
Transformations of Conditional Rewrite Systems

Revisited

Karl Gmeiner and Bernhard Gramlich

TU Wien, Austria
{gmeiner,gramlich}@logic.at

Abstract. We revisit known transformations of conditional rewrite sys-
tems to unconditional ones in a systematic way. We present a unified
framework for describing, analyzing and classifying such transformations,
discuss the major problems arising, and finally present a new transfor-
mation which has some advantages as compared to the approach of [6].
The key feature of our new approach (for left-linear confluent normal
1-CTRSs) is that it is backtracking-free due to an appropriate encoding
of the conditions.

1 Background and Overview

Conditional term rewrite systems (CTRSs) and conditional equational specifi-
cations are very important in algebraic specification, prototyping, implemen-
tation and programming. They naturally occur in most practical applications.
Yet, compared to unconditional term rewrite systems (TRSs), CTRSs are much
more complicated, both in theory (especially concerning criteria and proof tech-
niques for major properties of such systems like confluence and termination)
and practice (implementing conditional rewriting in a clever way is far from
being obvious, due to the inherent recursion when evaluating conditions). For
these (theoretical and practical) reasons, transforming CTRSs into (uncondi-
tional) TRSs in an adequate way has been studied for a long time cf. e.g.
[4, 9, 18, 12, 15, 5, 2, 6, 13, 17, 10]. In many other early papers (like [1, 8])
the issue of transforming conditional into unconditional TRSs is not studied in
depth, but at least touched from a programming language point of view.

Roughly, all transformations work by translating the original syntax (signa-
ture and terms) into an extended or modified one using auxiliary function sym-
bols, and by translating the rules in a corresponding way such that the evaluation
of conditions and some control structure is (appropriately) encoded within the
resulting unconditional TRS (in which in some cases reduction is additionally
restricted, see below).

In the papers mentioned above certain of these issues have been investigated
for particular (quite different) transformations and with different terminology. In
order to better understand and relate the different approaches together with their
results, we will propose a kind of unified terminology for such transformations
and their properties.

A. Corradini and U. Montanari (Eds.): WADT 2008, LNCS 5486, pp. 166–186, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Transformations of Conditional Rewrite Systems Revisited 167

In the second main part of the paper we will deal with the issue of backtracking
and the question whether a transformed system is computationally adequate
for simulating the original one. Here we will propose a new approach whose
characteristic feature is “backtracking-freeness”. The underlying goal here is as
follows: If, for some given conditional system, we start a simulation (a reduction
in the transformed TRS) from an “initial” term and obtain a normal form in
the transformed system, then the latter should correspond to a normal form of
the initial term in the original CTRS (this property, together with a few other
requirements, is called computational equivalence in [6]). Otherwise, some form
of backtracking would be needed, because then we are stuck with a failed attempt
of verifying conditions, and may need to try another conditional rule.

The rest of the paper is structured as follows. In Section 2 we introduce
the necessary background about (conditional) term rewriting. Then, in Section
3 we present and discuss a unifying framework for describing transformations
from CTRSs to TRSs. Furthermore known and new unsoundness phenomena
are dealt with briefly. Then, in Section 4 we investigate how to design a trans-
formation that avoids explicit backtracking during simulation in such a way that
the transformed system still enjoys most desired preservation properties. We mo-
tivate the approach by a careful analysis, give a formal definition and present the
main results. Finally, in Section 5 we report on some first experiments with our
new transformation, briefly discuss related work, sketch possible optimizations,
refinements and alternatives, and mention a few interesting perspectives. Due to
lack of space, proofs are omitted in the paper.1

2 Preliminaries

We assume familiarity with the basic notations and terminology in rewriting, cf.
e.g. [3]. We denote by O(t) the set of all subterm positions of a term t, that is
partitioned into all variable positions OX (t) = {p ∈ O(t) | t|p is a variable} and
all non-variable positions O(t) = O(t) \ OX (t). By Vars(t) we denote the set of
all variables occurring in a term t. This notion is extended in the obvious way to
rules and conditions. The set of normal forms of a rewrite system R is denoted
by NF(R). Left- and right-hand sides of rewrite rules are also abbreviated as lhs
and rhs, respectively. Slightly abusing notation, we sometimes confuse a rewrite
system R = (F , R) and its set R of rewrite rules.

Definition 1 (Conditional rewrite system, conditional rewrite relation,
depth of reductions). A conditional term rewriting system (CTRS) R (over
some signature F) consists of rules l → r ⇐ c where c is a conjunction of equa-
tions si = ti. Equality in the conditions may be interpreted (recursively) e.g. as
↔∗ (semi-equational case), as ↓ (join case), or as →∗ (oriented case). In the lat-
ter case, if all right-hand sides of conditions are ground terms that are irreducible
1 More theoretical results, complete proofs and more details about experiments, re-

lated work and possible optimizations and refinements can be found in the full version
of this paper (forthcoming).

168 K. Gmeiner and B. Gramlich

w.r.t. the unconditional version Ru = {l → r | l → r ⇐ c ∈ R} of R, the system
is said to be a normal one. Furthermore, according to the distribution of vari-
ables, a conditional rule l → r ⇐ c may satisfy (1) Vars(r) ∪ Vars(c) ⊆ Vars(l),
(2) Vars(r) ⊆ Vars(l), (3) Vars(r) ⊆ Vars(l) ∪ Vars(c), or (4) no variable con-
straints. If all rules of a CTRS R are of type (i), 1 ≤ i ≤ 4, respectively, we say
that R is an i-CTRS. The rewrite relation of an oriented CTRS R is recursively
defined as follows: R0

def= ∅, Rn+1
def= {lσ → rσ | l → r ⇐ s1 →∗ t1, . . . , sk →∗

tk ∈ R, siσ →∗
Ri
tiσ for all 1 ≤ i ≤ k}, →R

def=
⋃

n≥0Rn.

In the rest of the paper we will mainly deal with normal 1-CTRSs.

3 A Unifying Approach to Transformations

3.1 Basic Transformation Approaches

Basically, two different lines of approaches can be distinguished, according to
the way in which the conditions and the intermediate condition evaluation pro-
cess are encoded. Consider a conditional rule of a given normal 1-CTRS and a
term s = s[lσ] to be reduced. Obviously, the actual reduction of s = s[lσ] into
s′ = s[rσ] has to be delayed until the conditions siσ →∗ tiσ = ti have been
verified. To this end, the condition evaluation needs to be initiated and per-
formed, while keeping the relevant context, i.e., about the current rule, in order
to be finally able to produce rσ. In one line of approaches (historically the earlier
one), the latter information is encoded in an abstract way that hides any concrete
structure of l, but keeps the variable bindings of the matching substitution σ. Us-
ing the latter, after successful verification of the conditions the corresponding in-
stantiated right-hand side rσ can be produced. This means, we need two rules, an
introduction or initialization rule ρ′ : l → Uρ(s1, . . . , sn,Vars(l)) where Vars(s)
denotes the sequence of the set of all variables occurring in s (in an arbitrary,
but fixed order) and the fresh function symbol Uρ (of appropriate arity) stands
for rule ρ, and an elimination (or reducing) rule ρ′′ : Uρ(t1, . . . , tn,Vars(l)) → r
that completes the successful rule application after the instantiated conditions
siσ →∗ tiσ = ti have been verified (by other rewrite steps in between). The
most prominent representative of this type of approach are Marchiori’s un-
ravelings [12]. Early forerunners (with some restrictions/modifications or spe-
cial cases) and successors of unraveling approaches in the literature are among
others [4, 8, 15].

In the other main line of approaches, when trying to apply a conditional rule,
the left-hand side is not completely abstracted away during verification of the
conditions, but instead is kept in a modified form such that the conditions be-
come additional arguments of some function symbol(s) in l, typically of the root
function symbol. That means, the arity of this function symbol is increased ap-
propriately by conditional (argument) positions which are used to represent the
conditional arguments. Suppose l = f(u1, . . . , uk). Then f is modified into f ′ by
increasing its arity to k+n. For example, for the rule ρ′ : f(x) → x⇐ x→∗ 0 the

Transformations of Conditional Rewrite Systems Revisited 169

introduction and elimination rules become f ′(x,⊥) → f ′(x, x) and f ′(x, 0) → x,
respectively. Here, the fresh constant ⊥ stands for an uninitialized condition.
In order to prevent trivial cases of non-preservation of termination2 we will
wrap conditional arguments in some fresh syntactic structure, e.g. as follows:
f ′(x,⊥) → f ′(x, 〈x〉), f ′(x, 〈0〉) → x.3 Now, increasing the arity of some func-
tion symbols in general for storing conditional arguments there requires a more
sophisticated construction of the transformed system, since for every occurrence
of such function symbols in left- and right hand sides as well in the conditions
one has to specify how these conditional arguments should be filled and dealt
with during rewriting. And the basic transformation step has to be done for ev-
ery conditional rule! The basic idea underlying this approach goes back at least
till [1]. Yet, the work that inspired many later approaches in this direction is
by Viry [18].4 Other more recent transformation approaches along this line of
reasoning include [2, 6, 16].

Intuitively, in both lines of approaches certain reductions in the transformed
system during the evaluation of conditions do not correspond to what is done
in the conditional system, e.g., reduction in the variable bindings Vars(l) of
Uρ(s1, . . . , sn,Vars(l)) for unravelings, reduction in the “original arguments” of
f ′(x, 〈x〉), i.e., outside of 〈x〉, in the conditional argument approach, and re-
duction above “non-completed” conditional arguments (in both approaches).
This phenomenon which may have (and indeed has) problematic consequences
for transformations is well-known for a long time. For that reason several ap-
proaches in the literature impose some form of (context-sensitivity or strategy
or order-sortedness) restrictions on rewriting in the transformed system, e.g.
[10, 14, 16, 17, 18], which may lead to better results in theory and/or practice.
We will keep this issue in mind, but not deepen it here due to lack of space.

What makes papers and results about transforming conditional systems some-
times hard to read and to compare, is the diversity of the terminology used to
reason about their properties. In particular, soundness and completeness notions
are usually defined in different ways. We will instead provide now a proposal for
a unified description of such transformations including the relevant terminology.

3.2 A Unified Parameterized Description of Transformations

In view of the existing transformations and since one wants to simulate condi-
tional rewriting in the original system by unconditional rewriting in the trans-
formed one, extending the syntax appears to be unavoidable. So, generally
instead of original terms from T def= T (F ,V) the simulation will happen with

2 Note that the introduction rule is obviously non-terminating, whereas the original
conditional rule terminates (and is even decreasing cf. [7]).

3 Strictly speaking, the symbols ⊥ and 〈. . .〉 here are variadic, since they have as many
arguments as there are conditions in the respective rule. In a fixed-arity setting one
would have to use k-adic symbols ⊥k and 〈. . .〉k instead, for appropriate arities k.

4 Even though several main results (and proofs) in [18] are flawed, the ideas and the
concrete approach developed there have been very influential.

170 K. Gmeiner and B. Gramlich

terms from T ′ def= T (F ′,V) over an extended or modified signature F ′. More-
over, it may be necessary to initially explicitly translate original terms into the
new syntax and associate results obtained in the transformed system to original
terms. For unravelings this would not be absolutely necessary, but still yields
a generalized point of view that turns out to be beneficial for the analysis. For
approaches with encoding conditional arguments at new conditional argument
positions these mappings are essential, though.

Let us start with the general form of a transformation.5

Definition 2 (Transformations of CTRSs). A transformation from a class
of CTRSs into a class of TRSs is a total mapping T that associates to every
conditional system R = (F , R) from the class a triple ((F ′, R′,→R′), φ, ψ), where
(F ′, R′) is a TRS and →R′ is a subset of the rewrite relation induced by R′ =
(F ′, R′).6 We call φ : T → T ′ the initialization mapping (or encoding) and
ψ : T ′ → T the backtranslation (or decoding). Furthermore T has to satisfy the
following requirements:

(1) If R = (F , R) is finite (i.e., both F and R are finite), then R′ = (F ′, R′) is
also finite.

(2) The restriction of T to finite systems (from the considered class of CTRSs)
is effectively constructible.

(3) The initialization mapping φ : T → T ′ is an injective total function.
(4) The backtranslation ψ : T ′ → T is a (partial) function that is defined at

least on T ′
r, the set of all reachable terms7 which is given by T ′

r
def= {t′ ∈

T ′ | φ(s) →∗
R′ t′ for some s ∈ T }.

(5) The backtranslation ψ : T ′ → T satisfies ψ(φ(s)) = s for all s ∈ T , i.e., on
all initialized original terms it acts as inverse function w.r.t φ.

Discussion of requirements: Let us briefly discuss this abstract definition of
transformation and in particular the requirements mentioned.

First, we parameterize transformations by the class of CTRSs that we want
to transform, because this reflects the fact that for different types of CTRSs
transformations are typically defined in different ways.

The transformation of R into ((F ′, R′,→R′), φ, ψ) allows to impose particular
restrictions on →R′ like innermost rewriting or context-sensitivity constraints.
This ability is crucial in some existing transformation approaches. Intuitively,
this happens there in order to simulate more accurately the evaluation of con-
ditions in the transformed setting and to exclude computations that have no
analogue in the original system. If such a restriction of ordinary reduction is
involved in →R′ , we will mention this explicitly. Otherwise, again abusing nota-
tion, we will simply omit the third component in (F ′, R′,→R′).

5 Alternatively, instead of transformation also encoding, embedding or simulation are
used in the literature.

6 Actually, this is an abuse of notation. By writing →R′ we simply want to cover the
case, too, where the rewrite relation induced by R′ is somehow restricted.

7 The notion reachable term stems from [6]. In [2], term of interest was used instead.

Transformations of Conditional Rewrite Systems Revisited 171

Next, for a given CTRS of the respective class, the transformation does not
only yield a transformed signature and rewrite system, but also an initialization
mapping φ and a backtranslation ψ. For practical reasons, here the need for
requirement (2) is obvious.

Requirement (1) actually is a precondition for (2): When starting with a finite
system, we clearly don’t want to end up with an infinite one after transforma-
tion which usually would lead to non-computability and undecidability problems.
Without (1), the ideal and natural candidate for the transformed unconditional
system would be R′ = (F , R′) where R′ =

⋃
i≥0Ri with Ri as in Definition 1

(over the same signature), and with φ and ψ the identity function. However,
then in general R′ would be infinite and its rewrite relation undecidable! Actu-
ally, from a logical point of view this choice of R′ would be ideal, since virtually
all typical problems with transformations (like unsoundness phenomena) would
simply disappear, because the rewrite relations (of the original and the trans-
formed system) are exactly the same in this case. Yet, for the mentioned reasons,
this kind of transformation is practically useless.

Since in general the transformation may work on a modified or extended syn-
tax, the original terms possibly need to be translated (via φ) before computation
starts. Hence, φ should be total and also injective (3), since one clearly wants
to be able to distinguish different original terms also after transformation. The
other way round is more subtle. Namely, what should one be able to infer from
derivations in the transformed system, in terms of the original one? First of
all, the backtranslation ψ need not necessarily be total, because there may be
terms in T ′ which do not correspond to intermediate results of computations in
the transformed system. For such garbage terms nothing should be required. In
particular, there need not exist corresponding original terms for them. However,
for every reachable term in the transformed system we do require that there
exists indeed some original term to which the former corresponds (4). In a sense,
this condition is quite strong.8 Yet, on an abstract level in general we do not
know how the treatment of conditions (of R) in R′ actually works. The intuition
behind (4) is that ψ should deliver those “original parts” of an intermediate
result t′ ∈ T ′ which can obviously be obtained by translating back (i.e., which
directly correspond to original syntax). For the other “conditional parts” which
correspond to started attempts of applying conditional rules, ψ should go back
to the “beginning” of this attempt and recursively only translate back (condi-
tional) rule applications that have been entirely completed. Since the former
aspect requires solving reachability problems which are undecidable in general,
due to (2) reasonable computable versions of ψ can only approximate “precise
backtranslations”. Injectivity of ψ would be too strong a requirement, because
typically there exist many terms in T ′ corresponding in a natural way to a single
original term. For initialized original terms φ(s), s ∈ T , it should be obvious and

8 In this sense, (4) is perhaps the most debatable requirement in our abstract definition
of transformation. Though this definition covers all the major approaches from the
literature, it is conceivable that there exist other transformational approaches for
which a step-by-step backtranslation need not make sense.

172 K. Gmeiner and B. Gramlich

intuitive that via ψ we should get back the original term s (5), simply because
the initialization φ is the standard or canonical way of translating original terms
into the transformed setting.

Based on Definition 2 we will now define various important properties of trans-
formations that are crucial not only in theory, but also in practical applications.
Note that the resulting terminology differs from the existing literature.

Definition 3 (Properties of transformations). Let T be a transformation
from a class of CTRSs into the class of TRSs according to Definition 2 and let
R = (F , R) range over the former class of CTRSs. We define (two versions of)
soundness and completeness properties relating (properties P of) the original and
the transformed system (the rectangular brackets indicate the second versions; P
may be e.g. confluence or termination):

(a) T is said to be sound (for reduction) (or simulation sound) [w.r.t. reachable
terms] if for every R = (F , R) with T (R) = ((F ′, R′,→R′), φ, ψ) we have:
∀s, t ∈ T : φ(s) →∗

R′ φ(t) =⇒ s →∗
R t [∀s′, t′ ∈ T ′

r : s′ →∗
R′ t′ =⇒ ψ(s′) →∗

R
ψ(t′))].

(b) T is said to be complete (for reduction) (or simulation complete) [w.r.t.
reachable terms] if for every R = (F , R) with T (R) = ((F ′, R′,→R′), φ, ψ)
we have: ∀s, t ∈ T : s →∗

R t =⇒ φ(s) →∗
R′ φ(t) [∀s′ ∈ T ′

r, t ∈ T : ψ(s′) →∗
R

t =⇒ ∃t′ ∈ T ′
r : s′ →∗

R′ t′, ψ(t′) = t].
(c) T is said to be sound for convertibility [w.r.t. reachable terms] if for every

R = (F , R) with T (R) = ((F ′, R′,→R′), φ, ψ) we have: ∀s, t ∈ T : φ(s) ↔∗
R′

φ(t) =⇒ s↔∗
R t [∀s′, t′ ∈ T ′

r : s′ ↔∗
R′ t′ =⇒ ψ(s′) ↔∗

R ψ(t′)].
(d) T is said to be sound for preserving normal forms [w.r.t. reachable terms] if

for every R = (F , R) with T (R) = ((F ′, R′,→R′), φ, ψ) we have: ∀s, t ∈
T : φ(s) →∗

R′ φ(t) ∈ NF(R′) =⇒ t ∈ NF(R) [∀s′ ∈ T ′
r : s′ →∗

R′ t′ ∈
NF(R′) =⇒ ψ(t′) ∈ NF(R)9].

(e) T is said to be sound for P [w.r.t. reachable terms] if P(R′) implies P(R)
[if P(R′) on reachable terms implies P(R)].

(f) T is said to be complete for P [w.r.t. reachable terms] if P(R) implies P(R′)
[on reachable terms].

The above preservation properties of T are “localized” for particular R, R′ and
T in the obvious way.10

Discussion of terminology: Let us briefly discuss some aspects of these defi-
nitions. First, in general the two variants of “T sound / complete for P” and “T
sound / complete for P w.r.t. reachable terms” are not equivalent. We will see
an example below. One main goal for the design of any transformation should be
soundness for reduction. Technically, the stronger soundness for reduction w.r.t.
reachable terms may be preferable due to proof-technical reasons. Concerning
9 This is equivalent to: ∀s ∈ T ∀t′ ∈ T ′ : φ(s) →∗

R′ t′ ∈ NF(R′) =⇒ ψ(t′) ∈ NF(R).
10 Observe that, regarding termination, in practice one is typically interested in slightly

different preservation properties, namely of the shape “R operationally terminating
(on s) if (only if, iff) R′ terminating (on φ(s))”.

Transformations of Conditional Rewrite Systems Revisited 173

the computation of normal forms, soundness for preserving normal forms is in
general strictly weaker than soundness for preserving normal forms w.r.t. reach-
able terms, because it is unrealistic to expect that the (or a) normal form of φ(s)
(for s ∈ T) has the shape φ(t) (for some t ∈ T). Hence, in practice we need
here the latter notion. It is a specialized version of soundness for reduction, but
strengthened by the requirement that the property of being a normal form is
preserved backward.

Now, which properties of a transformation T would one expect to have for
a computationally feasible simulation of a given system R. Assuming that R
is confluent (a) and operationally terminating (b) (or, equivalently, decreasing,
if we assume only one condition per rule), computing the final unique result
t ∈ NF(R) for some initial s ∈ T could be done via R′ as follows: Initialize
s into φ(s), normalize φ(s) in R′ yielding some t′, and finally translate back
into ψ(t′). For this to work properly, one needs (c) completeness for termination
w.r.t. reachable terms, (d) soundness for preserving normal forms w.r.t. reach-
able terms, and (e) soundness for reduction w.r.t. reachable terms. Then we get
φ(s) →∗

R′ u′ ∈ NF(R′) for some u′ by (b) and (c). Then, by (d) and (e) we
obtain s →∗

R ψ(u′) ∈ NF(R). This together with s →∗
R t ∈ NF(R) and (a)

implies ψ(u′) = t, i.e., the desired final result.
In fact, it is not difficult to view most transformations from the literature, in

particular [12], [2] and [6], as instances of Definition 2 above (with corresponding
φ and ψ), together with the appropriately adapted terminology according to
Definition 3. Due to lack of space, we refrain from describing this in detail. Let
us instead briefly discuss a few aspects of unsoundness.

3.3 On-Unsoundness Phenomena

All transformation approaches that do not strongly restrict rewriting in
the transformed system (like [10, 14, 16, 17]) such that the simulation of
conditional rule application corresponds very closely to what is done in the orig-
inal CTRS, exhibit in general unsoundness phenomena. More precisely, sound-
ness for reduction (simulation soundness) is violated in general. This has been
shown for unravelings by Marchiori in the technical report version [11] of [12]
via a tricky counterexample. We present here a slightly simplified variant of this
counterexample.11

Example 1 (unsoundness (for reduction) in general). The normal 1-CTRS R
consisting of the rules a → c, a → d, b → c, b → d, c → e, c → k, d →
k, h(x, x) → g(x, x, f(d)), g(d, x, x) → A, f(x) → x ⇐ x →∗ e is unraveled ac-
cording to [12] into R′ which is R with the conditional rule replaced by f(x) →
U(x, x) and U(e, x) → x. In R′ we have the following derivation between origi-
nal terms: h(f(a), f(b)) →∗

R′ h(U(c, d), U(c, d)) → g(U(c, d), U(c, d), f(d)) →∗
R′

g(d, U(k, k), U(k, k)) →R′ A. In the original system, however, h(f(a), f(b)) →∗
R

A does not hold as is easily seen!
11 Compared to our version, [11, Example 4.3] has two more rules and two more

constants.

174 K. Gmeiner and B. Gramlich

Note that Example 1 also constitutes a counterexample to soundness (in general)
for most other transformation approaches including [2, 6]. We will not go into
details about sufficient conditions that nevertheless ensure soundness for partic-
ular transformations (some of them are well-known to exist, cf. e.g. [11], [15],
[2], [6]). Instead, let us ask – concerning our proposed terminology – whether
soundness w.r.t reachable terms is strictly stronger than ordinary soundness. In
fact, the answer is Yes, again for most approaches!

Example 2 (soundness is weaker than soundness w.r.t. reachable terms). Con-
sider the normal 1-CTRS R = {a → b, a → c, f(x) → x ⇐ x →∗ c} that, via
[2], is transformed into R′ = {a→ b, a → c, f ′(x,⊥) → f ′(x, 〈x〉), f ′(x, 〈c〉) →
x}. In R′ we have f ′(a,⊥) →R′ f ′(a, 〈a〉) →∗

R′ f ′(b, 〈c〉) → b. However, back-
translation of the last two reachable terms here yields ψ(f ′(b, 〈c〉)) = f(b) and
ψ(b) = b. Yet, in R, we clearly do not have f(b) →∗

R b. Hence the transforma-
tion is not sound w.r.t. reachable terms. Note, however, that we do not obtain
ordinary unsoundness here, because φ(f(a)) = f ′(a,⊥) →∗

R′ φ(b) = b implies
indeed f(a) →∗

R b.

Furthermore let us just mention that unravelings are in general also unsound for
convertibility (a counterexample is obtained by extending Example 1 above.

And finally, we observe that some transformations in the literature (e.g. [4] and
the technical report version [11] of [12]) are inherently unsound, because they do
not transmit all variable bindings in the encoding process (in the introduction
rule). Counterexamples for these cases can easily be constructed by adding a
non-left-linear rule.

4 The New Transformation

4.1 Motivation, Goal and Basic Idea

Our transformation will be based on the approach of [2]. The transformation in
[2] is complete, sound w.r.t. reachable terms and sound for preserving normal
forms w.r.t. reachable terms for “constructor-based” (normal 1-)CTRSs that
are left-linear and confluent. However, for other CTRSs it may be unsound or
incomplete for confluence.

Example 3 (Incompleteness for confluence cf. [2, Example 4]). Consider the con-
fluent CTRS R = {g(s(x)) → g(x) , f(g(x)) → x ⇐ x →∗ 0}. The
transformation of [2] returns the TRS R′ = {g(s(x)) → g(x), f ′(g(x),⊥) →
f ′(g(x), 〈x〉), f ′(g(x), 〈0〉)→x}. In R′ we have the derivation f ′(g(s(0),⊥)

(1)−→R′

f ′(g(s(0), 〈s(0)〉) (2)−→R′ f ′(g(0), 〈s(0)〉). The latter term is irreducible and does
not rewrite to 0 although f(g(0)) →R 0. f ′(g(s(0)),⊥) corresponds to f(g(s(0)))
in R that is matched by the lhs of the conditional rule l with the matcher
τ = {x �→ s(0)}. After introducing the introduction step (1) the unconditional
g-rule is applied to the g-subterm (2). f ′(g(0), 〈s(0)〉) corresponds to f(g(0)) in
the original CTRS that is matched by l with the matcher σ = {x �→ 0}. Since

Transformations of Conditional Rewrite Systems Revisited 175

there are no derivations xτ →∗
R xσ (x ∈ Vars(l)) the conditional argument is

“outdated” and “inconsistent” with the original argument.

Such inconsistencies may block further derivations as in Example 3 or lead to
unsound derivations as in [2, Example 6]. We will refer to derivations that re-
produce a term that is matched by the lhs of a conditional rule as being pattern
preserving. Our goal is to provide a transformation that conservatively extends
the transformation of [2] and does not require explicit propagation of reset in-
formation such that for confluent normal 1-CTRSs no explicit backtracking is
needed. This means that in particular “critical” pattern preserving derivations
are dealt with correctly.

In the derivation of Example 3, the unconditional rule g(s(x)) → g(x), that
is applied in (2) and leads to the “outdated” conditional argument, should elim-
inate (and re-initialize) the conditional argument that has been introduced in
(1). Yet the conditional argument is “out of reach” for the unconditional rule.
By encoding the conditional argument in the g-subterm of the conditional rule,
however, we can eliminate the conditional argument in the unconditional g-rule.
This way R is transformed into R′ = {g′(s(x), z) → g′(x,⊥), f(g′(x,⊥)) →
f(g′(x, 〈x〉)), f(g′(x, 〈0〉)) → x}. Now the conditional argument can be reintro-
duced: f(g′(s(0),⊥)) → f(g′(s(0), 〈s(0)〉)) → f(g′(0,⊥)) →∗ 0.

Following this example our strategy is to encode the conditions in all subterms
of the lhs of a conditional rule that otherwise would give rise to “inconsisten-
cies” of conditional and original arguments. To avoid confusion we will refer to
subterms that directly (i.e., as additional argument of the root function symbol)
contain a conditional argument as subterms encoding a conditional argument.

In certain conditional rules several subterms subterm of the lhs may lead to
pattern preserving derivations. Then we have to encode the conditions multiple
times:

Example 4 (Multiple conditional arguments). Consider the CTRS

R =

{
g(s(x)) → g(x) h(s(x)) → h(x)

f(g(x), h(y)) → i(x, y) ⇐ x→∗ 0, y →∗ 0

}

Both subterms g(x) and h(y) of the lhs of the conditional rule lead to a critical
pattern preserving derivation. Therefore we need to add a conditional argument
to the g-subterm and the h-subterm.

Whenever a conditional argument was eliminated and reinitialized, hence has
become ⊥, we have to reintroduce both conditional arguments via an introduc-
tion step. Therefore we need one introduction rule for each conditional argument.
Only if both conditional arguments “satisfy” the conditions we may reproduce
the corresponding rhs. Hence the transformed TRS R′ here should be

R′ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

g′(s(x), z) → g′(x,⊥) h′(s(x), z) → h′(x,⊥)

f(g′(x,⊥), h′(y, z2)) → f(g′(x, 〈x, y〉), h′(y, 〈x, y〉))
f(g′(x, z1), h′(y,⊥)) → f(g′(x, 〈x, y〉), h′(y, 〈x, y〉))

f(g′(x, 〈0, 0〉, z2), h′(y, z1, 〈0, 0〉)) → i(x, y)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

176 K. Gmeiner and B. Gramlich

Consider a conditional rule ρ : l → r ⇐ s1 →∗ t1, . . . , sn →∗ tn of a CTRS
R. Subterms where possibly “critical” pattern preserving derivations start are
always (instances of) non-variable subterms l|p (p ∈ O(l)) of l, because inconsis-
tencies of conditional arguments and original arguments in variables can be re-
solved by rewrite steps in the variable bindings (for confluent CTRSs). However,
in order to detect all possibilities of overlaps (also after rewriting in ‘variable
parts’), we must linearize l into llin. Then we can identify possible lhs’s that
overlap into llin by systematic unification of all non-variable subterms of l with
lhs’s of R and encode the conditions in such subterms of l.

It is not necessary to encode conditions in all subterms of llin that are unifiable
with some lhs. If a subterm does not contain any variables that occur in the
conditions, rewrite steps in this subterm do not influence the satisfiability of the
conditions and therefore it is not necessary to introduce the conditions here. Yet,
we must consider the case that (only) after some rewrite steps in such subterms
a rule may become applicable that did not overlap into llin initially.

Example 5 (Iterative abstraction of overlapping subterms). Consider the CTRS

R =

{
a→ b g(s(x), k(b)) → g(x, h(a))

h(b) → k(b) f(g(x, h(a))) → x ⇐ x→∗ 0

}

The only subterm of the linearized lhs of the conditional rule llin into which an
lhs of some rule overlaps is the constant a which does not contain any variable
of the condition. Since there are no other overlaps, we would just encode the
conditions in the root symbol of the conditional rule:

R′ =

{
a→ b g(s(x), k(b)) → g(x, h(a)) h(b) → k(b)

f ′(g(x, h(a)),⊥) → f ′(g(x, h(a)), 〈x〉) f ′(g(x, h(a)), 〈s(0)〉) → x

}

In R′ we have the unsound derivation

f ′(g(s(0), h(a)),⊥) → f ′(g(s(0), h(a)), 〈s(0)〉) → f ′(g(s(0), h(b)), 〈s(0)〉)
→ f ′(g(s(0), k(b)), 〈s(0)〉) → f ′(g(0, h(a)), 〈s(0)〉) → 0 .

Although (the lhs of) the g-rule does not overlap into llin, it is applicable af-
ter some rewrite steps. Therefore, we abstract all non-variable subterms of llin,
that are unifiable with some lhs of R, into fresh variables iteratively and try
to unify the non-variable subterms of the resulting terms with lhs’s of R. In
the example, the a-rule overlaps into l0 = f(g(x, h(a))) so that we abstract it
into l1 = f(g(x, h(y))). Because of the overlap with the h-rule this term then is
abstracted into l2 = f(g(x, z)). Now the g-rule overlaps into the g-subterm of
l2 that contains the variable x that also occurs in the conditions. We therefore
encode a conditional argument in the g-subterm instead of f and obtain the
transformed TRS

R′ =

{
a→ b g′(s(x), k(b), z) → g′(x, h(a),⊥) h(b) → k(b)

f(g′(x, h(a),⊥)) → f(g′(x, h(a), 〈x〉)) f(g′(x, h(a), 〈0〉)) → x

}

Transformations of Conditional Rewrite Systems Revisited 177

In CTRSs that give rise to multiple conditional arguments, it may be possible
to “recombine” them in an inconsistent way, if we do not iterate the sketched
construction:

Example 6 (Recombination of conditional arguments). Consider the CTRS

R =

⎧
⎪⎨

⎪⎩

i(0, s(0)) → 0 i(s(0), 0) → 0 f(s(x), y) → s(x)
f(x, s(y)) → s(y) g(s(x)) → g(x) h(s(x)) → h(x)

f(s(g(x)), s(h(y))) → i(x, y) ⇐ i(x, y) →∗ 0

⎫
⎪⎬

⎪⎭

The g-rule and the h-rule overlap into the lhs of the conditional rule, therefore
we would encode the condition in both subterms:

R′ =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

i(0, s(0)) → 0 i(s(0), 0) → 0 f(s(x), y) → s(x)
f(x, s(y)) → s(y) g′(s(x), z) → g′(x,⊥) h′(s(x), z) → h′(x,⊥)

f(s(g′(x,⊥)), s(h′(y, z2))) → f(s(g′(x, 〈i(x, y)〉)), s(h′(y, 〈i(x, y)〉)))
f(s(g′(x, z1)), s(h′(y,⊥))) → f(s(g′(x, 〈i(x, y)〉)), s(h′(y, 〈i(x, y)〉)))

f(s(g′(x, 〈0〉)), s(h′(y, 〈0〉))) → i(x, y)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

In R′, we now have the following derivation:

f(f(s(g′(0,⊥)), s(h′(s(0),⊥))), f(s(g′(s(0),⊥)), s(h′(0,⊥))))
→∗ f(f(s(g′(0, t1)), s(h′(s(0), t1))), f(s(g′(s(0), t2)), s(h′(0, t2))))
→∗ f(s(g′(0, t1)), s(h′(0, t2))) →∗ f(s(g′(0, 〈0〉)), s(h′(0, 〈0〉))) → i(0, 0)

with t1 = 〈i(0, s(0))〉 and t2 = 〈i(s(0), 0)〉, whereas in R we have

f(f(s(g(0)), s(h(s(0)))), f(s(g(s(0))), s(h(0)))) �→∗
R i(0, 0) .

In order to avoid that “fragments” of introduction steps can be inconsistently
rearranged, we will iteratively abstract (in parallel) all non-variable subterms
of the lhs of the conditional rule, that (after transformation) contain condi-
tional arguments, into new variables. This way the lhs of the conditional rule
f(s(g(x), h(y))) is abstracted into f(s(z1), s(z2)). But then we have an overlap
with the unconditional f -rules at root position. Hence, we will also encode the
conditional argument at root position. Thus the above problem disappears.

4.2 Definition of the Transformation

In our transformation we iteratively abstract “overlapping” subterms of lhs’s of
conditional rules into new variables and append conditional arguments to such
subterms provided they contain variables that also occur in the conditions. Ad-
ditionally we have to take into account that also rules into which the lhs of a
conditional rule overlaps may lead to inconsistencies. Before defining our trans-
formation we define some mappings to increase (decrease) the arity of function
symbols:

178 K. Gmeiner and B. Gramlich

Definition 4 (Initialization mapping and backtranslation)

φ⊥f (t) =

⎧
⎪⎨

⎪⎩

f ′(φ⊥f (t1), . . . , φ⊥f (tn),⊥) if t = f(t1, . . . , tn)
g(φ⊥f (t1), . . . , φ⊥f (tm)) if t = g(t1, . . . , tm), g �= f

t if t is a variable

ψf (t′) =

⎧
⎪⎨

⎪⎩

f(ψf (t1), . . . , ψf (tn)) if t′ = f ′(t1, . . . , tn, u1)
g(ψf (t1), . . . , ψf (tm)) if t′ = g(t1, . . . , tm), g �= f ′

t′ if t′ is a variable

φXf (t) =

⎧
⎪⎨

⎪⎩

f ′(φX1
f (t1), . . . , φXn

f (tn), z) if t = f(t1, . . . , tn)
g(φX1

f (t1), . . . , φXm

f (tm)) if t = g(t1, . . . , tm), g �= f

t if t is a variable

where X is an infinite set of new variables, z ∈ X and Xi (i ≥ 1) are infinite
disjoint subsets of X such that z �∈ Xi. We abbreviate multiple applications of
these mappings: φ⊥f1,...,fn

(t) = φ⊥f2,...,fn
(φ⊥f1

(t)), ψf1,...,fn(t) = ψf2,...,fn(ψf1(t))

and φXf1,...,fn
(t) = φ

X\Vars(φX
f1

(t))

f2,...,fn
(φXf1

(t)).

By abuse of notation we assume in the following that, if φX is used multiple
times in a term, then always only mutually distinct variables are inserted.

Definition 5 (Definition of the transformation T). Let R be a normal 1-
CTRS so that the rules are arranged in some arbitrary but fixed total order <.
Let ρ : lρ → rρ ⇐ sρ,1 →∗ tρ,1, . . . , sρ,nρ →∗ tρ,nρ be a conditional rule of R.
Let li and Pi be the following

l0 = llinρ li+1 = li[z1]q1 . . . [zm]qm

P0 = ∅ Pi+1 = Pi ∪ {q ∈ Q | Vars(lρ|q) ∩ Vars(sρ,1, . . . , sρ,nρ) �= ∅}

where Q = {q ∈ O(li) | liσ = liσ[lρ′σ]q, ρ′ ∈ R, ρ′ �= ρ ∨ q �= ε} are all
positions of li that are unifiable with some lhs lρ′ (except ρ′ = ρ at root position),
{q1, . . . , qm} = Q = {q ∈ Q | �q′ ∈ Q : q < q′} are the innermost positions of Q
and z1, . . . , zm are fresh new variables.

Let lρ = lj be the first lj such that lj = lj+1. Then the set of conditional
positions Pρ is

Pρ =

⎧
⎪⎨

⎪⎩

Pj ∪ {ε} if ∃ρ′, lρ′σ = lρ′σ[lρσ]q with q ∈ O(lρ′) and ρ′ �= ρ ∨ q �= ε,
or Pj = ∅ and ρ is a conditional rule

Pj otherwise

Let {pρ,1, . . . , pρ,kρ} = Pρ and fρ,j = root(l|pρ,j). Then the position of the con-
ditional argument encoded in lρ|pρ,j is

iρ,j = arity(fρ,j) + 1 + |{〈ρ′, j′〉 | 〈ρ′, j′〉 <lex 〈ρ, j〉, fρ′,j′ = fρ,j}|

Transformations of Conditional Rewrite Systems Revisited 179

Let R = {ρ1, . . . , ρm}. The initialization mapping φ is φ⊥fρ1,1,...,fρm,kρm
, φX is

φXfρ1,1,...,fρm,kρm
and the backtranslation ψ is ψfρ1,1,...,fρm,kρm

.
A rule ρ ∈ R is transformed into the rules

ρ′ρ,j : φX (lρ)[⊥]pρ,j .iρ,j → φX (lρ)[〈φ⊥(sρ,1), . . . , φ⊥(sρ,nρ)〉]pρ,1.iρ,1,...,pρ,kρ .iρ,kρ

ρ′ρ,kρ+1 : φX (lρ)[〈φX (tρ,1), . . . , φX (tρ,nρ)〉]pρ,1.iρ,1,...,pρ,kρ .iρ,kρ
→ φ⊥(rρ)

ρ′ρ,1, . . . , ρ
′
ρ,kρ

are the introduction rules and ρ′kρ+1 is the elimination rule of ρ.
The transformed TRS T (R) then is (R′, φ, ψ) where R′ = {ρ′ρ0,1, . . . , ρ

′
ρm,kρm+1}.

In constructor-based normal 1-CTRSs, Pρ is {ε} for all conditional rules ρ so that
in this case our transformation coincides with the transformation of [2], except
for the additional wrapping 〈. . .〉 of the conditional arguments. In unconditional
rules ρ, Pρ = ∅.

The following example of [6] can be interpreted as a “self-sorting” list structure:

Example 7 (Sorting CTRS of [6]). Consider the CTRS

R =

{
0 ≤ y → tt s(x) ≤ 0 → ff s(x) ≤ s(y) → x ≤ y

f(x, f(y, ys)) → f(y, f(x, ys)) ⇐ x ≤ y →∗ ff

}

The (linear) lhs of the conditional rule l0 = f(x, f(y, ys)). The conditional rule
overlaps into itself at position q = 2 such that P1 = {2} and l1 = f(x, z).
Now only the conditional rule itself overlaps into l1 at root position, therefore
l = l1 = f(x, z). Since l overlaps into the lhs of the conditional rule at some
non-root position Pρ = {2} ∪ {ε}. For both positions the root symbol is f and
the arity of f is increased by 2. The transformed TRS then is

R′ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 ≤ y → tt s(x) ≤ 0 → ff s(x) ≤ s(y) → x ≤ y

f(x, f(y, ys, z1, z2), z3,⊥) → f(x, f(y, ys, 〈x ≤ y〉, z2), z3, 〈x ≤ y〉)
f(x, f(y, ys,⊥, z2), z3, z4) → f(x, f(y, ys, 〈x ≤ y〉, z2), z3, 〈x ≤ y〉)

f(x, f(y, ys, 〈ff 〉, z2), z3, 〈ff 〉) → f(y, f(x, ys,⊥,⊥),⊥,⊥)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

4.3 Properties of the Transformation

In the following we assume that R always denotes a normal 1-CTRS, R′ its
transformed TRS using our transformation T and ρ a conditional rule with lhs
l that leads to k conditional positions p1.i1, . . . , pk.ik.

The following result contains a selection of syntactical preservation properties
of our transformation. Properties (2) - (5) are not satisfied by the transformation
of [6].

Lemma 1 (Syntactic properties)

(1) The transformation is sound and complete for being left-linear.
(2) The transformation is sound and complete for being non-collapsing.

180 K. Gmeiner and B. Gramlich

(3) If R is non-overlapping, then R′ is weakly non-overlapping.
(4) The transformation is sound and complete for being an overlay system.
(5) If R is orthogonal, R′ is weakly orthogonal.

In order to show that our transformation has nice preservation properties for cer-
tain CTRSs, we have to guarantee that inconsistencies of conditional arguments
and original arguments do not occur or are not “critical”.

In a derivation D starting from some initialized term every conditional argu-
ment originates from an introduction step. A conditional argument originating
from a certain introduction step may be viewed as being inconsistent if the
redex of the introduction step is modified at some original argument that is
not inside the matcher of the introduction step (rewrite steps in the matcher
can be reconstructed in the conditional arguments, at least directly after their
introduction). The redex of the “modifying” rewrite step overlaps with the re-
dex of the introduction step so that, according to our transformation, there is
(at least) one conditional argument inside the matcher of the “modifying” redex
(unless the rewrite step is not potentially dangerous, i.e., it does not modify any
variable that occurs in the conditions or it is an introduction step). We will only
consider those conditional arguments as being inconsistent, that are inside such
a redex, and refer to the overlapping rewrite step as the rewrite step in which
the conditional arguments become inconsistent.

Definition 6 (Inconsistent conditional arguments). Let D be a derivation
φ(s) →∗ u0 →q0,ρ′

0
u1 →q1,ρ′

1
· · · (s ∈ T) in R′. Let ρ′0 be an introduction rule

of ρ and un|q.ij be a conditional argument that is a descendant of u1|q0.pj .ij . The
conditional argument in un|q.ij is inconsistent w.r.t. D, if there is an elimination
step um = um[l′mσ]qm →qm,ρ′

m
um[r′mσ]qm = um+1 in D such that um|q′

m.pj .ij is
a descendant of u1|q0.pj .ij and an ancestor of un|q.ij , and the elimination step
“overlaps with” the descendant um|q′

m
of u0|q0 above pj, i.e., qm < q′m.pj and

there is no q′ ∈ OX (l′m) such that qm.q′ ≤ q′m. A conditional argument that is
not inconsistent (w.r.t. D) is consistent (w.r.t. D).

Lemma 2 (Iterative abstraction, inconsistent conditional arguments)
Let D : φ(s) →∗

R′ s′ →R′ t′ (s ∈ T) be a derivation in R′ such that root(s′|q) =
root(φ(l|pj)) and s′|q.ij �= ⊥ for some j ∈ {1, . . . , k}. If the conditional argument
s′|q.ij becomes inconsistent w.r.t. D in the last rewrite step s′ → t′ of D, then
there is a q′ ∈ O(s′) such that q′.pj = q and in the iteration of Definition 5 for
ρ we obtain some li that is unifiable with ψ(s′|q′), and there is some conditional
position p.i ∈ {p1.i1, . . . , pk.ik} of ρ such that p < pj.

If inconsistent conditional arguments “block” or “are used in” elimination steps,
we may obtain incompleteness for confluence or unsoundness. We will refer to
those CTRSs where this cannot happen as consistently transformable ones.

Definition 7 (Consistently transformable).R is consistently transformable,
if for every derivation D : φ(s) →∗

R′ s′ (s ∈ T) such that ψ(s′|q) = lσ, either
s′|q.pj .ij = ⊥ for some j or s′|q.pj .ij is consistent w.r.t. D for all j ∈ {1, . . . , k}.

Transformations of Conditional Rewrite Systems Revisited 181

Unfortunately, not all CTRSs are consistently transformable:

Example 8 (Inconsistent conditional arguments in collapsing systems). Consider
the CTRS

R =

{
i(a, a) → a g(f(x, b)) → x

f(g(x), y) → h(x) ⇐ i(x, y) →∗ a

}

We obtain P2 = {ε, 1} and hence the transformed TRS is

R′ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

i(a, a) → a g′(f ′(x, b, z1), z2) → x

f ′(g′(x,⊥), y, z2) → f ′(g′(x, 〈i(x, y)〉), y, 〈i(x, y)〉)
f ′(g′(x, z1), y,⊥) → f ′(g′(x, 〈i(x, y)〉), y, 〈i(x, y)〉)

f ′(g′(x, 〈a〉), y, 〈a〉) → h(x)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

R has two infeasible conditional critical pairs and is therefore confluent (it is
also decreasing). Yet, in R′ we obtain D : f ′(g′(f ′(g′(a,⊥), b,⊥),⊥), a,⊥) →∗

f ′(g′(f ′(g′(a, t1), b, t1), t2), a, t2) → f ′(g′(a, t1), t2) where t1 = 〈i(a, b)〉 and t2 =
〈i(f ′(g′(a,⊥), b,⊥), a)〉. The inner conditional argument is inconsistent w.r.t. D
while the outer conditional argument is consistent. Usually, we would expect that
the inner conditional argument is set to ⊥, but since the g-rule is collapsing, no
conditional argument is set to ⊥ in its rhs. Hence, the inconsistent (w.r.t. D)
conditional argument blocks further reductions.

Lemma 3 (Inconsistent conditional arguments and collapsing rules)
Let D : φ(s) →∗

R′ s′ be a derivation in R′ such that ψ(s′|q) = lσ and s′|q.pj .ij �= ⊥
for all j ∈ {1, . . . , k}. If some conditional argument s′|q.pj .ij is inconsistent w.r.t.
D, then R is collapsing.

Theorem 1 (Sufficient syntactic conditions for consistent transforma-
bility (a)). R is consistently transformable, if R is non-collapsing or all ρ ∈ R
only lead to pairwise parallel subterms encoding conditional arguments.

Theorem 2 (Sufficient syntactic conditions for consistent transforma-
bility (b)). R is consistently transformable, if it is non-collapsing, a constructor
system, a system where all left-hand sides of conditional rules are constructor
terms, or a left-linear overlay system.

Theorem 3 (Soundness w.r.t. reachable terms). If R is consistently trans-
formable and confluent, then for all reachable s′, t′ ∈ T ′

r s′ →∗
R′ t′ ⇒ ψ(s′) →∗

R
ψ(t′).

Theorem 4 (Completeness w.r.t. reachable terms). If R is consistently
transformable, left-linear and confluent, then for all s′ ∈ T ′

r , t ∈ T such that
ψ(s′) →R t there is a t′ ∈ T ′

r with s′ →+
R′ t′ and ψ(t′) = t.

Theorem 5 (Soundness for preserving normal forms w.r.t. reachable
terms). If R is consistently transformable, left-linear and confluent, then R′ is
sound for preserving normal forms w.r.t. reachable terms.

182 K. Gmeiner and B. Gramlich

Theorem 6 (Preservation of termination). If R is consistently transform-
able, decreasing and confluent, then R′ is terminating on reachable terms.

Observe that in Theorem 4 and, consequently, also in Theorem 5 we have left-
linearity as additional assumption! The reason is that non-left-linear rules may
lead to an incomplete (w.r.t. reachable terms) behaviour of our transformation.

Example 9 (Non-left-linearity may lead to incompleteness w.r.t. reachable terms)
Consider the CTRS R = {g(0) → 0, f(x, x) → a, f(g(x), y) → a ⇐ x →∗

0, y →∗ 0} that is transformed into R′ consisting of

g′(0, z) → 0 f ′(x, x, z) → a f ′(g′(x,⊥), y, z2) → f ′(g′(x, 〈x, y〉), y, 〈x, y〉)
f ′(g′(x, z1), y,⊥) → f ′(g′(x, 〈x, y〉), y, 〈x, y〉) f ′(g′(x, 〈0, 0〉), y, 〈0, 0〉) → a

For s = f(g(a), g(a)) we have in R just one normalizing step f(g(a), g(a)) →R a.
In R′ we get the corresponding reduction φ(s) = f ′(g′(a,⊥), g′(a,⊥),⊥) →R′ a,
but also φ(s) →R′ f ′(g′(a, 〈a, g′(a,⊥)〉), g′(a,⊥), 〈a, g′(a,⊥)〉) where the latter
term does not rewrite to a and is even irreducible w.r.t. R′. Hence, in this
example the transformation is neither complete w.r.t. reachable terms nor sound
for preserving normal forms w.r.t. reachable terms.

Our transformation satisfies many properties only for consistently transformable
CTRSs. Although it is undecidable, whether a CTRS is consistently trans-
formable, we can show for large sub-classes of CTRSs that they are consistently
transformable, cf. e.g. Theorem 2. According to Theorem 1 every system, that
is not consistently transformable, must in particular be collapsing. For such
CTRSs we will now show how to handle them via an additional preprocessing
transformation that makes all rules non-collapsing, but retains a one-to-one-
correspondence between rewrite steps.

4.4 Transformation for Non-consistently Transformable CTRSs

For the fully general case, consider a collapsing rule l → x ⇐ c of a CTRS R.
An intuitive method to transform R into a non-collapsing CTRS is to wrap x into
a new symbol C: l → C(x) ⇐ c. In order to retain a one-to-one correspondence
of rewrite steps, it is necessary to wrap all non-variable terms in C consistently.

Definition 8 (Transformation into non-collapsing CTRSs TC) Let R be
some CTRS with signature F , C �∈ F be some new unary function symbol, ρ be
a rule l → r ⇐ s1 →∗ t1, . . . , sn →∗ tn ∈ R and let φ′ρ be the auxiliary mapping

φ′ρ(t) =

⎧
⎪⎨

⎪⎩

C(f(φ′ρ(t1), . . . , φ
′
ρ(tn))) if t = f(t1, . . . , tn)

C(r) if t = r and r is a variable
x if t = x and x �= r

Then the transformed rule ρC of ρ is

φ′ρ(l) → φ′ρ(r) ⇐ φ′ρ(s1) →∗ φ′ρ(t1), . . . , φ
′
ρ(sn) →∗ φ′ρ(tn)

Transformations of Conditional Rewrite Systems Revisited 183

The transformed CTRS RC then is RC = {ρC | ρ ∈ R} with signature F ∪ {C}
and the initialization mapping φC and backtranslation ψC are

φC(t) =

{
C(f(φC(t1), . . . , φC(tn))) if t = f(t1, . . . , tn)
C(t) if t is a variable

ψC(t) =

⎧
⎪⎨

⎪⎩

f(ψC(t1), . . . , ψC(tn)) if t = f(t1, . . . , tn)
ψC(t′) if t = C(t′)
t if t is a variable

Using this transformation collapsing rules are replaced by non-collapsing rules
into which all other rules overlap. For reachable terms of TC (these are all φC(s)),
these overlaps are joinable within one step (from both sides).

Definition 9 (Combined transformation T ◦ TC). Let R be a CTRS such
that TC(R) = (RC , φC , ψC) and T (RC) = (R′

C , φ
′, ψ′). Then the combined

transformation T ◦ TC is (R′
C , φ

′ ◦ φC , ψC ◦ ψ′).

Using this combined transformation, it is easily verified that the “blocking prob-
lem” in Example 8 disappears.12

Theorem 7 (Properties of the combined transformation). Let R be a
normal 1-CTRS such that T ◦ TC(R) = (R′

C , φ, ψ).

(1) If R is confluent, then R′
C is sound w.r.t. reachable terms.

(2) If R is left-linear and confluent, then R′
C is complete w.r.t. reachable terms.

(3) If R is left-linear and confluent, then R′
C is sound for preserving normal

forms w.r.t. reachable terms.
(4) If R is decreasing and confluent, then R′

C is terminating on reachable terms.

5 Experiments, Related Work and Discussion

In our experiments we compared our transformation (T) with other transforma-
tions, especially the one of [6] (TSR). The “sorting list” of Example 7 is represen-
tative for most of our results. Sorting the descending list f(sn−1(0), f(sn−2(0),
· · · , f(0,nil) · · ·)) needs the following number of rewrite steps to obtain the
sorted, irreducible list:

12 As remarked by one of the referees, our construction of introducing separating C-
layers in terms combined with the previous transformation appears to have some
similarity with another complex transformation in [5, 3.4] (based on a different ap-
proach), an early forerunner of [2] and [6]. However, in [5, 3.4] these layers are used
to propagate reset information to outer positions similar to [6].

184 K. Gmeiner and B. Gramlich

no sharing maximal sharing
innermost outermost innermost outermost

n left right left right left right left right
TSR(R) 34 15893 15893 39269 125509 15893 15893 33285 125509
T (R) 27863 27863 34967 46903 14773 14773 9349 19043

TSR(R) 55 62863 62863 166319 820763 62863 62863 140084 820763
T (R) 115335 115335 144538 196955 59895 59895 35144 76537

When using outermost rewriting, TSR requires more rewrite steps, because it
resets conditional arguments “too often”: In T (R) every condition is evaluated
and if it is not satisfied, the conditional arguments is “cached” in terms like
f(0, f(s(0), f(s(s(0)), . . .), 〈tt〉, 〈tt〉),⊥, 〈tt〉). In TSR(R) this term corresponds
to {f(0, f(s(0), f(s(s(0)), . . .), 〈tt〉), 〈tt〉)}. If we exchange two elements at inner
positions, the reset-operator is propagated to outer positions in TSR(R), so that
all conditional arguments are reset and must be reintroduced and reevaluated:
f(0, f(s(0), {. . .}, 〈tt〉), 〈tt〉) →∗ {f(0, f(s(0), f(s(s(0)), . . .),⊥),⊥)}.

Our transformation is rather complex, because we have to iteratively check
terms for unifiability in order to determine the subterms in which we have to
encode conditional arguments. We can approximate these subterms via defined
symbols: For ρ : l → r ⇐ s1 →∗ t1, . . . , sn →∗ tn just take Pρ = {p ∈
O(lρ) | root(lρ|p) ∈ D,Vars(lρ|p) ∩ Vars(sρ,1, . . . , sρ,nρ) �= ∅} for encoding. This
approximation clearly yields an “approximation from above”, cf. Definition 5.

In order to transform deterministic CTRSs (DCTRSs) we can use a strategy
that is easily adaptable to other transformations like e.g. [6] or [15]. A deter-
ministic rule is a rule l → r ⇐ s1 →∗ t1, . . . , sn →∗ tn that may contain extra
variables, yet all extra variables “depend” directly or indirectly on variables in
l: Vars(si) ⊆ Vars(l, t1, . . . , ti−1) and Vars(r) ⊆ Vars(l, t1, . . . , tn). Let w.l.o.g.
the conditions s1 →∗ t1, . . . , sm →∗ tm be those satisfying Vars(s1, . . . , sm) ⊆
Vars(l). By transforming the rule ρ : l → r ⇐ s1 →∗ t1, . . . , sm →∗ tm
we obtain introduction rules ρ′1, . . . , ρ

′
k and an elimination rule ρ′k+1 : l′ → r′

without extra variables. By adding the remaining conditions to the elimination
rule we obtain the deterministic conditional rule l′ → r′ ⇐ φ(sm+1) →∗

φX (tm+1), . . . , φ(sn) →∗ φX (tn) with strictly less conditions than the original
rule. By repeatedly applying the above strategy, we finally obtain an uncondi-
tional TRS. In [13] a similar iterative approach for unravelings is presented.

Regarding future work, we intend to investigate various further aspects of our
transformation, especially whether soundness for left-linear (consistently trans-
formable) normal 1-CTRSs holds, and whether we can somehow get rid of the
left-linearity requirement in Theorems 4, 5 and 7(2)-(3). Moreover we want to ex-
plore the optimizations and refinements sketched above. We also plan to extend
our preliminary practical evaluations and comparison with related approaches.
Another perspective is to analyze possible applications of our approach like con-
ditional narrowing or inversion of rewrite systems ([14]).

Transformations of Conditional Rewrite Systems Revisited 185

6 Conclusion

We have presented a general framework for analyzing transformations of CTRSs
into TRSs as well as a new approach whose characteristic feature is backtracking-
freeness. It works for left-linear confluent normal 1-CTRSs and extends the ap-
proach of [2] to non-constructor systems. Compared to [6] (which also works for
confluent, but not necessarily left-linear systems) with a “reset”-operator and an
explicit (rule-based) propagation of “reset”-information, our approach directly
incorporates necessary reset information in the transformation.

Acknowledgements. We are grateful to the anonymous referees for their de-
tailed feedback, hints and criticisms. In particular, one of them exhibited ex-
amples (similar to Ex. 8 and 9) that triggered a partial revision of our original
analysis in Section 4.

References

[1] Aida, H., Goguen, J., Meseguer, J.: Compiling concurrent rewriting onto the
rewrite rule machine. In: Okada, M., Kaplan, S. (eds.) CTRS 1990. LNCS, vol. 516,
pp. 320–332. Springer, Heidelberg (1991)

[2] Antoy, S., Brassel, B., Hanus, M.: Conditional narrowing without conditions. In:
Proc. PPDP (2003), August 27-29, pp. 20–31. ACM Press, New York (2003)

[3] Baader, F., Nipkow, T.: Term rewriting and All That. Cambridge University Press,
Cambridge (1998)

[4] Bergstra, J., Klop, J.: Conditional rewrite rules: Confluence and termination.
Journal of Computer and System Sciences 32(3), 323–362 (1986)

[5] Braßel, B.: Bedingte Narrowing-Verfahren mit verzögerter Auswertung. Master’s
thesis, RWTH Aachen (1999)

[6] Şerbănuţă, T.-F., Roşu, G.: Computationally equivalent elimination of conditions.
In: Pfenning, F. (ed.) RTA 2006. LNCS, vol. 4098, pp. 19–34. Springer, Heidelberg
(2006)

[7] Dershowitz, N., Okada, M., Sivakumar, G.: Confluence of conditional rewrite
systems. In: Kaplan, S., Jouannaud, J.-P. (eds.) CTRS 1987. LNCS, vol. 308,
pp. 31–44. Springer, Heidelberg (1988)

[8] Dershowitz, N., Plaisted, D.: Equational programming. In: Hayes, J.E., Michie, D.,
Richards, J. (eds.) Machine Intelligence 11: The logic and acquisition of knowledge
ch. 2, pp. 21–56 (1988)

[9] Giovanetti, E., Moiso, C.: Notes on the elimination of conditions. In: Kaplan,
S., Jouannaud, J.-P. (eds.) CTRS 1987. LNCS, vol. 308, pp. 91–97. Springer,
Heidelberg (1988)

[10] Lucas, S., Meseguer, J., Marché, C., Urbain, X.: Proving operational termina-
tion of membership equational programs. Higher-Order and Symbolic Computa-
tion 21(10), 59–88 (2008)

[11] Marchiori, M.: Unravelings and ultra-properties. Technical Report 8, University
of Padova, Italy (1995)

[12] Marchiori, M.: Unravelings and ultra-properties. In: Hanus, M., Rodŕıguez-
Artalejo, M. (eds.) ALP 1996. LNCS, vol. 1139, pp. 107–121. Springer, Heidelberg
(1996)

186 K. Gmeiner and B. Gramlich

[13] Nishida, N., Mizutani, T., Sakai, M.: Transformation for refining unraveled con-
ditional term rewriting systems. ENTCS, vol. 174(10), pp. 75–95 (2007)

[14] Nishida, N., Sakai, M., Sakabe, T.: Partial inversion of constructor term rewriting
systems. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 264–278. Springer,
Heidelberg (2005)

[15] Ohlebusch, E.: Advanced Topics in Term Rewriting. Springer, Heidelberg (2002)
[16] Rosu, G.: From conditional to unconditional rewriting. In: Fiadeiro, J.L.,

Mosses, P.D., Orejas, F. (eds.) WADT 2004. LNCS, vol. 3423, pp. 218–233.
Springer, Heidelberg (2005)

[17] Schernhammer, F., Gramlich, B.: On proving and characterizing operational
termination of deterministic conditional rewrite systems. In: Hofbauer, D.,
Serebrenik, A. (eds.) Proc. WST (2007), pp. 82–85 (2007)

[18] Viry, P.: Elimination of conditions. J. Symb. Comput. 28(3), 381–401 (1999)

	Transformations of Conditional Rewrite Systems Revisited
	Background and Overview
	Preliminaries
	A Unifying Approach to Transformations
	Basic Transformation Approaches
	A Unified Parameterized Description of Transformations
	On-Unsoundness Phenomena

	The New Transformation
	Motivation, Goal and Basic Idea
	Definition of the Transformation
	Properties of the Transformation
	Transformation for Non-consistently Transformable CTRSs

	Experiments, Related Work and Discussion
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

