not a leaf let
xi+1 be a child of xi, such that |Txi+1

| is maximal. Since xi has at most k children we
have |Txi

| ≤ k · |Txi+1
|+ 1. Now let

i0 := min

{
i ∈ [d] | |Txi | <

1

k + 2
· |T |

}
.

Then xi0−1 is the desired node. Indeed we have

|Txi0−1
| ≤ k · |Txi0

|+ 1 < k · 1

k + 2
|T |+ 1 ≤ k

k + 2
|T |+ 1

k + 2
|T | ,

which yields the upper bound. The lower bound follows by minimality of i0. �

Lemma 39. Let R be a 2-cut closed set of shallow rules where the every rule has at
most k principal formulas, and let Γ be a sequent with ||Γ || ≥ 3. Then every instance of
a rule in cc (R) with conclusion Γ can be represented by an R-cut-tree of size at most
2||Γ || − 5 and depth at most ck · log2 ||Γ ||+ k for ck = (log2

k+2
k+1 )

−1.
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Proof. By Lemma 37 we get an R-cut-tree D with conclusion Γ with at most ||Γ || − 2
leaves. Suppose that its depth exceeds ck ·log2 ||Γ ||+k. The main idea is to represent the
cuts of D in a (k-ary) graph, whose nodes are the leafs of D, and where two nodes are
connected by an edge iff there is a cut between principal formulas of the rules associated
with the leafs corresponding to the nodes. Then we may use Lemma 38 to split the graph
in two parts, and take the cut corresponding to the split edge to be the lowermost cut in
the newly constructed cut-tree. Continuing upwards in this fashion gives a cut-tree with
the desired size and depth. �

Crucially, his bound ensures a small size of the cut-tree and the premises of the repre-
sented rule. This provides us with a tractable representation of the cut closure ofR.

Definition 40. Let R be a set of shallow rules with at most k principal formulas each.
The rule set generated byR is the setR∗ of rules represented by 2cc (R)-cut-trees with
conclusion Γ and depth at most ck · log2 ||Γ ||+ k.

Theorem 41. Let R be a finite set of shallow rules. Then R∗ is PSPACE-tractable and
cut elimination holds in GRCon, i.e. GRCutCon ` Γ iff GR∗Con ` Γ .

Proof. W.l.o.g.R is 2-cut closed. The equivalence of GRCutCon and GR∗Con follows
from Lemma 39 and Proposition 21. We take the encodings of instances of rules inR∗
to be the representing small cut trees, and f to be the function mapping a sequent Γ to
the set of R-cut trees for Γ with depth at most ck · log2 ||Γ || + k. Since the cut-trees
are small enough, the graph of f is in PSPACE. Furthermore, since the cut-trees have
depth logarithmic in ||Γ ||, each of the premises of the represented rules is constructed
by cutting at most

(
2`
)ck·log ||Γ ||+k = ||Γ ||`·ck · 2`·k many premises of rule instances at

the leaves, where ` is the maximal arity of modalities. Thus the graph of the function g,
which takes each cut tree to the set of premises of the rule represented by the cut tree,
is in PSPACE. �

6 Proof Search in GR∗

In the previous section, we have seen that cut can be eliminated by passing from a
given rule set to its cut closure. The polynomial representability of the latter does not
yet guarantee that proof search can be accomplished in polynomial space, as instances
of shallow rules propagate the conclusion to contextual premises. In this section, we
introduce histories (in the spirit of [4]) that avoid infinite branches during proof search.

Definition 42. Let R be a set of shallow rules. An R-history is a multiset h with
Supp (h) ⊆ {(R, σ) | R ∈ R, σ : Var(R) → F(Λ)} consisting of rule/substitution
pairs. A sequent with history is a pair (h, Γ ), written as h | Γ where h is a R-history.
We write h, (R, σ) for the (multiset) union of h and {(R, σ)}.

The notion of R-histories extends to equivalence classes of rules modulo injective re-
namings in the obvious way. Histories are used to prevent shallow rules from being
applied repeatedly to the same formulas in the system GR2 introduced next. The sys-
tem GR1 is an intermediate system, which only keeps track of the rules.
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Definition 43. LetR be a set of shallow rules. The system GR1 consists of the propo-
sitional rules extended with history

h | Γ, p,¬p h | Γ,¬⊥
h | Γ,¬φ,¬ψ
h | Γ,¬(φ ∧ ψ)

h | Γ, φ h | Γ, ψ
h | Γ, φ ∧ ψ

h | Γ, φ
h | Γ,¬¬φ

and all instances-with-history

(Rσ)
h, (R, σ) | Γ, Γ1σ,Σσ . . . h, (R, σ) | Γ, Γnσ,Σσ ∅ | ∆1σ . . . ∅ | ∆kσ

h | Γ,Σσ

of shallow rules R ∈ R with contextual premises Γ1, . . . , Γn, non-contextual premises
∆1, . . . ,∆k and principal formulas Σ. In GR2, instances-with-history above are sub-
ject to the side condition (R, σ) /∈ h.

Since propositional rules do not interfere with histories, it is easy to see that admissi-
bility of weakening, contraction and inversion carries over to GR1.

Lemma 44 (Admissibility of Weakening and inversion). For every ϕ,ψ ∈ F(Λ),
sequent Σ, andR-history h the rule instances

h | Σ,¬¬ϕ
h | Σ,ϕ

h | Σ,¬(ϕ ∧ ψ)
h | Σ,¬ϕ,¬ψ

h | Σ, (ϕ ∧ ψ)
h | Σ,ϕ

h | Σ, (ϕ ∧ ψ)
h | Σ,ψ

h | Γ
h, (R, σ) | Γ,∆

are depth-preserving admissible in GR1. Moreover, the number of instances of shallow
rules in the proof is preserved.

Proof. As for the system GR. �

Lemma 45 (Admissibility of Contraction). LetR be a contraction closed set of shal-
low rules. Then all instances of

h, (R, σ) | Γ
h | Γ

h | Γ, φ, φ
h | Γ, φ

are admissible in GR1 preserving the number of shallow rules in a proof.

Proof. As before. �

This gives the equivalency of GRCon and GR1.

Lemma 46. LetR be a set of shallow rules and Γ a sequent.

1. GR1 ` ∅ | Γ iff there is a history h such that GR1 ` h | Γ .
2. ifR is contraction closed, then GRCon ` Γ iff GR1 ` ∅ | Γ .

Proof. 1. By induction on the height of the proof, using Lemma 44.
2. Induction on the height of the proof using 1. shows that GR ` Γ iff GR1 ` ∅ | Γ .

Admissibility of Contraction in GR (Proposition 13) yields the statement. �

In fact, subsequent applications of a shallow rule to the same formulas in a branch of a
proof in GR1 can be eliminated. This gives us equivalency with GR2.
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Lemma 47. Let R be a set of shallow rules and Γ a sequent. If GR1 ` h | Γ , then
GR2 ` h | Γ . Moreover, there exists a proof of h | Γ in GR2 where every contextual
premise of an application of a shallow rule contains a formula not in the conclusion.

Proof. By induction on the number of applications of shallow rules in a proof D of
h | Γ in GR1. In the inductive step the induction hypothesis is first applied to the
premises of the lowermost rule (w.l.o.g. this is an instance of a shallow rule R). If
the resulting proof is not a proof in GR2 or if the additional property does not hold,
then R has been applied to the same tuple of formulas twice. Then a proof with the
desired properties can be constructed by skipping the upper application of R, using
admissibility of contraction, and applying the induction hypothesis again. �

The fact that contextual premises of applications of shallow rules are bigger than the
conclusion ensures that the search space in backwards proof search forGR2 is of depth
polynomial in the number of subformulas of the root sequent. Summing up we get:

Theorem 48. LetR be a contraction closed set of shallow rules.

1. For every sequent Γ we have GRCon ` Γ iff GR2 ` ∅ | Γ .
2. For PSPACE-tractableR, derivability in GR2 is in PSPACE.

Proof. 1. Immediate from Lemmas 46 and 47
2. It is easy to see that the rules of GR2 are PSPACE-tractable as well. For a sequent

Γ let w(Γ ) be the weight of Γ , that is the number of subformulas in Γ . Furthermore, let
rk (Γ ) := max{rk (φ) | φ ∈ Γ}. By Lemma 47, for backwards proof search it suffices
to consider branches with at mostw(Γ ) many consecutive applications of shallow rules.
For n ∈ N and a sequent with history h | Γ define the function f by

f(h | Γ, n) := ( rk (Γ ) , n− ||h||, w(Γ ) ) .

Then for every branch (hi | Γ i)i∈I with h0 = ∅ and Γ 0 = Γ in the search tree created
by the (modified) backwards proof search algorithm the sequence (f(hi | Γ i, w(Γ )))i∈I
is strictly decreasing under the lexicographic ordering on N3. Since the initial value is
at most (w(Γ ), w(Γ ), w(Γ )), the search tree has depth at most w(Γ )3. �

Together with the results of the previous section this gives the following main theorem:

Theorem 49. LetA be a finite set of shallow axioms andR be a 2-cut-closed rule form
of A. IfR∗ is contraction closed, then derivability inHA is in PSPACE.

Proof. Immediate from Corollary 11 and Theorems 41 and 48. �

Clearly the requirement of R∗ being contraction closed presents a gaping hole in our
treatment so far. However, we can establish this property for several examples.
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7 Applications: Exemplary Complexity Bounds

Using the machinery of the previous sections, proving PSPACE-bounds for shallow log-
ics boils down to proving admissibility of contraction in the rule set generated by the
rules corresponding to the axioms. In Example 35 we have seen that the set

CK =


p1 = p2 = p q1 ∧ q2 = q

Γ,¬(p1 > q1),¬(p2 > q2), (p > q)
,

p = r ¬q, s
Γ,¬(p > q), (r > s)

,

p1 = p2 = p ¬q1,¬q2, q
Γ,¬(p1 > q1),¬(p2 > q2), (p > q)


is 2-cut closed. It is clear that it is also contraction closed. This also holds for CK∗:

Lemma 50. The set CK∗ is contraction closed.

Proof. The rules in CK∗ are of the forms

p1 = · · · = pn = p
∧n
i=1 qi = q

Γ,¬(p1 > q1), . . . ,¬(pn > qn), (p > q)
and

p1 = · · · = pn = p
∧n
i=1 qi → q

Γ,¬(p1 > q1), . . . ,¬(pn > qn), (p > q)

for n ≥ 1. These are easily seen to be contraction closed. �

As another example consider the axiom CEM = (p > q) ∨ (p > ¬q) of conditional
excluded middle. Turning this into a rule yields

(CEM)
p1 = p2 ¬q1,¬q2 q1, q2
Γ, (p1 > q1), (p2 > q2)

.

Let CKCEM := 2cc (CK ∪ {CEM}). A little computation shows

Lemma 51. The set CKCEM∗ is closed under contraction.

Proof. Let CKCEMm be the set
p1 = p2 = p3 ¬q1, q2, q3

Γ,¬(p1 > q1), (p2 > q2), (p3 > q3)
,

p1 = p2 q1, q2
Γ, (p1 > q1), (p2 > q2)

,

p1 = p2 = p3 q1, q2, q3
Γ, (p1 > q1), (p2 > q2), (p3 > q3)

,
q

Γ, (p > q)


As can be seen by an easy induction the rules in CKCEMm∗ all have the form

p1 = · · · = pk = pk+1 = · · · = pk+m ¬q1, . . . ,¬qk, qk+1, . . . , qk+m

Γ,¬(p1 > q1), . . . ,¬(pk > qk), (pk+1 > qk+1), . . . , (pk+m > qk+m)

for some natural numbers k ≥ 0,m ≥ 1. Thus CKCEMm∗ clearly is contraction
closed. Note that the rules inCKCEMm subsume the rules inCKCEM . Given a rule
R ∈ CKCEM∗ and a renaming σ, replacing the rules at the leaves of the CKCEM -
cut-tree representing Rσ with their monotone versions yields a CKCEMm-cut-tree,
whose represented rule subsumes R. Using contraction closure of CKCEMm and
CKCEMm ⊂ CKCEM we get the desired rule in CKCEM∗. �
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In order to add more axioms to CK and CKCEM we need to reconcile the definitions
of cut and contraction closed rule sets. This can be done by restricting the rule format.

Definition 52. A shallow rule has complete premises, if every variable occurring in a
principal formula occurs in every premise.

By soundness of the rules of PL and reasoning about propositional valuations it can be
seen that for these rules the two definitions are compatible:

Lemma 53. Let A be a finite set of variables, and let Γ1, . . . , Γn, Γ be sequents over
A ∪ ¬A with every variable occurring in every sequent. Then {Γ1, . . . , Γn} `PL Γ iff
{Γ1, . . . , Γn} `GWCon Γ .

This allows us to add rules with at most one principal formula to a rule set without
destroying contraction closure.

Theorem 54. LetR be a finite set of shallow rules with complete premises, and letR be
a shallow rule with complete premises and one principal formula. If R∗ is contraction
closed, then there is a PSPACE-tractable set Q of shallow rules, such that for every
sequent Γ we have G(R∪ {R})CutCon ` Γ iff GQ ` Γ .

Proof. The rule set Q is the rule set generated by the 2-cut closure of R∪ {R}, where
all the rules have complete premises. The representations again are the small cut-trees.
It is easy to see that Q is PSPACE-tractable, cut closed, and equivalent to R ∪ {R}.
Contraction closure follows from the fact that in a cut-tree the principal formula of a
rule with only one principal formula does not occur in the conclusion. �

As a special case, this means that we may add shallow rules with one literal in the
conclusion to the sets CK and CKCEM , and still retain the PSPACE bound.

Theorem 55. Let A ⊆ {CEM, ID,MP,CS}. Then the logic CK +A is in PSPACE.

Proof. The axioms translate into the rules

(ID)
p = q

Γ, (p > q)
, (MP)

Γ, p Γ,¬q
Γ,¬(p > q)

, (CS)
Γ, p Γ, q

Γ, (p > q)
.

These and the rules inCK andCKCEM are easily modified to have complete premises
by adding missing literals. Applying Theorems 54 and 49 yields the result. �

This reproves the PSPACE upper bounds for these logics found in [9], [8], and [11].

8 Conclusion

In this paper we have reported our first successes in synthetically constructing sequent
calculi that admit cut elimination. We have converted shallow modal axioms into se-
quent rules so that the resulting system together with the cut and contraction rules is
sound and complete with respect to the Hilbert-system. It was also shown to stay com-
plete, if the cuts are restricted to pseudo-analytic cuts. This led to a generic decidability
result and a 3EXPTIME upper bound for logics axiomatised by a PSPACE-tractable set
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of shallow axioms. Since in particular all finite sets of axioms are PSPACE-tractable,
logics axiomatised by a finite set of shallow axioms are decidable in 3EXPTIME. The
method then was extended to generically construct PSPACE-tractable sets of rules from
finite sets of shallow axioms in such a way, that the resulting sequent system eliminates
the cut rule. If the so constructed rule set is closed under the contraction rule, then the
logic axiomatised by the corresponding axioms is decidable in polynomial space.

Our success is clearly partial in that we do not yet know under which conditions clo-
sure under contraction can also be obtained. This is the subject of future work, possibly
borrowing from the theory of vector addition systems [3] to control the multiplicities of
formulas. For now, contraction closure needs to be established by hand, and doing so,
we have applied our method to various systems in conditional logics. This led to new
proofs of PSPACE upper bounds for these systems.
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