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Preface

On the history of the book:

In the early 1990s several new methods and perspectives in automated
deduction emerged. We just mention the superposition calculus, meta-term
inference and schematization, deductive decision procedures, and auto-
mated model building. It was this last field which brought the authors of
this book together. In 1994 they met at the Conference on Automated
Deduction (CADE-12) in Nancy and agreed upon the general point of view,
that semantics and, in particular, construction of models should play a
central role in the field of automated deduction. In the following years the
deduction groups of the laboratory LEIBNIZ at IMAG Grenoble and the
University of Technology in Vienna organized several bilateral projects pro-
moting this topic. This book emerged as a main result of this cooperation.
The authors are aware of the fact, that the book does not cover all relevant
methods of automated model building (also called model construction or
model generation); instead the book focusses on deduction-based symbolic
methods for the construction of Herbrand models developed in the last 12
years. Other methods of automated model building, in particular also finite
model building, are mainly treated in the final chapter; this chapter is less
formal and detailed but gives a broader view on the topic and a comparison
of different approaches.

How to read this book:

The chapters 3 (resolution based methods) and 4 (constraint-based meth-
ods), which are largely based on former scientific work of the authors, can
be considered as the core of the book; they depend on each other and
should be read in this order. Chapter 2 (preliminaries), which should be
read by need only, gives the basic concepts and makes the book accessible
to graduate students without a firm background in first-order logic and
automated deduction. Chapter 5 (on model representation and evaluation)
essentially depends on the chapters 3 and 4. Chapter 6 on finite model
building in largely independent of the former chapters and gives a broader
view on the topic as a whole.
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Chapter 1

Introduction

1.1 Automated Deduction

This book is on Automated Model Building. Certain keywords and domains
are immediately evoked by this title. We shall consider here three of them
that seem to be the most important: model, model theory and automated
deduction.

The concept of model is a very deep one and represents a challenge to
some of our strongest intellectual abilities. It is used in different fields with
different intended meanings (see for example [118]). Maybe the oldest scien-
tific meaning of “model” is that of a mathematical (not necessarily logical)
object allowing to explain observational data (see for example [70]). It is im-
portant to point out that the idea of non-uniqueness is implicitly accepted
here: better models explain more observations more precisely. This, for
example, is the concept of model used by physicists and biologists.

The other widespread meaning is that used in mathematical logic. The
relationship among different uses of the notion “model” in mathematical
logic and in empirical sciences did not receive very much attention in sci-
entific research. But in [203] the different concepts of model in various
scientific fields (like logic, physics, social sciences) are carefully analyzed
and the logical Tarskian notion is shown to be adequate to empirical sci-
ences. In the framework of Artificial Intelligence the model building process
in non-deductive inference, for example in abduction, is quite close to that
of empirical sciences (and to natural language understanding). The diffi-
culty of checking consistency of a proposed explanatory hypothesis with an
existing theory and observed facts is one of the main impediments to the
mechanization of the logic of discovery (see for example [176, 110]).
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The importance of models in the systematization of the art of reasoning
was recognized very early. It is well known to logicians (see for example
[145]) that some explanations relating major, middle and minor premisses
in Aristotle’s syllogistic figures are correct only for certain concrete terms
(i.e. with respect to certain models) and can be also be proven wrong for
other concrete terms ( representing counter-models).

The content of this book is hardly related to classical model theory,
which, according to [44], is “the branch of mathematical logic which deals
with the relation between a formal language and its interpretations, or mod-
els”, but is much closer to Automated Deduction.

Therefore we are naturally compelled to “review” automated deduction,
its goals, what it is missing, . . . as well as to talk about some historical and
philosophical matters.

At this time Automated Deduction is about 45 years old. The field is
reaching maturity and its theoretical and practical results (some of them
quite striking) ensure it a firm place somewhere between Logic, Computer
Science and Artificial Intelligence. Maybe the best witness of maturity is
that, today, we have a much clearer view of the feasibility (or non-feasibility)
of the goals implicitly defined at the beginning. Still most of the problems,
identified as central already at the very beginning, lack satisfactory solutions;
we just mention proof planning, the use of analogy, learning and constructing
counter-examples (see e.g. [20, 212, 9, 186]).

In the attempt to describe the field of Automated Deduction two basic
methodological questions arise quite naturally:

• What is automated deduction?

• What should (and could) automated deduction be?

A scholar way to answer the first question is to have a look at the bibliog-
raphy for corresponding definitions or, at least for attempts to characterize
more or less precisely the field proposed by its practitioners. Surprisingly,
there are only a few informal “definitions” around automated deduction
(often merged with automated theorem proving), some of them rather tau-
tological; but all of them partially address the second point above, at least
implicitly. We just mention four of them given by renowned scientists in the
domain of deduction, logic and mathematics.

By automated theorem proving we mean the use of a computer
to prove non-numerical results, i.e. determine their truth (va-
lidity). Often (but not always, e.g. decision procedures) we may
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also require human readable proofs rather than a simple state-
ment: “proved”. Two modes of operation are used: fully au-
tomatic proof searches and man-machine interaction (“interac-
tive”) proof searches. The label ATP will cover both. D. Loveland
[144].

And by automated deduction I am thinking of a field broader than
automatic theorem proving including also automatic processing of
proofs. D. Prawitz [180].

The subject of automated deduction deals with computerizing the
logical aspect of mathematics, while the subject of symbolic com-
putation deals with computerizing the computational aspects. M.
Beeson [14]. 1

The subject of automated reasoning is concerned with using com-
puters to help the humans discover and write formal proofs. R.
Constable [63] .

The second and fourth characterizations are the more interesting ones:
they take into account features with increasing importance in reasoning
systems. It should be remarked that the fourth defines automated reasoning
(note that reasoning is a broader concept including deduction). 2

The study of automated reasoning (instead of automated deduction) as
well as the cooperation of systems for theorem proving and symbolic com-
putation (compared in Beeson’s characterization) should not be forgotten
when answering the question about the very nature of automated deduction.

A more technical answer to the question, what automated deduction
actually is, can be given by a historical analysis of the subjects that have
been treated by the researchers in the field.

A few survey papers have been published ([68, 144, 213, 69]). A compila-
tion of early papers that have founded automated deduction in [194, 195] is
also a reference in the field. [20] gives the state of the art when the domain
was 25 years old (see also [?]).

The recent handbook [?] bears witness of the maturity of the field.
Concerning applications, some major impacts of automated deduction on

science, economy and society deserve to be mentioned: e.g. discovering of
errors in chips and the role of resolution in (constraint) logic programming.

1Beeson proposes the equation Mathematics = Logic + Computation, by admitting
that it is an overstatement, since there are other aspects of mathematics, as for instance
the visual aspect.

2The term automated reasoning was not introduced until 1980 (see [?], page 114).
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Recently new important potential application have emerged. One of
them is deduction in the internet, where there is a growing need for powerful
inference 3 engines, a consequence of its generalized use in more and more
fields and of the user’s expectations of new facilities.

Directly related to the goal of the present work is the fact that, in the
whole set of the surveys and handbook articles on automated deduction
mentioned above, only a few pages in [91] are devoted to the subject of
model building. In [91], page 1828 it is written:

Automated model building (sometimes also called model gener-
ation) is becoming a discipline on its own and one of the more
fascinating applications of automated deduction.

1.2 Formal and Informal Proofs

In defining the field of automated deduction, we might observe that only a
few attempts have been made to build bridges between automated deduc-
tion and the deep works on the notion of “proof” by mathematicians and
philosophers of mathematics. But, clearly, this notion lies at the very heart
of automated deduction; its analysis seems unavoidable once the state of the
art allows for treating “big” proofs. In particular proof presentation, proof
schemata and explanation of proofs become important issues in the domain.
We just mention [186] and [102] (see also [32]).

At this point the question what is a proof? naturally arises.
The notion of proof is a very deep one, especially if “real” mathematical

proofs are considered. The conditions required for accepting an object as
a proof of a fact were different ones in different times. This also applies to
mathematics; just consider proofs in analysis before and after Weierstrass.
Etymologically, to prove is related to ensuring quality (note that probus
means: of good quality, honest, faithful).

The statement below is probably supported by most mathematicians:

The process of deducing some sentences from others is the most
important part of the mathematical work. [181], page 179.

Historically, the importance of proofs has been recognized first in ancient
Babylon:

3Inference, of course, includes deduction.
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. . .More important than the technical algebra of these ancient
Babylonians is their recognition -as shown by their work- of the
necessity of proof in mathematics.

Until recently it has been supposed that the Greeks were the first
to recognize that proof is demanded for mathematical proposi-
tions. This was one of the most important steps ever taken by
human beings. Unfortunately it was taken so long ago that it
led nowhere in particular so far as our own civilization is con-
cerned -unless the Greeks followed consciously, which they may
well have done. They were not particularly generous to their
predecessors. [16], page 18.

But the concept of a rigorous mathematical proof (i.e. using logical and
non logical axioms and inference rules) 4 is due to the Greeks; it is the most
distinctive feature between Greek and Babylonian mathematics.

It is generally acknowledged that Parmenides was the first to propose
proofs as deductive reasoning starting with irrefutable statements and us-
ing rigorous chains of deductions. He also proposed dividing proofs into
parts, the premises of one part being the conclusions of previous ones (this
corresponds to structuring proofs in lemmata), see for example [141]. The
most important works in Greek science addressing the concept of proof are
Aristotle’s Organon and Rhetorics, and of course Euclid’s Elements.

It is not surprising that, among the “intelligent” activities handed over to
computers, finding proofs in a formal system was a most appealing one. In-
deed, the Logic Theory Machine [160], able to produce proofs in propositional
calculus, is usually considered as the first Artificial Intelligence program.

With the proof of the 4-colour theorem [2] computer aided theorem prov-
ing became “public domain”. The computer’s task in the solution of the
famous problem basically consisted in testing a very high number of cases.
In fact Appel and Haken tested 1482 graphs representing all possible map
configurations (the computation took more than 1000 hours).

The use of computers for proving theorems inspired mathematicians,
logicians and philosophers of science. Their reflections on this matter might
help us in developing a better understanding of automated deduction as it
is and as it should be.

In a well known paper [207], the author writes:

I will argue that computer-assisted proofs introduce experimen-
tal methods into pure mathematics.

4The Greeks used other names: postulates, common notions.
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Other authors formulated similar theses (see for example [103, 104]),
sometimes in a more radical way 5.

Tymoczko asks the question What is a proof? and gives an answer by
identifying 3 main characteristics:

• Proofs are convincing

• Proofs are surveyable

• Proofs are formalizable

The first point addresses one of the basic requirements of proof theory;
indeed, arguments have to be convincing to be accepted as a proof. 6

The second point is of particular relevance when ‘big’ proofs are investi-
gated. It is also reflected in the opinion of J.P Serre (see [124]):

Tout résultat qui est obtenu par un moyen humainement
invérifiable n’est pas une démonstration.

In this context it is interesting to look at the thoughts of mathematicians
concerning their own proofs (e.g. see [134, 135]). Lam’s analysis started
with the title of an article in a newspaper: Is a math proof a proof if no
one can check it?. The alluded proof was the proof of a conjecture (by K.
F. Gauss) about the projective plan of order 10 and consumed 3000 hours
of a CRAY-1A. 7 Lam proposes the term computed result instead of proof
for this kind of “proofs” and he contends that, in case of computed-based
results, correctness is not absolute , but just almost sure. 8

The third point corresponds to the definition of proof in a formal system
and the difficulties it raises are essentially technical ones. It is the underlying
idea in logical frameworks, in particular in the AUTOMATH project (see
below).

The authors think that the relation between human proofs and
computer-based proofs is made clearer by the distinction (due to Martin

5The first statement of [104] is: Mathematics is a natural science.
6The need to capture human’s reasoning features was present in Gentzen’s natural

deduction. Gentzen wanted “to set up a formal system that came as close as possible to
actual reasoning”.

7At this time it was estimated that there were non detected hardware errors approxi-
mately every 1000 hours !!

8The author forgets that there have been “false proofs”, some of them proposed by
great mathematicians, long time before computers were invented.
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Löf, see [15]) between proofs and derivations. A proof contains the compu-
tational information needed by a computer in order to verify a proposition.
A derivation is an object that convinces us of the truth of a proposition.
Thus what is found in text books are derivations. 9

1.3 Proofs and Automated Deduction

Above we gave a brief description of the notion of “proof” and of the views
of mathematicians, logicians and philosophers concerning computer-based
proofs. But how did researchers in automated deduction look at proofs?
Different approaches exist since the very beginning of research in the field.
They can be characterized by the following classification (the main principles
guiding the approaches are characterized by informal key phrases). Many
works in automated deduction can be assigned to other categories as well
(e.g. if we use the techniques as a criterion), a general problem appearing
in taxonomy. Here we classify the works according to their aim and relegate
techniques to a secondary position.

1. (“As fast as possible”). Designing and implementing first-order
provers based on a single calculus (resolution, tableaux, model elimi-
nation,. . . ). Research efforts are concentrated on strategies and imple-
mentation techniques. Good examples and powerful systems are very
well known; we just mention the systems

• Otter (http://www-unix.mcs.anl.gov/AR/otter/)

• Setheo (http://www4.informatik.tu-muenchen.de/ letz/setheo/)

• Spass (http://spass.mpi-sb.mpg.de/)

• Vampire (http://www.cs.man.ac.uk/ riazanoa/Vampire/)

• Gandalf (http://www.math.chalmers.se/ tammet/gandalf/)

Though they are not based on logical calculi, theorem provers in ele-
mentary geometry deserves to be included in this category. Algebraic
methods have allowed to prove easily a lot of theorems for which res-
olution theorem provers fail, as well as to solve some open questions
(see for ex. [49]).

A particularly important technique, namely rewriting, must be men-
tioned here. Rewriting is considered as a specific domain of reasoning,

9One of the goals of the AUTOMATH project was a complete formal checking of the
proofs (derivations) in Landau’s “Grundlagen der Analysis” (see [72]).
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closely linked to the independent research field of Symbolic Computa-
tion. We just mention the work of B. Buchberger [30] and the forth-
coming book of J. Goguen [101].

2. (“Induction”). Designing and implementing provers dedicated to
induction. The use of induction is unavoidable in mathematical rea-
soning (H. Poincaré even considered it as the mathematical reasoning
par excellence). Special induction provers have been developed (the
most popular being that of Boyer and Moore [28]) producing some
remarkable practical results.

3. (“As general as possible”). Designing and implementing higher-
order logical frameworks allowing the user to define any logic and
any calculus and to construct and verify proofs in it (AUTOMATH
([72, 71]), LCF ([146, 158]), nuPRL ([81]), Coq ([64, 80]),ISABELLE
([162]), KUMO (http://www.cs.ucsd.edu/groups/tatami). . . ). This
approach is related to approaches defining consequence relations, log-
ics, inference rules in full generality ([3, 11, 157, 87]).

4. (“As close as possible human theorem proving”). Designing
and implementing programs in which human-style heuristics are com-
bined with proof systems (sometimes replacing them). In general these
provers are not complete (see [18, 9, 19, 21] and references therein).
The logical languages used in this approach are first-order logic and
subsets of second-order logic (see [19]).

In our classification above we did not mention provers for classical propo-
sitional logic because they have only played a pioneering role (Logic Theory
Machine [160]) in automated deduction; today the most essential theoretical
and practical work on this logic is focused on the SAT problem (and SAT
solvers) (see also chapter ??).

The work on non-classical logics can be included in 1 above. This holds
for the direct approach (specialized and also parameterized provers have
been implemented for different logics), and for translation approach, where
the problem in non-classical logic is translated to a problem in a fragment
of first-order logic (see [42, 161]).
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1.4 Model Building in Automated Deduction

It is worth looking for more abstract classification criteria: We think that de-
cidability is a good one10. Two kinds of problems have been mainly attacked
so far: decidable– and semidecidable (but undecidable) ones.

It is revealing that the first published work reporting on a non-
propositional theorem prover was that by M. Davis dealing with the mech-
anization of a decidable fragment of arithmetic [67]. Gilmore made the first
step in the mechanization of a semidecidable problem [99] (that of validity
in first-order logic). In this book we propose a non–semidecidable problem,
namely that of building first-order models, as a standard topic in theorem
proving 11.

It is a trivial remark that, in studying conjectures, the ability to prove
or to disprove them are equally important. Some theoretical limits should
be recalled when trying to automatize this process (we talk indifferently of
valid formulas/countermodels (or counterexamples) or unsatisfiable formu-
las/models).

As the set of satisfiable first-order formulas is not recursively enumer-
able there can be no “universal” model building procedure. Even in this
formal sense automated model building is substantially more complex than
just proving theorems (the set of valid formulas is recursively enumerable).
But despite this barrier, as we will point out below, automated model build-
ing is by no means a hopeless and futile enterprise. On the contrary, the
authors believe that a more concentrated investigation of satisfiable (non-
valid) problems within deduction should lead to a deeper understanding of
inference as a whole, enlarging the scope of automated deduction.

Proving theorems and constructing (counter-) models for theories (i.e.
set of formulas) are activities which lie at the very heart of mathematics and
even of science in general.

Maybe the best example illustrating the importance of model building
is the famous problem concerning the “axiom of parallel” and the discovery
of non-Euclidean geometry. The inventors of these geometries proposed
interpretations that are models of the other axioms and counter-models of
the axiom of parallel.

This example is interesting from different points of view, mathematical,

10This topic is of course related to that of computation. To enlighten more and more
the relationships between deduction and computation (as for example in [114]) is of the
highest importance in mechanizing deduction.

11Obviously, algorithmic methods will only work for particular subclasses of this prob-
lem.
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historical and philosophical ones.
Long time before the discovery of non-Euclidean geometry the status of

the axiom of parallel (or 5th postulate) was surrounded by some ”mystery”
and the understanding of its nature in the structure of geometry was in-
triguing. It is therefore not exaggerated to say, in a modern terminology,
that this axiom was an “open problem” since many centuries. In fact, al-
ready in his ”Comments” to the book I of Euclid the Greek mathematician
and astronomer Proclus promoted the idea of the formulation of the axiom
which is most popular nowadays.

A continuous investigation of this axiom can also be found in the Arabic
tradition (from the 9th through the 13th century). The mathematician
and poet O. al Khayyam (9th - 12th century) and the astronomer at-Tusi
were among the most important Arabic scientist who contributed to this
matter. Though they did not contribute, strictly speaking, to non-Euclidean
geometry they should not be forgotten from a historical point of view: al
Khayyam and at-Tusi used in their research the quadrilateral used later
by G. Saccheri and J.H. Lambert (18th century), who first considered the
possibility of negating the 5th postulate. The work of at-Tusi was translated
in Europe at the end of the 17th century.

More or less simultaneously with A-M. Legendre, C.F. Gauss analyzed
this problem in depth, but did not publish anything about his hyperbolic
geometry (according to F. Klein). Independently N.I. Lobatchevski and J.
Bolyai discovered hyperbolic geometry too; but the importance of their work
was not recognized at their time. Indeed, Gauss seems to be the only person
appreciating the work of Lobatchevski.

The other possible geometry (anticipated by Saccheri and Lambert), the
so-called elliptic geometry, was defined later by B. Riemann. Concerning
the history of the problem of parallels see e.g. [205].

The discovery of non-Euclidean geometries has been considered by the
great philosopher and logician H. Putnam in his book Mathematics, Matter
and Method as the most important event in the history of science from an
epistemological point of view, because it “shows” that mathematics and
empirical sciences are not truly disjoints domains, or stated differently, the
mathematical statements are not true in a pure analytical way. 12 Putnam’s
opinion is mentioned because this view is relevant to automated deduction
when approaches like [124, 134, 135, 104, 207, 79] are taken into account.

12A statement (judgement) is true in a pure analytical way if only logical analysis of
the concepts involved in it is necessary to show its truth. Logical analysis does not suffice
to determine the truth of synthetic judgements (as those coming from experience).
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Putnam’s position evolved in time from metaphysical realism towards
(what he called) internal or pragmatic realism. It is interesting to mention
here [100], page 133: But nobody has ever seen the tail of a model, models
are ideal (usually infinite) objects. This kind of statement can be conciliated
with a more realistic view of things. In fact, the ideal objects Girard talks
about can perfectly correspond to the way our minds apprehend (what is
called) the external reality.

In 20th century mathematics, several further important contributions
of this type were made, e.g. the development of nonstandard analysis and
Gödel’s consistency proof of the continuum hypothesis.

Not only the construction of single models but also proving model-
theoretic properties became an important technique in 20th century math-
ematical logic: if a first-order class has the finite model property, then it is
decidable (i.e., the satisfiability problem is decidable); a decision procedure
can be obtained by simultaneously applying a complete first-order refutation
procedure and an enumeration of finite domain interpretations (the inter-
ested reader may consult [31]). Using essentially this principle, Gödel proved
the decidability of the ∀∀∃-class. Gödel’s result also yields an algorithmic
(though inefficient) method of constructing models of the ∀∀∃-class.

In [183] the number of intended models is used to give a very abstract
and deep classification of mathematical theories:

We may distinguish two types of theories, characterizing them
by their intent. In the first type, exemplified by Euclidean geom-
etry, arithmetic and set theory there is a single intended inter-
pretation, a standard model. . . . In the second type of axiomatic
theory, exemplified by group theory and point-set topology, the
purpose and power of the theory lie in the large number of in-
tended models. [183], page 125.

The usefulness of (counter-)models can be also exemplified in simpler
topics, as for example, in showing the non-truth-functionality of modal con-
nectives such as possibility and necessity. In order to prove that some rea-
soning patterns valid in classical logic are not applicable in non-classical
logics, examples (i.e. particular situations or models) are exposed in which,
if subsentences (of a given sentence) are replaced by other sentences with the
same truth value, the overall truth value of the original sentence changes.

Epistemic logic furnishes another example (“. . . Initially, a player may
consider possible all deals consistent with the cards in her hand. . . ”, [88],
page 16).

The list of examples from different domains could be easily enlarged.
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Roughly speaking counter-examples do not have the same reputation as
proofs, because they do not deal with the “general case”, but their mathe-
matical and pedagogical value cannot be overestimated. 13

In particular, counter-examples serve the purpose to convince everybody
of the necessity of each hypothesis in the statement of a theorem. One
major goal of counter-examples is their irreplaceable role in the correction
of wrong intuitions (see for example [111]) or in testing conjectures (see
A. Wiles’ opinion in [124]). This capability is undoubtedly needed for a
deep understanding of proofs (and therefore of mathematics), and surely is
missing in present day theorem provers.

The concept of model is at the heart of the Tarskian notion of logical
consequence (see for example [82] and references therein). It is (implicitly)
also of central importance to probability, for example in the notion of possible
event, i.e. an event that can be realized in an experience, for example to
have 3 points throwing a dice 14.

Already in the early days of automated deduction, model-based inference
was recognized as a powerful tool in proof–search; we just mention the GTM
geometry prover of Gelernter et al. [98] and J. Slagle’s semantic resolution
[196]. Loveland [144] remarks, that already in 1956, “Minsky made the
observation that the diagram that traditionally accompanies plane geometry
problems is a simple model of the theorem that could greatly prune the proof
search.”

Thus besides serving as counterexamples (as in non-Euclidean geometry)
models play an important role in inference itself: they allow introducing se-
mantics into a basically syntactic process. Despite the prominent role of
model-based techniques in the early days of automated deduction, the fol-
lowing phase of research in this field was characterized by optimization of
refinements and the corresponding completeness proofs. Theorem provers
were mainly understood as inference engines producing proofs for provable
sentences; the problem of dealing with nonderivable sentences (represented
by satisfiable sets of clauses in resolution theorem proving), received con-
siderably less attention. Some striking results have been obtained on model
building using techniques exploiting exclusively deductive capabilities of the-
orem provers [210].

That inference systems can do more than just produce proofs was demon-

13Concerning the pedagogical importance of studying topics such as consistency, non-
consequence, independence, the interested reader can consult [12].

14An impossible event, on the contrary, cannot be realized in an experience, for example,
to have 7 points throwing a dice.
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strated by S.Y. Maslov [152] and later by W.J. Joyner [128].15 Maslov con-
structed a computational calculus capable not only of proving theorems but
also of deciding (the validity problem of) first-order sentences belonging to
specific first-order classes. He even proved the decidability of the K-class
by this method, thus obtaining a strong and new mathematical result. On
formulas of the K-class, the calculus, commonly called the inverse method,
produces only finitely many derivations; if none of them is a proof then
the sentence under investigation is not provable at all. Indeed, an inference
system can be used to prove that sentences are not derivable!! Although,
in case of nonderivability, Maslov’s method yields the existence of counter-
models, no such model is actually constructed.

Joyner realized the same idea within the resolution calculus; on some
decidable clause classes (among them clause forms of well-known prenex
classes) specific ordering refinements of resolution terminate and thus pro-
vide decision procedures for these classes. If the refinement terminates with-
out producing the empty clause, then the original set of clauses is satisfiable;
but, as in the case of the inverse method, it does not produce a model.

Not only the inverse method and resolution, but also some Gentzen-type
calculi were designed to provide decision procedures, e.g. Kleene’s G3 for
intuitionistic propositional calculus [131].

So the next step in the “development” of inference systems can be de-
fined as that of model construction. It is the main purpose of this book to
present and analyze such inference systems and to demonstrate their value
to theorem proving and to science in general.

In the same sense that proofs are more than just provability, models are
more than the fact of satisfiability. Indeed, both proofs and models provide
evidence, i.e., they show why statements hold or do not. This underlines the
conceptual value of model construction in general. The problem remains, to
which extent the construction of models can be calculized and automatized
at all. As already pointed out, it is impossible, even theoretically, to realize
“universal” model builders for first-order logic.

However this does not imply that algorithmic model construction is
pointless a priori. On the contrary our aim is to show that automated
model building is a reasonable and even realistic task. Sometimes this task
can be carried out by ordinary resolution theorem provers, in other cases
suitable extensions of the calculi are necessary.

15An obviously much simpler use of inference systems is proposed in [41] to deduce
non-theorems in classical propositional calculus. The author gives a Hilbert system for
non-theorems. The idea is related to that of “non consequence” (see Chapter ??).
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Basically we distinguish two types of methods for model construction:

• enumeration (or verification) based methods: ground instances are se-
quentially generated and checked.

• deduction based methods: new, in general nonground, formulae are
inferred in the model building process. We include here consequence
relations (in the standard sense) as well as others (which we call weakly
sound).

We call the second type of methods symbolic (with the meaning – among
other ones – of representing general patterns). In contrast, the enumeration
methods are called nonsymbolic.

Enumeration can be considered, of course, as a very particular case of
deduction; sometimes a combination of both approaches is the most effective
one (e.g. EQMC method [?, 37], and hyper-linking [50, 51]) 16.

Enumerative model construction corresponds to exhaustive finite do-
main search for models. On the other hand, deductive methods are based
on calculi producing syntactic model representations (mostly of Herbrand
models) in some logical language. In this context we mainly present resolu-
tion, paramodulation and the RAMC-calculus as well as extended versions
of tableaux; all these calculi are also “ordinary” refutational calculi but are
modified in a way to extract more logical information. We do not claim
that, so far, automated model building produced spectacular results; nei-
ther do we suggest that the field is fully developed and established. But we
hope to demonstrate that building models is as important as proving the-
orems and that there exist reasonably efficient algorithmic methods which
can and should be used in the practice of automated theorem proving. We
are convinced that tools for model construction will be part of any standard
theorem prover in the near future. Already in principle, constructing mod-
els and, more generally, model–based inference are crucial to any intelligent
deductive method; the investigation of these mechanisms presents a major
challenge to computer science and logic.

Perhaps the most natural, systematic, and elegant way of building mod-
els (counter-examples) is defined by the tableau method (due to Beth,
Smullyan, Hintikka, . . . see for example [200, 95]), but in practice only trivial
models can be constructed using tableaux (due to nontermination).

16This is in some sense foreseeable: in order to obtain general patterns some partic-
ular features are put aside. When treating a specific problem, taking into account its
particularities may greatly facilitate the solution.
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In order to compare tableaux with the methods presented in this work, it
is worth mentioning that finite models can be found by enumeration. This
feature is particularly relevant when we are interested in effective mecha-
nization.

The book is organized as follows:
The chapters ?? and ??, on deductive and symbolic model building meth-

ods, form the real heart of this book.
In our first approach, we present traditional resolution provers as decision

procedures on particular first-order classes, where model building takes place
as a postprocessing procedure. In particular we present new versions of the
hyperresolution method of C. Fermüller and A. Leitsch and their extension
to equational clause logic (by integrating ordered paramodulation). The
model building procedures are based on deductive closure and unit selection
and do not require any form of backtracking. The objects produced by
these inference procedures are finite set of atoms which can be interpreted as
representations of Herbrand models. In many cases (which are syntactically
characterized), these Herbrand models can be transformed to finite models.
The corresponding transformations are based on the analysis of equivalence
classes of the Herbrand universe and do not require any form of search.

Our second approach to symbolic model building is the constraint based
one. First we present the constraint language, equational logic, in more
detail. Then we show how equational formulae can be transformed to (so
called) equational problems, and we define algorithmic methods (related to
those of Comon and Lescanne) to solve these problems. The constraint lan-
guage provides an extension of clause logic, the so called c-clause logic, where
equational constraints restrict the sets of ground instances. We demonstrate
that in c-clause logic, constraints are not only useful to inference, but are
equally valuable in defining disinference rules, i.e. rules characterizing in-
stances that cannot be inferred from given premises (like disresolution and
dissubsumption). We present the method RAMC by R. Caferra and N.
Zabel, which incorporates these disinference principles into a resolution cal-
culus for c-clauses. The results produced by RAMC are either refutations
of unsatisfiable sets of c-clauses, or else satisfiable sets of unit c-clauses.
We define two versions of RAMC, one with a strong capability for redun-
dancy deletion, and compare these methods to hyperresolution. The original
version of RAMC, having stronger expressive means for model construc-
tion (via the additional use of constraints), suffers from weaker termination
(compared to hyperresolution). It is shown how both methods (which are
incomparable) can be combined for the construction of more powerful model
building algorithms.
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The principle underlying constrained resolution and disinference rules
can be naturally applied to tableaux. We describe the method RAMCET
developed by Caferra, Zabel [40] and Peltier [166], which uses the constraint
language for reducing redundancies. It is based on the use of a semantic
strategy for pruning the search space and on inductive generalization for
detecting potentially infinite branches. An interesting property of RAM-
CET, besides its soundness and refutational completeness, is its complete-
ness w.r.t. the set of models that can be represented by constrained atoms.

In Chapter ?? we address a deep and central problem of symbolic model
building, namely model representation. In enumerative finite model building
this problem is trivial, at least from a theoretical point of view, as models
can be represented by finite tables. In symbolic model building, a formal
expression is needed to define a (generally infinite) model. In case of hy-
perresolution the expression is a conjunction of (closed) atoms, in case of
RAMC a conjunction of constrained atoms. We prove that these represen-
tations enjoy all required computational properties, including algorithmic
clause evaluation and decidability of the equivalence problem; in particular
we present a generalized version of H-subsumption and of the correspond-
ing evaluation algorithm by Fermüller and Leitsch [89]. However, atomic
and constrained atomic representations are not strong enough to cover some
quite simple cases of model specification. Here we mention alternative repre-
sentation mechanisms, like regular tree grammars and term schematizations,
and show how far the formalism can be pushed under preservation of de-
sirable computational properties. In particular, we focus on the evaluation
problem for clauses for different symbolic representations, which is an im-
portant feature of every model building formalism.

The last chapter is devoted to finite model building.
The main theoretical results enlightening conceptual differences between

finite and infinite models are recalled. Different fields are mentioned in which
techniques for finite model building are an important tool. We suggest the
study of a particular class of problems that shed some light on the limits
of enumeration methods and underline the importance of one of the key
concepts studied in the present work, i.e. model representation formalisms.
Several of the most representative approaches to finite model building are
described. Finally, practical results attained with running systems for model
building are evoked.

The areas in which the most important results have been obtained are
Mathematics and Logic. Applications of model building to the semantic
guiding of theorem provers are mentioned. The usefulness of model building
as a help in correcting programs is illustrated by examples coming from
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programming teaching and simple program verification. Both domains show
the potentials as well as the present limits of model building systems.
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Logics in AI, JELIA’96. Springer, 1996.

[14] M. Beeson. Computerizing mathematics: Logic and computation. In
R. Herken, editor, The Universal Turing Machine, A Half-Century
Survey, pages 191–225. Oxford University Press, 1988.

[15] M. J. Beeson. Foundations of constructive mathematics, volume 6 of
Modern surveys in Mathematics. Springer-Verlag, 1985.

[16] E. T. Bell. Men of Mathematics. The lives and achievements of the
great mathematicians from Zeno to Poincaré. Simon and Schuster,
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[199] C. Smoryński. Logical number theory I. An Introduction. Springer-
Verlag, 1991.

[200] R. M. Smullyan. First-Order Logic. Springer, 1968.

[201] S. Stenlund. Combinators, λ-terms and proof theory. Reidel, 1971.

[202] F. Stolzenburg. Loop-detection in hyper-tableaux by powerful model
generation. Journal of Universal Computer Science, 5(3):135–155,
1999.

[203] P. Suppes. A Comparison of the Meaning and Uses of Models in
Mathematics and Empirical Sciences. Synthèse, 12:287–301, 1966.
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