Linearization of certain non-trivial equations in oligomorphic clones

Libor Barto, Michael Kompatscher*, Mirek Olšák, Trung Van Pham, Michael Pinsker

AAA94 & NSAC 2017 - Novi Sad - June 16, 2017

* Theory and Logic group
 TU Wien
CSPs and non-trivial equations
Constraint satisfaction problems

Let $\mathfrak{A} = (A, R_1, \ldots, R_n)$ be a relational structure.

CSP(\mathfrak{A})

INPUT: A primitive positive sentence

$$\phi = \exists x_1 \ldots, x_n R_{i_1}(\ldots) \land \cdots \land R_{i_j}(\ldots)$$

QUESTION: $\mathfrak{A} \models \phi$?
Constraint satisfaction problems

Let $\mathbf{A} = (A, R_1, \ldots, R_n)$ be a relational structure.

CSP(\mathbf{A})

INPUT: A primitive positive sentence

$$\phi = \exists x_1 \ldots, x_n R_{i_1}(\ldots) \land \cdots \land R_{i_j}(\ldots)$$

QUESTION: $\mathbf{A} \models \phi$?

Conjecture (Feder, Vardi ’98; Bulatov, Jeavons, Krokhin ’02)

Let \mathbf{A} be finite and $\text{Pol}(\mathbf{A})$ be idempotent. Then either

1. There is a clone homomorphism $\xi : \text{Pol}(\mathbf{A}) \to 1$
 (and CSP(\mathbf{A}) is NP-complete)
2. or CSP(\mathbf{A}) is in P.

1... projection clone
Let $\mathbb{A} = (A, R_1, \ldots, R_n)$ be a relational structure.

$\text{CSP}(\mathbb{A})$

INPUT: A primitive positive sentence

$$\phi = \exists x_1 \ldots, x_n R_{i_1}(...) \land \cdots \land R_{i_j}(...)$$

QUESTION: $\mathbb{A} \models \phi$?

Conjecture (Feder, Vardi ’98; Bulatov, Jeavons, Krokhin ’02)

Let \mathbb{A} be finite and $\text{Pol}(\mathbb{A})$ be idempotent. Then either

1. There is a clone homomorphism $\xi : \text{Pol}(\mathbb{A}) \to 1$ (and $\text{CSP}(\mathbb{A})$ is NP-complete)
2. or $\text{CSP}(\mathbb{A})$ is in P.

1... projection clone

→ in 2: study of non-trivial equations.
Let C be a finite idempotent clone. Then TFAE:

1. C has no clone homomorphism to $\mathbf{1}$
2. C has a Taylor operation
3. C has a weak near unanimity operation
 \[w(y, x, \ldots, x) = w(x, y, x, \ldots, x) = \ldots = w(x, x, \ldots, y) \]
4. C has a Siggers operation
 \[s(x, y, x, z, y, z) = s(y, x, z, x, z, y) \]
5. C has a cyclic operation
 \[c(x_1, x_2, \ldots, x_n) = c(x_2, \ldots, x_n, x_1) \]
Let C be a finite idempotent clone. Then TFAE:

1. C has no clone homomorphism to 1
2. C has a Taylor operation
3. C has a weak near unanimity operation
 \[w(y, x, \ldots, x) = w(x, y, x, \ldots, x) = \ldots = w(x, x, \ldots, y) \]
4. C has a Siggers operation
 \[s(x, y, x, z, y, z) = s(y, x, z, x, z, y) \]
5. C has a cyclic operation
 \[c(x_1, x_2, \ldots, x_n) = c(x_2, \ldots, x_n, x_1) \]

2-5 are examples of linear non-trivial equations: no nesting
Why linear equations?

In contrast to general equations, linear equations are preserved under all the standard CSP reductions:
Why linear equations?

In contrast to general equations, linear equations are preserved under all the standard CSP reductions:

Wonderland (Barto, Pinsker, Opršal ’15).

Let \mathbb{A} be finite and \mathbb{B} be homomorphic equivalence to some pp-power of \mathbb{A}. Then there is an h1 clone homomorphism $\text{Pol}(\mathbb{A}) \to \text{Pol}(\mathbb{B})$, i.e. a mapping preserving linear equations.
In contrast to general equations, linear equations are preserved under all the standard CSP reductions:

Wonderland (Barto, Pinsker, Opršal ’15).

Let A be finite and B be homomorphic equivalence to some pp-power of A. Then there is an h1 clone homomorphism $\text{Pol}(A) \to \text{Pol}(B)$, i.e. a mapping preserving linear equations.

So the dichotomy conjecture can be rephrased as:
Why linear equations?

In contrast to general equations, linear equations are preserved under all the standard CSP reductions:

Wonderland (Barto, Pinsker, Opršal ’15).

Let \mathbb{A} be finite and \mathbb{B} be homomorphic equivalence to some pp-power of \mathbb{A}. Then there is an h_1 clone homomorphism $\text{Pol}(\mathbb{A}) \to \text{Pol}(\mathbb{B})$, i.e. a mapping preserving linear equations.

So the dichotomy conjecture can be rephrased as:

Conjecture

Let \mathbb{A} be finite. Then either

1. There is an h_1 clone homomorphism $\xi : \text{Pol}(\mathbb{A}) \to 1$ (and $\text{CSP}(\mathbb{A})$ is NP-complete)
2. or $\text{Pol}(\mathbb{A})$ satisfies a non-trivial linear equation and $\text{CSP}(\mathbb{A})$ is in P.
Oligomorphomic clones
The dichotomy conjecture for infinite CSPs

Old conjecture (Bodirsky, Pinsker)
Let \mathbb{A} be a reduct of a finitely bounded homogeneous structure and \mathbb{A}^c its model-complete core. Then either

1. There is a uniformly continuous clone homomorphism $\xi : \text{Pol}(\mathbb{A}^c, a_1, \ldots, a_n) \to 1$ (and CSP(\mathbb{A}) is NP-complete)
2. or CSP(\mathbb{A}) is in P.

New conjecture (Bodirsky, Pinsker, Oprsal)
Let \mathbb{A} be a reduct of a finitely bounded homogeneous structure. Then either

1. There is a uniformly continuous clone homomorphism $\xi : \text{Pol}(\mathbb{A}^c, a_1, \ldots, a_n) \to 1$ (and CSP(\mathbb{A}) is NP-complete)
2. or CSP(\mathbb{A}) is in P.

Main question: Are the conjectures equivalent?
The dichotomy conjecture for infinite CSPs

Old conjecture (Bodirsky, Pinsker)

Let \mathcal{A} be a reduct of a finitely bounded homogeneous structure and \mathcal{A}^c its model-complete core. Then either

1. There is a *uniformly continuous* clone homomorphism $\xi : \text{Pol}(\mathcal{A}^c, a_1, \ldots, a_n) \to 1$ (and CSP(\mathcal{A}) is NP-complete)
2. or CSP(\mathcal{A}) is in P.

2... on every finite subset of A^c non-trivial equations hold

New conjecture (Bodirsky, Pinsker, Oprsal)

Let \mathcal{A} be a reduct of a finitely bounded homogeneous structure. Then either

1. There is a *uniformly continuous* clone homomorphism $\xi : \text{Pol}(\mathcal{A}^c, a_1, \ldots, a_n) \to 1$ (and CSP(\mathcal{A}) is NP-complete)
2. or CSP(\mathcal{A}) is in P.

2... on every finite subset of A^c non-trivial equations hold

Main question: Are the conjectures equivalent?
The dichotomy conjecture for infinite CSPs

Old conjecture (Bodirsky, Pinsker)
Let \mathbb{A} be a reduct of a finitely bounded homogeneous structure and \mathbb{A}^c its model-complete core. Then either

1. There is a *uniformly continuous* clone homomorphism $\xi : \text{Pol}(\mathbb{A}^c, a_1, \ldots, a_n) \to 1$ (and $\text{CSP}(\mathbb{A})$ is NP-complete)
2. or $\text{CSP}(\mathbb{A})$ is in P.

2... on every finite subset of \mathbb{A}^c non-trivial equations hold

New conjecture (Bodirsky, Pinsker, Oprsal)
Let \mathbb{A} be a reduct of a finitely bounded homogeneous structure. Then either

1. There is a *uniformly continuous* h1 clone homomorphism $\xi : \text{Pol}(\mathbb{A}) \to 1$ (and $\text{CSP}(\mathbb{A})$ is NP-complete)
2. or $\text{CSP}(\mathbb{A})$ is in P.
The dichotomy conjecture for infinite CSPs

Old conjecture (Bodirsky, Pinsker)
Let \mathbb{A} be a reduct of a finitely bounded homogeneous structure and \mathbb{A}^c its model-complete core. Then either

1. There is a *uniformly continuous* clone homomorphism $\xi : \text{Pol}(\mathbb{A}^c, a_1, \ldots, a_n) \to \mathbf{1}$ (and CSP(\mathbb{A}) is NP-complete)
2. or CSP(\mathbb{A}) is in \mathbf{P}.

2... on every finite subset of A^c non-trivial equations hold

New conjecture (Bodirsky, Pinsker, Oprsal)
Let \mathbb{A} be a reduct of a finitely bounded homogeneous structure. Then either

1. There is a *uniformly continuous* h1 clone homomorphism $\xi : \text{Pol}(\mathbb{A}) \to \mathbf{1}$ (and CSP(\mathbb{A}) is NP-complete)
2. or CSP(\mathbb{A}) is in \mathbf{P}.

2... on every finite subset of A non-trivial linear equations hold

Main question: Are the conjectures equivalent?
The dichotomy conjecture for infinite CSPs

Old conjecture (Bodirsky, Pinsker)
Let \mathbb{A} be a reduct of a finitely bounded homogeneous structure and \mathbb{A}^c its model-complete core. Then either

1. There is a *uniformly continuous* clone homomorphism $\xi : \text{Pol}(\mathbb{A}^c, a_1, \ldots, a_n) \to 1$ (and CSP(\mathbb{A}) is NP-complete)
2. or CSP(\mathbb{A}) is in P.

2... on every finite subset of \mathbb{A}^c non-trivial equations hold

New conjecture (Bodirsky, Pinsker, Oprsal)
Let \mathbb{A} be a reduct of a finitely bounded homogeneous structure. Then either

1. There is a *uniformly continuous* $h1$ clone homomorphism $\xi : \text{Pol}(\mathbb{A}) \to 1$ (and CSP(\mathbb{A}) is NP-complete)
2. or CSP(\mathbb{A}) is in P.

2... on every finite subset of \mathbb{A} non-trivial linear equations hold

Main question: Are the conjectures equivalent?
In those cases $\text{Aut}(\mathbb{A})$ is **oligomorphic**: The action $\text{Aut}(\mathbb{A}) \acts A^n$ has finitely many orbits for every n.
Non-trivial equations in oligomorphic clones

In those cases $\text{Aut}(\mathbb{A})$ is \textit{oligomorphic}: The action $\text{Aut}(\mathbb{A}) \curvearrowright A^n$ has finitely many orbits for every n.

Theorem (Barto, Pinsker ’16)

\mathcal{C}... oligomorphic clone and model-complete core. Then either

- Some stabilizer $(\mathcal{C}, a_1, \ldots, a_n) \rightarrow 1$ uniformly continuous or
- \mathcal{C} contains a pseudo-Siggers operation s:

$$e_1 \circ s(x, y, x, z, y, z) = e_2 \circ s(y, x, z, x, z, y), \quad e_1, e_2 \in \mathcal{C}.$$
In those cases $\text{Aut}(\mathbb{A})$ is *oligomorphic*:
The action $\text{Aut}(\mathbb{A}) \curvearrowright A^n$ has finitely many orbits for every n.

Theorem (Barto, Pinsker ’16)

\mathcal{C}... oligomorphic clone and model-complete core. Then either

- Some stabilizer $(\mathcal{C}, a_1, \ldots, a_n) \rightarrow 1$ uniformly continuous or
- \mathcal{C} contains a pseudo-Siggers operation s:

$$e_1 \circ s(x, y, x, z, y, z) = e_2 \circ s(y, x, z, x, z, y), \quad e_1, e_2 \in \mathcal{C}.$$

Potential approach

Is $e_1 \circ s(x, y, x, z, y, z) = e_2 \circ s(y, x, z, x, z, y)$ equivalent to a set of linear non-trivial equations?
Linearization with 🎨
Example: the clone of injective functions

For oligomorphic clones: non-trivial equations $\not\rightarrow$ Taylor operations
Example: the clone of injective functions

For oligomorphic clones: non-trivial equations $\not\Rightarrow$ Taylor operations

Example

Let O^{inj} be the clone generated by all injective operations $\mathbb{N}^n \to \mathbb{N}$.
Example: the clone of injective functions

For oligomorphic clones: non-trivial equations $\not\supset$ Taylor operations

Example

Let O^{inj} be the clone generated by all injective operations $\mathbb{N}^n \to \mathbb{N}$.

Let $f(x, y) : \mathbb{N}^2 \to \mathbb{N}$ be a bijection, $f \in O^{\text{inj}}$. Then $e : f(x, y) \to f(y, x)$ is a bijection, $e \in O^{\text{inj}}$.

O^{inj} satisfies the non-trivial equation $f(y, x) = e \circ f(x, y)$.
For oligomorphic clones: non-trivial equations $\not\rightarrow$ Taylor operations

Example

Let O^{inj} be the clone generated by all injective operations $\mathbb{N}^n \to \mathbb{N}$.

Let $f(x, y) : \mathbb{N}^2 \to \mathbb{N}$ be a bijection, $f \in O^{\text{inj}}$. Then $e : f(x, y) \to f(y, x)$ is a bijection, $e \in O^{\text{inj}}$.

O^{inj} satisfies the non-trivial equation $f(y, x) = e \circ f(x, y)$.

But, by injectivity O^{inj} contains no Taylor operation.
Example: the clone of injective functions

For oligomorphic clones: non-trivial equations \nRightarrow Taylor operations

Example
Let O^{inj} be the clone generated by all injective operations $\mathbb{N}^n \to \mathbb{N}$.

Let $f(x, y) : \mathbb{N}^2 \to \mathbb{N}$ be a bijection, $f \in O^{\text{inj}}$. Then $e : f(x, y) \to f(y, x)$ is a bijection, $e \in O^{\text{inj}}$.

O^{inj} satisfies the non-trivial equation $f(y, x) = e \circ f(x, y)$.

But, by injectivity O^{inj} contains no Taylor operation.
\Rightarrow we need more than one operation!
Lemma
Let $k > 2$ and $g_1(x, y), \ldots, g_{2k-1}(x, y) \in \mathcal{C}$. Assume that for every tuple $I = (i_1 < \cdots < i_k)$, there is an $f_I(x_1, \ldots, x_k) \in \mathcal{C}$, such that $\forall n:$

$$f_I(x, \ldots, x, y, x, \ldots, x) = g_{i_n}(x, y).$$

Then this set of linear equations is non-trivial.
Lemma
Let $k > 2$ and $g_1(x, y), \ldots, g_{2k-1}(x, y) \in C$. Assume that for every tuple $I = (i_1 < \cdots < i_k)$, there is an $f_I(x_1, \ldots, x_k) \in C$, such that $\forall n$:

$$f_I(x, \ldots, x, y, x, \ldots, x) = g_{i_n}(x, y).$$

Then this set of linear equations is non-trivial.

Proof
Assume there is a clone homomorphism $\xi : C \to 1$. For the binary functions $g_i(x, y)$, there are only two possible images $\pi_1^2(x, y)$ and $\pi_2^2(x, y)$.
Lemma

Let \(k > 2 \) and \(g_1(x, y), \ldots, g_{2k-1}(x, y) \in C \). Assume that for every tuple \(l = (i_1 < \cdots < i_k) \), there is an \(f_l(x_1, \ldots, x_k) \in C \), such that \(\forall n : \)

\[
f_l(x, \ldots, x, y^\uparrow_n, x, \ldots, x) = g_{i_n}(x, y).
\]

Then this set of linear equations is non-trivial.

Proof

Assume there is a clone homomorphism \(\xi : C \to 1 \). For the binary functions \(g_i(x, y) \), there are only two possible images \(\pi_1^2(x, y) \) and \(\pi_2^2(x, y) \).

By there is an \(l \), with \(\xi(g_i(x, y)) = \text{const.} \).
Lemma

Let $k > 2$ and $g_1(x, y), \ldots, g_{2k-1}(x, y) \in C$. Assume that for every tuple $I = (i_1 < \cdots < i_k)$, there is an $f_I(x_1, \ldots, x_k) \in C$, such that $\forall n$:

$$f_I(x, \ldots, x, y, \uparrow n, x, \ldots, x) = g_{i_n}(x, y).$$

Then this set of linear equations is non-trivial.

Proof

Assume there is a clone homomorphism $\xi : C \to 1$. For the binary functions $g_i(x, y)$, there are only two possible images $\pi_1^2(x, y)$ and $\pi_2^2(x, y)$.

By there is an I, with $\xi(g_{i_j}(x, y)) = \text{const.}$

But then $\xi(f_I(x_1, \ldots, x_k))$ cannot be a projection!
Examples of CSP classifications

Successful CSP classifications for reducts of finitely bounded homogeneous structures:

- $(\mathbb{N}, =)$ (Equality CSPs; Bodirsky, Kára '06)
- $(\mathbb{Q}, <)$ (Temporal CSPs; Bodirsky, Kára '08)
- the random graph (Graph-SAT problems; Bodirsky, Pinsker '11)
- the random partial order (Poset-SAT problems; K, Pham '16)
Examples of CSP classifications

Successful CSP classifications for reducts of finitely bounded homogeneous structures:

- $(\mathbb{N}, =)$ (Equality CSPs; Bodirsky, Kára ’06)
- $(\mathbb{Q}, <)$ (Temporal CSPs; Bodirsky, Kára ’08)
- the random graph (Graph-SAT problems; Bodirsky, Pinsker ’11)
- the random partial order (Poset-SAT problems; K, Pham ’16)

Theorem (BKOPP ’16)
If \mathbb{A} is a reduct of one of the above then either

- $\text{Pol}(\mathbb{A}^c, a_1, \ldots, a_n) \rightarrow 1$ and $\text{CSP}(\mathbb{A})$ is NP-complete
- or $\text{Pol}(\mathbb{A})$ satisfies a set of non-trivial linear equations \Rightarrow and $\text{CSP}(\mathbb{A})$ is in P
Theorem (pseudo-nu operations)
Let \mathbb{D} be a finitely bounded homogeneous structure, and let f be a strong polymorphism of \mathbb{D} with

$$e(x) = e_1 \circ f(y, x \ldots, x) = e_2 \circ f(x, y, x \ldots, x) = \ldots = e_n \circ f(x, \ldots, x, y).$$

Then, f induces non-trivial linear equations.
Theorem (pseudo-nu operations)
Let \mathcal{D} be a finitely bounded homogeneous structure, and let f be a strong polymorphism of \mathcal{D} with

$$e(x) = e_1 \circ f(y, x \ldots, x) = e_2 \circ f(x, y, x \ldots, x) = \ldots = e_n \circ f(x, \ldots, x, y).$$

Then, f induces non-trivial linear equations.

Theorem (totally symmetric operations)
Let \mathcal{A} be a reduct of a finitely bounded homogeneous structure \mathcal{D}, k big enough and let $f(x_1, \ldots, x_k) \in \text{Pol}(\mathcal{A})$ be totally symmetric modulo outer embeddings of \mathcal{D}: $\forall \rho \in \text{Sym}(k)$:

$$e_{1,\rho} f(x_1, \ldots, x_k) = e_{2,\rho} f(x_{\rho(1)}, \ldots, x_{\rho(k)})$$

Then Pol(\mathcal{A}) contains a set of non-trivial linear equations.
More linearization

Theorem (pseudo-nu operations)
Let \mathbb{D} be a finitely bounded homogeneous structure, and let f be a strong polymorphism of \mathbb{D} with

$$e(x) = e_1 \circ f(y, x \ldots, x) = e_2 \circ f(x, y, x \ldots, x) = \ldots = e_n \circ f(x, \ldots, x, y).$$

Then, f induces non-trivial linear equations.

Theorem (totally symmetric operations)
Let \mathbb{A} be a reduct of a finitely bounded homogeneous structure \mathbb{D}, k big enough and let $f(x_1, \ldots, x_k) \in \text{Pol}(\mathbb{A})$ be totally symmetric modulo outer embeddings of \mathbb{D}: $\forall \rho \in \text{Sym}(k)$:

$$e_{1, \rho} f(x_1, \ldots, x_k) = e_{2, \rho} f(x_{\rho(1)}, \ldots, x_{\rho(k)}).$$

Then $\text{Pol}(\mathbb{A})$ contains a set of non-trivial linear equations.

Note: assumptions on the structural side!
The two conjectures are equivalent.
The bad news

The bad news (BKOPP ’16)

For \mathbb{B}, the countable atomless Boolean algebra (extended by \neq):

- $\text{Pol}(\mathbb{B})$ satisfies the equation $e_1 \circ f(x, y) = e_2 \circ f(y, x)$ and
- there is a uniformly continuous h1-clone homomorphism $\xi : \text{Pol}(\mathbb{B}) \to 1$.
The bad news (BKOPP ’16)
For \mathbb{B}, the countable atomless Boolean algebra (extended by \neq):

- $\text{Pol}(\mathbb{B})$ satisfies the equation $e_1 \circ f(x, y) = e_2 \circ f(y, x)$ and
- there is a uniformly continuous $h1$-clone homomorphism $\xi: \text{Pol}(\mathbb{B}) \rightarrow 1$.

Here $\text{Pol}(\mathbb{B})$ is oligomorphic, but \mathbb{B} is not reduct of a finitely bounded homogeneous structure:
The bad news (BKOPP ’16)

For \mathbb{B}, the countable atomless Boolean algebra (extended by \neq):

- $\text{Pol}(\mathbb{B})$ satisfies the equation $e_1 \circ f(x, y) = e_2 \circ f(y, x)$ and
- there is a uniformly continuous h_1-clone homomorphism $\xi : \text{Pol}(\mathbb{B}) \to 1$.

Here $\text{Pol}(\mathbb{B})$ is oligomorphic, but \mathbb{B} is not reduct of a finitely bounded homogeneous structure:

$\text{Aut}(\mathbb{B})$ has double exponential orbit growth.
The good news (BKOPP ’16)

Let \mathcal{A} be such that $\text{Pol}(\mathcal{A})$ is oligomorphic, mc core and

- $\text{Pol}(\mathcal{A})$ has a pseudo-Siggers operation and
- there is a uniformly continuous $h1$-clone homomorphism $\xi : \text{Pol}(\mathcal{A}) \to 1$.

Then $\text{Aut}(\mathcal{A})$ has at least double exponential orbit growth.
The good news (BKOPP ’16)

Let \mathcal{A} be such that $\text{Pol}(\mathcal{A})$ is oligomorphic, mc core and

- $\text{Pol}(\mathcal{A})$ has a pseudo-Siggers operation and
- there is a uniformly continuous h_1-clone homomorphism $\xi : \text{Pol}(\mathcal{A}) \to 1$.

Then $\text{Aut}(\mathcal{A})$ has at least double exponential orbit growth.

The orbit growth of reducts of finitely bounded homogeneous structures has orbit growth $\leq 2^{p(n)}$.
The good news (BKOPP ’16)

Let \mathbb{A} be such that $\text{Pol}(\mathbb{A})$ is oligomorphic, mc core and

- $\text{Pol}(\mathbb{A})$ has a pseudo-Siggers operation and
- there is a uniformly continuous h_1-clone homomorphism $\xi : \text{Pol}(\mathbb{A}) \to 1$.

Then $\text{Aut}(\mathbb{A})$ has at least double exponential orbit growth.

The orbit growth of reducts of finitely bounded homogeneous structures has orbit growth $\leq 2^{p(n)}$.

Corollary: The two conjectures are equivalent!
1. Under which structural assumptions can we linearize pseudo-Siggers operations?
1. Under which structural assumptions can we linearize pseudo-Siggers operations?
2. Understand better the relation between equations in $\text{Pol}(A)$ and orbit growth of $\text{Aut}(A)$.
Questions

1. Under which structural assumptions can we linearize pseudo-Siggers operations?
2. Understand better the relation between equations in $\text{Pol}(\mathbb{A})$ and orbit growth of $\text{Aut}(\mathbb{A})$.
3. When does $\xi : \text{Pol}(\mathbb{A}) \to 1$ h1-clone homomorphism imply that there is also a uniformly continuous $\xi' : \text{Pol}(\mathbb{A}) \to 1$?
Libor Barto, Michael Kompatscher, Mirek Olšák, Trung Van Pham, Michael Pinsker

Equations in oligomorphic clones and the Constraint Satisfaction Problem for ω-categorical structures

arXiv:1612.07551
Thank you!