
On (Un)Soundness of Unravelings

Karl Gmeiner, Bernhard Gramlich and Felix Schernhammer

April 2010

(a short version of this paper will be published in:
Proc. 21st International Conference on Rewriting Techniques and Applications (RTA 2010),

Christopher Lynch (Ed.), LIPIcs (Leibniz International Proceedings in Informatics), 2010, to appear)

Technical Report E1852-2010-01

Theory and Logic Group, Institute of Computer Languages (E185/2)
TU Wien, Favoritenstraße 9, A-1040 Wien, Austria

c© Karl Gmeiner, Bernhard Gramlich and Felix Schernhammer

On (Un)Soundness of Unravelings

Karl Gmeiner and Bernhard Gramlich and Felix Schernhammer∗

Theory and Logic Group, Institute of Computer Languages
Faculty of Informatics, Vienna University of Technology

Favoritenstr. 9 – E185/2, A-1040 Wien, Austria

April 2010

Abstract

We revisit (un)soundness of transformations of conditional into unconditional rewrite
systems. The focus here is on so-called unravelings, the most simple and natural kind
of such transformations, for the class of normal conditional systems without extra
variables. By a systematic and thorough study of existing counterexamples and of the
potential sources of unsoundness we obtain several new positive and negative results.
In particular, we prove the following new results: Confluence, non-erasingness and
weak left-linearity (of a given conditional system) each guarantee soundness of the
unraveled version w.r.t. the original one. The latter result substantially extends the
only known sufficient criterion for soundness, namely left-linearity. Furthermore, by
means of counterexamples we refute various other tempting conjectures about sufficient
conditions for soundness.

1 Introduction

1.1 Background and Motivation

Conditional term rewriting systems (CTRSs) are a very natural, though non-trivial and com-
plex extension of unconditional ones (TRSs). This concerns both the theoretical foundations
as well as applications and implementations of such systems. A well-studied approach to
dealing with conditional rewriting is via transformation to unconditional systems such that
the resulting unconditional system can simulate the original conditional one in an appropriate
manner. Various transformations have been developed for that purpose. It is well-known
that completeness of these transformations is easy to achieve and usually holds, whereas
soundness is much harder to obtain and typically does not hold without imposing further
conditions, e.g., restrictions on the rewrite relation in the resulting unconditional system.
Informally, by (simulation) soundness we mean that whenever an original term reduces to
another original term in the transformed system, then such a reduction is also possible in
the original system. (Simulation) completeness is the dual property.

The above unsoundness phenomenon was discovered by Marchiori ([9, 8]) for the case
of so-called unravelings,1 but is also present in virtually all other known transformation

∗Email: {gmeiner,gramlich,felixs}@logic.at. The first author was supported by a grant of the Vienna

PhD School of Informatics, the last author by a grant of the Austrian Academy of Sciences (ÖAW-DOC
grant No. 22361).

1The very idea of unravelings is actually much older and appears already e.g. in [4], though in a specialized
form (for function definitions).

1

approaches. Approaches to more faithfully simulating rewriting in a conditional system via
restricted rewriting in a transformed unconditional system include: conditional eagerness
([19], [16]), innermost rewriting ([15]), membership conditional and context-sensitive rewrit-
ing ([18], [14, 11, 13], [5], [17])). Yet, in all these approaches the imposed restrictions on
rewriting in the transformed unconditional rewrite relation are a major source of complica-
tions for reasoning over and deriving properties of the respective transformation approaches.
Hence, a deeper knowledge about the borderline between unsoundness and soundness would
help to identify cases (classes of initial conditional systems) where soundness is guaranteed
even for unrestricted rewriting in the transformed unconditional system. In such cases, one
can safely use (unrestricted) rewriting in the transformed system, thus facilitating the anal-
ysis and implementation of the respective transformation. These are the main goals of the
analysis that we are going to present in this paper.

1.2 Overview and Outline

We focus on the most basic class of conditional systems without extra variables, normal 1-
CTRSs. This is motivated by the fact that even for these systems the analysis is rather non-
trivial and properly understanding this case appears to be indispensable for later extending
the results to other and more general classes of CTRSs. Furthermore, the focus is also
restricted to unravelings, the most simple and intuitive class of transformations from CTRSs

into TRSs. Again, simplicity and the goal of properly understanding the essential source(s)
of unsoundness is the main motivation for this restriction. We expect that a substantial part
of the analysis can also be reused for other transformation approaches for CTRSs.

The main contributions of the paper are as follows. Starting from an analysis of existing
counterexamples to the unsoundness of unravelings we prove that each of the following
conditions on a given normal 1-CTRS is sufficient for soundness of its unraveled version:

• confluence (Theorem 3.12)

• non-erasingness (Theorem 3.16)

• groundness of all conditions (Theorem 3.17)

• weak left-linearity (Theorem 3.33).

Especially interesting and practically relevant are the first criterion and the last one which
substantially extends the only known criterion for soundness, left-linearity (cf. [8, 9]). In
essence, weak left-linearity (cf. Definition 3.22) weakens left-linearity by allowing uncondi-
tional non-left-linear rules provided that variables that appear non-linear in the left-hand
side do not appear at all in the right-hand side.

On the negative side, we disprove various other tempting conjectures about the sufficiency
of conditions for soundness, regarding e.g. non-overlappingness, non-collapsingness and right-
linearity.

The rest of the paper is structured as follows. After the preliminaries in Section 2,
where we introduce unravelings and basic projection functions used later on, we develop the
analysis in the main Section 3. Before concluding, the results obtained, potential extensions,
open problems and related work are finally discussed in Section 4. For the sake of readability
and completeness, missing / more detailed proofs have been postponed to the appendix.

2

2 Preliminaries

We assume familiarity with the basic concepts and notations of abstract reductions systems
(ARSs) and (conditional) term rewriting systems (CTRSs) (cf. e.g. [1], [3]). For the sake
of readability we recall some notions and notations here. Moreover, we use the typical
abbreviations for properties of rewrite systems, such as CR, NF, UN, UN

→,
The set of (non-variable, variable) positions of a term s is denoted as Pos(s) (FPos(s),

V Pos(s)). By root(s) we denote the root symbol of the term s. Throughout the paper V
denotes a countably infinite set of variables and x, y, z denote variables from V . By Var(s)

we denote the set of variables of a term s. Moreover
−−−−→
Var(s) denotes the sequence of variables

obtained by arranging the variables of Var(s) in an arbitrary but fixed order.
A term rewriting system R is a pair (F , R) of a signature and a set of rewrite rules over

this signature. Slightly abusing notation we also write R instead of R (leaving the signature
implicit).

We denote a rewrite step from a term s to a term t at position p with respect to a rewrite
system R and with a rule δ from R as s →p,R,δ t. We also write s → t (s →p t resp.
s →p,R t) if the position, rewrite system and applied rule (the rewrite system and applied
rule resp. the applied rule) are clear from the context or of no relevance. Parallel reduction
is denoted by ‖→ and →≤1 means reduction with one or zero steps.

The set of one-step descendants of a (subterm) position p of a term t w.r.t. a (one-step)
reduction t = C[s]p →q t′ is the set of subterm positions in t′ given by

• {p}, if q ≥ p or q || p,

• {q.o′.p′ | t|q = lσ, l|o ∈ Var(l), q.o.p′ = p, l|o = r|o′}, if q < p and (a superterm of) s is
bound to a variable in the matching of t|q with the left-hand side of the applied rule,
and

• ∅, otherwise.

Slightly abusing terminology, when t = C[s]p →q t′ with set {p1, . . . , pk} of one-step de-
scendants in t′, we also say that t|p has the one-step descendants t′|pi

in t′. The descendant
relation (w.r.t. given derivations) is obtained as the (reflexive-)transitive closure of the one-
step descendant relation. The relation of (one-step) ancestors of a subterm position (w.r.t.
a given reduction sequence) is the inverse relation of the (one-step) descendant relation.

A conditional term rewriting system R (over some signature F) consists of rules l→ r ⇐
c where c is a conjunction of equations si = ti . Equality in the conditions may be interpreted
(recursively) e.g. as ↔∗ (semi-equational case), as ↓ (join case), or as →∗ (oriented case).
In the latter case, if all right-hand sides of conditions are ground terms that are irreducible
w.r.t. the unconditional version Ru = {l → r | l → r ⇐ c ∈ R} of R, the system is said to
be a normal one.

According to the distribution of variables, a conditional rule l → r ⇐ c may satisfy
(1) Var(r) ∪ Var(c) ⊆ Var(l), (2) Var(r) ⊆ Var(l), (3) Var(r) ⊆ Var(l) ∪ Var(c), or (4) no
variable constraints. If all rules of a CTRS R are of type (i), 1 ≤ i ≤ 4, we say that R is an
i-CTRS. Given a conditional rewrite rule l → r ⇐ c and a variable x such that x ∈ Var(r)
but x 6∈ Var(l), we say that x is an extra variable.

There exists abundant literature on transforming CTRSs into unconditional systems such
that the original system can be appropriately simulated via reduction in the unconditional
transformed one. For a unified parametrized approach to such transformations and the
relevant terminology we refer to [6]. Unravelings as introduced and investigated in [8, 9] are
the most simple and intuitive ones.

3

Definition 2.1 ((simultaneous) unraveling for normal 1-CTRSs ([9, 8], cf. also [15])). Given
a normal 1-CTRS R = (F , R), every conditional rule

δ : l→ r ⇐ s1 →
∗ t1, . . . , sn →

∗ tn

of R is transformed into2

l → U δ(s1, . . . , sn,
−−−−→
Var(l)) (introduction rule)

U δ(t1, . . . , tn,
−−−−→
Var(l)) → r (elimination rule)

Unconditional rules remain invariant. The resulting (unraveled) TRS is denoted as U(R)
or R′ (over the signature F ′ = F ∪{U δ | δ : l→ r ⇐ s1 →∗ t1, . . . , sn →∗ tn ∈ R}). Instead
of the new symbols U δ (corresponding to rule δ) we sometimes use other ones if appropriate.

Symbols from F ′ \F are also called U -symbols. Terms rooted by such symbols are called
U -terms or U -rooted terms. Every U -symbol corresponds to a particular conditional rewrite
rule of the original CTRS according to Definition 2.1. Hence, we write U δ to indicate that
U δ corresponds to the rewrite rule δ. Moreover, if there is only one conditional rule defining
a function symbol f we may also write Uf to identify this rule. Henceforth, R denotes a
normal 1-CTRS unless stated otherwise.

The signature of an unraveled CTRS R′ is a superset of the signature of the CTRS R.
Hence, terms in R′-reductions are terms over this extended signature in general (we also
call them mixed terms). Throughout the paper, when dealing with CTRSs R = (F , R) we
denote by R′ the corresponding unraveled TRS, by F ′ the extended signature of the TRS, by
T the terms over the signature F and by T ′ the terms over the extended signature F ′. For
proof-theoretical reasons, in particular to show that unraveled systems are not too general
and do not enable “too many” reductions, we introduce functions that map mixed terms to
terms over the original signature of the CTRS in question.

We define two basic approaches of projecting mixed terms in the transformed system back
into corresponding original terms. The crucial idea is that when we consider a U -(sub)term
U δ(s1, . . . , sn) in a given R′-reduction we know that the root-symbol U δ indicates that
previously the introduction rule for U δ : l → r ⇐= u1 →∗ v1, . . . , un →∗ vn must have been
applied. Now, in order to get rid of U δ, there are two natural ways of doing so: We can
go back to the corresponding instance of the lhs l, or we anticipate the result by taking
the corresponding instance of the rhs r. In both cases, the projection needs to recursively
translate also U -subterms of the given term.

Definition 2.2 (translate backwards (tb)). Let R = (F , R) be a normal 1-CTRS. Then the
translate backward function tb : T → T ′ is defined by

tb(t) =






x if t = x ∈ V
f(tb(t1), . . . , tb(tm)) if t = f(t1, . . . , tm) and f ∈ F
lσ if t = U δ(v1, v2, . . . , vn, w1, . . . , wk)

and δ : l → r ⇐ s1 →∗ t1, . . . , sn →∗ tn

where
−−−−→
Var(l) = x1, . . . , xk and σ is (recursively) defined as xiσ = tb(wi) for 1 ≤ i ≤ k.

2Using
−−−−→
Var(t) as sequence of the set of variables in t goes back to [15], whereas in [9, 8] the sequence

is constructed from the multiset of variables in t. The former version appears to be generally preferable,
because it is more abstract and avoids additional complications due to “non-synchronization effects”.

4

Definition 2.3 (translate forward (tf)). Let R = (F , R) be an normal 1-CTRS. Then the
translate forward function tf : T → T ′ is defined by

tf(t) =






x if t = x ∈ V
f(tf(t1), . . . , tf(tm)) if t = f(t1, . . . , tm) and f ∈ F
rσ if t = U δ(v1, v2, . . . , vn, w1, . . . , wk)

and δ : l→ r ⇐ s1 →∗ t1, . . . , sn →∗ tn

where
−−−−→
Var(l) = x1, . . . , xk and σ is (recursively) defined as xiσ = tf(wi) for 1 ≤ i ≤ k.

In this paper we focus on the property of soundness of unravelings which is dual to
the (easier to obtain) property of completeness. An unraveling is said to be complete (for
reductions) (or simulation-complete) if for all CTRSs R, s→∗

R t for s, t ∈ T implies s→∗
R′ t.

Furthermore, an unraveling is sound for reductions (or simulation-sound) if s→∗
R′ t implies

s →∗
R t. Subsequently, we sometimes use a slightly more general notion of soundness by

demanding that s →∗
R′ t (for t ∈ T ′) implies s →∗

R tb(t) resp. tf(t). This notion is indeed
more general since tb(t) = tf(t) = t whenever t ∈ T (i.e. t is an original term). Given a
particular CTRS R, we also say that the unraveling is complete (sound) for R or, slightly
abusing terminology, that R′ is complete (sound) w.r.t. R. For a more thorough discussion
of the terminology used for (preservation properties of) transformations we refer to [6].

3 (Un)Soundness for Normal 1-CTRSs

By carefully analyzing known counterexamples to soundness (of unravelings for normal 1-
CTRSs) from the literature we first collect a couple of (mainly syntactic) properties whose
absence may be viewed as tempting candidates for guaranteeing soundness (Subsection 3.1).
We then show that some of them are not really essential for the unsoundness phenomenon.

3.1 Known and New Counterexamples

First of all, as observed in [6], there is a simple source of unsoundness in unravelings (as
well as in most other transformations) which is due to an “optimized” version of unraveling
as it is used in several papers. The underlying idea for this “optimization” is that when
starting a conditional rule application via an introduction step, not all variable bindings of
the lhs (instance) are stored in the corresponding U -term introduced, but only those that are
needed to eventually produce the final rhs (instance), provided all conditions are satisfied.
This motivates the definition of Uopt as follows: Transform

δ : l→ r ⇐ s1 →
∗ t1, . . . , sn →

∗ tn

into
l → U δ(s1, . . . , sn,

−−−−→
Var(r)) (introduction rule)

U δ(t1, . . . , tn,
−−−−→
Var(r)) → r (elimination rule)

GivenR, let us denote the resulting system asR′
opt. Then it is easy to see that simulating

R (on T) is indeed possible via R′
opt, i.e., R′

opt is (simulation) complete (w.r.t. R). However,
concerning soundness (and consequently also e.g. completeness w.r.t. termination) there is
a problem (due to non-left-linear rules in R).

Example 3.1. When we unravel

R =

{
f(x)→ a ⇐= b→∗ c

g(x, x)→ d

}

5

with Uopt into

R′
opt =






f(x)→ U(b)
U(c)→ a

g(x, x)→ d






we get g(f(a), f(b))→∗
Ropt

g(U(b), U(b))→Ropt
d, but obviously g(f(a), f(b)) 6→∗

R d, because

f(t) is R-irreducible for every R-irreducible t ∈ T .
If we now add the rule d→ g(f(a), f(b)) to R, the resulting system is still terminating,

but its unraveled version becomes non-terminating.

This subtle flaw of “optimized” transformations (caused by omitting certain seemingly
unnecessary variable bindings) as for Uopt above has been overlooked in various papers on
transformations (cf. e.g. [2], [8]).3 But even if we exclude such “optimizations” and insist
on keeping all variable bindings in introduction steps (as in U), unraveled systems are in
general not sound, as discovered by Marchiori in his pioneering paper [9].4 This is a striking
fact that — at least at first glance – is rather counterintuitive!

The following is a slightly simplified version of the basic ingenious counterexample of
Marchiori [8, Example 4.3], similar to [6, Example 1].

Example 3.2. Unraveling of R = R1 ∪R2 with

a c e

b d k

h(x, x)→ g(x, x, f(k))

g(d, x, x)→ A
︸ ︷︷ ︸

R1

f(x)→ x⇐= x→∗ e
︸ ︷︷ ︸

R2

yields R′ = R1 ∪R′
2 with

f(x)→ U(x, x) U(e, x)→ x
︸ ︷︷ ︸

R′

2

In R′ we get

h(f(a), f(b)) →+ h(U(c, d), U(c, d)) → g(U(c, d), U(c, d), f(k))
→+ g(d, U(c, d), f(k)) →+ g(d, U(k, k), U(k, k)) → A

However, in R we do not have h(f(a), f(b))→∗ A, since otherwise this would imply

h(f(a), f(b))→∗ h(s, s)→ g(s, s, f(k))→∗ g(d, t, t)→∗ A

for some s, t satisfying (1) f(a)→∗ s, f(b)→∗ s, (2) s→∗ d, and (3) s→∗ t, f(k)→∗ t.
But (1) and (2) imply s = d, hence t = d or t = k. However, by (3), f(k)→∗ t is neither

possible for t = d nor for t = k.

Inspection of Example 3.2 reveals that it has numerous properties that one might be
tempted to conjecture to be essential for the counterexample property.

Observation 3.3. The system R of Example 3.2 enjoys the following (mostly syntactical)
properties: It is non-left-linear (¬LL), non-confluent (¬CR), erasing, i.e. not non-erasing
(¬NE), non-right-linear (¬RL), not a constructor system (¬CS), not an overlay system
(¬OS), overlapping, i.e. not non-overlapping (¬NO) and collapsing, i.e. not non-collapsing
(¬NCOL).

3Also in [12] a similar optimized transformation is used. Although the results presented in [12] do not
contradict examples like Example 3.1 above, the general problem with such “optimized” transformations
remains hidden, cf. [12, counterex. R4,p. 9].

4More precisely, the details are only included in the extended technical report version [8] of [9].

6

We will now investigate whether each of these properties is essential for unsoundness or
not.

Proposition 3.4. None of the properties of being

• not a constructor system (¬CS)

• not an overlay system (¬OS)

• collapsing (¬NCOL)

• non-right-linear (¬RL)

is essential for unsoundness of unravelings.

Proof. Cf. Example 3.5

Example 3.5. Unraveling of R = R1 ∪R2 with

a c e

k

b d l

g(x, x)→ A

︸ ︷︷ ︸
R1

f(x)→ m(x) ⇐= x→∗ e

h(x, x)→ g(x, f(k)) ⇐= x→∗ m(l)
︸ ︷︷ ︸

R2

yields R′ = R1 ∪R′
2 with

f(x)→ Uf (x, x) h(x, x)→ Uh(x, x)

Uf(e, x)→ m(x) Uh(m(l), x)→ g(x, f(k)) .
︸ ︷︷ ︸

R′

2

In R′ we have

h(f(a), f(b)) →+ h(Uf (c, d), Uf (c, d)) → Uh(Uf (c, d), Uf (c, d))
→+ Uh(m(l), Uf (c, d)) → g(Uf (c, d), f(k)) →+ g(Uf (k, k), Uf (k, k)) → A .

However, in R we do not have h(f(a), f(b))→∗ A, analogously to the reasoning in Example
3.2.

Proposition 3.6. The property of being overlapping is not essential for unsoundness of
unravelings.

Proof. The non-confluent overlapping part of the Examples 3.2 and 3.5 can easily be changed
into a non-overlapping (but still non-confluent) sub-system such that the counterexample
property is preserved by using rules of the shape a(x, x) → c(p, p) and a(x, i(x)) → d(p, p)
to simulate a divergence c← a→ d. Additionally, a rule p→ i(p) is added.

3.2 Sufficient Criteria for Soundness

In this section we will prove that each of the remaining properties of the CTRS of Example
3.2, namely being non-left-linear, non-confluent and erasing (i.e. not non-erasing) is indeed
crucial for the counterexample, thus yielding corresponding soundness criteria.

For the case of left-linearity this has already been proved by Marchiori in [8].

Theorem 3.7 (left-linearity is sufficient ([8], cf. also [15])). Left-linearity of R is sufficient
for soundness of R′.

7

In the following we establish that confluence and non-erasingness of a CTRS R are suf-
ficient to deduce that the unraveling of Definition 2.1 is sound w.r.t. R. Moreover, we
generalize the soundness result for left-linear systems by demanding only weak left-linearity
(see Definition 3.22 below) instead of left-linearity.

3.2.1 Confluence

An important property of unravelings is that variables may be duplicated when U -symbols
are introduced. For instance in Example 3.2 such a duplication occurs in the rule f(x) →
U(x, x). Thus, in an R′-reduction after this rule is applied, the instantiated variables could
be reduced to different terms. In Example 3.2 this happens when U(a, a) is reduced to
U(c, d).

However, when transforming a term like U(c, d) into a term from T for instance using
tb either c or d is selected as instantiation of the single variable of the left-hand side of
the corresponding conditional rewrite rule. In case of tb we would get tb(U(c, d)) = f(d).
Regarding soundness this is problematic in general, since U(c, d) →+

R′ d but tb(U(c, d)) =
f(d) 6→∗

R d = tb(d). The particular problem here is that d 6→∗
R e and thus the conditional

rule is not applicable to f(d). Non-confluence, i.e. d ←+
R a →+

R e but d and e are not
joinable, is crucial for this problem.

If R is confluent and U(u, v) (with u, v ∈ T) appears as redex w.r.t. a U -elimination
rule in a R′-reduction sequence starting from an original term (provided that U has been
introduced by a rule l → U(x, x)), we can prove that v →∗

R u holds. This is achieved by
showing that u and v have a common ancestor in T and since u is a ground normal form,
confluence of R implies v →∗

R u.
First we prove an auxiliary lemma basically stating a kind of monotony under T ′-contexts

of →R when tb is applied.

Lemma 3.8 (monotony property of tb). Let R = (F , R) be a 1-CTRS. If u →p,R′ v for

terms u, v ∈ T ′ and tb(u|p) →
≤1
R tb(v|p), then tb(u|q) ‖→R tb(v|q′) for all q ∈ Pos(u) and

all descendants q′ of q in v.

Proof (sketch). For the interesting case where q ≤ p we use induction on the size of p′

determined by q.p′ = p.

The next lemma is the technical key result for the proof of Theorem 3.12 below. It states
that in an R′-reduction sequence D starting from an original term, for every redex u and
its (one-step) reductum v appearing in D we have tb(u)→≤1

R tb(v).

Lemma 3.9 (technical key result for confluent systems). Let R = (F , R) be a confluent
normal 1-CTRS and let D : u1 →p1,R′ u2 →p2,R′ . . . →pn−1,R′ un be a reduction sequence

where u1 ∈ T and ui ∈ T ′ for 1 < i ≤ n. Then, tb(ui|pi
)→≤1

R tb(ui+1|pi
) for all 1 ≤ i < n.

Proof (sketch). Proof by induction on the length of D and case distinction on the rule applied
in the last step of D. The interesting case is where this last step is a U -elimination step.
There, we get for every condition si →∗ ti of the corresponding conditional rule α that
tb(siσ) →∗

R tb(ti) and tb(siσ) →∗
R tb(siτ) holds, where τ is the matcher used in the last

step of D and σ the matcher used in the corresponding U -introduction step of α, according
to the induction hypothesis. Then, confluence of R yields tb(siτ) →∗

R ti since tb(ti) = ti
and ti is a (ground Ru-)normal form. Hence, α is applicable to tb(un−1|pn−1

) and we get
tb(un−1|pn−1

)→R tb(un|pn−1
).

In Lemma 3.9 the confluence assumption cannot be dropped.

8

Example 3.10. Consider the following normal 1-CTRS R.

a → b a → c f(x) → x⇐ x→∗ b

R is not confluent since b and c are not joinable. Consider the R′-reduction sequence
f(a) →R′ U(a, a) →+

R′ U(b, c) →R′ c and the term U(b, c). In the proof of Lemma 3.9 we
showed that b and c must have a common ancestor. However, while in the proof we used this
fact to deduce that they also have a common descendant and further that this descendant
must be b, in the example this conclusion is wrong because of non-confluence of R. Indeed,
Lemma 3.9 does not hold for this example, since tb(U(b, c)) = f(c) 6→R c = tb(c).

Lemma 3.11 (projecting reductions issuing from original terms). Let R be confluent. Then
for every R′-reduction u1 →p1,R′ u2 →p2,R′ . . . →pn−1,R′ un with u1 ∈ T we have u1 =
tb(u1) ‖→R tb(u2) ‖→R . . . ‖→R tb(un).

Proof. For every redex uj |pj
and corresponding reductum uj+1|pj

(1 ≤ j < n) we have

tb(uj|pj
)→≤1

R tb(uj+1|pj
) because of Lemma 3.9. This implies tb(uj) ‖→R tb(uj+1) according

to Lemma 3.8 (with q = q′ = ǫ).

As corollary we obtain the following result.

Theorem 3.12 (confluence is sufficient). Confluence of R is sufficient for soundness of R′.

Proof. Straightforward using Lemma 3.11.

3.2.2 Non-Erasingness

In Example 3.2 the R′-reduction that is a witness for unsoundness contains U -(sub)-terms
that are not reducible to original terms, since the U -symbol cannot be eliminated (e.g. the
term U(k, k)). Hence, since the final term A of the reduction is an original term, these terms
must be erased.

When considering a non-erasing CTRS R (and thus a non-erasing R′), every U -symbol
in every (finite) R′ reduction sequence D ending in a term from T must be properly elim-
inated. This fact motivates and justifies the use of tf when simulating R′-reductions in R,
as whenever some U -term is encountered in D it will eventually be eliminated in D and this
elimination is anticipated when applying tf.

The following lemma is dual to Lemma 3.8 in that tf instead of tb is used for transforming
terms from T ′ into terms from T .

Lemma 3.13 (monotony property of tf). Let R = (F , R) be a 1-CTRS. If u →p,R′ v

for u, v ∈ T ′ and tf(u|p) →
≤1
R tf(v|p), then tf(u|q) ‖→R tf(v|q′) for all q ∈ Pos(u) and all

descendants q′ of q in v.

Proof (sketch). The proof is analogous to the one of Lemma 3.8. For the interesting case
where q ≤ p we use induction on the size of p′ determined by q.p′ = p.

The next lemma is the technical key result for the proof of Theorem 3.16 below. It is
dual to Lemma 3.9 in that tf is used instead of tb.

Lemma 3.14 (technical key result for non-erasing systems). Let R = (F , R) be a non-
erasing normal 1-CTRS and let D : u1 →p1,R′ u2 →p2,R′ . . . →pn−1,R′ sn be a reduction

sequence where un ∈ T and ui ∈ T ′ for 1 ≤ i < n. Then, tf(ui|pi
) →≤1

R tf(ui+1|pi
) for

1 ≤ i < n.

9

Proof (sketch). Proof by induction on the length of D and case distinction on the rule
applied in the first step of D. The interesting case is where this first step is a U -introduction
step. Since R′ is non-erasing, the introduced U -symbol is eventually eliminated in D and
hence by the induction hypothesis and Lemma 3.13 we get tf(siσ) →∗

R ti for all conditions
of the conditional rule corresponding to the introduced U -symbol. Hence tf(u1|p1

) →R

tf(u2|p1
).

Finally, we can prove soundness of unravelings for non-erasing normal 1-CTRSs.

Lemma 3.15 (projecting reductions issuing from original term). Let R be non-erasing.
Then for every R′-reduction u1 →p1,R′ u2 →p2,R′ . . . →pn−1,R′ un with un ∈ T we have
tf(u1) ‖→R tf(u2) ‖→R . . . ‖→R tf(un−1) ‖→R tf(un) = un.

Proof. For every redex uj |pj
and corresponding reductum uj+1|pj

(1 ≤ j < n) we have

tf(uj |pj
)→≤1

R tf(uj+1|pj
) because of Lemma 3.14. This implies tf(uj) ‖→R tf(uj+1) according

to Lemma 3.13 (with q = q′ = ǫ).

Theorem 3.16 (non-erasingness is sufficient). Non-erasingness of R is sufficient for sound-
ness of R′.

Proof. Straightforward using Lemma 3.15.

3.2.3 Right-Linearity Revisited

Next we reconsider right-linearity. In Example 3.5 we have shown that non-right-linearity
of R is not essential for unsoundness. However, in this example the unraveled system R′

becomes non-right-linear. This property of R′ is crucial for Example 3.5 (as we will see).
Yet, demanding that R′ is right-linear is a severe restriction, since right-linearity of R′

implies that R contains only ground conditions. To see this consider some conditional rule
l → r ⇐ s → t, such that x ∈ Var(s). Since we consider 1-CTRSs this implies x ∈ Var(l)
and hence the unraveled system contains a non-right-linear rule l→ U(s, x).

It turns out that for CTRSs R having only ground conditions (GC), R′ is sound even if
R is not right-linear.

Theorem 3.17 (GC is sufficient for soundness). If R has only ground conditions, then R′

is sound (w.r.t. R).

Proof (sketch). The proof is basically analogous to the proof of soundness for confluent
CTRSs. There, confluence was (exclusively) needed to show that ti ←

∗
R tb(siσ)→∗

R tb(siτ)
implies tb(siτ) →∗

R ti for conditions si →∗ ti of some conditional rule and certain substi-
tutions τ and σ (cf. the proof of Lemma 3.9). However, for CTRSs with ground conditions
this is trivial since siσ = siτ for all substitutions σ and τ and thus tb(siσ) = tb(siτ).

Of course, systems with only ground conditions are of limited practical use (and could
in principle, though not necessarily effectively, be replaced by equivalent unconditional sys-
tems).

10

3.2.4 Normal Form Property

Reconsidering the sufficiency of confluence of R for soundness (Theorem 3.12), we can get
another slightly more general criterion.

Regarding confluence properties, the following proper implications (for TRSs and also
for ARSs) are well-known (cf. e.g. [15]):

(∗) CR =⇒ NF =⇒ UN =⇒ UN
→ .

In the proof of Theorem 3.12, what is actually needed, is not full confluence, but only
the property

(+) t ∗←R s→∗ u ∈ NF(R) =⇒ t→∗ u .

Proposition 3.18. Property (+) is equivalent to NF.

Proof. Straightforward.
Consequently we can generalize Theorem 3.12 slightly as follows.

Theorem 3.19 (NF is sufficient). The normal form property (NF) of R is sufficient for
soundness of R′.

Regarding the above proper implications (*) and Theorem 3.19, an obvious question is
whether UN or UN

→, respectively, is sufficient for soundness.

Proposition 3.20 (UN and UN
→ are not sufficient for soundness). UN and UN

→ are not
sufficient for soundness.

Proof. Cf. Example 3.21.

Example 3.21 (Example 3.2 continued). Consider the system R̂ obtained from R as in
Example 3.2 by adding the additional unconditional rule k → k. Then it is easy to verify
that R̂ is not NF, but UN and UN

→. Moreover, R̂′ is still unsound w.r.t. R̂.

3.2.5 Left-Linearity Revisited

It is well-known that left-linear join (1-)CTRSs can be simulated by left-linear normal
(1-)CTRSs extended by an additional rule like eq(x, x) → tt (yielding Req), via encoding
join conditions ui ↓R vi as eq(ui, vi) →∗

Req
tt. Hence, it would be interesting to know

whether – regarding left-linearity of R as sufficient criterion for soundness (Theorem 3.7)
– this class could be extended slightly so as to cover also left-linear systems extended by
(non-left-linear) “eq-like” rules. This is indeed the case as we will show next.

Definition 3.22 (weak left-linearity). A normal 1-CTRS is said to be weakly left-linear
if every rule l → r ⇐ s1 →∗ t1, . . . , sn →∗ tn of R is either left-linear or, if not, is
unconditional and every non-linear variable in l does not occur at all in r.5

In particular, extending (not necessarily disjointly concerning the signature) a left-linear
normal 1-CTRS by eq(x, x)→ tt yields a weakly left-linear system.

Before proving that weak-left-linearity of R′ is indeed sufficient for soundness of un-
ravelings, we state two observations regarding the preservation of weak left-linearity under
unravelings and the existence and uniqueness of one-step ancestors of U -terms in reductions
w.r.t. weakly left-linear systems R′.

Observation 3.23. R is weakly left-linear iff R′ is so.

5Note that this definition also covers the case of TRSs.

11

Observation 3.24. Let R be a weakly left-linear normal 1-CTRS. If u→p,R′ v, then every
U -rooted subterm position of v has exactly one one-step ancestor in u.

Proof. For all normal 1-CTRSs every U -(sub)-term has at least one one-step ancestor (in an
R′-reduction), because U -symbols do not occur strictly below the root of rhs ’s of rules in
R′. Weak left-linearity of R implies weak left-linearity of R′ and thus in every R′-reduction
every term has at most one one-step ancestor.

Observation 3.24 motivates the definition of a function tbD w.r.t. to a R′-reduction
sequence D, starting from an original term, which basically transforms terms from T ′ into
terms from T . Since we can trace a U -(sub)term uniquely backwards in D (uniqueness is
due to Observation 3.24), the idea is that we can find the first (when traced backwards)
non-U -rooted ancestor of the U -term (i.e., the one appearing in the term of D with the
highest index) and thus replace the U -(sub)term by this ancestor.

Definition 3.25 (tbD). Let R be a weakly left-linear normal 1-CTRS and let D : u1 →R′

u2 →R′ . . . ,→R′ un be a reduction sequence with u1 ∈ T and ui ∈ T ′ for 1 < i ≤ n. We
define the (partial) function tbD : {1, . . . , n} × N

∗
+ → T , i.e. from pairs (i, p), where i is an

index and p is a position, as

tbD(i, p) =






undefined if p 6∈ Pos(ui)
x if ui|p = x ∈ V
f(tbD(i, p.1), . . . , tbD(i, p.l)) if ui|p = f(t1, . . . , tl) and f ∈ F
tbD(i− 1, p′) if root(ui|p) ∈ F ′ \ F , i > 1 and ui−1|p′ is the

unique one-step ancestor of ui|p .

Note that pairs (i, p) are supposed to determine a subterm occurrence at position p in
the ith term of D. Hence, tbD is undefined if the pair does not determine such a term, i.e.
if p 6∈ Pos(ui).

Example 3.26. Let R be as in Example 3.2 and consider the R′-derivation D : u1 =
f(a) →R′ U(a, a) →R′ U(a, d) →R′ U(c, d) = u4. Then we have tb(U(c, d)) = f(d),
but tbD(4, ǫ) = f(a) (here, u4 = U(c, d)|ǫ = U(c, d)). Note that the backtranslation tbD goes
back further than tb. For instance, we have tbD(U(c, d))→∗

R′ d, but tb(U(c, d)) 6→∗
R′ d.

The following lemma roughly states that whether the tbD-version of some (sub)term is
reachable in R by the tbD-version of its ancestor depends only on whether the tbD-version
of the reductum is reachable by the tbD-version of the redex in the corresponding step.

Lemma 3.27 (monotony property of tbD). Let R be a weakly left-linear normal 1-CTRS

and let D : u1 →p1,R′ u2 →p2,R′ . . . →pn−1,R′ un be an R′-reduction sequence with u1 ∈ T
and ui ∈ T ′ for 1 < i ≤ n. If tbD(i, pi) →∗

R tbD(i + 1, pi) for every 1 ≤ i ≤ n − 1, then
tbD(i, p)→∗

R tbD(i + 1, p′) for every 1 ≤ i ≤ n− 1, every p ∈ Pos(ui) and every descendant
ui+1|p′ of ui|p.

Proof (sketch). For the interesting case where p ≤ pi we use induction on the size of p

determined by p.p = pi.

In Lemma 3.28 below we prove a restricted monotony property of tbD.

12

Lemma 3.28 (extraction of tbD in U -rooted terms). Let R be a weakly left-linear normal
1-CTRS and D : u1 →p1,R′ u2 →p2,R′ . . . →pn−1,R′ un be an R′-reduction sequence with
u1 ∈ T and ui ∈ T ′ for 1 < i ≤ n. If tbD(i, pi) →∗

R tbD(i + 1, pi) for every 1 ≤ i ≤
n − 1, uk|p = Uα(v1, . . . , vm1

, x1, . . . , xm2
)τ , α = l → r ⇐ s1 →∗ t1, . . . , sm1

→ tm1
and

tbD(k, p) = lσ, then siσ →∗
R tbD(k, p.i) for all 1 ≤ i ≤ m1 and xiσ →∗

R tbD(k, p.(m1 + i))
for all 1 ≤ i ≤ m2.

Proof (sketch). Proof by induction on k and using Lemma 3.27.

The next lemma shows that the backtranslation of tb is intuitively not “as far back” as
the one of tbD by stating that tbD(i, p)→∗

R tb(ui|p) for certain R′-reductions D.

Lemma 3.29 (tbD to tb). Let R be a weakly left-linear normal 1-CTRS and let D : u1 →p1,R′

u2 →p2,R′ . . .→pn−1,R′ un be a R′-reduction sequence with u1 ∈ T and ui ∈ T ′ for 1 < i ≤
n. If tbD(i, pi)→∗

R tbD(i + 1, pi) for every 1 ≤ i ≤ n− 1, then tbD(j, p)→∗
R tb(uj |p) for all

1 ≤ j ≤ n and all p ∈ Pos(uj).

Proof (sketch). Proof by induction on the term depth of uj |p and using Lemma 3.28.

The following lemma is the technical key result for soundness in the weakly left-linear
case. It states that in every R′-reduction D we have tbD(i, p) →∗

R tbD(i + 1, p), if ui|p is
the redex contracted in D.

Lemma 3.30 (technical key result for weakly left-linear systems). Let R be a weakly left-
linear normal 1-CTRS and let D : u1 →p1,R′ u2 →p2,R′ . . . →pn−1,R′ un be a R′-reduction
sequence with u1 ∈ T and ui ∈ T ′ for 1 < i ≤ n. Then tbD(i, pi) →∗

R tbD(i + 1, pi) for all
1 ≤ i < n.

Proof (sketch). Proof by induction on the length of D and case distinction over the applied
rule in the last reduction step of D. There are two interesting cases. First, if the rule is an
unconditional non-left-linear rule l→ r, this rule might not be applicable to tbD(n−1, pn−1)
since un−1|q = un−1|q′ 6⇒ tbD(n − 1, q) = tbD(n − 1, q′). However, by Lemma 3.29 we get
tbD(n−1, q)→∗

R tb(un−1|q) and tbD(n−1, q′)→∗
R tb(un−1|q′). Hence, tbD(n−1, pn−1.q) ↓R

tbD(n−1, pn−1.q
′) for all positions q, q′ where l|q = l|q′ = x ∈ V . Moreover, these reductions

do not effect the reductum after the rule is applied, since all non-linear variables are erased
due to weak left-linearity of R.

For the second interesting case where the last applied rule is a U -elimination rule we get
siσ →∗

R ti according to Lemma 3.28 for every condition si →∗ ti of the conditional rewrite
rule corresponding to the eliminated U -symbol, where σ is given by tbD(n− 1, pn−1) = lσ.
Hence, this implies tbD(n− 1, pn−1)→∗

R tbD(n, pn−1) by again applying Lemma 3.28.

Weak left-linearity is crucial in Lemma 3.30 to ensure that non-left-linear rules are ap-
plicable in the tbD-versions of redexes.

Example 3.31. Consider the weakly left-linear normal 1-CTRS R given by

eq(x, x) → tt f(x)→ b⇐ x→∗ b

a → b

and the R′-derivation

D : eq(f(a), f(b))→+
R′ eq(U(a, a), U(b, b))→+

R′ eq(b, b)→R′ tt .

Let un−1 = eq(b, b), then tbD(n− 1, ǫ) = u1 = eq(f(a), f(b)) and eq(f(a), f(b)) 6→R tt (i.e.,
with one single R-step). However, f(a) and f(b) are joinable (in general this is justified by

13

Lemma 3.29) and reducing them is not problematic as the non-linear variable x is erased
whenever the eq-rule is applied (this must in general be the case because of weak left-linearity
of R). Hence, we have tbD(n− 1, ǫ)→∗

R tt = tbD(n, ǫ).

The following lemma and theorem state the main soundness result for weakly left-linear
normal 1-CTRSs.

Lemma 3.32. Let R be a weakly left-linear normal 1-CTRS and let D : u1 →p1,R′ u2 →p2,R′

. . .→pn−1,R′ un be an R′-reduction sequence with u1 ∈ T and ui ∈ T
′ for 1 ≤ i ≤ n. Then,

u1 = tbD(1, ǫ)→∗
R tb(un).

Proof. Lemma 3.30 yields that tbD(i, pi)→∗
R tbD(i+1, pi) for all 1 ≤ i < n. Hence, Lemma

3.27 is applicable and its repeated application yields tbD(1, ǫ)→∗
R tbD(n, ǫ). Finally, Lemma

3.29 yields tbD(n, ǫ)→∗
R tb(un).

Theorem 3.33. Weak left-linearity of R is sufficient for soundness of R′.

Proof. Straightforward using Lemma 3.32.

Obviously, Theorem 3.33 properly generalizes Theorem 3.7. Intuitively, the former result
and its proof show that non-left-linearity due to “eq-like” rules is not problematic, since the
effects of applying such a non-left-linear rule are only local (and do not cause complex sharing
of equal subterms along longer derivations).

A nice consequence of Theorem 3.33 is that left-linear join 1-CTRSs Rj can be soundly
unraveled (via the unraveling U for the case of normal 1-CTRSs) by first encoding Rj into a
normal 1-CTRS Rn (in a many-sorted setting, by adding the rule eq(x, x)→ tt to Rj where
eq : s × s → bool is a fresh binary function symbol of sort bool and tt a fresh constant of
sort bool, and all terms s ∈ T are considered as s-sorted, with s 6= bool, and by representing
conditions ui ↓ vi as eq(ui, vi)→∗ tt) and a subsequent unraveling of Rn into R′

n.

4 Discussion, Perspectives and Related Work

First let us summarize the results obtained. The table in Figure 1 lists the properties (of
R) investigated in the first row, indicates whether they are sufficient for soundness (of R′)
in the second row (+ means “Yes”, − “No”), and gives references for the results in the last
row.

LL CS OS RL NO CR NE NF GC UN UN
→

WLL

+ − − − − + + + + − − +
3.7 ([8, 6.12]) 3.4 3.4 3.4 3.6 3.12 3.16 3.16 3.17 3.20 3.20 3.33

Figure 1: Sufficiency of conditions for soundness of unravelings (of normal 1-CTRSs)

Due to the carefully designed modular proof structure of the obtained positive results
and to the conceptually clear underlying ideas and the corresponding projection approaches
(via tb, tf and tbD) we expect that at least some of the results can be extended to other
classes of CTRSs and to other transformations from CTRSs to TRSs. One case, for which this
is indeed possible, concerns an alternative sequential version of unraveling normal 1-CTRSs.
Here, the idea is that the conditions of a conditional rule are not processed simultaneously
(by the unraveling), but sequentially, one at a time. This means, given the rule δ : l →

r ⇐= s1 →∗ t1, . . . , sn → tn, instead of one introduction rule l → U δ(s1, . . . , sn,
−−−−→
Var(l))

14

and one elimination rule U δ(t1, . . . , tn,
−−−−→
Var(l)) → r we have one first introduction rule l →

U δ
1 (s1,

−−−−→
Var(l)), n−2 further intermediate “switch”-rules U δ

i (ti,
−−−−→
Var(l))→ U δ

i+1(si+1,
−−−−→
Var(l)),

1 ≤ i ≤ n − 1 (which act as elimination rules for U δ
i and as introduction rules for U δ

i+1)

and a final elimination rule U δ
n−1(tn,

−−−−→
Var(l))→ r. All results (for U) presented in the paper

actually also hold for this sequential unraveling Useq as can be shown by a careful inspection
and adaptation of the proofs.

The corresponding analysis of Useq for normal 1-CTRSs provides the appropriate basis for
dealing with the more general class of deterministic (oriented) 3-CTRSs where bindings for
extra variables in the conditions and in right-hand side r of l → r ⇐= s1 →∗ t1, . . . , sn →∗

tn are “determined” by sequentially processing the conditions, i.e., Var(si) ⊆ Var(l) ∪⋃
1≤j≤i−1 Var(tj). But the details of this extension still need to be carefully worked out.
There are various open questions in the area. For instance, it remains unclear whether

an even better (more precise) characterization of unsoundness exists, in the form of a general
characterization result for unsoundness, similar to the one for non-modularity of termination
(cf. e.g. [7, Theorem 7]), from which (most) known sufficient criteria for soundness follow.

Regarding related work, as far as we know left-linearity (of R) was the only established
sufficient criterion for soundness (of R′), cf. [8, 9], [15, Chapter 7]. Compared to the proofs
in these papers, we think that our proof of the more general Theorem 3.33 is in a sense more
modular and less operational than these previous ones, and is also better suited for potential
extensions.

Regarding more general classes of CTRSs (as compared to normal 1-CTRSs), the only
works that we aware of, are [10] and [12]. However, in [10] there is only a claim ([10, Theo-
rem 5.2], without any proof or proof sketch) stating soundness of (sequential) unravelings for
semilinear DCTRSs, and in [12] the basic unraveling transformation used is a kind of opti-
mized version analogous to Uopt, cf. Section 3.1 and Example 3.1, for which we have argued
that such an optimization is generally problematic from the point of view of soundness.

Acknowledgments

The authors are grateful to the anonymous referees (of the conference version of this paper)
for various useful hints and suggestions.

References

[1] F. Baader and T. Nipkow. Term rewriting and All That. Cambridge University Press,
1998.

[2] J. Bergstra and J. Klop. Conditional rewrite rules: Confluence and termination. Journal
of Computer and System Sciences, 32(3):323–362, 1986.

[3] M. Bezem, J. Klop, and R. Vrijer, editors. Term Rewriting Systems. Cambridge Tracts
in Theoretical Computer Science 55. Cambridge University Press, Mar. 2003.

[4] N. Dershowitz and D. Plaisted. Logic programming cum applicative programming.
In Proc. 1985 Symposium on Logic Programming, Boston, Massachusetts, July 15-18,
1985, pp. 54–66. IEEE, 1985.

[5] F. Durán, S. Lucas, J. Meseguer, C. Marché, and X. Urbain. Proving operational termi-
nation of membership equational programs. Higher-Order and Symbolic Computation,
21(10):59–88, 2008.

15

[6] K. Gmeiner and B. Gramlich. Transformations of conditional rewrite systems revis-
ited. In A. Corradini and U. Montanari, eds., Recent Trends in Algebraic Development
Techniques (WADT 2008) – Selected Papers, LNCS 5486, pp. 166–186. Springer, 2009.

[7] B. Gramlich. Generalized sufficient conditions for modular termination of rewriting.
Applicable Algebra in Engineering, Communication and Computing, 5:131–158, 1994.

[8] M. Marchiori. Unravelings and ultra-properties. Technical Report 8 (37 pages, long
version of [9]), University of Padova, Italy, 1995.

[9] M. Marchiori. Unravelings and ultra-properties. In M. Hanus and M. Rodŕıguez-
Artalejo, eds., Proc. 5th Int. Conf. on Algebraic and Logic Programming, LNCS 1139,
pp. 107–121. Springer, 1996.

[10] M. Marchiori. On deterministic conditional rewriting. Technical Report MIT LCS CSG
Memo n. 405, MIT, Cambridge, MA, USA, Oct. 1997.

[11] N. Nishida, T. Mizutani, and M. Sakai. Transformation for refining unraveled condi-
tional term rewriting systems. In S. Antoy, ed., Final Proc. 6th International Workshop
on Reduction Strategies in Rewriting and Programming (WRS 2006). Electr. Notes
Theor. Comput. Sci. (ENTCS), 174(10), 2007.

[12] N. Nishida, M. Sakai, and T. Sakabe. On simulation-completeness of unraveling for
conditional term rewriting systems. IEICE Tech. Rep. SS2004-18, 104(243):25–30, 2004.
Revised version, 15 p., Dec. 2005.

[13] N. Nishida and M. Sakai. Completion after program inversion of injective functions.
In A. MIddeldorp, ed., Proc. 8th International Workshop on Reduction Strategies in
Rewriting and Programming (WRS 2008), Castle of Hagenberg, Austria, 14 July 2008.
Electr. Notes Theor. Comput. Sci., 237:39–56, 2009.

[14] N. Nishida, M. Sakai, and T. Sakabe. Partial inversion of constructor term rewriting
systems. In J. Giesl, ed., Proc. 16th International Conference on Rewriting Techniques
and Applications (RTA 2005), LNCS 346, pp. 264–278. Springer, Apr. 2005.

[15] E. Ohlebusch. Advanced Topics in Term Rewriting. Springer, 2002.

[16] G. Rosu. From conditional to unconditional rewriting. In J. L. Fiadeiro, P. D. Mosses,
and F. Orejas, eds., Recent Trends in Algebraic Development Techniques, 17th Inter-
national Workshop (WADT 2004), Revised selected papers, LNCS 3423, pp. 218–233.
Springer, 2004.

[17] F. Schernhammer and B. Gramlich. Characterizing and proving operational termination
of deterministic conditional term rewriting systems. Journal of Logic and Algebraic
Programming, 2009. Revised selected papers of NWPT 2008, T. Uustalu and J. Vain,
eds., to appear.

[18] Y. Toyama. Confluent term rewriting systems with membership conditions. In S. Kaplan
and J.-P. Jouannaud, eds., Proc. 1st Int. Workshop on Conditional Term Rewriting
Systems, Orsay, France, July 8-10, 198, LNCS 308, pp. 228–241. Springer, 1988.

[19] P. Viry. Elimination of conditions. J. Symb. Comput., 28(3):381–401, 1999.

16

A Missing and Completed Proofs

Lemma 3.8 (monotony property of tb). Let R = (F , R) be a 1-CTRS. If u →p,R′ v for

terms u, v ∈ T ′ and tb(u|p)→
≤1
R tb(v|p), then tb(u|q) ‖→R tb(v|q′) for all q ∈ Pos(u) and all

descendants q′ of q in v.

Proof. First assume that q > p. For every descendant q′ of q we have u|q = v|q′ and thus
tb(u|q) = tb(v|q′) and also tb(u|q) ‖→R tb(v|q′) with an empty parallel reduction step.

Second, if p ‖ q, q = q′ and tb(u|q) = tb(v|q) and also tb(u|q) ‖→R tb(v|q′) again with an
empty parallel reduction step.

Third, assume q ≤ p. Then q = q′ and we prove tb(u|q) ‖→R tb(v|q) by induction on the
length of the position p′ determined by q.p′ = p. If p′ = ǫ we trivially have tb(u|q) ‖→R tb(v|q)
since q = p.

Otherwise p′ = i.p′′ (i ∈ N+) and

u|q = f(u1, . . . , ui−1, ui, ui+1, . . . , un)

v|q = f(u1, . . . , ui−1, vi, ui+1, . . . , un).

Moreover, ui →p′′,R′ vi and tb(u|q.p′) = tb(ui|p′′) = tb(u|p) →
≤1
R tb(v|p) = tb(vi|p′′) →R

tb(vi|p′′) = tb(v|q.p′). Hence, the induction hypothesis yields

tb(u|q.i) = tb(ui) ‖→R tb(vi) = tb(v|q.i) (1)

It remains to show that tb(u|q) ‖→R tb(v|q).
We distinguish two cases depending on whether f ∈ F or not. First, if f ∈ F we have

tb(u|q) = f(tb(u1), . . . , tb(ui−1), tb(ui), tb(ui+1), . . . , tb(un))

‖→R f(tb(u1), . . . , tb(ui−1), tb(vi), tb(ui+1), . . . , tb(un)) = tb(v|q)

by (1) and thus the result holds.
Otherwise, if f ∈ F ′ \ F (say f = Uα where α = l → r ⇐ s1 →∗ t1, . . . sm →∗ tm) we

have tb(u|q) = lσ where σ is given by xjσ = tb(um+j) (j ≥ 1). Analogously, tb(v|q) = lσ′

where σ′ is given by xjσ
′ = tb(vi) with m + j = i, and by xjσ

′ = tb(um+j) otherwise.
If i ≤ m, then m + j cannot be equal to i and thus, σ = σ′ implying tb(u|q) = lσ ‖→R

lσ′ = tb(v|q) with an empty parallel step. Otherwise, if i = m + j, we get xjσ ‖→R xjσ
′

because of (1) and xkσ = xkσ′ for k 6= j. Hence, tb(u|q) = lσ ‖→R lσ′ = tb(v|q).

Lemma 3.9 (technical key result for confluent systems). Let R = (F , R) be a confluent
normal 1-CTRS and let D : u1 →p1,R′ u2 →p2,R′ . . . →pn−1,R′ un be a reduction sequence

where u1 ∈ T and ui ∈ T ′ for 1 < i ≤ n. Then, tb(ui|pi
)→≤1

R tb(ui+1|pi
) for all 1 ≤ i < n.

Proof. We prove the result by induction on the length of D. If the length is 0 the result
holds vacuously. Otherwise, let n + 1 be the length of D and D = D′ →pn−1,R′ un. The

induction hypothesis yields tb(uj|pj
)→≤1

R tb(uj+1|pj
) for 1 ≤ j < n− 1. Hence, what is left

to prove is that tb(un−1|pn−1
)→≤1

R tb(un|pn−1
).

To this end we make a case distinction depending on which type of rewrite rule of R′

is applied in the last step of D, i.e., un−1 →pn−1,R′ un. The three possible types of rules
l→ r ∈ R′ are

U -introduction rules, i.e., root(l) ∈ F , root(r) ∈ F ′ \ F (2)

U -elimination rules, i.e., root(l) ∈ F ′ \ F , root(r) ∈ F ∪ V (3)

original unconditional rules, i.e., root(l) ∈ F , root(r) ∈ F ∪ V (4)

17

First, if the last step is due to the application of a rewrite rule of type (2), we have
tb(un−1|pn−1

) = tb(un|pn−1
) by the definition of tb and thus the statement holds.

Second, if the last step is due to the application of a rewrite rule l→ r ∈ R′ of type (4)
(i.e., a rule that occurs as an unconditional rule in R), we have

un−1|pn−1
= lσ ⇒ tb(un−1|pn−1

) = l tb(σ)→R r tb(σ) = tb(un|pn−1
)

due to l, r ∈ T (and the definition of tb). Here, tb(σ) is defined by x (tb(σ)) = tb(xσ).
Finally, assume the last step on D is due to the application of a U -elimination rule, i.e.

a rule of type (3). Then, un−1|pn
= Uα(t1, . . . , tm1

, x1, . . . , xm2
)σ and tb(un−1|pn

) = ltb(σ),
where α = l → r ⇐ s1 →

∗ t1, . . . , sm1
→ tm1

is the conditional rule corresponding to the
symbol Uα and m2 is the number of distinct variables in the left-hand side of this rule.

Note that in every reduction u→∗
R′ v with u ∈ T , every U -rooted subterm v|p of v has

at least one ancestor, since no U -symbol occurs strictly below the root in the right-hand
side of any reduction rule in R′. Hence, as u1 ∈ T , there is an index j > 1 and a position
p, such that uj |p is a U -rooted ancestor of un−1|pn−1

, some one-step ancestor of uj |p is not
U -rooted and every descendant of uj |p that is also an ancestor of un−1|pn−1

, is U -rooted.
This means that the U -symbol that is eliminated in the last step of D is introduced in the
step uj−1 →pj−1,R′ uj of D and that p = pj−1.

Let uj|p = Uα(s1, . . . , sm1
, x1, . . . , xm2

)τ . Since every descendant of uj |p that is also
an ancestor of un−1|pn−1

is U -rooted, every immediate subterm un−1|pn−1.i of un−1|pn−1
is

a descendant of uj |p.i (1 ≤ i ≤ m1 + m2). Hence, the induction hypothesis and repeated
application of Lemma 3.8 yield

tb(siτ) = si tb(τ) →∗
R ti tb(σ) = tb(tiσ) for 1 ≤ i ≤ m1

tb(xiτ) →∗
R tb(xiσ) for 1 ≤ i ≤ m2

Since ti is a ground normal form for all 1 ≤ i ≤ m1 (because R is a normal 1-CTRS) we
thus get a divergence in R

ti ←
∗
R tb(siτ)→∗

R tb(siσ) for 1 ≤ i ≤ m1.

Hence, confluence of R and the fact that ti is a normal form for all 1 ≤ i ≤ m1 yield

tb(siσ) = si tb(σ)→∗
R ti for 1 ≤ i ≤ m1. (5)

Now we have

tb(un−1|pn−1
) = l tb(σ)→R r tb(σ) = tb(un|pn−1

)

with rule α which is applicable because of (5).

Lemma 3.13 (monotony property of tf). Let R = (F , R) be a 1-CTRS. If u →p,R′ v

for u, v ∈ T ′ and tf(u|p) →
≤1
R tf(v|p), then tf(u|q) ‖→R tf(v|q′) for all q ∈ Pos(u) and all

descendants q′ of q in v.

Proof. First assume that q > p. For every descendant q′ of q we have u|q = v|q′ and thus
tf(u|q) = tf(v|q′) and also tf(u|q) ‖→R tf(v|q′) with an empty parallel reduction step.

Second, if p ‖ q, q = q′ and tf(u|q) = tf(v|q) and also tf(u|q) ‖→R tf(v|q′) again with an
empty parallel reduction step.

Third, assume q ≤ p. Then q = q′ and we prove tf(u|q) ‖→R tf(v|q) by induction on the
length of the position p′ determined by q.p′ = p. If p′ = ǫ we trivially have tf(u|q) ‖→R tf(v|q)
since q = p.

18

Otherwise p′ = i.p′′ (i ∈ N+) and

u|q = f(u1, . . . , ui−1, ui, ui+1, . . . , un)

v|q = f(u1, . . . , ui−1, vi, ui+1, . . . , un).

Moreover, ui →p′′,R′ vi and tf(u|q.p′) = tf(ui|p′′) →R tf(vi|p′′) = tf(v|q.p′). Hence, the
induction hypothesis yields

tf(u|q.i) = tf(ui) ‖→R tf(vi) = tf(v|q.i) (6)

It remains to show that tf(u|q) ‖→R tf(v|q).
We distinguish two cases depending on whether f ∈ F or not. First, if f ∈ F we have

tf(u|q) = f(tf(u1), . . . , tf(ui−1), tf(ui), tf(ui+1), . . . , tf(un))

‖→R f(tf(u1), . . . , tf(ui−1), tf(vi), tf(ui+1), . . . , tf(un)) = tf(v|q)

by (6) and thus the result holds.
Otherwise, if f ∈ F ′ \ F (say f = Uα where α = l → r ⇐ s1 →∗ t1, . . . sm →∗ tm) we

have tf(u|q) = rσ where σ is given by xjσ = tb(um+j) where m is the number of conditions of
the conditional rule α (j ≥ 1). Analogously, tb(v|q) = rσ′ where σ′ is given by xjσ

′ = tf(vi)
with m + j = i, and by xjσ

′ = tf(um+j) otherwise.
If i ≤ m, then m + j cannot be equal to i and thus, σ = σ′ implying tf(u|q) = rσ ‖→R

rσ′ = tf(v|q) with an empty parallel step. Otherwise, if i = m + j, we get xjσ ‖→R xjσ
′

because of (6) and xkσ = xkσ′ for k 6= j. Hence, tf(u|q) = rσ ‖→R rσ′ = tf(v|q).

Lemma 3.14 (technical key result for non-erasing systems). Let R = (F , R) be a non-
erasing normal 1-CTRS and let D : u1 →p1,R′ u2 →p2,R′ . . . →pn−1,R′ un be a reduction

sequence where un ∈ T and ui ∈ T ′ for 1 ≤ i < n. Then, tf(ui|pi
) →≤1

R tf(ui+1|pi
) for

1 ≤ i < n.

Proof. We prove the result by induction on the length of D. If the length is 0 the result
holds vacuously. Otherwise, let n + 1 be the length of D and D = u1 →p1,R′ D′. The
induction hypothesis yields tf(uj |pj

) →∗
R tf(uj+1|pj

) for 2 ≤ j < n. Hence, what is left to
prove is that tf(u1|p1

)→∗
R tf(u2|p1

).
To this end we make a case distinction depending on which type of rewrite rule of

R′ has been applied in the first step of D, i.e., u1 →p1,R′ u2. First, if the first step is
due to the application of a rewrite rule of type (3) (i.e., a U -elimination rule), we have
tf(u1|p1

) = tf(u2|p1
) and thus the statement holds.

Second, if the first step is due to the application of a rewrite rule l → r ∈ R′ of type (4)
(i.e., a rule that occurs as an unconditional rule in R), we have

u1|p1
= lσ ⇒ tf(u1|p1

) = l tf(σ)→R r tf(σ) = tf(u2|p1
)

due to l, r ∈ T .
Finally, assume the first step on D is due to the application of a U -introduction rule,

i.e. a rule of type (2). Then, u2|p1
= Uα(s1, . . . , sm1, x1, . . . , xm2

)σ and tf(u2|p1
) = r tf(σ),

where α = l → r ⇐ s1 →∗ t1, . . . , sm1
→∗ tm1

is the conditional rule corresponding to the
symbol Uα and m2 is the number of distinct variables in the left-hand side of this rule.

Since R and thus also R′ are non-erasing, on everyR′-reduction u→R′ v every U -rooted
subterm u|p of u has at least one one-step descendant. Moreover, since un ∈ T , there exist
an index j and a position p such that uj |p is a U -rooted descendant of u2|p1

, uj |p has a
one-step descendant (in D) which is not U -rooted and every descendant of u2|p1

that is also

19

an ancestor of uj |p is U -rooted as well. This means that the U -symbol introduced in u2 is
eliminated in the step uj →pj ,R′ uj+1 of D and that p = pj (note that j 6= n, since uj 6∈ T).

Let uj |p = Uα(t1, . . . , tm1
, x1, . . . , xm2

)τ . Since every descendant of u2|p1
that is also an

ancestor of uj |p is U -rooted, every immediate subterm uj |p.i of uj|p is a descendant of u2|p1.i

(1 ≤ i ≤ m1 + m2). Hence, the induction hypothesis and repeated application of Lemma
3.13 yield

tf(siσ) ‖→R tf(tiτ) for 1 ≤ i ≤ m1

tf(xiσ) ‖→R tf(xiτ) for 1 ≤ i ≤ m2

Since R is a normal 1-CTRS we have tf(tiτ) = ti for all 1 ≤ i ≤ m1. Hence,

tf(siσ) = si tf(σ) ‖→R ti for 1 ≤ i ≤ m1 .

Thus the conditional rule α is applicable to u1|p1
yielding

u1|p1
= lσ ⇒ tf(u1|p1

) = l tf(σ)→R r tf(σ) = tf(u2|p1
)

Lemma 3.27 (monotony property of tbD). Let R be a weakly left-linear normal 1-CTRS

and let D : u1 →p1,R′ u2 →p2,R′ . . . →pn−1,R′ un be a R′-reduction sequence with u1 ∈ T
and ui ∈ T

′ for 1 < i ≤ n. If tbD(i, pi) →
∗
R tbD(i + 1, pi) for every 1 ≤ i ≤ n − 1, then

tbD(i, p)→∗
R tbD(i + 1, p′) for every 1 ≤ i ≤ n− 1, every p ∈ Pos(ui) and every descendant

ui+1|p′ of ui|p.

Proof. Consider some pair (k, p) such that p ∈ Pos(uk). First, if p > pk or p ‖ pk and
uk+1|p′ is a descendant of uk|p, then uk|p = uk+1|p′ and tbD(k, p) = uk|p[tbD(k, p.q1), . . . ,
tbD(k, p.qm)]q1,...,qm

where q1, . . . , qm are the positions of the maximal U -rooted subterms
of u|k. Analogously, tbD(k + 1, p′) = uk+1|p′ [tbD(k + 1, p′.q1), . . . , tbD(k + 1, p′.qm)]q1,...,qm

.
The unique ancestor of every U -rooted subterm uk+1|p′.qj

(1 ≤ j ≤ m) is uk|p.qj
hence

tbD(k + 1, p′.qj) = tbD(k, p.qj) according to Definition 3.25 and since uk|p = uk+1|p′ we get
tbD(k, p) = uk|p[tbD(k, p.q1), . . . , tbD(k, p.qm)]q1,...,qm

= uk+1|p′ [tbD(k+1, p′.q1), . . . , tbD(k+
1, p′.qm)]q1,...,qm

= tbD(k + 1, p′).
Second, assume p ≤ pk. Note that in this case p = p′. We prove the result by induction

on the length of the position p determined by p.p = pk. If p = ǫ, we have p = pk and the
result holds trivially since tbD(k, pk)→∗

R tbD(k + 1, pk) is a precondition.
Otherwise p = i.p̃ (i ∈ N+) and

uk|p = f(u1
k, . . . , ui−1

k , ui
k, ui+1

k , . . . , u
ar(f)
k)

uk+1|p = f(u1
k, . . . , ui−1

k , ui
k+1, u

i+1
k , . . . , u

ar(f)
k).

The induction hypothesis yields

tb(k, p.i)→∗
R tb(k + 1, p.i) (7)

because p.i.p̃ = pk and |p̃| < |p|.
It is left to show that tb(k, p) →∗

R tb(k + 1, p). We distinguish two cases depending on
whether f ∈ F or not. First, if f ∈ F we have

tbD(k, p) = f(tbD(k, p.1), . . . , tbD(k, p.(i − 1)), tbD(k, p.i), tbD(k, p.(i + 1)), . . . , tbD(k, p.ar(f)))

→∗

R
f(tbD(k, p.1), . . . , tbD(k, p.(i − 1)), tbD(k + 1, p.i), tb(k, p.(i + 1)), . . . , tb(k, p.ar(f)))

= tb(k + 1, p)

by (7) and thus the result holds.
Otherwise if f ∈ F ′ \ F we have that tbD(k + 1, p) = tbD(k, p) by Definition 3.25.

20

Lemma 3.28 (extraction of tbD in U -rooted terms). Let R be a weakly left-linear normal
1-CTRS and let D : u1 →p1,R′ u2 →p2,R′ . . . →pn−1,R′ un be a R′-reduction sequence with
u1 ∈ T and ui ∈ T ′ for 1 < i ≤ n. If tbD(i, pi) →∗

R tbD(i + 1, pi) for every 1 ≤ i ≤
n − 1, uk|p = Uα(v1, . . . , vm1

, x1, . . . , xm2)τ , α = l → r ⇐ s1 →∗ t1, . . . , sm1
→ tm1

and
tbD(k, p) = lσ, then siσ →∗

R tbD(k, p.i) for all 1 ≤ i ≤ m1 and xiσ →∗
R tbD(k, p.(m1 + i))

for all 1 ≤ i ≤ m2.

Proof. We prove the result by induction on k. If k is 1 the result holds vacuously, since
u1 ∈ T . For the case that k 6= 1 we distinguish two cases depending on the reduction step
uk−1 →pk−1,R′ uk. If the (unique, cf. Observation 3.24) ancestor uk−1|p′ of uk|p is U -rooted,
then tbD(k, p) = tbD(k − 1, p′) = lσ according to Definition 3.25. The induction hypothesis
yields siσ →∗

R tbD(k − 1, p.i) for all 1 ≤ i ≤ m1 and xiσ →∗
R tbD(k − 1, m1 + i) for all

1 ≤ i ≤ m2. Moreover, uk|p.i is a one-step descendant of uk−1|p′.i for all 1 ≤ i ≤ m1 + m2

because root(uk|p) = root(uk−1|p′) ∈ F ′ \ F . Hence, Lemma 3.27 yields tbD(k− 1, p′.i)→∗
R

tbD(k, p.i) for all 1 ≤ i ≤ m1 + m2. Thus, we get

siσ →
∗
R tbD(k − 1, p′.i)→∗

R tbD(k, p.i) for 1 ≤ i ≤ m1

xiσ →
∗
R tbD(k − 1, p′.(m1 + i))→∗

R tbD(k, p.(m1 + i)) for 1 ≤ i ≤ m2

On the other hand if the unique ancestor uk−1|p′ of uk|p is not U -rooted, then p′ = p =
pk−1, tbD(k, p.(m1+i)) = xiσ for all 1 ≤ i ≤ m2 and siσ = tbD(k, p.i) for all 1 ≤ i ≤ m1.

Lemma 3.29 (tbD to tb). LetR be a weakly left-linear normal 1-CTRS and let D : u1 →p1,R′

u2 →p2,R′ . . . →pn−1,R′ un be a R′-reduction sequence with u1 ∈ T and ui ∈ T ′ for
1 < i ≤ n. If tbD(i, pi)→∗

R tbD(i+1, pi) for every 1 ≤ i ≤ n−1, then tbD(j, p)→∗
R tb(uj|p)

for all 1 ≤ j ≤ n and all p ∈ Pos(uj).

Proof. We prove the result by induction on the term depth of uj |p. If uj|p is a constant (i.e.
from F since there are no U -constants) or a variable, then tbD(j, p) = tb(uj |p) = uj |p and
thus the statement holds.

Otherwise, uj|p = f(uj |p.1, . . . , uj|p.ar(f)) and we distinguish two cases depending on
whether f ∈ F or not. First, if f ∈ F , we get tbD(j, p) = f(tbD(j, p.1), . . . , tbD(j, p.ar(f)))
and the induction hypothesis yields tbD(j, p.i) →∗

R tb(uj |p.i) for all 1 ≤ i ≤ ar(f). Hence,
tbD(j, p) = f(tbD(j, p.1), . . . , tbD(j, p.k)) →∗

R f(tb(uj|p.1), . . . , tb(uj |p.k)) = tb(uj|p) where
k = ar(f).

Second assume f ∈ F ′ \ F . Let uj |p = U(v1, . . . , vm1
, x1, . . . , xm2

)σ, then tbD(j, p) = lσ

and we have xiσ →∗
R tbD(j, p.(m1 + i)) for all 1 ≤ i ≤ m2 because of Lemma 3.28. Our

induction hypothesis yields tbD(j, p.(m1 + i))→∗
R tb(uj |p.(m1+i)) for all 1 ≤ i ≤ m2. Hence

we have
tbD(j, p) = lσ →∗

R l tb(σ) = tb(lσ) = tb(uj |p)

and thus the statement holds.

Lemma 3.30 (technical key result for weakly left-linear systems). Let R be a weakly left-
linear normal 1-CTRS and let D : u1 →p1,R′ u2 →p2,R′ . . . →pn−1,R′ un be a R′-reduction
sequence with u1 ∈ T and ui ∈ T ′ for 1 < i ≤ n, then tbD(i, pi) →∗

R tbD(i + 1, pi) for all
1 ≤ i < n.

Proof. We prove the result by induction on n. If n = 1 the result holds vacuously. Otherwise,
we write D as D′ →pn−1,R′ un and the induction hypothesis yields tbD(i, pi) →∗

R tbD(i +
1, pi) for all 1 ≤ i < n− 1. We distinguish three cases depending on the rule l→ r, that has
been applied in the last reduction step of D, namely un−1 →pn−1,R′ un.

21

First, if this rule was a U -introduction rule, then we have tbD(n−1, pn−1) = tbD(n, pn−1)
according to Definition 3.25.

Second, assume the applied rule occurs as unconditional rule in R. If l is linear we have

tbD(n− 1, pn−1) = lσ→R′ rσ = tbD(n, pn−1)

Here, rσ = tbD(n, pn−1) is due to the fact that all maximal U -rooted subterms in σ have
their one-step ancestors in lσ.

Otherwise, if l is not linear tbD(n− 1, pn−1) is not necessarily lσ since un−1|q = un−1|q′

does not imply tbD(n − 1, q) = tbD(n − 1, q′) in general for positions q, q′ ∈ Pos(un−1).
However, since the induction hypothesis yields tbD(j, pj)→∗

R′ tbD(j + 1, pj) for all 1 ≤ j <

n− 1, Lemma 3.29 is applicable yielding tbD(n− 1, q)→∗
R tb(un−1|q) for all q ∈ Pos(un−1).

Now let ren(l) be the linearized version of l, then

tbD(n− 1, pn−1) = ren(l)σ.

Let {qx
1 , ..., qx

kx
} be the set of all positions in V Pos(l) such that l|qx

1
= · · · l|qx

kx
= x and

kx > 1. Then we have ren(l)|qx
i
σ = tbD(n − 1, pn−1.q

x
i) →∗

R tb(un−1|pn−1.qx
i
) for all 1 ≤

i ≤ kx according to Lemma 3.29 and also tb(un−1|pn−1.qx
i
) = tb(un−1|pn−1.qx

j
) = xσ′ for all

1 ≤ i, j ≤ kx since tb is a function on terms. Thus, we have

tbD(n− 1, pn−1) = ren(l)σ →∗
R lσ′

where yσ′ = yσ for all variables y that occur only once in l because of weak left-linearity of
R′ (cf. Observation 3.23). Hence, we finally get

tbD(n− 1, pn−1)→
∗
R lσ′ →∗

R rσ′ = tbD(n, pn−1)

Here, rσ′ = tbD(n, pn−1) is due to the fact that all maximal U -rooted subterms in σ′ have
their one-step ancestors in lσ′ (observe that rσ′ = rσ).

Third, assume the rule applied in the last step of D is a U -elimination rule α : l →
r ⇐ s1 →

∗ t1, . . . , sm1
, . . . , tm1

, i.e., un−1|pn−1
= U(t1, . . . , tm1

, x1, . . . , xm2
)σ and tbD(n −

1, pn−1) = lτ . According to Lemma 3.28 we have siτ →∗
R tbD(n−1, pn−1.i) for all 1 ≤ i ≤ m1

and tbD(n− 1, pn−1.i) = ti, since un−1|pn−1.i = ti and R is a normal 1-CTRS ti ∈ T .
Hence the conditional rule α is applicable to lτ and we get

tbD(n− 1, pn−1) = lτ →R rτ →∗
R tbD(n, pn−1)

Note that we have rτ →∗
R tbD(n, pn−1) since xiτ →R tbD(n − 1, pn−1.(m1 + i)) for all

1 ≤ i ≤ m2 according to Lemma 3.28.

22

