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Abstract

Lazy rewriting is a proper restriction of term rewriting that dynamically restricts the reduction of certain
arguments of functions in order to obtain termination. In contrast to context-sensitive rewriting, reductions
at such argument positions are not completely forbidden but delayed. Based on the observation that the
only existing (non-trivial) approach to prove termination of such lazy rewrite systems is flawed, we develop
a modified approach for transforming lazy rewrite systems into context-sensitive ones that is sound and
complete with respect to termination. First experimental results with this transformation based technique
are encouraging.
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1 Introduction

In functional programming languages, evaluations are often carried out in a lazy
fashion. This means that in the evaluation of an expression, the result of certain
subexpressions is not computed until it is known that the particular result is actually
needed. A very similar idea is used in lazy rewriting ([3]) where the reduction of
certain subterms is delayed as long as possible (cf. also [1], [8], and [10]).

Termination analysis of functional programs has recently become a major subject
of research in the rewriting community. Due to the similarity of lazy rewriting and
the lazy evaluation strategy of functional programs, the use of lazy rewriting seems
promising to find new methods for proving termination of functional programs. In
particular lazy rewriting and lazy evaluation in functional programming share the
idea of postponing certain evaluation steps. More precisely, arguments of functions
are only evaluated if their final result is needed to compute the function.

Example 1.1 Consider the following functional program given in term rewriting
system (TRS) syntax.
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from(x) → x : from(s(x)) take(0, xs) → []

take(x, []) → [] take(s(x), y : ys) → y : take(x, ys)

Without an evaluation strategy the input term take(s(0), from(0)) is non-termi-
nating. Yet, when using a lazy evaluation strategy it is terminating and the result
is 0. The crucial difference is that in a term of the shape take( , : from( )) the
from subterm may not be evaluated under lazy evaluation, because its result is not
needed to evaluate any more outer function.

However, a reduction of the problem of proving termination of functional pro-
grams to the problem of proving termination of lazy TRSs is non-trivial. The reason
is that functional programming languages typically allow for features such as higher-
order functions, typing and strategies other than lazy evaluation; e.g., in Haskell
always the “first” defining equation is applied to an object term when several equa-
tions are applicable (at the same position) (this has already been pointed out in
[6]).

Therefore, lazy rewriting can only approximate lazy (Haskell) evaluations but
clearly not simulate them in a one-to-one fashion. Yet, the described features of
functional programs can be encoded or approximated through standard transfor-
mations such that finally lazy rewriting can be used for a termination analysis (cf.
e.g. [7]).

In this work we present a transformation from lazy TRSs into context-sensitive
ones that is sound and complete w.r.t. termination and thus allows us to reduce the
problem of deciding whether a lazy TRS is terminating or not to the same problem
for context-sensitive TRSs, which has already been studied to some extent (cf. eg.
[12] ). As this is the first sound and complete transformation for lazy TRSs, it
enables us for the first time to investigate the use of lazy rewriting in the area of
termination analysis of functional programs.

Lazy rewriting was initially introduced by [3] in a graph rewriting setting (al-
though the basic underlying idea is much older, cf. e.g. [4], [15], [14]). However,
for the termination analysis of functional programs it makes sense to consider term
rewriting instead of graph rewriting, for the following reasons. First of all, using
term rewriting instead of graph rewriting is more general and does not prohibit cer-
tain evaluations a priori. Moreover, the theory of ordinary term rewriting is much
further developed as compared to graph rewriting. In particular, existing methods
for the termination analysis of ordinary as well as context-sensitive rewrite systems
can be applied where possible. Hence, in this work we will use the notion of lazy
term rewriting introduced in [11].

In [11] a transformation from lazy rewrite systems into context-sensitive ones
was proposed, which was supposed to preserve non-termination and conjectured to
be complete w.r.t. termination. Unfortunately, a counterexample (see Example 3.4
below) proves that this transformation is unsound w.r.t. termination. In this paper
we repair the transformation and prove both soundness and completeness of the
new transformation w.r.t. termination.
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In Section 2 of this paper we will present basic definitions and notations of
lazy rewriting. In Section 3 we introduce the transformation of [11] and give a
counterexample to its soundness w.r.t. termination. We then propose a modified
version of the transformation which is proved to be sound and complete w.r.t.
termination. Section 4 contains a discussion of the presented approach and of some
experimental results. 2

2 Preliminaries

We assume familiarity with the basic concepts and notations in term rewriting as
well as context-sensitive term rewriting as provided for instance in [2,9].

As in [3] and [11] we are concerned with left-linear lazy rewrite systems in this
work.
General assumption: Throughout the paper we assume that all lazy rewrite
systems are left-linear 3 and finite.

Lazy rewriting operates on labelled terms. Each function and variable symbol
of a term has either an eager label e or a lazy label l which we will write as
superscripts. So, given a signature Σ = {f1, ..., fn}, we consider a new signature
Σ′ = {fe

1 , f l
1, ..., f

e
n, f l

n}. We denote by V ′ the set of labelled variables, so T (Σ′, V ′)
is the set of labelled terms of a labelled signature Σ′. The notation te (resp. tl) for a
labelled term t indicates that t has an eager (resp. lazy) root label. Following [11] we
use a replacement map μ to specify for each function f ∈ Σ which arguments should
be evaluated eagerly. Given a replacement map μ we define the canonical labelling of
terms as a mapping labelμ : T (Σ, V ) → T (Σ′, V ′), where Σ′ is the labelled signature
and V ′ are the labelled variables [11]:

labelμ(t) = labeleμ(t)
labelαμ(x) = xα (α ∈ {e, l})

labelαμ(f(t1, ..., tn)) = fα(labelα1
μ (t1), ..., labelαn

μ (tn))
where αi = e if i ∈ μ(f), l otherwise, and α ∈ {e, l}

Given a labelled term t, the unlabeled term erase(t) is constructed from t by omit-
ting all labels. A position p of a term t is said to be eager (resp. lazy), if the symbol
at the root of the subterm starting at position p of t has an eager (resp. lazy) la-
bel. Note that the lazy positions of a term are not the same as the non-replacing
positions in context-sensitive rewriting. The reason is that in lazy rewriting ea-
ger positions may occur below lazy ones whereas in context-sensitive rewriting all
positions which are below a non-replacing position are non-replacing.

However, rewrite steps may only be performed at so-called active positions. A
position p is called active if all positions on the path from the root to p are eager.
Note that, given an unlabeled term t and a replacement map μ, the active positions
of labelμ(t) are exactly the replacing positions w.r.t. context-sensitive rewriting.

2 Due to lack of space, the proofs of some results (e.g., of Lemmata 3.13, 3.18 and 3.19) have been omitted
here. They can be found in the technical report version of this paper [17].
3 Nevertheless, for clarity we will mention this assumption in the main results.
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Definition 2.1 ([11], [3]) The active positions of a labelled term t (denoted Act(t))
are recursively defined as follows.

• The root position ε of t is active.
• If p is an active position and position p.i is eager, then position p.i is active.

Example 2.2 Consider a labelled term fe(al, ge(hl(ae))). Positions ε, 2 and 2.1.1
are eager. Positions 1 and 2.1 are lazy and positions ε and 2 are active.

Definition 2.3 ([11], [3]) Let l ∈ T (Σ, V ) be linear, t ∈ T (Σ′, V ′) be a labelled
term and let p be an active position of t. Then l matches t|p modulo laziness if
either

• l ∈ V or
• if l = f(l1, ..., ln) and t|p = fe(tα1 , ..., tαn) (α ∈ {e, l}), then for all eager subterms

tei , li matches modulo laziness tei .

If tli at position p.i is a lazy subterm and li �∈ V , then position p.i is called essential.

Informally, a matching modulo laziness is a partial matching ignoring (possible)
clashes at lazy positions. Positions where such clashes occur may be activated (i.e.,
their label may be changed from lazy to eager).

Definition 2.4 ([11]) Let R = (Σ, R) be a (left-linear) TRS. Let t be a labelled
term and let l be the left-hand side of a rule of R. If l matches modulo laziness t|p,
and this matching gives rise to an essential position p.i (t|p.i = f l(t1, ..., tn)), then

t
A→ t[fe(t1, ..., tn)]p.i. The relation A→R is called activation relation.

Example 2.5 Let l = f(a, b) be a linear unlabeled left-hand side of a rule, and
t = fe(ae, cl). Then l matches t modulo laziness giving rise to the essential position
2 and we have fe(ae, cl) A→ fe(ae, ce). The left-hand side l does not match the
labelled term fe(ae, ce) modulo laziness.

Definition 2.6 ([11]) Let l be the (linear) left-hand side of a rewrite rule and let t

be a labelled term. If l matches erase(t), then the mapping σl,t : V ar(l) → T (Σ′, V ′)
is defined as follows. For all x ∈ V , with l|q = x : σl,t(x) = t|q.

Informally, σl,t is the matcher when matching l against erase(t), where one adds
the appropriate labels of t.

This substitution is modified to operate on labelled terms in the following way,
yielding the mapping σs,t : V ′ → T (Σ′, V ′) [11]:

σs,t(xe) =

⎧⎨
⎩

ye

fe(t1, ..., tn)

if σs,t(x) = yα ∈ V ′

if σs,t(x) = fα(t1, ..., tn)

σs,t(xl) =

⎧⎨
⎩

yl

f l(t1, ..., tn)

if σs,t(x) = yα ∈ V ′

if σs,t(x) = fα(t1, ..., tn)
σ is homeomorphically extended to a mapping T (Σ′, V ′) → T (Σ′, V ′) as usual.

Definition 2.7 ([11]) Let R = (Σ, R) be a (left-linear) TRS with replacement map
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μ. The active rewrite relation R→μ: T (Σ′, V ′) × T (Σ′, V ′) is defined as follows: Let
t be a labelled term such that the left-hand side of a rewrite rule l → r matches
erase(t|p) with σl,t|p and let p ∈ Act(t). Then t

R→μ t[σl,t|p(labelμ(r))]p.

Informally, the active rewrite relation R→μ performs rewrite steps according to
rewrite rules as usual, but only at active positions, and taking labels into account
when constructing the contractum.

Example 2.8 Let l = f(x, b) → g(x) be a rewrite rule and t = fe(he(al), be) be a
labelled term. Furthermore, consider a replacement map μ(f) = μ(h) = {1}, μ(g) =
∅. Then σl,t(x) = he(al) and σl,t(xl) as appearing in the labelled right-hand side of

the rule is hl(al). Thus we have fe(he(al), be) R→μ ge(hl(al)).

The lazy rewrite relation LR→μ is the union of the activation relation and the
active rewrite relation.

Definition 2.9 ([11]) Let R be a (left-linear) TRS and let μ be a replacement
map for R. The lazy rewrite relation LR→μ induced by (R, μ) is the union of the two

relations A→ and R→μ (LR→μ= A→R ∪ R→μ).

Example 2.10 Consider the functional program of Example 1.1.

from(x) → x : from(s(x)) take(0, xs) → []

take(x, []) → [] take(s(x), y : ys) → y : take(x, ys)

Now we interpret it as lazy term rewriting system with a replacement map μ given
by μ(f) = ∅ for all functions f . When evaluating the canonically labelled term
takee(sl(0l), froml(0l)) it is obvious that the subterm froml(0l) must be activated
and evaluated before take can be computed. According to the lazy rewrite relation
we have: takee(sl(0l), froml(0l)) LR→μ takee(sl(0l), frome(0l)) LR→μ takee(sl(0l), 0l :

froml(sl(0l))) LR→μ 0l : takee(0l, frome(sl(0l))) LR→μ 0l .

Definition 2.11 Let R be a TRS with a replacement map μ. Then R is LR(μ)-
terminating if there is no infinite LR→μ-sequence starting from a term t, whose la-
belling is canonical or more liberal (i.e., whenever labelμ(erase(t))|p is eager, then
t|p is eager as well).

Informally, we call a labelled term t more liberal than its canonically labelled ver-
sion labelμ(erase(t)) if it has strictly more eager labels. The reason for considering
terms with canonical or more liberal labelling in the definition of LR(μ)-termination
is that only such terms appear in lazy reduction sequences starting from canonically
labelled terms, in which we are actually interested.

Example 2.12 Consider a lazy TRS consisting of one rule f(a) → b with a re-
placement map μ(f) = ∅. Now, when considering the canonically labelled term
f e(al) we can reduce it to fe(ae) according to the lazy rewrite relation. The latter
term is more liberally labelled than its canonically labelled version.
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Note that LR(μ)-termination and well-foundedness of LR→μ do not coincide in general.
The reason is that LR(μ)-termination concerns the non-existence of lazy reduction
sequences starting from canonically (or more liberally) labelled terms, while there
may still be infinite reduction sequences starting from other terms. Example 2.13
shows that the two notions are indeed different.

Example 2.13 Consider the TRS {g(f(a), c) → a, h(x, f(b)) → g(x, h(x, x))} with
a replacement map μ(f) = μ(g) = {1} and μ(h) = {1, 2}. This system is LR(μ)-
terminating. This can be shown with the transformation of Definition 3.8 and
Theorem 3.20. However, LR→μ is not well-founded: ge(fe(bl), hl(fe(bl), fe(bl))) LR→μ

ge(fe(bl), he(fe(bl), fe(bl))) LR→μ ge(fe(bl), ge(fe(bl), hl(fe(bl), fe(bl)))) LR→μ . . . Note
that the term bl at position 1.1 of the starting term is lazy while it would have been
eager in the canonically labelled version of the starting term. This being more lazy
is the key for the existence of the infinite reduction sequence.

3 Transforming Lazy Rewrite Systems

3.1 Lucas’ Transformation

We start with the definition of the transformation of [11], because it provides the
basic ideas for our new one. The main idea of the transformation is to explicitly
mimic activation steps of lazy rewriting through special activation rules in the trans-
formed system which basically exchange function symbols to make them more eager
(this goes back to [13]). Activations in lazy rewriting are possible at positions which
correspond to a non-variable position of the left-hand side of some rule in a partial
matching. This is why in the transformation we are concerned with non-variable
lazy positions of left-hand sides of rules.

The transformation is iterative. In each iteration new rules are created until a
fixed point is reached. The following definition identifies for a rule l → r and a
position p the positions p.i which are lazy in labelμ(l). These positions are dealt
with in parallel in one step of the transformation.

Definition 3.1 ([11]) Let l → r be a rewrite rule and p a non-variable position of
l, then

I(l, p) = {i ∈ {1, ..., ar(root(l|p))} | i �∈ μ(root(l|p)) ∧ p.i ∈ PosΣ(l)}.
Example 3.2 Consider a rewrite rule l = f(a, b, x) → r and a replacement map
μ(f) = {1}. Then I(l, ε) = {2}.
Definition 3.3 ([11]) Let R = (Σ, R) be a TRS with replacement map μ and
let I(l, p) = {i1, . . . , in} �= ∅ for some rule l → r ∈ R and p ∈ PosΣ(l) where
root(l|p) = f . The transformed system R� = (Σ�, R�) and μ� are defined as follows:

• Σ� = Σ ∪ {fj | 1 ≤ j ≤ n} where fj are new function symbols of arity ar(fj) =
ar(f)

• μ�(fj) = μ(f) ∪ {ij} for all 1 ≤ j ≤ n and μ�(g) = μ(g) for all g ∈ Σ
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• R� = R − {l → r} ∪ {l′ij → r | 1 ≤ j ≤ n} ∪ {l[x]p.ij → l′j [x]p.ij | 1 ≤ j ≤ n}
where l′j = l[fj(l|p.1, ..., l|p.m)]p if ar(f) = m, and x is a fresh variable.

The transformation of Definition 3.3 is iterated until arriving at a system R� =
(Σ�, R�) and μ� such that I(l, p) = ∅ for every rule l → r ∈ R� and every position
p ∈ PosΣ(l). For further motivation and examples concerning Definition 3.3 we
refer to [11].

In [11] it remains unspecified how the pair l, p is selected in one step of the
transformation. However, it turns out that the order in which those pairs are
considered can be essential.

Example 3.4 Consider the TRS {f(g(a), a) → a, b → f(g(c), b)} with a replace-
ment map μ(f) = {1} and μ(g) = ∅. This system is not LR(μ)-terminating:

be LR→μ fe(ge(cl), bl) LR→μ fe(ge(cl), be) LR→μ fe(ge(cl), fe(ge(cl), bl)) LR→μ . . .

However, if we start the transformation with the first rule and position p = ε, and
consider position 1 of the first rule in the second step of the transformation, then
we arrive at the context-sensitive system

f2(g1(a), a) → a f(g′1(a), x) → f2(g(a), x)

f2(g(x), a) → f2(g1(x), a) f(g(x), y) → f(g′1(x), y)

b → f(g(c), b)

with μ(f) = μ(g1) = μ(g′1) = {1} and μ(f2) = {1, 2}. 4 This system is μ-terminating
(proved with AProVE [5]). The lazy reduction sequence starting from b cannot be
mimicked anymore, because due to the two transformation steps first the argument
of g has to be activated which prevents the activation of the b in the second argument
of f .

3.2 The New Transformation

3.2.1 Definition
In Lucas’ transformation, positions that are dealt with last during the transforma-
tion must be activated first in rewrite sequences of the transformed system. This
can be seen in Example 3.4 where I(f(g(a), a), ε) is considered in the first step
of the transformation but position 2 must be activated after position 1.1 (whose
activation is enabled by a later transformation step considering I(f(g(a), x), 1)).

Thus, the order in which lazy positions of rules are dealt with during the trans-
formation is the reverse order in which they may be activated in the resulting
transformed system. Since we want to simulate lazy rewriting, and in lazy rewrit-
ing only outermost lazy positions may be activated in a labelled term, we consider
more inner lazy positions first in our new transformation. Therefore, with the re-
sulting context-sensitive system more outer positions may be activated only before

4 Here and subsequently the subscripts of function symbols indicate additional replacing positions. So the
replacement map of a symbol fi differs from that of f in that i is replacing in fi.
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more inner ones.
Despite considering more inner positions first in the transformation, we do not

want to prioritize any (orthogonal) lazy positions. Thus, we define I(l) which
identifies the innermost lazy positions in a term with respect to a given replacement
map μ.

Definition 3.5

I(l) = {p ∈ PosΣ(l) | p is lazy in labelμ(l) ∧
∧ (�q ∈ PosΣ(l) : q lazy in labelμ(l) ∧ q > p)} .

Before presenting the formal definition of our new transformation (see Definition
3.8 below), which crucially relies on Definition 3.5, we want give an informal expla-
nation and illustration of its essential features. In our transformation we distinguish
two kinds of rules that are generated. On the one hand we have activation rules
which are characterized by the fact that in these rules the left- and right-hand side
differ only at exactly one position, where in the right-hand side a different function
symbol as in the left-hand side is used. While having the same arity, the different
function symbol in the right-hand side has exactly one more replacing position and
the argument at that position is a variable (in both sides). All other rules are active
rewrite rules.

The actual transformation proceeds in 3 stages. First, a set of initial activation
rules is created. These rules enable the activation of one innermost position of a
left-hand side of the original rules of the lazy TRS. As already indicated, by a rule
activating position p.i we mean a rule l → r where l and r differ only in the function
symbol at position p and p.i is replacing in r but non-replacing in l.

In the second stage one rule l → r (activating a position p) created in stage 1
(or stage 2) is replaced by a set of activation rules. This set contains two activation
rules for each innermost lazy non-variable position of l. Let q be such a position
(note that q is either above or orthogonal to p). Then the first of these two rules is
a rule which activates q. Apart from that, both sides of this rule are identical to l

(i.e. position p is still inactive). The second rule activates position p. However, in
this rule position q is already active. So the second rule differs from the initial rule
l → r only in that position q is replacing in both sides (cf. Example 3.6).

Example 3.6 Assume an activation rule l = f(g(x), a) → f(g1(x), a) was gener-
ated in step 1 of the transformation where μ(g) = μ(f) = ∅ and μ(g1) = {1}. The
rule activates position p = 1.1. The left-hand side of this rule (if canonically labelled)
has two innermost non-variable lazy positions I(l) = {1, 2}. Thus, it will be replaced
by a set of new rules. We first consider the innermost lazy position q = 1. So first,
a rule is created which activates q where p is non-replacing (in this special case po-
sition p does not even occur in the rule). This rule is f(y, a) → f1(y, a). Second, we
create a rule which activates p while q already is active: f1(g(x), a) → f1(g1(x), a).
These two rules illustrate that in a system obtained by this kind of transformation
more outer positions (like position 1) may be activated only before more inner ones
(like 1.1). For the second innermost lazy position of the original rule we also obtain
two rules:
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f(g(x), z) → f2(g(x), z) f2(g(x), a) → f2(g1(x), a)

We have μ(f1) = {1} and μ(f2) = {2}. Note that all of the generated rules still
have non-replacing non-variable positions in their left-hand sides. Hence, each of
them must be transformed (and replaced) further in the same way as the original
rule of this example was processed.

This construction ensures that with the obtained rules in every derivation q

(which was considered after p in the transformation) is activated before p, which
is sound as p is a more inner (or parallel) position compared to q (since it was
considered first).

The latter construction is repeated until the rules obtained do not have any lazy
(non-variable) positions. We would like to point out once again that, as we consider
innermost positions of terms in stage one and one iteration of stage two in our
transformation, the outermost lazy positions of the initial rules of the lazy system
are dealt with last. Hence, these are the positions which may be activated first in
reduction sequences of the transformed system.

In the third stage of the transformation for each rule of the original lazy system
one active rewrite rule is created. This rule differs from the original rule from
which it was created only in the fact that the left-hand side is fully activated, i.e.
it contains no lazy non-variable position. The reason is that whenever an active
reduction step is performed on a lazy sequence it can be simulated by first fully
activating the redex with the generated activation rules and afterwards performing
the actual active step. This is done in derivations of our transformed system.

Since all new function symbols which are introduced by the transformation are
substituted for function symbols of the original signature, we define the mapping
orig from the signature of the transformed system into the original signature which
identifies for each new function symbol the original one for which it was substituted.

Definition 3.7 Let R = (Σ, R) be a TRS with replacement map μ. If in one
step of the transformation f ∈ Σ is replaced by a new function symbol f ′, then
orig(f ′) = f . Furthermore, if f ′ is substituted for a function symbol g �∈ Σ, then
orig(f ′) = orig(g). For function symbols h ∈ Σ, we set orig(h) = h and for
variables we have orig(x) = x.

Definition 3.8 Let R = (Σ, R) be a TRS with replacement map μ. The trans-
formed system R̃ = (Σ̃, R̃) with μ̃ is constructed in the following three stages.

1 Generation of Initial Activation Rules. The transformed signature Σ̃ ⊇ Σ
and the set A(l) for every rule l → r ∈ R are defined as the least sets satisfying

l[x]p.i → l′[x]p.i ∈ A(l) if p.i ∈ I(l) and l′ = l[fi(l|p.1, ..., l|p.n)]p (1)

∧ fi ∈ Σ̃

∧ orig(g) = orig(h) ∧ μ̃(g) = μ̃(h) ⇒ g = h for all g, h ∈ Σ̃

where μ̃ is defined by μ̃(f) = μ(f) for all f ∈ Σ and μ̃(fi) = μ(orig(fi)) ∪ {i}
if fi was introduced in (1). Then we have R̃ :=

⋃
l→r∈R A(l).

2 Saturation of Activation Rules.
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2.a Processing one Activation Rule Let R̃ = A(l1) ∪ ... ∪ A(lm) and let
l → r ∈ A(lj) for some j ∈ {1, ...,m} such that I(l) is not empty. Then we
modify the set A(lj) in the following way:

A(lj) = A(lj) − {l → r} ∪ {l[x]p.i → l′[x]p.i} ∪ {l′ → r′}
for all p.i ∈ I(l) where l′ = l[fi(l|p.1, ..., l|p.n)]p and r′ = r[f ′

i(r|p.1, ..., r|p.n)]p.
If there is no g ∈ Σ̃ with orig(g) = orig(fi) and μ̃(g) = μ̃(root(l|p))∪{i}, then
Σ̃ = Σ̃ ∪ {fi} and μ̃(fi) = μ̃(root(l|p)) ∪ {i}, otherwise fi = g. Analogously, if
there is no g ∈ Σ̃ with orig(g) = orig(f ′

i) and μ̃(g) = μ̃(root(r|p)) ∪ {i}, then
Σ̃ = Σ̃ ∪ {f ′

i} and μ̃(f ′
i) = μ̃(root(r|p)) ∪ {i}, otherwise f ′

i = g.

R̃ :=
⋃

l→r∈R

A(l)

2.b Iteration Step 2.a is iterated until for all rules l → r of R̃ we have that
I(l) = ∅.

3 Generation of Active Rewrite Rules. For each rule l → r ∈ R we add
one active rewrite rule to R̃. For every position p ∈ PosΣ(l), we consider the
set

Symb(p, l) = {root(r′|p) | l′ → r′ ∈ A(l) ∧ p ∈ PosΣ(r′)}.
The function symbol which is least restrictive in this set (i.e., the maximal
element of μ̃(f) w.r.t. the subset relation of all f ∈ Symb(p, l)) is unique and
denoted by maxSymb(p, l). We set

R̃ := R̃ ∪
⋃

l→r∈R

l′′ → r

where l′′ is given by Pos(l) = Pos(l′′), root(l′′|p) = maxSymb(p, l) for all
p ∈ PosΣ(l) and root(l′′|p) = root(l|p) for all p ∈ PosV (l). The signature of
the transformed system is not altered in this stage.

The transformation is terminating and produces a finite context-sensitive rewrite
system (CSRS) provided that the input is finite. Furthermore, the function symbol
maxSymb(p, l) is unique for every rule l → r ∈ R and every p ∈ PosΣ(l) (cf. [17]
for further details).

Example 3.9 Consider the TRS from Example 3.4 {l1 = f(g(a), a) → a, l2 = b →
f(g(c), b)} with a replacement map μ s.t. μ(f) = {1} and μ(g) = ∅. In the first
stage of the transformation we have I(l1) = {1.1, 2} and the following two initial
activation rules are added (i.e. A(l1)). {f(g(x), a) → f(g1(x), a), f(g(a), x) →
f2(g(a), x)} with μ̃(g1) = {1} and μ̃(f2) = {1, 2}. A(l2) = ∅, because l2 does not
contain any lazy non-variable positions. In step 2.a, the first rule of A(l1) is re-
placed by {f(g(x), y) → f2(g(x), y), f2(g(x), a) → f2(g1(x), a)} where the position
p.i that was used is 2 (i.e., ε.2) and thus the new function symbol introduced is
f2. In the second iteration, the second rule of A(l1) is replaced by {f(g(x), y) →
f(g1(x), y), f(g1(a), x) → f2(g1(a), x)}. Here, the position p.i that was used is
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1.1 and thus the new function symbol is g1. Finally, the following active rewrite
rules are added: {f2(g1(a), a) → a, b → f(g(c), b)}. For l1 we have Symb(ε, l1) =
{f, f2}, Symb(1, l1) = {g, g1} and Symb(1.1, l1) = Symb(2, l1) = {a}. There-
fore, maxSymb(ε, l1) = f2, maxSymb(1, l1) = g1, maxSymb(1.1, l1) = a and
maxSymb(2, l1) = a. For l2 we trivially have maxSymb(ε, l2) = b. Hence, the
system R̃ consists of

f(g(x), y) → f2(g(x), y) f2(g(x), a) → f2(g1(x), a)

f(g(x), y) → f(g1(x), y) f(g1(a), x) → f2(g1(a), x)

f2(g1(a), a) → a b → f(g(c), b)

with μ̃(f) = μ̃(g1) = {1}, μ̃(f2) = {1, 2} and μ̃(g) = ∅. R̃ is not μ̃-terminating:

b →
eμ f(g(c), b) →

eμ f2(g(c), b) →
eμ f2(g(c), f(g(c), b)) →

eμ . . .

Remark 3.10 Note that the above system could not have been derived with Lucas’
transformation regardless of the order in which the positions are processed there.
The reason is that when applied to this example, Lucas’ transformation always
enforces some order of activation of the two orthogonal lazy positions, whereas the
new transformation does not.

The rest of the paper is concerned with the proof of soundness and completeness
of the transformation of Definition 3.8 w.r.t. termination. First, we will deal with
the simpler case of completeness.

3.2.2 Soundness and Completeness
Theorem 3.11 Let R = (Σ, R) be a left-linear TRS with replacement map μ, and
let R̃ = (Σ̃, R̃), μ̃ be the transformed system (resp. replacement map) according to
Definition 3.8. If R is LR(μ)-terminating, then R̃ is μ̃-terminating.

In order to prove the soundness of our transformation, we are going to show the
existence of an infinite reduction sequence in the transformed system, whenever
there is an infinite lazy reduction sequence in the original system. So assume there
is an infinite lazy reduction sequence in a TRS R with replacement map μ. The
first observation is that every lazy reduction sequence naturally corresponds to a
context-free (i.e. ordinary) →R-sequence, which performs the active rewrite steps
of the lazy reduction sequence. We will construct a →

eμ-reduction sequence in the
transformed system R̃ that corresponds to a context-free →R-sequence, cf. Figure 1.
Terms in the context-free →R-sequence and terms in the corresponding μ̃-sequence
are in a special relationship.

Definition 3.12 Let R = (Σ, R) be a TRS, μ a replacement map and let s, t ∈
T (Σ, V ) be two terms. Abusing notation we write s →∗

μc t if and only if

(i) for all positions p ∈ Posμ(t) we have root(t|p) = root(s|p), and

(ii) for all minimal positions q ∈ Pos(t)\Posμ(t) we have s|q →∗
μ s′ and s′ →∗

μc t|q.
The idea behind →∗

μc is that context-free reduction steps which occur at positions
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Fig. 1. Relation between the various rewrite sequences occurring in the soundness proof.

that are in the replacing part of the simulating term should be simulated, thus the
replacing parts of two terms s and t with s →∗

μc t must be entirely equal. On the
other hand, context-free steps that occur at positions which are forbidden in the
simulating term are ignored. Yet, if the forbidden subterm in which they occur
eventually gets activated, then these steps may still be simulated.

As minimal non-replacing positions in a term are always strictly below the root,
the recursive description of →∗

μc in Definition 3.12 is well-defined.
We have s = t ⇒ s →∗

μc t. Figure 1 illustrates the correspondence between a lazy
reduction sequence, the corresponding context-free one, and the →

eμ-sequence. Note
that if the lazy reduction sequence is infinite, then there are infinitely many non-
empty steps in the context-free reduction sequence, as every labelled term admits
only finitely many activation steps.

In the first part of the soundness proof we show the existence of a →
eμ-sequence

of the shape as in Figure 1.
The next lemma establishes the relationship between a context-free reduction

sequence and a corresponding →
eμ reduction of Figure 1.

Lemma 3.13 Let (R = (Σ, R), μ) be a TRS with replacement map and let (R̃ =
(Σ̃, R̃), μ̃) be the system obtained by the transformation of Definition 3.8. Let s and
t be terms from T (Σ, V ), such that s →∗

eμc t. If t
p→ t∗ (with a rule l → r) and

p ∈ Poseμ(s), then s →+
eμ s∗ and s∗ →∗

eμc t∗. Otherwise, if t
p→ t∗ and p �∈ Poseμ(s),

then s →∗
eμ s∗ and s∗ →∗

eμc t∗.

Unfortunately, the last lemma and the correspondence of lazy, context-free and
→

eμ-reduction sequences of Figure 1 are not sufficient to prove the existence of an in-
finite →

eμ-sequence in the presence of an infinite lazy reduction sequence, since there
may be only finitely many non-empty →

eμ-reductions in the simulating sequence.

Example 3.14 Consider a TRS R consisting of the rules {a → f(a), f(b) → b}.
This system is not LRμ-terminating when considering a replacement μ with μ(f) =
∅. Consider the infinite lazy reduction sequence

ae LR→μ fe(al) LR→μ fe(ae) LR→μ . . .

The transformed system is {a → f(a), f(x) → f1(x), f1(b) → b} with μ̃(f) = ∅
and μ̃(f1) = {1}. We can simulate the infinite lazy reduction sequence by a →

eμ

f(a) →
eμ f1(a) →

eμ . . . Note that in this simulating derivation function symbols of
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the extended signature are introduced which are not immediately “consumed” by a
more outer active rewrite step. Example 3.15 shows that this can lead to problems.

Example 3.15 Consider a non-terminating TRS R = {f(g(x)) → f(g(x)), g(a) →
g(b), a → c} with a replacement map μ given by μ(f) = {1} and μ(g) = ∅. The
transformed system R̃ is {f(g(x)) → f(g(x)), g(x) → g1(x), g1(a) → g(b), a → c}
with μ̃(f) = μ̃(g1) = {1} and μ̃(g) = ∅. Consider the context-free reduction sequence
f(g(a)) → f(g(c)) → f(g(c)) → . . . . If we activate position 1.1 in f(g(a)) in
the simulating →

eμ-sequence, we cannot further extend f(g(a)) →
eμ f(g1(a)) →

eμ

f(g1(c)), because the term f(g1(c)) is a →
eμ-normal form.

The crucial difference why the activation of a subterm is essential in Example
3.14 and unnecessary in Example 3.15 is that in the former example the activated
subterm itself initiates an infinite lazy reduction sequence. This observation will be
used in the second part of the soundness proof (cf. Theorem 3.20).

When constructing an infinite reduction sequence in the transformed system
corresponding to an infinite lazy sequence in the soundness proof, we will identify
those activations that activate a non-terminating subterms sinf and simulate them
by activating the corresponding subterm s′inf in the simulating sequence. After-
wards, we will focus only on an infinite lazy reduction sequence initiated by sinf .
This way the simulated activation, i.e., the introduction of a function symbol of the
new signature, is of no relevance for the further simulation as it happened outside
of s′inf .

With the following definition we intend to identify labelled terms in an infinite
lazy reduction sequence with non-terminating proper subterms that have possibly
been activated. For such terms t, the predicate mininf(t) does not hold.

Definition 3.16 Let Σ be a signature and μ be a replacement map for Σ. A la-
belled term t is said to be minimal non-terminating if it admits an infinite lazy
reduction sequence and for each eager labelled proper subterm t|p of t, either t|p
does not initiate an infinite lazy rewrite sequence, or position p is eager in the term
labelμ(erase(t)). We write mininf(t) if t has this property.

Definition 3.17 Let R = (Σ, R) be a TRS with replacement map μ. Let t be a
labelled term t and t

LR→μ s be an activation step. This activation step is called
inf-activating (thus it is an inf-activation step) if and only if mininf(t) but not
mininf(s).

It is easy to see that whenever mininf(t) holds for a labelled term t, there is
no active position p ∈ Act(t) which is non-active in labelμ(erase(t)), such that t|p
initiates an infinite lazy reduction sequence.

In the second part of the soundness proof we will show that each infinite lazy
reduction sequence contains either an inf-activation step or an active rewrite step
s

LR→μ t at position p such that p is μ-replacing in erase(s). Furthermore, such steps
result in non-empty simulations by the →

eμ-sequence.

Lemma 3.18 Let R = (Σ, R) be a TRS with replacement map μ. Let t be a labelled
term satisfying mininf(t). Then we have:
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(i) If t
LR→μ s with an inf-activation step at position q1 activating position q2 and

q1 < p ≤ q2 is the maximal (w.r.t. ≤) eager position in s which does initiate
an infinite reduction sequence s.t. t|p does not, then we have mininf(s|p).

(ii) If t
LR→μ s with any other step than in (i) (i.e., activation steps which are not

inf-activating, or active rewrite steps), then mininf(s).

The next lemma characterizes infinite lazy reduction sequences starting from
minimal non-terminating labelled terms. It states that in such an infinite lazy
reduction sequence after finitely many steps there is either an active rewrite step
si

LR→μ si+1 at some position p which is active in labelμ(erase(si)) or there is an
inf-activation step. We already know from Lemma 3.13 that active rewrite steps at
such positions can be simulated by a non-empty sequence in the transformed system
(remember that the active rewrite steps of a lazy reduction sequence correspond to
a context-free derivation). In Theorem 3.20 we will prove that the same is true for
inf-activation steps.

Lemma 3.19 Let R = (Σ, R) be a TRS with a replacement map μ. Let t0 be a
labelled term with the property mininf(t0). Let P : t0

LR→μ t1
LR→μ . . .

LR→μ tn
LR→μ . . .

be an infinite lazy reduction sequence starting from t0. Then, either there is an
active rewrite step ti

LR→μ ti+1 at position p, where p is active in labelμ(erase(ti)),
or there is an inf-activation step in P .

Theorem 3.20 Let (R = (Σ, R), μ) be a left-linear TRS with replacement map and
let (R̃ = (Σ̃, R̃), μ̃) be the system obtained by the transformation of Definition 3.8.
If R̃ is μ̃-terminating, then R is LR(μ)-terminating.

Proof. (Sketch) 5 We will show that the existence of an infinite lazy reduction
sequence P : t0

LR→μ t1
LR→μ . . . (where t0 is canonically or more liberally labelled)

implies the existence of an infinite reduction sequence in the transformed system.
The following invariant will be maintained for every labelled term ti of an infinite
reduction sequence P . Let s0 →

eμ s1 →
eμ . . . be the simulating reduction sequence

we are going to construct:
There is a sj and a position o such that

sj |o →∗
eμc erase(ti|o) ∧ mininf(ti|o)

and position o is μ̃-replacing in sj and active in ti. Furthermore, ti|o is at least
as eager as its canonically labelled version (i.e., whenever labelμ(erase(ti|o)) has an
eager label at some position q, then the label of ti|o is eager at that position, too).
Note that the latter condition is trivially fulfilled by all terms ti in P , and thus
by all subterms, since no “deactivations” are possible in lazy rewriting and active
rewrite steps only introduce canonically labelled terms.

We show that a finite initial subsequence of P implies the existence of a non-
empty reduction sequence in the transformed system which preserves the invariant.
As each term ti|o itself initiates an infinite lazy reduction sequence, this suffices to

5 For a more detailed version of the proof we refer to [17]
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show that there is an infinite reduction sequence in the transformed system.
In order to apply Lemma 3.19, we assume mininf(t0). This minimality con-

straint can be satisfied, as w.l.o.g. we can find a t0 such that each proper subterm
of t0 with an eager label does not initiate an infinite lazy reduction sequence.

The infinite reduction sequence we are going to construct in the transformed
system starts with the term s0 = erase(t0). We have s0 →∗

eμc erase(t0).
Lemma 3.19 states that in the lazy reduction sequence starting from t0 there

is either an active rewrite step ti
LR→μ ti+1 at position p such that p is active in

labelμ(erase(ti)), or there is an inf-activation step. Let tj
LR→μ tj+1 be the first such

step.
The goal is to show that the reduction sequence t0

LR→∗
μ tj+1 can be simulated

by a sequence s0 →+
eμ si such that si|o →∗

eμc erase(tj+1|o) and mininf(tj+1|o) holds
for some position o which is active in tj+1 and replacing in si. We make a case

distinction on whether the step tj
LR→μ tj+1 is an active rewrite step or an inf-

activation step.

(i) Assume the step tj
LR→μ tj+1 is an active rewrite step at position p such

that p is active in labelμ(erase(tj)). Then, by using Lemmata 3.13 and 3.18 we
can derive that there exists a reduction sequence s0 →∗

eμ si →+
eμ si+1 such that

si+1 →∗
eμc erase(tj+1) and mininf(tj+1).

(ii) Assume the step tj
LR→μ tj+1 is an inf-activation step. This implies that a sub-

term tj+1|p is activated, which is non-LR(μ)-terminating (furthermore,
mininf(tj+1|p) holds according to Lemma 3.18). Then we can construct a sim-
ulating sequence s0 →∗

eμ si →+
eμ s∗i where in the non-empty subsequence si →+

eμ s∗i
position p is activated and the subterm at position p is reduced in order to obtain
s∗i |p →∗

eμc erase(tj+1|p) (cf. Definition 3.12).

Now given an infinite lazy reduction sequence P starting from a labelled term
t0 and a term s0 with s0 →∗

eμc erase(t0), we have shown that a finite subse-
quence t0

LR→+
μ ti of a special shape implies the existence of a non-empty sequence

s0 →+
eμ sj such that sj |p →∗

eμc erase(ti|p), where p is active in ti and replacing in
sj , mininf(ti|p) holds and ti|p initiates an infinite lazy reduction sequence. Thus,
again the infinite lazy sequence starting at ti|p has a finite subsequence, that can
be simulated by a non-empty reduction sequence in the transformed system. By
repeating this construction, we get an infinite reduction sequence in the transformed
system starting at s0. �

4 Experiments and Discussion

In the proof of Theorem 3.20 we saw that the context-sensitive rewrite system
(CSRS) obtained by our transformation cannot simulate lazy reduction sequences
in a one-to-one fashion. When simulating infinite lazy reduction sequences, after
every inf-activation step in the lazy reduction an entirely new infinite lazy sequence
was considered, namely the one initiated by the activated subterm. Thus, the ques-

F. Schernhammer, B. Gramlich / Electronic Notes in Theoretical Computer Science 204 (2008) 35–51 49



tion arises whether we can define a transformation from lazy rewrite systems into
context-sensitive ones, such that the transformed system is able to fully simulate the
lazy reduction system. We conjecture that this is indeed possible ([16]), but would
render termination proofs more difficult. The reason is that such a transformation
would need to introduce even more rules that alter the status (i.e., lazy or eager) of
positions in lazy terms (to be more precise, more activation rules would be needed).

Regarding the size of the transformed system, the number of rules created by
our transformation is in general exponentially higher than the number of lazy non-
variable subterms in left-hand sides of rules of the lazy system. However, we found
that in our test series that was taken from the termination problem database ([18])
this number was not too high in most of the systems. This leads to the ques-
tion whether our transformation is practically feasible in proofs of termination of
real-world lazy TRSs. A series of tests were performed to answer this question,
cf. [17]. As this is the first experimental termination analysis of lazy TRSs, nei-
ther lazy test TRSs nor benchmarks of other methods for proving lazy termination
were readily available. Thus, we used the context-sensitive TRSs from the [18]
and interpreted these systems as lazy ones. Out of 53 lazy systems that were
tested, lazy termination of 35 could be shown. The tests were performed using
AProVE ([5]) for proving context-sensitive termination of the CSRSs obtained by
our transformation (with a time limit of 10 seconds). When interpreting these
results one has to keep in mind that the example TRSs considered were actually
supposed to be considered context-sensitive by their authors. Thus, in many cases
the changes made by our transformation were only minimal. There were only 3 sys-
tems (namely Ex1 Zan97.trs, Ex9 Luc06 and Ex14 AEGL02) for which termination
could be proved in the context-sensitive case but not in the lazy case. However, all
these systems actually become non-terminating when considered to be lazy instead
of context-sensitive. This indicates that in many practical cases the analysis of
lazy termination with our approach may well be feasible and a priori not too hard.
Furthermore, lazy termination analysis can greatly benefit from ongoing research
in the field of context-sensitive termination.
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