Endomorphism monoids of ω-categorical structures

Michael Kompatscher

michaelkompatscher@hotmail.com

Institute of Computer Languages
Technische Universität Wien

TACL - 24/06/2015
A structure is called \(\omega \text{-categorical} \) iff its theory has exactly one countable model.
A structure is called ω-categorical iff its theory has exactly one countable model.

Theorem (Ryll-Nardzewski '59)

A countable structure \mathcal{A} is ω-categorical

- iff $\text{Aut}(\mathcal{A})$ is oligomorphic:
 Every action $\text{Aut}(\mathcal{A}) \curvearrowright A^n$ has only finitely many orbits.
A structure is called \(\omega \text{-categorical} \) iff its theory has exactly one countable model.

Theorem (Ryll-Nardzewski '59)

A countable structure \(\mathcal{A} \) is \(\omega \text{-categorical} \)

- iff \(\text{Aut}(\mathcal{A}) \) is **oligomorphic**: Every action \(\text{Aut}(\mathcal{A}) \curvearrowright A^n \) has only finitely many orbits.
- Definable relations = unions of orbits
A structure is called \(\omega \)-categorical iff its theory has exactly one countable model.

Theorem (Ryll-Nardzewski '59)

A countable structure \(\mathcal{A} \) is \(\omega \)-categorical

- iff \(\text{Aut}(\mathcal{A}) \) is **oligomorphic**: Every action \(\text{Aut}(\mathcal{A}) \acts \mathcal{A}^n \) has only finitely many orbits.
- Definable relations = unions of orbits

Countable, \(\omega \)-cat. structures \(\mathcal{A} \) and \(\mathcal{B} \) are interdefinable iff

\[
\text{Aut}(\mathcal{A}) = \text{Aut}(\mathcal{B})
\]
A surjective partial function \(I : \mathcal{A}^n \rightarrow \mathcal{B} \) is called an interpretation iff every preimage of a relation in \(\mathcal{B} \) is definable in \(\mathcal{A} \).
A surjective partial function \(I : \mathcal{A}^n \to \mathcal{B} \) is called an interpretation iff every preimage of a relation in \(\mathcal{B} \) is definable in \(\mathcal{A} \).

Theorem (Ahlbrandt and Ziegler ’86)

Two countable \(\omega \)-categorical structures \(\mathcal{A}, \mathcal{B} \) are bi-interpretable iff

\[
\text{Aut}(\mathcal{A}) \cong T \text{ Aut}(\mathcal{B})
\]

with the topology of pointwise convergence.
A surjective partial function $I : \mathcal{A}^n \to \mathcal{B}$ is called an interpretation iff every preimage of a relation in \mathcal{B} is definable in \mathcal{A}.

Theorem (Ahlbrandt and Ziegler '86)

Two countable ω-categorical structures \mathcal{A}, \mathcal{B} are bi-interpretable iff

$$\text{Aut}(\mathcal{A}) \cong_{T} \text{Aut}(\mathcal{B})$$

with the topology of pointwise convergence.

- What about $\text{Aut}(\mathcal{A})$ as abstract group?
Interpretability

A surjective partial function \(I : \mathcal{A}^n \to \mathcal{B} \) is called an \textit{interpretation} iff every preimage of a relation in \(\mathcal{B} \) is definable in \(\mathcal{A} \).

\textbf{Theorem (Ahlbrandt and Ziegler '86)}

Two countable \(\omega \)-categorical structures \(\mathcal{A}, \mathcal{B} \) are \textit{bi-interpretable} iff

\[
\text{Aut}(\mathcal{A}) \cong_T \text{Aut}(\mathcal{B})
\]

with the topology of pointwise convergence.

- What about \(\text{Aut}(\mathcal{A}) \) as abstract group?
- Can we \textit{reconstruct} the topology of \(\text{Aut}(\mathcal{A}) \)?
Versions of interpretability

More refined notion of interpretability with:
Versions of interpretability

More refined notion of interpretability with:

- The **endomorphisms monoid** \(\text{End}(\mathcal{A}) \):
 All the homomorphisms \(h : \mathcal{A} \to \mathcal{A} \)
More refined notion of interpretability with:

- The **endomorphisms monoid** $\text{End}(\mathcal{A})$:
 All the homomorphisms $h : \mathcal{A} \rightarrow \mathcal{A}$

- The **polymorphism clone** $\text{Pol}(\mathcal{A})$:
 All the homomorphism $h : \mathcal{A}^n \rightarrow \mathcal{A}$ for $1 \leq n < \omega$
Versions of interpretability

More refined notion of interpretability with:

- **The endomorphisms monoid** $\text{End}(\mathcal{A})$: All the homomorphisms $h : \mathcal{A} \to \mathcal{A}$

- **The polymorphism clone** $\text{Pol}(\mathcal{A})$: All the homomorphism $h : \mathcal{A}^n \to \mathcal{A}$ for $1 \leq n < \omega$

<table>
<thead>
<tr>
<th></th>
<th>acting on \mathcal{A}</th>
<th>topologically</th>
<th>abstract</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{Aut}(\mathcal{A})$</td>
<td>first-order interdefinability</td>
<td>first-order bi-interpretability</td>
<td></td>
</tr>
<tr>
<td>$\text{End}(\mathcal{A})$</td>
<td>positive existential interdefinability</td>
<td>positive existential bi-interpretability*</td>
<td></td>
</tr>
<tr>
<td>$\text{Pol}(\mathcal{A})$</td>
<td>primitive positive interdefinability</td>
<td>primitive positive bi-interpretability</td>
<td></td>
</tr>
</tbody>
</table>
Versions of interpretability

More refined notion of interpretability with:

- The **endomorphisms monoid** $\text{End}(\mathcal{A})$: All the homomorphisms $h : \mathcal{A} \to \mathcal{A}$
- The **polymorphism clone** $\text{Pol}(\mathcal{A})$: All the homomorphism $h : \mathcal{A}^n \to \mathcal{A}$ for $1 \leq n < \omega$

<table>
<thead>
<tr>
<th></th>
<th>acting on \mathcal{A}</th>
<th>topologically</th>
<th>abstract</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{Aut}(\mathcal{A})$</td>
<td>first-order interdefinability</td>
<td>first-order bi-interpretability</td>
<td>?</td>
</tr>
<tr>
<td>$\text{End}(\mathcal{A})$</td>
<td>positive existential interdefinability</td>
<td>positive existential bi-interpretability*</td>
<td>?</td>
</tr>
<tr>
<td>$\text{Pol}(\mathcal{A})$</td>
<td>primitive positive interdefinability</td>
<td>primitive positive bi-interpretability</td>
<td>?</td>
</tr>
</tbody>
</table>
Questions

Can we reconstruct the topology of a closed oligomorphic
- permutation group
- transformation monoid
- function clone
from its abstract algebraic structure?

No! (Evans + Hewitt '90; Bodirsky + Evans + Pinsker + MK '15)
Reconstruction

Questions

Can we reconstruct the topology of a closed oligomorphic
- permutation group
- transformation monoid
- function clone
from its abstract algebraic structure?

No!
(Evans + Hewitt ’90; Bodirsky + Evans + Pinsker + MK ’15)
Is there *any* closed subgroup of S_ω without reconstruction?
Profinite groups without reconstruction

Is there any closed subgroup of S_ω without reconstruction?

ZF+DC is consistent with the statement that every isomorphism between closed subgroups of S_ω is a homeomorphism.
Profinite groups without reconstruction

Is there *any* closed subgroup of S_ω without reconstruction?

ZF+DC is consistent with the statement that every isomorphism between closed subgroups of S_ω is a homeomorphism.

So from now on work in ZFC.
Profinite groups without reconstruction

Is there any closed subgroup of S_ω without reconstruction?

ZF+DC is consistent with the statement that every isomorphism between closed subgroups of S_ω is a homeomorphism.

So from now on work in ZFC.

Profinite groups are closed permutation groups where every orbits contains finitely many elements.

Example (Witt ’54)

There are two separable profinite groups G, G' that are isomorphic, but not topologically isomorphic.
Encoding profinite groups with oligomorphic groups

Lift the result to oligomorphic groups:
Lift the result to oligomorphic groups:

Lemma (Hrushovski)

There is a oligomorphic Φ such that for every separable profinite group R there is an oligomorphic Σ_R:

1. $\Sigma_R/\Phi \cong_T R$.
2. Φ is the intersection of open subgroups of finite index in Σ_R.

Encoding profinite groups with oligomorphic groups
Lift the result to oligomorphic groups:

Lemma (Hrushovski)

There is a oligomorphic Φ such that for every separable profinite group R there is an oligomorphic Σ_R:

- $\Sigma_R/\Phi \cong_T R$.
- Φ is the intersection of open subgroups of finite index in Σ_R.

Proof idea: $R \leq \prod_{n \geq 1} \text{Sym}(n)$.

Encoding profinite groups with oligomorphic groups
Lift the result to oligomorphic groups:

Lemma (Hrushovski)

There is a oligomorphic Φ such that for every separable profinite group R there is an oligomorphic $Σ_R$:

- $Σ_R/Φ \cong_T R$.
- $Φ$ is the intersection of open subgroups of finite index in $Σ_R$.

Proof idea: $R \leq \prod_{n \geq 1} \text{Sym}(n)$.

Look at finite sets. Partition the n-tuples into partition classes $P^n_1, P^n_2, \ldots P^n_n$ for all $n \geq 1$. This gives us a Fraïssé-class.
Encoding profinite groups with oligomorphic groups

Let $\mathcal{A} = (A, (P^n_i)_{i,n})$ be the Fraïssé-limit; $\Phi = \text{Aut}(\mathcal{A})$
Let $\mathcal{A} = (A, (P^n_i)_{i,n})$ be the Fraïssé-limit; $\Phi = \text{Aut}(\mathcal{A})$

Forget about the labelling \rightarrow equivalence relations E^n
Let $\mathcal{A} = (A, (P^n_i)_{i,n})$ be the Fraïssé-limit; $\Phi = \text{Aut}(\mathcal{A})$.

Forget about the labelling \rightarrow equivalence relations E^n

$\Sigma = \text{Aut}(A, (E^n)_{n \in \mathbb{N}})$
Let $\mathcal{A} = (A, (P^n_i)_{i,n})$ be the Fraïssé-limit; $\Phi = \text{Aut}(\mathcal{A})$.

Forget about the labelling \rightarrow equivalence relations E^n
$\Sigma = \text{Aut}(A, (E^n)_{n\in\mathbb{N}})$

We can think of Σ acting on the partition classes $P^n_1, P^n_2, \ldots P^n_n$.
Let $\mathcal{A} = (A, (P^n_i)_{i,n})$ be the Fraïssé-limit; $\Phi = \text{Aut}(\mathcal{A})$

Forget about the labelling \to equivalence relations E^n
$\Sigma = \text{Aut}(A, (E^n)_{n \in \mathbb{N}})$

We can think of Σ acting on the partition classes $P^n_1, P^n_2, \ldots P^n_n$.

This gives us $\Sigma/\Phi \cong^T \prod_{n \in \mathbb{N}} \text{Sym}(n)$. \square
Permutation groups

Idea

Use the encoding lemma to show:

\[G \cong T \Rightarrow \Sigma G \cong T \Sigma G' \]

\[G \cong G' \Rightarrow \Sigma G \cong \Sigma G' \]

Problem: We do not know if \(\Sigma G \cong \Sigma G' \) for \(G \cong G' \).

The real proof deviates from the above.
Idea

Use the encoding lemma to show:

\[G \not\cong_T G' \implies \Sigma_G \not\cong_T \Sigma_{G'} \]
Permutation groups

Idea

Use the encoding lemma to show:

\[G \not\cong_T G' \Rightarrow \Sigma_G \not\cong_T \Sigma_{G'} \]
\[G \cong G' \Rightarrow \Sigma_G \cong \Sigma_{G'} \]
Permutation groups

Idea

Use the encoding lemma to show:

\[G \not\cong_T G' \Rightarrow \Sigma G \not\cong_T \Sigma G' \]
\[G \cong G' \Rightarrow \Sigma G \cong \Sigma G' \]

Problem: We do not know if \(\Sigma G \cong \Sigma G' \) for \(G \cong G' \).
Permutation groups

Idea

Use the encoding lemma to show:

\[
G \not\cong_T G' \Rightarrow \Sigma_G \not\cong_T \Sigma_{G'}
\]

\[
G \cong G' \Rightarrow \Sigma_G \cong \Sigma_{G'}
\]

Problem: We do not know if \(\Sigma_G \cong \Sigma_{G'}\) for \(G \cong G'\).

The real proof deviates from the above.
Lifting to the monoid closure

Let $\overline{\Sigma_R}$ be the topological closure of Σ_R in ω^ω.
Lifting to the monoid closure

Let \(\Sigma_R \) be the topological closure of \(\Sigma_R \) in \(\omega^\omega \).

Lemma

The quotient homomorphism \(\Sigma_R \to R \) extends to a continuous monoid homomorphism

\[
\Sigma_R \to R \text{ with kernel } \Phi.
\]
Lifting to the monoid closure

Let Σ_R be the topological closure of Σ_R in ω^ω.

Lemma

The quotient homomorphism $\Sigma_R \to R$ extends to a continuous monoid homomorphism $\Sigma_R \to R$ with kernel Φ.

We get:

Result for monoids

Σ_G and $\Sigma_{G'}$ are isomorphic, but not topologically isomorphic.
Oligomorphic clones

Observation

Let $I : \Gamma \to \Delta$ be a monoid homomorphism. If I sends constants to constants, it has a natural extension to a clone homomorphism $	ext{Clo}(\Gamma) \to \text{Clo}(\Delta)$.

Result for clones

The clones $\text{Clo}(\Sigma G)$ and $\text{Clo}(\Sigma G')$ are isomorphic but not topologically isomorphic.

This answers a question by Bodirsky, Pinsker and Pongrácz.
Oligomorphic clones

Observation
Let $I : \Gamma \rightarrow \Delta$ be a monoid homomorphism. If I sends constants to constants, it has a natural extension to a clone homomorphism $\text{Clo}(\Gamma) \rightarrow \text{Clo}(\Delta)$.

Result for clones
The clones $\text{Clo}(\Sigma_G)$ and $\text{Clo}(\Sigma_{G'})$ are isomorphic but not topologically isomorphic.
Oligomorphic clones

Observation

Let \(I : \Gamma \to \Delta \) be a monoid homomorphism. If \(I \) sends constants to constants, it has a natural extension to a clone homomorphism \(\text{Clo}(\Gamma) \to \text{Clo}(\Delta) \).

Result for clones

The clones \(\text{Clo}(\Sigma_G) \) and \(\text{Clo}(\Sigma_{G'}) \) are isomorphic but not topologically isomorphic.

This answers a question by Bodirsky, Pinsker and Pongrác.
Thank you!