
Termination of Lazy Rewriting Revisited

Felix Schernhammer and Bernhard Gramlich

TU Wien, Austria, email: {felixs,gramlich}@logic.at

Abstract

Lazy rewriting is a proper restriction of term rewriting that dynamically restricts the reduction of certain
arguments of functions in order to obtain termination. In contrast to context-sensitive rewriting reductions
at such argument positions are not completely forbidden but delayed. Based on the observation that the
only existing (non-trivial) approach to prove termination of such lazy rewrite systems is flawed, we develop
a modified approach for transforming lazy rewrite systems into context-sensitive ones that is sound and
complete with respect to termination.

1 Introduction

In functional programming languages, evaluations are often carried out in a lazy

fashion. This means that in the evaluation of an expression, the result of certain

subexpressions is not computed until it is known that the particular result is actually

needed. A very similar idea is used in lazy rewriting ([FKW00]) where the reduction

of certain subterms is delayed as long as possible.

Initially, lazy rewriting was introduced by [FKW00] in a graph rewriting setting

(although the basic underlying idea is much older, cf. e.g. [FW76], [Str89], [Pv93]).

However, for the termination analysis of lazy rewrite systems it is favorable to

consider term rewriting instead of graph rewriting. Therefore, we will use the

notion of lazy rewriting introduced in [Luc02b].

Restrictions of term rewriting have been studied over the last decades and

have been used both for practical implementations of specification languages (cf.

e.g. strategy annotations in Maude [CDE+03]) and for theoretical results (cf. e.g.

[Luc98,Luc06], [GL06]). Some of the most sophisticated approaches like on-demand

rewriting ([Luc01]) and rewriting with on-demand strategy annotations ([AEGL03])

incorporate lazy evaluation features. Thus, a better understanding of lazy rewrit-

ing may contribute to an improved understanding and analysis of these more recent

approaches.

In [Luc02b] a transformation from lazy rewrite systems into context-sensitive

ones was proposed, which was supposed to preserve non-termination and conjec-

tured to be complete w.r.t. termination. Unfortunately, a counterexample (see Ex-

ample 3.3 below) proves that this transformation is unsound w.r.t. termination. In

this paper we repair the transformation and prove both soundness and completeness

of the new transformation w.r.t. termination.

In Section 2 of this paper we will give basic definitions and introduce basic nota-

tions of lazy rewriting. In Section 3 we introduce the transformation of [Luc02b] and

give a counterexample to its soundness w.r.t. termination. We propose a modified

version of the transformation which is proved to be sound and complete w.r.t. ter-

mination. Section 4 contains a discussion of the presented results and concludes. 1

2 Preliminaries

We assume familiarity with the basic concepts and notations in term rewriting as

well as context-sensitive term rewriting as provided for instance in [BN98,Luc98].

As in [FKW00] and [Luc02b] we are concerned with left-linear lazy rewrite sys-

tems in this work.

General assumption: Throughout the paper we assume that all lazy rewrite

systems are left-linear 2 and finite.

Lazy rewriting operates on labelled terms. Each function and variable symbol

of a term has either an eager label e or a lazy label l which we will write as

superscripts. So given a signature Σ = {f1, ..., fn}, we consider a new signature

Σ′ = {f e1 , f l1, ..., f en, f ln}. We denote by V ′ the set of labelled variables, so T (Σ′, V ′)
is the set of labelled terms of a labelled signature Σ′. Following [Luc02b] we use a

replacement map µ to specify for each function f ∈ Σ which arguments should be

evaluated eagerly. Given a replacement map µ we define the canonical labelling of

terms as a mapping labelµ : T (Σ, V)→ T (Σ′, V ′), where Σ′ is the labelled signature

and V ′ are the labelled variables [Luc02b]:

labelµ(t) = labeleµ(t)

labelαµ(x) = xα(α ∈ {e, l})
labelαµ(f(t1, ..., tn)) = fα(labelα1

µ (t1), ..., labelαnµ (tn))

where αi = e if i ∈ µ(f), l otherwise, and α ∈ {e, l}
Given a labelled term t, the unlabelled term erase(t) is constructed from t by

omitting all labels. A position p of a term t is said to be eager (resp. lazy), if

the symbol at the root of the subterm starting at position p of t has an eager

(resp. lazy) label. Note that the lazy positions of a term are not the same as the

non-replacing positions in context-sensitive rewriting. The reason is that in lazy

rewriting eager positions may occur below lazy ones whereas in context-sensitive

rewriting all positions which are below a non-replacing position are non-replacing.

However, rewrite steps may only be performed at so-called active positions. A

position p is called active if all positions on the path from the root to p are eager.

Definition 2.1 ([Luc02b], [FKW00]) The active positions of a labelled term t

(denoted Act(t)) are recursively defined as follows.

• the root position ε of t is active

• if p is an active position and position p.i is eager, then position p.i is active.

1 Due to lack of space, the proofs of some auxiliary results (Propositions 3.7, 3.8 and 3.9 and Lemmata
3.13, 3.14, 3.19, 3.20 and 3.21 have been omitted here. They can be found in the full version of the paper
at http://www.logic.at/people/schernhammer/papers/wrs07-long.pdf.
2 Nevertheless, for clarity we will mention this assumption in the main results.

29

Note that given an unlabelled term t and a replacement map µ, the active posi-

tions of labelµ(t) are exactly the replacing positions w.r.t. context-sensitive rewrit-

ing.

Definition 2.2 ([Luc02b], [FKW00]) Let l ∈ T (Σ, V) be linear, t ∈ T (Σ′, V ′)
be a labelled term and let p be an active position of t. Then l matches t|p modulo

laziness if either

• l ∈ V or

• If l = f(l1, ..., ln) and t|p = f e(tα1 , ..., t
α
n) (α ∈ {e, l}), then for all eager subterms

tei , li matches modulo laziness tei .

If tli at positions p.i is a lazy subterm and li 6∈ V , then position p.i is called essential.

When writing te (resp. tl) we mean that the term t has an eager (resp. lazy) root

label. Informally, a matching modulo laziness is a partial matching ignoring (possi-

ble) clashes at lazy positions. Positions where such clashes occur may be activated

(i.e., their label may be changed from lazy to eager).

Definition 2.3 ([Luc02b]) Let R = (Σ, R) be a (left-linear) TRS. Let t be a la-

belled term and let l be the left-hand side of a rule of R. If l matches modulo laziness

t|p, and this matching gives rise to an essential position p.i (t|p.i = f l(t1, ..., tn)),

then t
A→ t[f e(t1, ..., tn)]p.i. The relation

A→ is called activation relation.

Definition 2.4 ([Luc02b]) Let l be the (linear) left-hand side of a rewrite rule

and let t be a labelled term. If l matches erase(t), then the mapping σl,t : V ar(l)→
T (Σ′, V ′) is defined as follows. For all x ∈ V , with l|q = x : σl,t(x) = t|q.

Informally, σl,t is the matcher when matching l against t, where one adds the

appropriate labels of t.

This substitution is modified to operate on labelled terms in the following way,

yielding the mapping σ : V ′ → T (Σ′, V ′) [Luc02b]:

σ(xe) =




ye

f e(t1, ..., tn)

if σl,u(x) = yα ∈ V ′

if σl,u(x) = fα(t1, ..., tn)

σ(xl) =




yl

f l(t1, ..., tn)

if σl,u(x) = yα ∈ V ′

if σl,u(x) = fα(t1, ..., tn)

σ is homeomorphically extended to a mapping T (Σ′, V ′)→ T (Σ′, V ′) as usual.

Definition 2.5 ([Luc02b]) Let R = (Σ, R) be a (left-linear) TRS with replace-

ment map µ. The active rewrite relation
R→µ: T (Σ′, V ′) × T (Σ′, V ′) is defined as

follows: Let t be a labelled term such that the left-hand side of a rewrite rule l → r

matches erase(t|p) with σl,t|p and let p ∈ Act(t). Then t
R→µ t[σ(labelµ(r))]p.

Informally, the active rewrite relation
R→µ performs rewrite steps according to

rewrite rules as usual at active positions, where labels are considered. The lazy

rewrite relation
LR→µ is the union of the activation relation and the active rewrite

relation.

30

Definition 2.6 ([Luc02b]) Let R be a (left-linear) TRS and let µ be a replacement

map for R. The lazy rewrite relation
LR→µ induced by (R, µ) is the union of the two

relations
A→ and

R→µ (
LR→µ=

A→ ∪ R→µ).

Definition 2.7 Let R be a TRS with a replacement map µ. Then R is LR(µ)-

terminating if there is no infinite
LR→µ-sequence starting from a term t, whose la-

belling is canonical or more liberal (i.e., whenever labelµ(erase(t))|p is eager, then

t|p is eager as well).

Informally, we call a labelled term t more liberal than its canonically labelled ver-

sion labelµ(erase(t)) if it has strictly more eager labels. The reason for considering

terms with canonical or more liberal labelling in the definition of LR(µ)-termination,

is that only such terms appear in lazy reduction sequences starting from canonically

labelled terms, in which we are actually interested.

Note that LR(µ)-termination and well-foundedness of
LR→µ do not coincide in general.

Example 2.8 Consider the TRS g(f(a), c) → a, h(x, f(b)) → g(x, h(x, x)) with a

replacement map µ(f) = µ(g) = {1} and µ(h) = {1, 2}. This system is LR(µ)-

terminating. This can be shown with the transformation of Definition 3.6 and The-

orem 3.22. However,
LR→µ is not well-founded:

ge(f e(bl), hl(f e(bl), f e(bl)))
LR→µ g

e(f e(bl), he(f e(bl), f e(bl)))

LR→µ g
e(f e(bl), ge(f e(bl), hl(f e(bl), f e(bl))))

LR→µ

3 Transforming Lazy Rewrite Systems

We start with the definition of the transformation of [Luc02b], because it provides

the basic ideas for our new one. The main idea of the transformation is to ex-

plicitly mimic activation steps of lazy rewriting through special activation rules in

the transformed system which basically exchange function symbols to make them

more eager (this goes back to [Ngu01]). Activations in lazy rewriting are possible at

positions which correspond to a non-variable position of the left-hand side of some

rule in a partial matching. This is why in the transformation we are concerned with

non-variable lazy positions of left-hand sides of rules.

The transformation is iterative. In each iteration new rules are created until

a fixpoint is reached. The following definition identifies for a rule l → r and a

position p the positions p.i which are lazy in labelµ(l). These positions are dealt

with in parallel in one step of the transformation.

Definition 3.1 ([Luc02b]) Let l→ r be a rewrite rule and p a non-variable posi-

tion of l, then

I(l, p) = {i ∈ {1, ..., ar(root(l|p))} | i 6∈ µ(root(l|p)) ∧ p.i ∈ PosΣ(l)}
Definition 3.2 ([Luc02b]) Let R = (Σ, R) be a TRS with replacement map µ

and let I(l, p) = {i1, . . . , in} 6= ∅ for some rule l → r ∈ R and p ∈ PosΣ(l) where

root(l|p) = f . The transformed system R� = (Σ�, R�) and µ� are defined as follows:

31

• Σ� = Σ ∪ {fj | 1 ≤ j ≤ n}
• µ�(fj) = µ(f) ∪ {ij} for all 1 ≤ j ≤ n and µ�(g) = µ(g) for all g ∈ Σ

• R′ = R− {l → r} ∪ {l′j → r | 1 ≤ j ≤ n} ∪ {l[x]p.ij → l′j [x]p.ij | 1 ≤ j ≤ n}
where l′j = l[fj(l|p.1, ..., l|p.m)]p if ar(f) = m, x is a fresh variable and fj are new

function symbols of arity ar(fj) = ar(f).

The transformation of Definition 3.2 is iterated until arriving at a system R\ =

(Σ\, R\) and µ\ such that I(l, p) = ∅ for every rule l → r ∈ R\ and every position

p ∈ PosΣ(l).

In [Luc02b] it remains unspecified how the pair l, p is selected in one step of

the transformation. However, the order in which those pairs are considered can be

essential.

Example 3.3 Consider the TRS

f(g(a), a) → a b → f(g(c), b)

with a replacement map µ(f) = {1} and µ(g) = ∅. This system is not LR(µ)-

terminating:

be
LR→µ f

e(ge(cl), bl)
LR→µ f

e(ge(cl), be)
LR→µ f

e(ge(cl), f e(ge(cl), bl))
LR→µ . . .

However, if we start the transformation with the first rule and position p = ε, and

consider position 1 of the first rule in the second step of the transformation, then

we arrive at the context-sensitive system

f2(g1(a), a) → a f(g′1(a), x) → f2(g(a), x)

f2(g(x), a) → f2(g1(x), a) f(g(x), y) → f(g′1(x), y)

b → f(g(c), b)

with µ(f) = µ(g1) = µ(g′1) = {1} and µ(f2) = {1, 2}. This system is µ-terminating

(proved with AProVE [GTSK06]). The lazy reduction sequence starting from b

cannot be mimicked anymore, because due to the two transformation steps first the

argument of g has to be activated which prevents the activation of the b in the second

argument of f .

In Lucas’ transformation, positions that are dealt with last during the trans-

formation must be activated first in rewrite sequences of the transformed system.

This can be seen in Example 3.3 where I(f(g(a), a), ε) is considered in the first step

of the transformation, but position 2 must be activated after position 1.1 (whose

activation is enabled by a later transformation step considering I(f(g(a), x), 1)).

Thus, the order in which lazy positions of rules are dealt with during the trans-

formation is the reversed order in which they may be activated in the resulting

transformed system. Hence, as we want to be able to activate more outer posi-

tions before more inner ones, we consider more inner lazy positions first in our new

transformation.

Despite considering more inner positions first in the transformation, we do not

32

want to prioritize any lazy positions. Thus, we define I(l) which identifies the

innermost lazy positions in a term with respect to a given replacement map µ.

Definition 3.4

I(l) = {p ∈ PosΣ(l) | p is lazy in labelµ(l) ∧
∧ (@q ∈ PosΣ(l) : q lazy in labelµ(l) ∧ q > p)}

Since all new function symbols, which are introduced by the transformation, are

substituted for function symbols of the original signature, we define the mapping

orig from the signature of the transformed system into the original signature which

identifies for each new function symbol the original one for which it was substituted.

Definition 3.5 Let R = (Σ, R) be a TRS with replacement map µ. If in one

step of the transformation f ∈ Σ is replaced by a new function symbol f ′, then

orig(f ′) = f . Furthermore, if f ′ is substituted for a function symbol g 6∈ Σ, then

orig(f ′) = orig(g). For function symbols h ∈ Σ, we set orig(h) = h and for

variables we have orig(x) = x.

The actual transformation proceeds in 3 stages. First, a set of initial activation

rules is created. These rules allow the activation of one innermost position of a

left-hand side of the original rules of the lazy TRS. As already indicated, by a rule

activating position p.i we mean a rule l→ r where l and r differ only in the function

symbol at position p and p.i is replacing in r but non-replacing in l.

In the second stage one rule l → r (activating a position p) created in stage 1

(or stage 2) is replaced by a set of rules, such that each lazy innermost position q of

l may be activated by rules where p is non-replacing in both sides, and another set

of rules which activate p where q is replacing in both sides (thus such a positions q

must be activated before p). This construction is repeated until the rules obtained

do not have any lazy (non-variable) positions. We would like to point out that as

we consider innermost positions of terms in stage one and one step of stage two

in our transformation, the outermost lazy positions of the initial rules of the lazy

system are dealt with last. So these are the positions which may be activated first

in reduction sequences of the transformed system.

In the third phase of the transformation for each rule of the original lazy system

one active rewrite rule is created which uses the new extended signature.

Definition 3.6 Let R = (Σ, R) be a TRS with replacement map µ. The trans-

formed system R̃ = (Σ̃, R̃) with µ̃ is constructed in the following three stages.

1 Generation of Initial Activation Rules. The transformed signature Σ ⊇ Σ

and the set A(l) for every rule l→ r ∈ R are defined as the least sets satisfying

l[x]p.i → l′[x]p.i ∈ A(l) if p.i ∈ I(l) and l′ = l[fi(l|p.1, ..., l|p.n)]p (1)

∧ fi ∈ Σ̃

∧ orig(g) = orig(h) ∧ µ̃(g) = µ̃(h)⇒ g = h for all g, h ∈ Σ̃

where µ̃ is defined by µ̃(f) = µ(f) for all f ∈ Σ and µ̃(fi) = µ(orig(fi)) ∪ {i}
if fi was introduced in (1). Then we have R̃ :=

⋃
l→r∈RA(l).

33

2 Saturation of Activation Rules.

2.a Processing one Activation Rule. Let R̃ = A(l1) ∪ ... ∪ A(ln) and let

l → r ∈ A(li) for some i ∈ {1, ..., n} such that I(l) is not empty. Then we

modify the set A(li) in the following way

A(li) = A(li)− {l→ r} ∪ {l[x]p.i → l′[x]p.i} ∪ {l′ → r′}
for all p.i ∈ I(l) where l′ = l[fi(l|p.1, ..., l|p.n)]p and r′ = r[f ′i(r|p.1, ..., r|p.n)]p.

If there is no g ∈ Σ̃ with orig(g) = orig(fi) and µ̃(g) = µ̃(root(l|p)) ∪ {i},
then Σ̃ = Σ̃ ∪ {fi} and µ̃(f) = µ̃(root(l|p)) ∪ {i}, otherwise fi = g.

Analogously, if there is no g ∈ Σ̃ with orig(g) = orig(f ′i) and µ̃(g) =

µ̃(root(r|p)) ∪ {i}, then Σ̃ = Σ̃ ∪ {f ′i} and µ̃(f ′i) = µ̃(root(r|p)) ∪ {i}, oth-

erwise f ′i = g.

R̃ :=
⋃

l→r∈R
A(l)

2.b Iteration. Step 2.a is iterated until for all rules l → r of R̃ we have that

I(l) = ∅.
3 Generation of Active Rewrite Rules. For each rule l → r ∈ R we add

one active rewrite rule to R̃ as follows. For every position p ∈ PosΣ(l), we

consider the set

Symb(p, l) = {root(r′|p) | l′ → r′ ∈ A(l) ∧ p ∈ PosΣ(r′)}.
The function symbol which is least restrictive in this set (i.e. the maximal

element of µ̃(f) w.r.t. the subset relation of all f ∈ Symb(p, l)) is unique (cf.

Proposition 3.9). We write maxSymb(p, l). Then, we set

R̃ := R̃ ∪
⋃

l→r∈R
l′′ → r

where l′′ is given by Pos(l) = Pos(l′′), root(l′′|p) = maxSymb(p, l) for all

p ∈ PosΣ(l) and root(l′′|p) = root(l|p) for all p ∈ PosV (l). The signature of

the transformed system is not altered in this stage.

We have the following important properties of the transformation.

Proposition 3.7 Let R be a TRS with replacement map µ and let R̃ = (Σ̃, R̃) be

the transformed system with replacement map µ̃. For f, g ∈ Σ̃

orig(f) = orig(g) ∧ µ̃(f) = µ̃(g)⇒ f = g

Proposition 3.8 The transformation of Definition 3.6 terminates and yields a fi-

nite transformed system for every TRS R and every replacement map µ.

Proposition 3.9 Let R be a TRS with replacement map µ. Let R̃ and µ̃ be the

TRS (resp. replacement map) obtained after stages 1 and 2 of the transformation of

Definition 3.6. Then the symbol maxSymb(p, l) is unique for every rule l→ r ∈ R
and every p ∈ PosΣ(l).

Example 3.10 Consider the TRS from Example 3.3

f(g(a), a) → a b → f(g(c), b)

34

with a replacement map µ, s.t. µ(f) = {1} and µ(g) = ∅. In the first stage of

the transformation we have I(l1) = {1.1, 2} and the following two initial activation

rules are added.

f(g(x), a) → f(g1(x), a) f(g(a), x) → f2(g(a), x)

with µ̃(g1) = {1} and µ̃(f2) = {1, 2}. In step 2.a, the first of these rules is replaced

by

f(g(x), y) → f2(g(x), y) f2(g(x), a) → f2(g1(x), a)

and in the second iteration the second rule is replaced by

f(g(x), y) → f(g1(x), y) f(g1(a), x) → f2(g1(a), x).

Finally, the following active rewrite rules are added:

f2(g1(a), a) → a b → f(g(c), b).

Hence, the system R̃ is

f(g(x), y) → f2(g(x), y) f2(g(x), a) → f2(g1(x), a)

f(g(x), y) → f(g1(x), y) f(g1(a), x) → f2(g1(a), x)

f2(g1(a), a) → a b → f(g(c), b)

with µ̃(f) = µ̃(g1) = {1}, µ̃(f2) = {1, 2} and µ̃(g) = ∅. R̃ is not µ̃-terminating:

b→eµ f(g(c), b)→eµ f2(g(c), b)→eµ f2(g(c), f(g(c), b))→eµ . . .

The rest of the paper is concerned with the proof of soundness and completeness

of the transformation of Definition 3.6 w.r.t. termination. First, we will deal with

the simpler case of completeness.

Theorem 3.11 Let R = (Σ, R) be a left-linear TRS with replacement map µ; and

let R̃ = (Σ̃, R̃), µ̃ be the transformed system (resp. replacement map) according to

Definition 3.6. If R is LR(µ)-terminating, then R̃ is µ̃-terminating.

Proof. We will prove the result indirectly by showing that every infinite R̃eµ-

derivation implies the existence of an infinite lazy R-derivation. Assume there

is an infinite R̃eµ-sequence starting from a term t. Then we construct an infinite

lazy reduction sequence starting from the labelled term t′ defined by

Pos(t) = Pos(t′) ∧ ∀p ∈ Pos(t) : (orig(root(t|p)) = root(erase(t′|p)) ∧ t′|p is eager

iff labeleµ(t)|p is eager).

In this case we write t′ ≈ t. Note that t′ is labelled canonically or more liberally as

µ(orig(f)) ⊆ µ(f) for all f ∈ Σ̃. Now consider a µ̃-step t→eµ s and a labelled term

t′ with t′ ≈ t. We will prove that there is a labelled term s′, such that t′
LR→µ s

′ and

s′ ≈ s. We make a case distinction on the type of µ̃-step.

(i) First assume the step is an activation step. Then there is an activation rule

l′ → l′′ in R̃ which can be applied to t. This activation rule stems from a rule

35

l → r ∈ R, and we have that orig(root(l′|p)) = root(l|p) for all non-variable

positions p of l′. Furthermore, all variable positions of l′ which are non-variable

in l are lazy in labeleµ(l′) and thus in t′. Hence, l matches modulo laziness t′

and the same position as in t can be activated yielding s′ with s′ ≈ s (note

that the active positions of t′ are exactly the replacing positions of t).

(ii) If the step t →eµ s is an active rewrite step, a rule l′ → r matches (a sub-

term of) t. This rule is the transformed version of a rule l → r ∈ R with

orig(root(l′|p)) = root(l|p) for all p ∈ Pos(l) = Pos(l′). Thus, l matches

erase(t′) and the rule can be applied to t′ yielding s′ with s′ ≈ s. The reason

is that orig(root(s′|p)) = root(s|p) for all position of s (note that the right

hand-sides of the rules applied to t and t′ are identical). Regarding the labels

of s′ assume that the rewrite steps were performed at a position q (in t and

t′). For all positions o ∈ Pos(t) with o||q ∨ o < q we have s′|o is eager if and

only if labeleµ(s)|o is eager because this has already been the case in t′ and t.

Furthermore, positions q.o where o ∈ Pos(r) are eager in s′ if and only if they

are eager in labeleµ(s) because of the canonical labelling of r inside s′. Finally,

positions p.o where o 6∈ Pos(r) are eager in s′ if and only if they are eager in

labeleµ(s), because a proper superterm of each term s′|p.o occurred already in

t′ and thus, if an eager position of s′ had not been eager in labeleµ(s) (or vice

versa), then this would be a contradiction to t′ ≈ t. 2

The soundness proof is similar to the completeness proof in the sense that given an

infinite lazy reduction sequence, we are going to construct a corresponding infinite

reduction sequence in the transformed system. So assume there is an infinite lazy

reduction sequence in a TRS R with replacement map µ. The first observation

is that every lazy reduction sequence naturally corresponds to a context-free →R
sequence, which performs the active rewrite steps of the lazy reduction sequence.

We will construct a →eµ-reduction sequence in the transformed system R̃, that

corresponds to a context-free→R-sequence. Terms in the context-free→R-sequence

and terms in the corresponding µ̃-sequence are in a special relationship.

Definition 3.12 Let R = (Σ, R) be a TRS, µ a replacement map and let s, t ∈
T (Σ, V) be two terms. Abusing notation we write s→∗µc t if and only if

(i) for all positions p ∈ Posµ(t) we have root(t|p) = root(s|p), and

(ii) for all minimal positions q ∈ Pos(t)\Posµ(t) we have s|q →∗µ s′ and s′ →∗µc t|q.
The idea behind →∗µc is that context-free reduction steps which occur at positions

that are in the replacing part of the simulating term should be simulated, thus the

replacing parts of two terms s and t with s →∗µc t must be entirely equal. On the

other hand, context-free steps that occur at positions which are forbidden in the

simulating term are ignored. Yet, if the forbidden subterm in which they occur

eventually gets activated, then these steps may still be simulated.

As minimal non-replacing positions in a term are always strictly below the root,

the recursive description of →∗µc in Definition 3.12 is well-defined.

We have s = t⇒ s→∗µc t. Figure 1 illustrates the correspondence between a lazy

36

t′1

erase(t1)

t1

t′2

erase(t2)

t2

t′3

erase(t3)

t3

t′4

erase(t4)

t4

. . .

. . .

. . .

6

?

6

?

6

?

6

?

-

-

-

-

-

-

-

-

-

-

-

-

= = = =

∗
eµ

∗
eµ

∗
eµ

∗
eµ

∗ eµc ∗ eµc ∗ eµc∗ eµc

erase erase erase erase

LR
µ

LR
µ

LR
µ

LR
µ

Fig. 1. Relation between the various rewrite sequences occurring in the soundness proof.

reduction sequence, the corresponding context-free one, and the→eµ-sequence. Note

that if the lazy reduction sequence is infinite, then there are infinitely many non-

empty steps in the context-free reduction sequence, as every labelled term admits

only finitely many activation steps.

In the first part of the soundness proof we show the existence of a →eµ-sequence

of the shape as in Figure 1.

The next lemma provides a criterion for the existence of an activation rule in

the transformed system, that is able to activate a certain position in a term t over

the new signature.

Lemma 3.13 Let (R = (Σ, R), µ) be a TRS with replacement map and let (R̃ =

(Σ̃, R̃), µ̃) be the system obtained by the transformation of Definition 3.6. Let t ∈
T (Σ̃, V) be a term and α : l → r ∈ R a rewrite rule of the original TRS, such that

the following preconditions hold.

(i) For all replacing positions p in t with p ∈ PosΣ(l) : orig(root(t|p)) = root(l|p).
(ii) For all positions p.i that are variable positions in l we have that t|q ∈ T (Σ, V)

for some q ≤ p.

Then, every position q, which is minimal non-replacing in t and non-variable in

l, can be activated (i.e. we have t →eµ t′ such that q is µ̃-replacing in t′ and

orig(root(t|p)) = orig(root(t′|p)) for all p ∈ Pos(t)).

The next lemma establishes the relationship between a context-free reduction

sequence and a corresponding →eµ reduction of Figure 1.

Lemma 3.14 Let (R = (Σ, R), µ) be a TRS with replacement map and let (R̃ =

(Σ̃, R̃), µ̃) be the system obtained by the transformation of Definition 3.6. Let s and

t be terms from T (Σ, V), such that s →∗eµc t. If t
p→ t∗ (with a rule l → r) and

p ∈ Poseµ(s), then s →+
eµ s∗ and s∗ →∗eµc t∗. Otherwise, if t

p→ t∗ and p 6∈ Poseµ(s),

then s→∗eµ s∗ and s∗ →∗eµc t∗.
Unfortunately, the last lemma and the correspondence of lazy, context-free and

→eµ-reduction sequences of Figure 1 is not sufficient to prove the existence of an infi-

nite →eµ-sequence in the presence of an infinite lazy reduction sequence, since there

may be only finitely many non-empty →eµ-reductions in the simulating sequence.

Example 3.15 Consider the TRS R

37

a → f(a) f(b) → b

with a replacement map µ(f) = ∅. The transformed system R̃ is

a → f(a) f(x) → f1(x) f1(b) → b

with µ̃(f) = ∅, µ̃(f1) = {1}. We have the following lazy reduction sequence

ae
LR→µ f

e(al)
LR→µ f

e(ae)
LR→µ . . .

which corresponds to the context-free sequence

a→ f(a)→ f(f(a))→

Consider a corresponding sequence in the system R̃,

a→eµ f(a).

Then we could activate a in f(a) according to rule 2 of the transformed system.

However, it is a priori not clear whether such a step should be performed when

trying to simulate an infinite reduction sequence. The following example illustrates

the potential problems.

Example 3.16 Consider the non-terminating TRS R

f(g(x)) → f(g(x)) g(a) → g(b) a → c

with a replacement map µ(f) = {1} and µ(g) = ∅. The transformed system R̃ is

f(g(x)) → f(g(x)) g(x) → g1(x)

g1(a) → g(b) a → c

with µ̃(f) = µ̃(g1) = {1} and µ̃(g) = ∅. Consider the following context-free reduction

sequence.

f(g(a))→ f(g(c))→ f(g(c))→ . . .

If we activate position 1.1 in f(g(a)) in the simulating →eµ-sequence, we cannot

further simulate the sequence, i.e. we get

f(g(a))→eµ f(g1(a))→eµ f(g1(c)),

but the term f(g1(c)) is a →eµ-normal form.

The crucial difference why the activation of a subterm is essential in Example

3.15 and unnecessary in Example 3.16 is that in the former example the activated

subterm itself initiates an infinite lazy reduction sequence. This observation will be

used in the second part of the soundness proof (cf. Theorem 3.22).

With the following definition we intend to identify labelled terms in an infinite

lazy reduction sequence with non-terminating subterms that have possibly been

activated. For such terms t, the predicate mininf(t) does not hold.

Definition 3.17 Let Σ be a signature and µ be a replacement map for Σ. A la-

belled term t is said to be minimal non-terminating if it admits an infinite lazy

38

reduction sequence and for each eager labelled proper subterm t|p of t, either t|p
does not initiate an infinite lazy rewrite sequence, or position p is eager in the term

labelµ(erase(t)). We write mininf(t) if t has this property.

Definition 3.18 Let R = (Σ, R) be a TRS with replacement map µ. Let t be a

labelled term t and t
LR→µ s be an activation step. This activation step is called

inf-activating (thus it is an inf-activation step) if and only if mininf(t) but not

mininf(s).

It is easy to see that whenever mininf(t) holds for a labelled term t, there is

no active position p ∈ Act(t) which is non-active in labelµ(erase(t)), such that t|p
initiates an infinite lazy reduction sequence.

In the second part of the soundness proof we will show that each infinite lazy

reduction sequence contains either an inf-activation step or an active rewrite step

s
LR→µ t at position p, such that position p is µ-replacing in erase(s). Furthermore,

such steps result in non-empty simulations by the →eµ-sequence.

Lemma 3.19 Let R = (Σ, R) be a TRS with replacement map µ. Let t be a labelled

term satisfying mininf(t). Then we have:

(i) If t
LR→µ s with an inf-activation step at position q1 activating position q2 and

q1 < p ≤ q2 is the maximal (w.r.t. ≤) eager position in s which does initiate

an infinite reduction sequence s.t. t|p does not, then we have mininf(s|p).
(ii) If t

LR→µ s with any other step than in (i) (i.e. activation steps which are not

inf-activating, or active rewrite steps), then mininf(s).

Lemma 3.20 Let R = (Σ, R) be a TRS with a replacement map µ. Let t ∈ T (Σ, V)

be an unlabelled term. If t initiates an infinite context-free reduction sequence with

infinitely many root reduction steps, then a labelled term t′ initiates an infinite lazy

reduction sequence if erase(t′) = t and t′ has an eager root label.

The next lemma characterizes infinite lazy reduction sequences starting from

minimal non-terminating labelled terms. It states that in such an infinite lazy

reduction sequence after finitely many steps there is either an active rewrite step

si
LR→µ si+1 at some position p which is active in labelµ(erase(si)) or there is an

inf-activation step. We already proved in Lemma 3.14 that active rewrite steps at

such positions can be simulated by a non-empty sequence in the transformed system

(remember that the active rewrite steps of a lazy reduction sequence correspond to

a context-free derivation). In Theorem 3.22 we will prove that the same is true for

inf-activation steps.

Lemma 3.21 Let R = (Σ, R) be a TRS with a replacement map µ. Let t0 be a

labelled term with the property mininf(t0). Let P : t0
LR→µ t1

LR→µ . . .
LR→µ tn

LR→µ . . .

be an infinite lazy reduction sequence starting from t0. Then, either there is an

active rewrite step ti
LR→µ ti+1 at position p, where p is active in labelµ(erase(ti)),

or there is an inf-activation step in P .

Theorem 3.22 Let (R = (Σ, R), µ) be a left-linear TRS with replacement map and

39

let (R̃ = (Σ̃, R̃), µ̃) the system obtained by the transformation of Definition 3.6. If

R̃ is µ̃-terminating, then R is LR(µ)-terminating.

Proof. We will show that the existence of an infinite lazy reduction sequence P :

t0
LR→µ t1

LR→µ . . . (where t0 is canonically or more liberally labelled) implies the

existence of an infinite reduction sequence in the transformed system. The following

invariant will be maintained for every labelled term ti on an infinite reduction

sequence P . Let s0 →eµ s1 →eµ . . . be the simulating reduction sequence we are

going to construct:

There is a sj such that

sj|o →∗eµc erase(ti|o) ∧mininf(ti|o)
and position o is µ̃-replacing in sj and active in ti. Furthermore, ti|o is at least

as eager as its canonically labelled version (i.e. whenever labelµ(erase(ti|o)) has an

eager label at some position q, then the label of ti|o is eager at that position, too).

Note that the latter condition is trivially fullfilled by all terms ti in P , and thus by

all subterms as no “deactivations” are possible in lazy rewriting and active rewrite

steps only introduce canonically labelled terms.

We show that a finite subsequence of P implies the existence of a non-empty

reduction sequence in the transformed system which preserves the invariant. As

each term ti|o itself initiates an infinite lazy reduction sequence this suffices to show

that there is an infinite reduction sequence in the transformed system.

In order to apply Lemma 3.21 we assume mininf(t0). This minimality con-

straint can be satisfied, as w.l.o.g. we can find a t0 such that each proper subterm

of t0 with an eager label does not initiate an infinite lazy reduction sequence.

The infinite reduction sequence we are going to construct in the transformed

system starts with the term s0 = erase(t0). We have s0 →∗eµc erase(t0).

Lemma 3.21 states that in the lazy reduction sequence starting from t0 there

is either an active rewrite step ti
LR→µ ti+1 at position p such that p is active in

labelµ(erase(ti)), or there is an inf-activation step. Let tj
LR→µ tj+1 be the first step,

which is of one of the two kinds.

The goal is to show that the reduction sequence t0
LR→∗µ tj+1 can be simulated

by a sequence s0 →+
eµ si such that si|o →∗eµc erase(tj+1|o) and mininf(tj+1|o) holds

for some position o which is active in tj+1 and replacing in si. We make a case

distinction on whether the step tj
LR→µ tj+1 is an active rewrite step or an inf-

activation step.

(i) Assume the step tj
LR→µ tj+1 is an active rewrite step at position p such that p is

active in labelµ(erase(tj)). We have (according to Lemma 3.14) s0 →∗eµ si and

si →∗eµc erase(tj). If position p is active in labelµ(erase(tj)) then p is replacing

in si (note that si ∈ T (Σ, V)). Thus, with Lemma 3.14 we have s0 →∗eµ si →+
eµ

si+1 and si+1 →∗eµc erase(tj+1). Furthermore, we have mininf(tj+1) according

to Lemma 3.19.

(ii) Assume the step tj
LR→µ tj+1 is an inf-activation step. Again by Lemma 3.14

40

we have s0 →∗eµ si and si →∗eµc erase(tj) (si ∈ T (Σ, V)). The matching modulo

laziness of a rule with tj was established at a position qinf which is active

in labelµ(erase(tj)). The reason is that otherwise in tj there were a non-

terminating active subterm which is non-active in labelµ(erase(tj)). Thus,

mininf(tj) would not hold, which contradicts Lemma 3.19.

The fact that the activation step from tj to tj+1 is inf-activating implies that

there is a unique maximal active subterm tj+1|p of tj+1 which is non-active in

labelµ(erase(tj+1)) and initiates an infinite lazy reduction sequence. For this

position p we have p ≤ q where q is the position that is activated in the inf-

activation step: If we had p > q or p||q, then tj|p = tj+1|p. Furthermore, as

labelµ(erase(tj)) = labelµ(erase(tj+1)), this would contradict mininf(tj).

Note that, since the position qinf where the matching modulo laziness was

established in tj is active in labelµ(erase(tj)), we have that qinf < p ≤ q.
In the simulating sequence we will activate position p in the term si. We

note that p is non-replacing in si (as it is non-active in labelµ(erase(tj))), but

it is not necessarily minimal non-replacing. Thus, in order to activate position

p in si, we possibly need to activate positions o < p in si first.

Let o < p be the minimal non-replacing position in si. According to Lemma

3.13 we can activate o in si yielding s′i. Note that as tj is at least as eager

as labelµ(erase(tj)), we have orig(root(si|qinf .q′)) = root(erase(tj |qinf .q′)) for

every replacing position qinf .q
′ of si and root(erase(tj|qinf .q′)) = l|q′ for some

rule l → r. Then, as si →∗eµc erase(tj), we have s′i
≥o→
∗
eµ s
′′
i such that s′′i |o →∗eµc

erase(tj |o) according to Definition 3.12. Position o is replacing in s′′i . If there is

still a non-replacing position o′ < p in s′′i , it is again activated and s′′i is reduced

to a term s′′′i such that s′′′i |o′ →∗eµc erase(tj|o′). This construction is repeated

until position p is replacing in a term s∗i and we have s∗i |p →∗eµc erase(tj|p).
Note that s∗i |p is a term over the original signature Σ, so it does not contain

any function symbols introduced by the transformation. Clearly, we have that

s∗i |p →∗eµc erase(tj+1|p), since erase(tj) = erase(tj+1). Finally, according to

Lemma 3.19 we have mininf(tj+1|p).
Now given an infinite lazy reduction sequence P starting from a labelled term

t0 and a term s0 with s0 →∗eµc erase(t0), we have shown that a finite subse-

quence t0
LR→+

µ ti of a special shape implies the existence of a nonempty sequence

s0 →+
eµ sj such that sj|p →∗eµc erase(ti|p), where p is active in ti and replacing in

sj, mininf(ti|p) holds and ti|p initiates an infinite lazy reduction sequence. Thus,

again the infinite lazy sequence starting at ti|p has a finite subsequence, that can

be simulated by a non-empty reduction sequence in the transformed system. By

repeating this construction, we get an infinite reduction sequence in the transformed

system starting at s0. 2

4 Discussion

In the proof of Theorem 3.22 we saw that the CSRS obtained by our transformation

cannot simulate lazy reduction sequences in a one-to-one fashion. When simulating

41

infinite lazy reduction sequences, after every inf-activation step in the lazy reduction

an entirely new infinite lazy sequence was considered, namely the one initiated by the

activated subterm. Thus, the question arises whether we can define a transformation

from lazy rewrite systems into context-sensitive ones, such that the transformed

system is able to fully simulate the lazy reduction system. We conjecture that this

is indeed possible ([Sch07]).

Regarding the size of the transformed system, we have that the number of rules

created by our transformation is in general exponentially higher than the number of

lazy non-variable subterms in left-hand sides of rules of the lazy system. This leads

to the question whether our transformation is practical in proofs of termination of

real world lazy TRSs. Currently, it is unclear if termination of the resulting systems

can easily be inferred by automated termination tools. However, this would be most

desirable in practice. Experiments to answer this question have yet to be performed.

References

[AEGL03] M. Alpuente, S. Escobar, B. Gramlich, and S. Lucas. On-demand strategy annotations revisited.
Technical Report DSIC–II/18/03, UPV, Valencia, Spain, July 2003.

[BN98] F. Baader and T. Nipkow. Term rewriting and all that. Cambridge University Press, New York,
NY, USA, 1998.

[CDE+03] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. Talcott. The
Maude 2.0 system. In R. Nieuwenhuis, ed., Proc. RTA’03, LNCS 2706, pp. 76–87. Springer,
2003.

[FKW00] W. Fokkink, J. Kamperman, and P. Walters. Lazy rewriting on eager machinery. ACM Trans.
Program. Lang. Syst., 22(1):45–86, 2000.

[FW76] D. P. Friedman and D. S. Wise. CONS should not evaluate its arguments. In S. Michaelson and
R. Milner, eds., Proc. 3rd ICALP, pp. 257–284. Edinburgh University Press, 1976.

[GL06] B. Gramlich and S. Lucas. Generalizing Newman’s Lemma for left-linear rewrite systems. In F.
Pfenning, ed., Proc. RTA’06,, LNCS 4098, pp. 66–80. Springer, 2006.

[GTSK06] J. Giesl, R. Thiemann, and P. Schneider-Kamp. AProVE 1.2: Automatic termination proofs in
the dependency pair framework. In Ulrich Furbach and Natarajan Shankar eds., Proc. IJCAR’06,
LNCS 4130, pp. 281–286, 2006.

[HMJ76] P. Henderson and J. H. Morris Jr. A lazy evaluator. In Conference Record of the Third ACM
Symp. on Principles of Programming Languages, Atlanta, Georgia, Jan. 1976, pp. 95–103, 1976.

[Luc98] S. Lucas. Context-sensitive computations in functional and functional logic programs. Journal
of Functional and Logic Programming, 1998(1), January 1998.

[Luc01] S. Lucas. Termination of on-demand rewriting and termination of OBJ programs. In
H. Sondergaard, ed., Proc. PPDP’01, pp. 82–93, September 2001. ACM Press, New York.

[Luc02a] S. Lucas. Context-sensitive rewriting strategies. Inform. and Comput., 178(1):294–343, 2002.

[Luc02b] S. Lucas. Lazy rewriting and context-sensitive rewriting. In M. Hanus, ed., Proc. WFLP’01,
ENTCS 64, Elsevier, 2002.

[Luc06] S. Lucas. Proving termination of context-sensitive rewriting by transformation. Information
and Computation, 204(1):1782–1846, January 2006.

[Ngu01] Q. H. Nguyen. Compact normalisation trace via lazy rewriting. Proc. WRS’01, ENTCS 57,
2001.

[Pv93] M. J. Plasmeijer and M. C. J. D. van Eekelen. Functional Programming and Parallel Graph
Rewriting. Addison-Wesley, 1993.

[Str89] R. Strandh. Classes of equational programs that compile into efficient machine code. In
N. Dershowitz, ed., Proc. RTA’89, LNCS 355, pp. 449–461. Springer, April 1989.

[Sch07] F. Schernhammer. On context-sensitive term rewriting. Master’s thesis, Vienna University of
Technology, Feb. 2007.

42

