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Abstract

Interaction net systems are a model of computation based on graph rewriting. They
enjoy various nice properties which make them a promising basis for a functional pro-
gramming language. However, mechanisms to model impure functions are indispensable
for a practical language. A natural approach to achieve this goal is the systematic use of
monads. Yet, specifying the appropriate monads for impure language features is hard,
due to the very restricted form of basic interaction rules. What is missing in particular,
are appropriate means to specify higher-order functions and some typing mechanism
that restricts computations to reasonable settings.

In this paper, we propose two extensions of interaction nets which solve these prob-
lems. First we extend interaction rules with generic rules, thus adding a form of
higher-order functions. Moreover, we define constraints on these rules to ensure the
preservation of uniform confluence. In addition, we propose a simple type system in
order to appropriately restrict the matching of generic rules. Finally, we show how
the combination of these features, i.e., generic typed rules, can indeed be employed
to model impure functions in interaction nets via monads in an intuitive and simple
manner.

1 Introduction

1.1 Background

One of the major challenges for any functional programming language is how it deals with
computational side effects and impure functions. It may simply allow functions with side
effects and thus restrict the possibility for equational reasoning on programs. ML is an
example for this design decision. On the other hand, several techniques exist to model im-
pure functions in a pure environment: examples are linear logic, continuations and monads.
Haskell’s monad framework has been very successful in modeling various forms of side effects
while preserving the possibility to perform equational reasoning on programs.

Interaction nets are a new programming paradigm based on graph rewriting. The idea
behind interaction nets is to represent programs as graphs (nets). Their execution is mod-
eled by rewriting the graph based on specific node (agent) replacement rules. This simple
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system is able to model both high- and low-level aspects of computation. The theory behind
interaction nets is well developed. They enjoy several useful properties such as uniform con-
fluence and locality of reduction: these ensure that single computational steps in a net do not
interfere with each other, and thus may be executed in parallel. Another important aspect is
that interaction nets share computations: reducible expressions cannot be duplicated, which
is beneficial for efficiency in computations.

1.2 Our Approach and Contribution

Interaction nets can be considered a pure, side effect free language. Our goal is to provide
an extensible framework for interaction nets that handles various side effects such as I/O,
exception handling or state manipulation. In [23], Mackie suggests the adaptation of monads
to interaction nets to solve this problem. We have previously made initial progress in this
direction: in [14], we defined a set of interaction rules that corresponds to the Maybe monad
and showed that the monad laws hold. However, this encoding was only an ad-hoc solution,
in the sense that it was specific for every individual monad rather than generic. This
deficiency corresponds to the fact that monads are based on higher-order functions and
abstract datatypes, which are not supported by interaction nets. The restricted form of
interaction rules does not allow for a sufficiently general definition of the monadic operators.
For example, consider Haskell’s definition of the >>= (bind) operator of the Maybe monad:

>>= :: Maybe a -> (a -> Maybe b) -> Maybe b

(Just x) >>= f = f x

Nothing >>= f = Nothing

The second argument of bind is an arbitrary function f (of type a -> Maybe b). Interaction
rule patterns only consist of concrete agents: there is no equivalent of a function variable.

In this paper, we attempt to remove this deficiency by introducing generic agents and
rules. Essentially, a generic rule pattern is a pair of one concrete agent and one generic
agent that represents an arbitrary agent (similar to f’s role in the definition of bind). Such
rules have already appeared in previous papers on interaction nets, but usually only in the
form of duplication and deletion agents. However, we are not aware of any result on the
preservation of uniform confluence in the presence of generic rules.

We define appropriate priority and well-definedness constraints on (applying) generic
rules in order to preserve uniform confluence (of the induced reduction relation), thus yielding
an extension of interaction net systems that still satisfies the uniform confluence property.
In addition, we define rule types based on port types. This simple type system allows us to
further restrict the matching of generic rules. We show how to use both generic rules and
rule types to model monads in interaction nets in a suitable way.

Our contributions can be summarized as follows:

• A formal definition of generic rules, introducing a form of higher-order functions and
partial evaluation (currying) to interaction nets.

• Appropriate constraints on the usage of generic rules in order to preserve uniform
confluence.

• A simple type system to suitably restrict rule matching in the new setting.

• Two typical side effect examples where we model the corresponding monads with the
above extensions of interaction nets.
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In Section 2 we give a short introduction to interaction nets and discuss side effects and
monads to motivate generic rules. Section 3 defines generic rules and constraints, including
proofs of the preservation of uniform confluence. In Section 4, we define rule types and show
how they can be used to restrict matching. We then give two examples of application of
these extensions in Section 5. Finally, we conclude and discuss related work in 6.2.

2 Preliminaries

2.1 Interaction Nets

Interaction nets (INs) have been introduced in [19]. A net is a graph consisting of agents
(nodes) and ports (edges). Every agent has a label and an arity, denoting the number of
ports that are connected to it. The agent α below is of arity n and has n + 1 ports:

α

x1 . . . xn

Computation is modeled by rewriting the graph, which is based on interaction rules.
These are rules that specify how a subnet of an IN consisting of two nodes which are con-
nected via their principal ports (denoted by the arrow) are rewritten. We refer to these two
connected nodes as active pair or redex. Interaction rules preserve the interface of the net:
no auxiliary ports are added or removed.

x1 y1

...
α β ...

xn ym

⊲⊳ ⇒

x1 y1

...
n

xn ym

...

We will represent interaction rules textually as A ⊲⊳ B ⇒ N , where A ⊲⊳ B represents
the active pair on the left-hand side (LHS), and N the net on the right-hand side (RHS). If
the RHS is not of importance for an argument, we may, just write A ⊲⊳ B. We write A ∼ B

to denote a specific active pair/redex (which is part of some net).1 A net containing A ∼ B

as a subnet can be rewritten by a rule A ⊲⊳ B.

Definition 2.1.1 (interaction net system (INS)) An interaction net system (INS) is a
pair R = (Σ, R) where Σ is a signature, i.e., a set of agents, and R is a set of interaction
rules, where for every rule A ⊲⊳ B ⇒ N ∈ R we have A, B ∈ Σ and A 6= B. Moreover, there
is at most one rule for every such active pair.

Slightly abusing notation, we will often write R instead of R, thus leaving the signature
implicit.

Example 2.1.2 Consider an INS that allows us to concatenate lists of natural numbers:
R = (Σ, R) where Σ = {00, S1, Cons2, Nil0, ++2} and R is defined as follows:

1Note that both notations A ⊲⊳ B and A ∼ B are interpreted modulo commutativity.
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r

(++) ++

z Cons ⇒

x y

⊲⊳

r

Cons

x ++

z y

⊲

r

++ ⇒

x Nil

⊲⊳

r

x

These rules correspond to the following function definition (in a Haskell-like syntax):

(++) :: [a] -> [a] -> [a]

(++) (Cons x y) z = Cons x ((++) y z)

(++) Nil x = x

Definition 2.1.3 (reduction relation) Let (Σ, R) be an INS. The reduction relation ⇒R

induced by this system is defined as follows: N ⇒R M if an active pair A ∼ B is a subnet
of N , (A ⊲⊳ B ⇒ P ) ∈ R and M can be obtained from N by replacing A ∼ B with P .

If the set of rules is clear from the context, we simply write ⇒ instead of ⇒R.

Proposition 2.1.4 (uniform confluence, Lafont [19]) Let N be an interaction net. If
N ⇒ P and N ⇒ Q where P 6= Q, then there exists a net R such that P ⇒ R ⇐ Q. 2

In [19], Lafont shows that three properties of interaction nets are sufficient for uniform
confluence:

1) Linearity: Ports cannot be erased or duplicated via interaction rules.

2) Binary interaction: Agents can only be rewritten if they form an active pair, i.e., if
they are connected via their principal ports.

3) No ambiguity: For each pair S, T , of distinct agents there is at most one interaction
rule that can rewrite S ∼ T , and there is no rule with LHS of shape A ⊲⊳ A.

Uniform confluence ensures that the order of performing multiple computational steps
does not affect the final result of the computation. As there is no interference between
reductions, interaction rules may even be applied in parallel. This makes interaction nets
a promising basis for a concurrent programming language. In addition, active pairs cannot
be duplicated: This ensures that they are evaluated only once, which allows for sharing of
computation. Only nets without active pairs (i.e., normal forms) can be duplicated.

Note that the restriction that no LHS should be of the form A ⊲⊳ A (i.e., self-interaction)
can be weakened: In [20], Lafont suggests that an agent may interact with itself if the rule’s

2Several publications on interaction nets, including [19], refer to this property as strong confluence. We
use the term uniform confluence (WCR1) in order to account for the fact that if P and Q are distinct, then
one step is taken from either net to reach a common reduct.
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RHS enjoys a certain natural form of symmetry (which guarantees that self-overlaps are
always trivial, i.e., produce the same reduct). All results of the current paper can easily
be transferred to this setting. In particular, any generic rule that potentially allows self-
interaction would have to satisfy the mentioned symmetry constraint.

2.2 Side Effects, Monads and Generic Rules

Computational side effects like I/O and exception handling are crucial features of any practi-
cal programming language. Our goal is to promote interaction nets towards such a language:
We are working on a general framework to represent side effects - also known as impure
functions - in interaction nets. INSs can be considered a pure (functional) programming
paradigm. The nice properties of INSs depend on this purity. As soon as interaction rules
incorporate side effects, uniform confluence (and, hence, parallel evaluation) is generally lost.

Yet, it is well-known that computational side effects can be simulated by pure functions
with additional arguments and return values. For example, consider the following function:

def square(x):

global y

y = y+1

return x*x

Obviously, square is an impure function: Besides computing the square of a given number,
square accesses and increments a global variable y. However, this behavior can be modeled
by providing y as a second argument to the function and returning its increment:

def square_inc(x,y):

return (x*x,y+1)

The function square inc is free of side effects. It does not change the state of the machine
or program, nor is its result affected by the former. The data dependency induced by the
extra parameters results in a fixed order of evaluation. Manually adding such additional
values and propagating them through of a program is of course tedious and error-prone,
especially in the presence of multiple side effects. A more general solution is needed to
provide a clean way of expressing impure functions.

Therefore, we decided to adapt an existing solution for our purposes: Monads have been
used in Haskell with great success to model all kinds of impure functions. Originally being
a notion from category theory, monads were adapted to handle side effects in functional
programs, cf. e.g. [25, 27, 17, 28].

Essentially, a monad provides data structures and functions to model a side effect and its
propagation with pure functions. More formally, a monad is a triple of an abstract datatype
M a and two (higher-order) functions operating on this type:

data M a

return :: a -> M a

>>= (bind) :: M a -> (a -> M b) -> M b

The idea behind this triple is the following:

• M adds a sort of wrapper to some value x of type a, potentially containing additional
data or functions.

• return x wraps a value x without any additional computations.

• bind handles sequentialization or ordering of function applications and their potential
side effects.
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A monad needs to satisfy the following laws:

(1) return a >>= f = f a

(2) m >>= return = m

(3) (m >>= f) >>= g = m >>=

(\x -> (f x >>= g))

Intuitively, return performs no side effects. Law (1) states that if return a is the first
argument of bind, its result should equal the application of its second argument to a (without
any side effects). According to law (2), return also acts as a right neutral element for bind.
Finally, bind has a property that is similar to associativity. This is expressed by law (3).

Monads are a promising candidate for realizing computational side effects in interaction
nets. In [14], we have made a first step towards the adaptation of monads to interaction nets.
There we defined concrete example monads for different side effects in interaction nets and
showed that they satisfy the monad laws. However, the example monads only represented
an ad-hoc solution: Basic interaction rules cannot express the higher-order character and
complex type information of monadic data structures and functions. Consequently, our
solution in [14] was specific for the concrete data structures involved, but not general in the
sense of being parameterized (or generic). The goal of the paper is to extend interaction
rules to allow for a more general, natural and adequate definition of monads. We define the
notion of a monad in interaction nets as follows:

Definition 2.2.1 (Interaction Net Monad) An interaction net monad is an INS that
contains two unary agents >>= and ret. The rules of the INS need to satisfy the following
equalities:

(1) ret >>= =⊳

(2) >>= ret =⊳

Here, equality is interpreted as observational equivalence (operationally expressed as convert-
ibility, which, under confluence, is equivalent to joinability): If arbitrary nets are connected to the
free ports of both nets of an equation (enabling reduction), then they can be reduced to a common
successor.

The equivalences (1) and (2) correspond to the first two monad laws. As we have shown
in [15], the third monad law automatically holds due to the representation of the >>= and
ret agents.

Our notion of equivalence is of course similar to other work on observational equivalence for
interaction nets, such as [7]. These equivalences can be shown by giving reduction sequences of nets
that yield the aforementioned common successors.

To illustrate the benefits of our approach to be developed, we will use the Maybe monad as a
running example.

Example 2.2.2 The Maybe monad is used in Haskell to model exception handling. It is defined as
follows:

data Maybe a = Just a | Nothing

(1) return x = Just x

(2) (Just x) >>= f = f x

(3) Nothing >>= f = Nothing

Values of the Maybe data type are either a plain value (Just a) or the error value Nothing

denoting an exception. Plain values are simply forwarded to a function f by bind, whereas Nothing

is returned by bind (when given f as second argument) without using f at all.
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As shown in [14], the Maybe monad for natural numbers can be modeled in interaction nets:

(1a) 0 ret ⇒ 0 Jst

(1b) S ret ⇒ S Jst

(2) Jst >>= ⇒

(3a) No >>= ⇒ aux

(3b) aux φ ⇒ No

⊲⊳ ⊲

⊲⊳ ⊲

⊲⊳

⊲⊳ ⊲

⊲⊳ ⊲

The rule labels correspond to the textual definition of the monadic functions. When comparing
both definitions, two aspects are apparent: First, ret only interacts with S and 0, i.e., symbolic
natural numbers. Haskell’s return is defined for an arbitrary data type a. Second, rule (3b) features
a so far unmentioned agent φ. The symbol φ corresponds to f in the textual definition and represents
an arbitrary agent. Analogously, f represents an arbitrary function. This interaction rule is special:
Whereas the LHS of ordinary interaction rules consists of two specific agents, here we have a rule
with an arbitrary agent in its LHS. Such generic rules and their properties are one of the main
topics of this paper. We will discuss them in detail in the next section.

To correspond to Haskell’s definition of the Maybe monad, φ should be any agent that interacts
with an agent representing a plain value and returns a Maybe value via its auxiliary port. For
example, consider the following interaction rules that model the head and tail operators on lists.
Both agents return an exception value when interacting with an empty list.3

x

Cons head r ⇒

xs

⊲⊳

x

ǫ Jst r

xs

Nil head r ⇒⊲⊳ No r

x

Cons tail r ⇒

xs

⊲⊳

x

ǫ Jst r

xs

Nil tail r ⇒⊲⊳ No r

The agent ǫ in the RHS of the third rule erases any other agent. This is another case of an
agent interacting with any arbitrary agent.

3We are aware of the fact that in Haskell head and tail do not return a Maybe value, but terminate
with a (fatal) error when being called with an empty list. For the sake of simplicity we chose to make these
functions “exception safe” here.
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3 Generic Rules and Imposed Constraints

In this section, we introduce the generic rule extension for interaction nets. We define constraints
on the application of these rules and show that these constraints are sufficient to preserve uniform
confluence. In a nutshell, we impose that ordinary rules always have priority over generic rules and
that multiple generic rules may not overlap.

An ordinary interaction rule matches one specific pair of (distinct) agents only. However, sev-
eral papers ([4, 5, 21]) on interaction nets feature agents that interact with any (arbitrary) agent.
Informally, these variable or generic agents assume the role of functional variables. We will refer
to such rules as generic rules. Typical examples are the agents δ and ǫ, which duplicate and erase,
respectively, any other agent.

(δ) d1 d2 d1 d2

δ ⇒ α

. . .

. . . α

. . .

α δ . . . δ

x1 . . . xn x1 . . . xn

⊲⊳

(ǫ)

ǫ

α ǫ . . . ǫ

x1 . . . xn x . . . xn

⇒⊲⊳

Figure 1: δ, ǫ: generic rules for duplication/deletion

In addition, exceptions to these rules can be given: An agent may interact differently with one
specific agent than with all others. Usually, these rules are simply stated without a more detailed
discussion of properties. However, it is obvious that such rules have the potential to destroy the
uniform confluence property: In a system with generic rules, a given active pair may be matched
by more than one rule. In fact, this is the case for any system that contains the δ and ǫ rules:
the active pair (δ ∼ ǫ) can be reduced using either rule. This violates the no ambiguity property
mentioned in Section 2.1 and generally destroys uniform confluence (although in this case, it does
not: both rules yield the same net). Therefore, it is important to give a formal definition of how
generic rules in INS are to be interpreted and restricted in such a way that uniform confluence is
preserved.

Generic agents can be classified into two kinds, as shown in Figure 2. They may either have
a fixed arity (such as φ in the Maybe monad example) or have a non-fixed, arbitrary number of
auxiliary ports (such as δ or ǫ). We call the latter variadic or arbitrary-arity agents. Later in
this section, we will extend variadic agents by non-uniform variadic agents, which — among their
arbitrarily many ports — have a (fixed) number of ports that are handled in a specific way. Note
that generic agents may only appear in interaction rules, not in concrete instances of nets.

8



IN agents

ordinary generic

fixed variadic

non-uniform
may appear in rules and nets

may appear in rules only

Figure 2: Classification of IN agents

3.1 Generic Rules

We now give a formal definition of (reduction with) generic rules and overlaps. Then we define two
natural constraints on interaction net systems with generic rules.

Notation: We use upper-case letters (A,B,..) to denote specific (i.e., arbitrary, but fixed)
agents, and lower case greek letters (α, β, φ, ψ, . . .) to denote generic agents. We use INSG for INS
with generic rules.

Definition 3.1.1 (generic rules) A generic interaction rule is an interaction rule α ⊲⊳ B ⇒ N
whose LHS consists of one generic agent α and one ordinary agent B. The RHS N may contain
one or more occurrences of α.

Definition 3.1.2 (rule matching) An ordinary rule A ⊲⊳ B is applicable to (or matches) an
active pair if the latter is of the shape A ∼ B. A generic rule α ⊲⊳ B is applicable to (or matches)
an active pair if the latter is of shape A ∼ B (with A 6= B) and if α and A have the same number
of ports. In this case, we also say that α matches A.

Note that active pairs are not ordered: A ∼ B is equivalent to B ∼ A, i.e., both are matched by
a rule A ⊲⊳ B.

In the presence of generic rules, more than one rule may match a given active pair. We now
classify these overlaps according to the rules involved. Note that we are only interested in overlaps
on the level of a single active pair/redex: Due to the binary interaction property, the reduction
of one active pair cannot influence another one (e.g., erase or duplicate it). Therefore, we define
overlaps as the matching of more than one rule on a single active pair.

Definition 3.1.3 (overlaps) Two (distinct) rules in an INSG overlap if there exists a single active
pair (w.r.t. some INS) which is matched by both rules4 and can also be rewritten by them.5

Let (Σ, R) be an INSG. Let O(R) ⊆ R be the ordinary rules of R and G(R) ⊆ R be the generic
rules of R.

We say that two rules A ⊲⊳ B and α ⊲⊳ B in an INSG form an ordinary-generic-overlap (
OG-overlap for short) if both match an active pair A ∼ B.

Two generic rules α ⊲⊳ B and A ⊲⊳ β form a generic-generic-overlap (GG-overlap for short) if
α matches A and β matches B, i.e., both rules match the active pair A ∼ B.

4Note that in term rewriting such kinds of special overlaps are also called overlays. In our setting, due to
the non-nested patterns of LHSs in interaction net rules, overlaps cannot be “partial” or “properly inside”
an LHS.

5This requirement ensures that reducing subnets in different ways by overlapping rules is indeed possible.
Later on we will prevent such overlaps by restricting the reduction relation.
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We now define our constraints for generic rules, first for agents with fixed arity, such as rule
(3b) of the Maybe monad. Afterwards, we extend these constraints to generic agents with arbitrary
arity (e.g., δ and ǫ).

3.2 The Default Priority Constraint (DPC)

The idea behind this constraint is to prevent OG-overlaps by giving priority to ordinary rules. If
for an active pair an INSG has no matching ordinary rule but a matching generic rule, then (and
only in this case) the generic rule may be applied.

Definition 3.2.1 (default priority constraint (DPC)) Let R = (Σ, R) be an INSG. Then R
satisfies the Default Priority Constraint (DPC) if the induced reduction relation is restricted as
follows: A generic rule α ⊲⊳ B ∈ R is only applicable to an active pair A ∼ B if A ⊲⊳ B is not the
LHS of any rule in R.

In this case we write ⇒RDP C
for the restricted reduction relation.

The DPC ensures that “exceptions” to generic rules assume priority. We now show that DPC
completely prevents OG-overlaps. Our main argument is that adding a generic rule α ⊲⊳ B ⇒ N ∈ R
to an INS (Σ, R) is equivalent to adding an ordinary version A ⊲⊳ B ⇒ N [α/A] of the rule for each
symbol A in Σ (distinct from B). From now on we assume that Σ is finite.

Definition 3.2.2 (agent substitution) Let N be an interaction net. An agent substitution is
a mapping φ = {α1/A1, . . . , αn/An} with arity(αi) = arity(Ai) whose application φ(N) to an
interaction net N yields N [α1/A1, . . . , αn/An], i.e., the interaction net N where every subnet αi

has been replaced by Ai.

Definition 3.2.3 (unfolding) Let R= (Σ, R) be an INSG. We define its unfolding U(R) as fol-
lows: U(R) = O(R) ∪ {A ⊲⊳ B ⇒ N [α/A] | (α ⊲⊳ B ⇒ N) ∈ G(R), A ∈ Σ, A 6= B,α matches A}.

Proposition 3.2.4 Let N,M be two INs in an INSGR. Then N ⇒R M if and only if N ⇒U(R) M .
Proof: By complete case distinction.
⇒ : Let N ⇒R M .
Case 1: An ordinary rule was used to reduce N to M . Then clearly N ⇒U(R) M .
Case 2: A generic rule (α ⊲⊳ B ⇒ P ) was used to reduce N to M . Let A ∼ B be the active
pair in N that was reduced. Obviously, α matches A. Then, by the definition of Unfolding,
(A ⊲⊳ B ⇒ P [α/A]) ∈ U(R). Hence, N ⇒U(R) M .
⇐ : Let N ⇒U(R) M .
Let (A ⊲⊳ B ⇒ P ) ∈ U(R) be the rule used to reduce N to M . This means that either
(A ⊲⊳ B ⇒ P ) ∈ R or (α ⊲⊳ B ⇒ P [A/α]) ∈ R, for some generic agent α. In both cases,
N ⇒R M .

It is clear that the unfolding of R may violate the basic no ambiguity constraint of interaction
nets. The unfolded set of rules could contain more than one rule with the same LHS. Obviously,
this is the case if there is an OG-overlap between two rules of R.

Using Proposition 3.2.4, we can semantically express generic rules via their unfoldings. We can
also define a version of unfolding that takes DPC into account. This unfolding does not add an
ordinary rule if a rule with the same LHS already exists:

Definition 3.2.5 (DPC-unfolding) Let R= (Σ, R) be an INSG. We define its DPC-unfolding
DU(R) as follows:
DU(R) = O(R) ∪ {A ⊲⊳ B ⇒ N [α/A] | (α ⊲⊳ B ⇒ N) ∈ G(R), α matches A,A ∈ Σ, A 6= B, (A ⊲⊳
B ⇒M) /∈ R}.

Proposition 3.2.6 Let N,M be two INSGs. N ⇒RDP C
M if and only if N ⇒DU(R) M .
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Proof: By complete case distinction.
⇒: Suppose N ⇒RDP C

M . If this reduction was done by applying an ordinary rule, then clearly
N ⇒DU(R) M . If a generic rule was applied, then no matching ordinary rule must have been in R.
This means that the applied rule is an ordinary instance of the generic rule, hence it is in DU(R).
Thus, N ⇒DU(R) M .
⇐: Assume N ⇒DU(R) M . If this reduction was done by applying a rule that is ordinary in R,
then N ⇒RDP C

M . If the rule is an instance of a generic rule in R, then by the definition of DPC
Unfolding, there cannot be an ordinary rule in R matching the active pair that was reduced in
N ⇒DU(R) M . Hence, N ⇒RDP C

M .

Using the equality of a system with generic rules and its unfolding, we can show that DPC
prevents OG-overlaps.

Proposition 3.2.7 Let I = (Σ, R) be an INS where ⇒R has no GG-overlaps. Then, ⇒RDP C
has

no overlaps.
Proof: Consider DU(R). Clearly, DU(R) only consists of ordinary rules and has no overlaps
(i.e., there is at most one rule matching any active pair). Since N ⇒RDP C

M is equivalent to
N ⇒DU(R) M , ⇒RDP C

has no overlaps.

3.3 The Generic Rule Constraint (GRC)

As the DPC prevents OG-overlaps, we now focus on preventing GG-overlaps, i.e., overlaps between
multiple generic rules. Here, our approach is straightforward: We simply disallow overlapping
generic rules or enforce a higher-priority ordinary rule.

Definition 3.3.1 (generic rule constraint) Let R = (Σ, R) be an INSG. R satisfies the Generic
Rule Constraint (GRC) if for all α ⊲⊳ B ⇒ N , A ⊲⊳ β ⇒M ∈ G(R), one of the following conditions
holds:

(1) α does not match A or β does not match B.

(2) A ⊲⊳ B ∈ O(R).

While DPC restricts the reduction relation, GRC is a constraint on the set of interaction rules.
Condition (1) simply disallows any rules that may form a GG-overlap. Condition (2) requires
an ordinary rule that matches the active pair which causes the overlap. This means that the
combination of GRC and DPC prevents any rule overlaps.

Proposition 3.3.2 Let I = (Σ, R) be an INSG that satisfies GRC. Then, ⇒RDP C
satisfies the no

ambiguity property.
Proof: Clearly, ⇒RDP C

prevents all OG-overlaps. This means that if there is an overlap, it must
be a GG-overlap. We then make a case distinction based on the conditions satisfied by GRC:
Condition (1) holds: In this case, there are no GG-overlaps.
Condition (2) holds: There is a rule A ⊲⊳ B ∈ O(R) that matches the active pair causing a GG-
overlap. This overlap is prevented in ⇒RDP C

, as the ordinary rule has priority over all generic ones.

Proposition 3.3.3 (uniform confluence) Let I = (Σ, R) be an INSG that satisfies GRC. Then
⇒RDP C

has the uniform confluence property.
Proof: In Section 2.1, we defined three properties that are sufficient for uniform confluence. These
properties are satisfied by INSs with ordinary rules only. The introduction of generic rules does
not affect the linearity or binary interaction property. Furthermore, we have shown in Proposition
3.3.2 that ⇒RDP C

satisfies the no ambiguity property by preventing all possible overlaps. Hence,
⇒RDP C

satisfies uniform confluence.
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3.4 Generic Rules with Variadic Agents

So far, our rule constraints only deal with generic agents with fixed arity. In this subsection, we
extend our results to generic rules with arbitrary arity, or variadic agents. For example, we again
refer to the δ and ǫ rules in Figure 1. These rules match any active pair that consists of δ/ǫ and
an agent of arity between 0 and n (where n is considered the maximum arity of all agents in the
signature).

We now extend rule matching for variadic agents. A variadic agent matches any ordinary agent.

Definition 3.4.1 (variadic rule matching) Let r = α ⊲⊳ B be a generic rule, where α is of
arbitrary arity. Then, r matches an active pair A ∼ B.

Note that this definition of rule matching with a generic rule includes the degenerate case of 0
auxiliary ports.

As indicated in Figure 1 on page 4, rules with variadic agents may have an arbitrary number of
identical agents (or subnets) in their RHS (denoted by “. . . ”). When such a rule α ⊲⊳ B is applied
to an active pair A ∼ B, the pair is replaced by an adequate version of the RHS net, where the
number of identical subnets is arity(A). For a general precise specification of INSGs with variadic
agents, an appropriate schema for specifying the rules and the induced reductions has to be defined.
Due to lack of space we will not elaborate on that here.

The constraints and properties of fixed-arity generic rules can be extended to the arbitrary arity
case. Again, we make use of the notion of unfolding.

Definition 3.4.2 (arity unfolding) Let I = (Σ, R) be an INS. Let O(R) be the set of ordinary
rules, G(R) the set of fixed-arity generic rules and AG(R) the set of arbitrary-arity generic rules of
R. Let Ar(Σ) be the set of arities of all agents of Σ. We define the arity unfolding AU(R) as follows:
AU(R) = O(R) ∪G(R) ∪ {A ⊲⊳ αi ⇒ N [α/αi] | (A ⊲⊳ α⇒ N) ∈ AG(R), arity(αi) ∈ Ar(Σ)}.

Informally, the arity unfolding adds a single fixed-arity generic rule for all possible arities of the
generic agent (i.e., all arities of agents in Σ) in an arbitrary-arity generic rule. If Σ is finite, then
AU(R) has finitely many rules. Note that N [α/αi] is a RHS that contains arity(αi) identical
subnets (as mentioned above).

Proposition 3.4.3 Let I = (Σ, R) be an INSG. The we have: N ⇒R M iff N ⇒AU(R) M .
Proof: By complete case distinction.
⇒ : Let N ⇒R M .
Case 1: An ordinary or fixed-arity generic rule was used to reduce N to M . Then clearly N ⇒U(R)

M .
Case 2: A generic rule (α ⊲⊳ B ⇒ P ) was used to reduce N to M , where α is variadic. Let A ∼ B
be the active pair in N that was reduced. Since AU(R) contains a rule αi ⊲⊳ B ⇒ P [α/αi] s.t. αi

matches A, N ⇒U(R) M .
⇐ : Let N ⇒AU(R) M .
Case 1: An ordinary or fixed-arity generic rule of R was used to reduce N to M . Then clearly
N ⇒R M .
Case 2: Let (αi ⊲⊳ B ⇒ P ) ∈ AU(R) be the rule used to reduce N to M , where r = (α ⊲⊳ B ⇒ P ) ∈
R. Let A ∼ B the active pair that was reduced. By Definition 3.4.1, r matches A ∼ B. Hence,
N ⇒R M .

Theorem 3.4.4 Let I = (Σ, R) be an INSG, where R contains at least one generic rule with a
variadic agent. If AU(R) satisfies GRC, then ⇒RDP C

satisfies the no ambiguity property.
Proof: If AU(R) satisfies GRC, then it has no GG-overlaps, except those that are prevented by
DPC. It follows from Proposition 3.4.3 that R has no additional GG-overlaps either. Hence, ⇒RDP C

has no overlaps.

12



3.4.1 Non-Uniform Port Handling

The generic rules that feature variadic agents we have dealt with so far have one thing in common:
In the RHS of the rule, all (arbitrarily many) ports of the generic agent are handled in the same,
uniform way. However, we would like to define generic rules where a few selected ports of a
generic agent receive a “special treatment”. The remaining, arbitrarily many ports are handled
uniformly. The motivation for this feature is simple: Generic rules should support the interaction
nets equivalent of a curried function. For instance, in Haskell, the expression (1+) is a partial
application of the addition function. It is a valid function that takes one argument and returns its
increment by one. Partial application is an important feature of functional programming that we
wish to capture with our generic rule extension. Using an example, we will see that non-uniform
port handling can be used to achieve this in an intuitive fashion.

Example 3.4.5 Consider an agent take of arity 2. Given a list and a number n, take returns the
nth element of the list, or an exception if the list has less than n elements: Textually, take would
be defined as:

take :: Int -> [a] -> Maybe a

take 0 (Cons x xs) = Just x

take n (Cons x xs) = take (n - 1) xs

take n Nil = Nothing

The following interaction rules define take:

x

Cons take r ⇒

xs n

⊲⊳

x

tAux r

xs n

x

tAux r ⇒

xs 0

⊲⊳

x

ǫ Jst r

xs

x

tAux r ⇒

xs S

n

⊲⊳

x

ǫ take r

xs

n

Nil take r ⇒

n

⊲⊳ ǫ No r

n

It is straightforward to see a net consisting of the agents take and 0 as the interaction net equivalent
of the partially evaluated function (take 0). Unfortunately, the interaction rules of the Maybe
monad from Example 2.2.2 are not applicable here. Consider the following reduction:
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No >>= take r ⇒

0

⊲⊳ ⊳

⊲

aux take r

0

⊲⊳

⊲

Even though the second net has an active pair, it cannot be reduced any further. The take
agent has two auxiliary ports and hence does not match the generic rule (3b). However, we can
model the desired behavior of the aux agent with the following arbitrary-arity generic rule:

aux φ r ⇒

an ... a1

⊲⊳ ǫ ... ǫ No r

an ... a1

The port r corresponds to the output of take in the previous example. The updated generic
rule is applicable to the net above, yielding the desired result:

aux take r⇒

0

⊲⊳

⊲

ǫ No r⇒

0

⊲⊳

No r

Rule matching for the non-uniform case works almost identically to Definition 3.4.1. However,
the respective agent of the active pair needs to have at least the number of non-uniformly handled
auxiliary ports.

Definition 3.4.6 (non-uniform variadic rule matching) Let r = α ⊲⊳ B be a generic rule,
where α is of arbitrary arity, but contains n auxiliary ports that are handled non-uniformly. Let
A ∼ B be an active pair. r matches A ∼ B if arity(A) ≥ n.

Generic rule constraints and non-uniform port handling The generic rule constraints
and their properties are almost the same for uniform and non-uniform variadic agents: in the latter
case, the arity unfolding only creates fixed-arity generic agents (and rules) with arity greater or
equal to the number of non-uniform ports. This is analogous to the arity restriction of the previous
definition. It does not affect Theorem 3.4.4 and its result on uniform confluence.

4 A Simple Typing Approach

In the previous section, we introduced generic rules and suitable constraints on them to preserve
uniform confluence. However, even if we satisfy these constraints, the matching capabilities of
generic rules are too powerful. A generic rule would be applicable to more active pairs than intended.
Consider the monadic function bind (>>=): It requires two arguments, one of which is a data type
and one a function. The generic interaction rules for bind only require their “second argument”
to have at least one auxiliary port. Therefore, bind may interact with any agent with an auxiliary
port, whether it can be considered to represent a function or not. Moreover, this agent is supposed
to return a monadic data type, which needs to be verified in some form.

Naturally, this problem is solved by a type system for interaction nets. We can restrict the type
of an agent that may match the rule’s LHS. In this section, we will define a type system that is
suitable for expressing monadic rules in interaction nets.

4.1 Existing Typing Approaches

Several type systems have been proposed for interaction nets. In [19], Lafont defines a simple system
that assigns a base type (int, char, . . . ) to every port of an agent. Additionally, a polarity (+/−)
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is assigned to each port. Agents may only be connected via ports of the same type, but opposite
polarity. Intuitively, polarities divide ports into input and output ports. For example, the list and
concatenation agents may be typed as follows:

list+ list− list+

Cons Nil ++

nat− list− list− list−

This system is not expressive enough for generic rules and agents that model abstract datatypes
(which are a part of monads). For example, this system does not feature type variables, which are
essential for expressing monadic data types such as Maybe a.

In [6], Fernandez extends Lafont’s type system by adding type variables and constructs for more
complex types (arrows, intersections). While this intersection type system is more expressive, it is
also more difficult to handle: Type assignment of intersection types is shown to be undecidable for
interaction nets. Additionally, the procedure of generating all valid type instances is considerably
complicated in the presence of intersections, requiring operations such as expansion or lifting in
addition to (the usual) substitution.

4.2 Our Typing Approach

The main goal of our type system is to restrict the matching power of generic rules. We decided on
a straightforward approach, keeping the system as simple as possible. However, our system needs
to be expressive enough to model types of monadic functions, in particular bind :

>>= :: M a -> (a -> M b) -> M b

This means that a suitable type system needs to feature type variables, and a form of arrow (i.e.,
functional) types. While the intersection type system of [6] offers arrow types for ports, we feel
that this system is overly complex for our needs. Moreover, the focus of intersection types is on
criteria for termination of interaction net systems, while ours is to model matching of higher-order
functions via generic rules. Therefore, we take the following approach: We restrict types for ports
to base types and type variables. Base types may either be type constants (like int) or have type
parameters (e.g., list(int)). More complex types are only defined implicitly via the set of all port
types of an agent, also referred to as its environment. When matching a rule with an active pair,
we compare the environment of the active pair’s agents with the rule LHS.

Definition 4.2.1 (port types) Let S be a set of base types (or sorts). Let each sort have an
arity, denoting the number of type parameters. Let V be a set of type variables and P = {+,−} be
the set of polarities. The set of port types PT is defined as:

• vp ∈ PT , where v ∈ V, p ∈ P

• sp ∈ PT , where s ∈ S, p ∈ P , and arity(s) = 0

• s(t1, . . . , tn)p ∈ PT , where s ∈ S, p ∈ P, ti ∈ PT (1 ≤ i ≤ n), and arity(s) = n

In the following examples, we use the greek letters τ, ρ to denote port type variables.
Considering only type constants (i.e., sorts with arity 0), a net is well-typed if all connections

are between ports of different polarity, but with the same type. When adding type variables and
parametrized types, we have to adapt this notion slightly:

Definition 4.2.2 (well-typed nets) Given the a set of agents and the types of their ports, an
interaction net N is well-typed if the following conditions hold:

• all connected ports are of opposite polarity.
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• for all pairs of types of connected ports (t1, r1), . . . , (tn, rn), there is a solution to the unifica-
tion problem {t1 ≈ r1, . . . , tn ≈ rn}.

Port types are the basic ingredients of our rule typing system. All types of an agent’s ports form its
environment. This notion was already introduced in [6]. However, we define it in a slightly different
way, ordering the types by their port positions, starting counter-clockwise from the principal port.

Definition 4.2.3 (environment) Let A be an agent of arity n. The environment ε(A) is defined
as {tp, t1, . . . , tn}, where tp is the type of the principal port, and ti is the type of the ith auxiliary
port (viewed counter-clockwise from the principal port).

For example, ε(Cons) = {list(τ)+, τ−, list(τ)−} and ε(++) = {list(τ)−, list(τ)+, list(τ)−}.
Within the environment, multiple occurrences of the same variable (here: τ) refer to the same

type. This is expressed by the scope of a type variable.

Definition 4.2.4 (variable scope) The scope of a port type variable is defined as the agent (or
environment) that the port is associated with.

Based on the environment, we define a rule type that will be used for matching. In addition,
we need a formalism to denote whether specific port type variables of the agents of a rule LHS
correspond to each other. For this, we will use type substitutions:

Definition 4.2.5 (type substitution) A type substitution is a substitution σ that maps port type
variables to port types. A type substitution σ is represented by a set of shape {τ1 7→ τ1σ, . . . , τn 7→
τnσ}.

Definition 4.2.6 (rule type) Let r = (A ⊲⊳ B ⇒ N) be an interaction rule. Let the type variables
of the ports of A and B be disjoint. The rule type RT (r) is a triple (ε(A), ε(B), S), where S is a
type substitution {τ1 7→ t1, . . . , τn 7→ tn} consisting of types of either ε(A) or ε(B).

The idea behind S is to ensure that the net of the rule is well-typed and specific interface ports of
both agents share the same type.

Example 4.2.7 Consider rule (2) of the Maybe monad in Example 2.2.2: Let ε(Jst) = {maybe(τ)+, τ−}
and ε(>>=) = {maybe(ρ)−, ρ−}, where maybe is a base type of arity 1 and τ, ρ are type variables.
Then, RT ((2)) = (ε(Jst), ε(>>=), {τ 7→ ρ}). It is important that both auxiliary ports share the
same type: The auxiliary port of bind must be connected to an agent that matches the auxiliary port
type of Jst.

Note that we have not yet considered the type of the RHS of the rule. This is because we are
mainly interested in matching. However, it is important that the types of the interface of the net
are preserved during rule application. Therefore, we adapt the notion of well-typed rules from [19].

Definition 4.2.8 (well-typed rules) A rule is well-typed if

• both nets of the LHS and RHS are well-typed.

• the types of all free ports are the same in the LHS and RHS.

We say that a set of rules R is well-typed if all rules in R are well-typed. We will use the abbreviation
INSGT for an INSGwith typed rules.

Proposition 4.2.9 (subject reduction) Let R = (Σ, R) be an INSG where R is well-typed.
Then, for two nets M , N such that M ⇒R N , the interface ports of M have the same type as
the interface ports of N .
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Proof: Let M ⇒R N by reduction of an active pair A ∼ B in M . We can distinguish two cases:
Case 1. No port of A ∼ B is part of the interface of M. Then, the interface of M is not affected by
the reduction of A ∼ B.
Case 2. One or more ports of A ∼ B are free, i.e., they are part of the interface of M . Then, it
follows from the definition of a well-typed rule that the free ports of A ∼ B preserve their type
during reduction. Hence, the interface ports of N have the same type(s) as the ones of M .

We now define matching of generic typed rules and active pairs, which is the main purpose of
our type system. Informally, we match the environment of the generic agent and the corresponding
agent of the active pair.

Definition 4.2.10 (typed rule matching) Let r = α ⊲⊳ B be a well-typed interaction rule where
α is a generic agent. Let N a well-typed net containing an active pair A ∼ B. We say that r
matches A ∼ B if the following conditions hold:

• r matches A ∼ B w.r.t. Definition 3.1.2.

• there exists a type substitution σ s.t. σ(S(ε(α))) = ε(A)), where S is the substitution of
RT (r).

4.3 Typing for the Variadic Agent Case

So far, our type system can describe and match rules that consist of ordinary and fixed-arity generic
rules. Since we want to model the environment of generic agents with arbitrary arity, we introduce
a special symbol ∗ that may match any number of port types. This corresponds to the generic
agents’ capability to match agents with any number of ports of any type.

Definition 4.3.1 (type wildcard) Let α be a generic agent that has an arbitrary number of aux-
iliary ports. We then model its environment as ε(α) = {tp, ∗} where tp is the type of the principal
port of α and ∗ is called the type wildcard, corresponding to all auxiliary ports.

Intuitively, ∗ may be replaced by any number of port types. In addition, generic agents and rules
with non-uniform port handling can easily be expressed with this notation: For example, the generic
agent φ in Section 3.4.1 can be modeled as ε(φ) = {a−, ∗,maybe(α)+}.

Typed rule matching can be extended with variadic agents as follows: when matching a rule
with an active pair, we treat a variadic agent as a fixed arity agent: this agent has the arity of the
corresponding agent of the active pair. The auxiliary ports covered by the type wildcard * are fresh
type variables with suitable polarities.

Definition 4.3.2 (typed rule matching with variadic agents) Let r = α ⊲⊳ B, where α is a
variadic agent. Let ε(α) = (tp, ∗, t1

q1 , . . . , tm
qm), where ti are the types of the non-uniformly handled

ports (and qi the respective polarities). α ⊲⊳ B matches an active pair A ∼ B if the following holds:

• Let α′ be a fixed-arity generic agent s.t. ε(α′) = (tp, x1
p1 , . . . , xn

pn , t1
q1 , . . . , tm

qm), where
n = arity(B) −m (m is the number of non-uniformly handled ports), xi are fresh variables
and the polarities pi are the polarities of B’s auxiliary ports.

• α′ ⊲⊳ B matches A ∼ B w.r.t. Definition 4.2.10.

Example 4.3.3 Consider the take agent from Example 3.4.5 and the modified rule of the Maybe
monad to support non-uniform port handling: The rule aux ⊲⊳ φ is typed as {{τ1

+}, {τ2
−, ∗,maybe(ρ)+},

{τ1 7→ τ2}}.
Consider the active pair aux ∼ take, where ε(take) = {list(τ)−, int−,maybe(τ)+}. By Defini-

tion 4.2.10, this pair is matched by the rule aux ⊲⊳ φ′, where ε(φ′) = {τ2
−, τ3

−, maybe(ρ)+}.
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4.4 Properties of the Type System

The presented type system combines well with the generic rule constraints of Section 3: The re-
spective properties to preserve uniform confluence need not be changed in the typed setting. The
type system only restricts the notion of matching used in the definition of the constraints. The
constraints still imply the no ambiguity property.

To conclude this section, we show that well-typedness of nets is decidable in linear time, as it
can be reduced to unification.

Proposition 4.4.1 Let N be a typed net without generic agents. Given the environments of all
agents, well-typedness of the net can be decided in linear time (i.e., linear in the number of agents
and ports of the net).
Proof: By Definition 4.2.2, two properties need to hold:

• all connected ports are of opposite polarity.

• for all pairs of types of connected ports (t1, r1), . . . , (tn, rn), there is a solution to the unifica-
tion problem {t1 ≈ r1, . . . , tn ≈ rn}.

The first property can be checked in linear time by traversing the net. The second property is a
unification problem, which can be solved in linear time [2]. Therefore, the overall time complexity
of deciding well-typedness of a net is linear to the number of agents and ports of the net.

5 Application: Monads in Interaction Nets

In this section, we give two examples of concrete interaction net systems that take full advantage of
generic rules and rule types. We first present an improved version of the Maybe monad, and then
give an INSGTthat models the Writer monad (for logging/profiling).

Correctness of the Monads Both of the following interaction net monads are correct in the
sense that they satisfy the monad laws mentioned in Section 2.2. This can be shown by a reduction
of nets, such that both sides of each equation have a common reduct. In [14, 16], we gave proofs
for the ad-hoc versions of both monads. The extensions of this paper do not affect the idea behind
these proofs: generic rules essentially allow arbitrary agents as input for the monadic functions. In
[16], the monad laws were already shown using reductions of arbitrary nets. Therefore, the proofs
for the updated monad INSs are almost identical. Due to space constraints, we omit the full details.

5.1 The Maybe Monad Revisited

Using generic rules, we can express the interaction rules of the Maybe monad in a way that models
Haskell’s definition more closely. The INSGTMaybe is defined as ({Jst1, No1, ret1, bind1, aux1},M)
where M consists of the rules in Figure 3.

As we can see, the rules (1a) and (1b) have been merged to a single rule, using a variadic agent
as the “argument” of ret. Rule (3b) now features a variadic with non-uniform port handling (as
introduced in Section 3.4.1). To ensure that the set of rules satisfies the GRC, we introduce the
auxiliary rule (GRC).

Proposition 5.1.1 ⇒MDP C
satisfies the uniform confluence property.

Proof: The arity unfolding AU(M) satisfies the GRC: There is a GG-overlap between the (un-
folded) rules (1) and (3b). However, M contains the ordinary rule (GRC) that matches the active
pair (aux ∼ ret). Therefore, the GRC is satisfied. By Theorem 3.4.4, ⇒MDP C

satisfies the uniform
confluence property.
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x1 x1

(1) ...
α ret ⇒ ...

α Jst

xn xn

(2) Jst >>= ⇒

(3a) No >>= ⇒ aux

⊲⊳ ⊲

⊲⊳

⊲⊳ ⊲

(3b) aux φ r ⇒

an ... a1

⊲⊳ ǫ ... ǫ No r

an ... a1

(GRC) aux ret r ⇒⊲⊳ No r

Figure 3: The rules of the Maybe monad

5.1.1 Port and Rule Types

We assign the following environment to the agents of the Maybe monad, where maybe is a sort of
arity 1 and τ, ρ are type variables.

ε(Jst) = {maybe(τ)+, τ−}

ε(No) = {maybe(τ)+}

ε(ret) = {τ−,maybe(τ)+}

ε(>>=) = {maybe(τ)−, (τ)+}

ε(auτ) = { τ+}

ε(α) = {τ+, ∗}

ε(φ) = {τ−, ∗,maybe(ρ)+}

The rule types are defined as follows. Recall that the scope of port type variables is the agent’s
environment. We add subscripts to the variables to denote which agent they belong to: τ1 belongs
to the first agent of the rule LHS and τ2 to the second one.

RT (1) = {ε(α), ε(ret), {}}

RT (2) = {ε(Jst), ε(>>=), {τ1 7→ τ2}}

RT (3a) = {ε(No), ε(>>=), {}}

RT (3b) = {ε(aux), ε(φ), {}}

RT (GRC) = {ε(aux), ε(ret), {}}
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5.2 The Writer Monad

The Writer Monad is used to add an optional, secondary output to a function and to collect these
additional results of all functions in a log. Essentially, this can be modeled by maintaining a list of
secondary results and appending the output of each function during evaluation. The Writer monad
can be defined textually as:

data Log a = (a, S)

(1) return x = (x,e)

(2) (x,s) >>= f = (y,s:s’)

where (y,s’) = f x

S is the type of the secondary output. Together with a value e of type S and a binary function ’:’

, S forms a monoid. This property is necessary to ensure the correctness of the Writer monad. The
Log datatype is a pair of a values of types a and S. The operator return simply returns a pair of its
argument and the identity element e. bind applies f to x and returns a pair of the primary result
of f and a combination of f’s secondary and previous outputs.

In interaction nets, we will model the log as a list where each element represents the secondary
output of one function. The INSGTWriter is defined as (log2, ret1, bind1, aux2, ext2},W ), where W
consists of the rules in Figure 4.

x1

(1) ret α ...
⇒

xn

⊲⊳

x1

α ...

log xn

Nil

⊳

⊳

x

(2a) log >>= r ⇒
s

⊲⊳

x

aux r

s

⊲

y1 . . . yn

x

(2b) aux φ r ⇒

s

⊲⊳

y1 . . . yn

x φ ext log r

s ++

⊳

⊳

x

(GRC) aux ret r ⇒
s

⊲⊳

x

log r

s

⊲

x r1

(ext) log ext ⇒
s r2

⊲⊳

x r1

s r2

Figure 4: The rules of the Writer monad

Similarly to the Maybe monad, we can show that the Writer monad satisfies uniform confluence.

Proposition 5.2.1 ⇒MDP C
satisfies the uniform confluence property.
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Proof: The arity unfolding AU(M) satisfies GRC: There is a GG-overlap between the (unfolded)
rules (1) and (3b). Both rules match the active pair (aux ∼ ret). Since M contains an ordinary
rule with this active pair as LHS, M satisfies GRC. Hence, by Proposition 3.4.4 ⇒MDP C

satisfies
the uniform confluence property.

5.2.1 Port and Rule Types

The following environment types the agents of the Writer monad. In the interaction net setting,
the Log datatype translates to an agent that has two distinct type variables, one for the primary
return value of a function, and the other for the log value. We use the sorts log2 and list1 and the
type variables τ, ρ.

ε(log) = {log(τ, ρ)+, τ−, list(ρ)−}

ε(ret) = {τ−, log(τ, ρ)+}

ε(>>=) = {log(τ, ρ)−, τ+}

ε(aux) = {τ+, τ−, list(ρ)+}

ε(ext) = {log(τ, ρ)−, τ+, list(ρ)+}

ε(α) = {τ+, ∗}

ε(φ) = {τ−, log(τ, ρ)+, ∗}

The Writer rules can be typed as follows. Again, we use subscripts to distinguish the type variables
of both agents.

RT (1) = {ε(ret), ε(α), {}}

RT (2a) = {ε(log), ε(>>=), {τ1 7→ τ2}}

RT (2b) = {ε(aux), ε(φ), {ρ1 7→ ρ2}}

RT (GRC) = {ε(aux), ε(ret), {ρ1 7→ ρ2}}

RT (ext) = {ε(log), ε(ext), {τ1 7→ τ2, ρ1 7→ ρ2}}

5.3 The State Transformer Monad

The State Transformer monad is another well-known monad in Haskell. It models the application
of a program w.r.t. a mutable state. It is defined as follows:

data State s a = s -> (a,s)

(1) return x = \s -> (x,s)

(2) m >>= f = \r -> (\let (x,s) = m r in (f x) s)

A state transformer is a function that takes a state s as input and returns a pair of a return
value t and a possibly changed state. In (1), return x is the function that returns a value x and
the unchanged input state. In (2), m >>= f first applies the state transformer m to the input state
and then f to the value and state of the resulting pair.

When realizing this monad as an INS, the main difference to the Maybe Monad lies in the
monadic datatype State a s, which is a function itself. To account for this, we use agents for
lambda terms and function application to “encapsulate” the state transformer function. Such agents
have already been used in several papers (e.g., [24, 21]). Here, the λ agent acts as a constructor for
State function objects. The application agent @ takes a role similar to Haskell’s runState function.
The drawback of this approach is that the INS is complicated with additional agents and rules.6

6We conjecture that the rule archetype of [24] can be used to improve this – cf. Section 6.
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The State Transformer INS, including rules for explicit function application and handling of pairs,
is shown in Figure 5.

x1

(1b) r ret α ...
⇒

xn

⊲⊳

x1

r λ p α ...

xn

⊳

⊳

in

(2a) λ >>= r ⇒

out

⊲⊳

in

aux r

out

⊲

y1 . . . yn

in

(2b) aux φ r ⇒

out

⊲⊳

y1 . . . yn

in λ r

out ext φ @⊳ ⊳

in

(GRC) aux ret r ⇒

out

⊲⊳

in

λ r

out

⊲

p2 x1

(pair) r p α ...
⇒

xn

⊲⊳

p2 x1

r pair α ...

xn

⊳

x r1

(ext) pair ext ⇒
s r2

⊲⊳

x r1

s r2

in r

(λ-abs) λ @ ⇒

out x

⊲⊳

in r

out x

Figure 5: The rules of the State Transformer monad

Port and Rule Types We type the State Transformer Monad with the following environment.
We use the sorts state2 and pair2 and the type variables τ, ρ.
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ε(λ) = {state(τ, ρ)+, τ+, pair(τ, ρ)−}

ε(ret) = {τ−, state(τ, ρ)+}

ε(>>=) = {state(τ, ρ)−, τ+}

ε(aux) = {τ+, τ+, pair(tau, ρ)−}

ε(ext) = {pair(τ, ρ)−, τ+, ρ+}

ε(pair) = {pair(τ, ρ)+, τ−, ρ−}

ε(p) = {ρ−, pair(τ, ρ)+, τ−}

ε(@) = {state(τ, ρ)−, τ−, pair(τ, ρ)+}

ε(α) = {τ+, ∗}

ε(φ) = {τ−, state(τ, ρ)+, ∗}

The corresponding rules can be typed as follows. Again, we use subscripts to distinguish the type
variables of both agents.

RT (1) = {ε(ret), ε(α), {}}

RT (2a) = {ε(state), ε(>>=), {τ1 7→ τ2}}

RT (2b) = {ε(aux), ε(φ), {ρ1 7→ ρ2}}

RT (GRC) = {ε(aux), ε(ret), {ρ1 7→ ρ2}}

RT (ext) = {ε(pair), ε(ext), {τ1 7→ τ2, ρ1 7→ ρ2}}

RT (λ− abs) = {ε(λ), ε(@), {τ1 7→ τ2, ρ1 7→ ρ2}}

Remarks on the examples We see that both sets of rules are very similar to the textual
definition of the Maybe and Writer monads. In particular, they offer a similar level of abstraction:
both rule sets allow any agent as a basic value of the corresponding monad type (Jst, No and log).
Thanks to non-uniform port handling of generic rules, any agent with matching port types can be
used as second argument of bind.

Due to the restriction on interaction rule LHSs, both rulesets feature auxiliary agents and
rules. This can be improved by using rules with nested patterns: nested patterns are a conservative
extension of interaction nets that allows for more complex rule patterns while preserving uniform
confluence. For more information, we refer to [12, 11].

6 Discussion

6.1 Related Work

Our approach for a priority constraint in interaction nets was inspired by notions of priority in term
rewriting systems [26]. Priorities are a considerable extension to rewriting that can generally violate
several properties, for example closure under contexts or substitutions. However, we employ a very
restricted form of priorities, only considering priorities of rules on a single redex/active pair. This
helps us to maintain the beneficial properties of interaction nets.

Extending interaction nets to a practically usable programming language has been the topic of
several publications. One example is [24], where the authors propose a way to represent higher-order
recursive functions like fold or unfold. Clearly, this is a goal very similar to the one of our paper.
However, the authors take a different approach than ours. First, they model functions by encoding
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the (linear) lambda calculus in interaction nets, using specific agents for explicit abstraction and
application. While this approach is well-suited to represent higher-order functions, the authors argue
that the additional machinery of the encoded lambda calculus complicates the clean representation
of terms as nets. Therefore, a second approach is suggested: The authors model higher-order
functions through archetypes, which can be seen as an abstract structure of interaction rules that
can be instantiated with agents representing functions.

We think that the approach of [24] and the ideas presented in the current paper could benefit
from each other. First, both archetypes and lambda encodings make use of generic agents. Our
results on generic rule constraints could therefore be applied in this setting. Second, archetypes
might be a promising basis for a general and abstract framework. They could possibly be used as
a unified and extensible interface for monads, similar to the role of type classes in Haskell.

Another approach to higher-order functions can be found in [9]: the authors introduce bigraphical
nets, an extension of interaction nets based on bigraphs. Informally, agents of a bigraphical net can
contain (local) subnets, which may interact with the external parts of the net. The authors use
bigraphical nets to model non-strict pattern matching (via the ρ-calculus). In addition, the idea of
agents containing nets adds a higher-order character to interaction nets. Further research is needed
to see whether this approach can be combined with our ideas.

Intersection types for interaction nets [4] had a strong influence on the definition of our rule
type system. They have been used to find criteria for termination of interaction nets systems.

Besides in functional programming, monads have been used in several other domains. A recent
application can be found in [18], where monads serve for structuring mechanisms in interactive
theorem provers.

6.2 Conclusion and Outlook

In this paper, we presented generic rules for interaction nets. These rules are substantially more
powerful than ordinary interaction rules and allow for more general pattern matching. This adds
a higher-order character to interaction rules. In addition, we defined non-uniform port handling in
generic rules which gives us a convenient way to model partially evaluated functions. This extension
is conservative: using appropriate constraints, we can ensure that the reduction relation satisfies
uniform confluence. Moreover, generic rules only use the core features of interaction nets and do
not require any external machinery (such as encodings of the lambda calculus [22] or externally
defined programs [8]).

We consider generic rules as a substantial step towards promoting interaction nets to a practically
usable programming language. In particular, generic rules can describe monads in a general way that
does not rely on specific functions or datatypes. Our rule type system ensures that the matching
of generic rules is consistent with the type restrictions of the monadic operators. While our system
only uses (parametrized) sorts and type variables on the port level, more complex types are modeled
implicitly on the level of agents and rules. Even though this type system fulfills the requirements
of the examples in this paper, it is still fairly simple and can of course be refined. For instance,
we chose a many-sorted approach here without any form of relation between types. With respect
to practical usability, an order-sorted type system is certainly preferable. This will be subject to
future work.

Generic rules are an important milestone towards our goal of realizing an abstract framework
for handling side effects in interaction nets. While we have shown that individual monads can be
defined using these rules, a unified, extensible interface for interaction net monads yet has to be
defined.

This will also be addressed in future research. One possible direction is the adaptation of
archetypes [24], which we will briefly discussed in the previous subsection. Moreover, we plan to
thoroughly investigate other approaches to higher-order functions in interaction nets.

The notion of monads that we used throughout this paper is based on their application to
functional programming [28, 17]. Monads were originally defined in category theory. Therefore, it
might be interesting to try a more categorial approach to monads in interaction nets. In fact, in a
recent publication [3], the author uses notions from category theory to explicitly define interaction
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rule application and rewriting of nets.
Of course, monads are not the only approach to side effects. In particular, linear logic could be

employed to handle impure functions in interaction nets: there is a strong relation between both
formalisms [19]. The language Clean is an example for handling side effects with a flavor of linear
logic [1]. Further research will be needed to see if a similar approach can be applied to interaction
nets.

Besides these theoretical investigations, we are involved in the development of inets, a prototype
programming language based on interaction nets [13]. To this date, inets supports generic rules
with fixed-arity agents and the corresponding constraints. The implementation of variadic agents
and non-uniform port handling is currently work in progress.
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