
Extending Context-Sensitivity

in Term Rewriting

Bernhard Gramlich and Felix Schernhammer

December 2009

(the final abridged version of this paper will be published in Proc. 9th International Workshop on Reduction

Strategies in Rewriting and Programming (WRS’09), Maribel Fernandez (Ed.), EPTCS, 2009, to appear)

Technical Report E1852-2009-02

Theory and Logic Group, Institute of Computer Languages (E185/2)
TU Wien, Favoritenstraße 9, A-1040 Wien, Austria

c© Bernhard Gramlich and Felix Schernhammer

Extending Context-Sensitivity in Term Rewriting

Bernhard Gramlich and Felix Schernhammer∗

Theory and Logic Group, Institute of Computer Languages
Faculty of Informatics, Vienna University of Technology

Favoritenstr. 9 – E185/2, A-1040 Wien, Austria

December 2009

Abstract

We propose a generalized version of context-sensitivity in term rewriting
based on the notion of “forbidden patterns”. The basic idea is that a
rewrite step should be forbidden if the redex to be contracted has a cer-
tain shape and appears in a certain context. This shape and context is
expressed through forbidden patterns. In particular we analyze the re-
lationships among this novel approach and the commonly used notion of
context-sensitivity in term rewriting, as well as the feasibility of rewriting
with forbidden patterns from a computational point of view. The latter
feasibility is characterized by demanding that restricting a rewrite rela-
tion yields an improved termination behaviour while still being powerful
enough to compute meaningful results. Sufficient criteria for both kinds
of properties in certain classes of rewrite systems with forbidden patterns
are presented.

1 Introduction and Overview

Standard term rewriting systems (TRSs) are well-known to enjoy nice logical
and closure properties. Yet, from an operational and computational point of
view, i.e., when using term rewriting as computational model, it is also well-
known that for non-terminating systems restricted versions of rewriting obtained
by imposing context-sensitivity and/or strategy requirements may lead to better
results (e.g., in terms of computing normal forms, head-normal forms, etc.).

One major goal when using reduction strategies and context restrictions is
to avoid non-terminating reductions. On the other hand the restrictions should
not be too strong either, so that the ability to compute useful results in the
restricted rewrite systems is not lost. We introduce a novel approach to context
restrictions relying on the notion of “forbidden patterns”, which generalizes
existing approaches and succeeds in handling examples in the mentioned way

∗Email: {gramlich,felixs}@logic.at. F. Schernhammer has been supported by the Aus-

trian Academy of Sciences under grant 22.361.

1

(i.e., producing a terminating reduction relation which is powerful enough to
compute useful results) where others fail.

The following example motivates the use of reduction strategies and/or con-
text restrictions.

Example 1. Consider the following rewrite system, cf. e.g. [15]:

inf(x) → x : inf(s(x))

2nd(x : (y : zs)) → y

This TRS is non-terminating and not even weakly normalizing. Still some terms
like 2nd(inf(x)) are reducible to a normal form while also admitting infinite
reduction sequences. One goal of context restrictions and reduction strategies
is to restrict derivations in a way such that normal forms can be computed
whenever they exist, while infinite reductions are avoided.

One way to address the problem of avoiding non-normalizing reductions
in Example 1 is the use of reduction strategies. For instance for the class of
(almost) orthogonal rewrite systems (the TRS of Example 1 is orthogonal),
always contracting all outermost redexes in parallel yields a normalizing strategy
(i.e. whenever a term can be reduced to a normal form it is reduced to a normal
form under this strategy) [18]. Indeed, one can define a sequential reduction
strategy having the same property for an even wider class of TRSs [3]. One
major drawback (or asset depending on one’s point of view) of using reduction
strategies, however, is that their use does not introduce new normal forms. This
means that the set of normal forms w.r.t. to some reduction relation is the same
as the set of normal forms w.r.t. to the reduction relation under some strategy.
Hence, strategies can in general not be used to detect non-normalizing terms or
to impose termination on not weakly normalizing TRSs (with some exceptions
cf. e,g. [3, Theorem 7.4]). Moreover, the process of selecting a suitable redex
w.r.t. to a reduction strategy is often complex and may thus be inefficient.

These shortcomings of reduction strategies led to the advent of proper re-
strictions of rewriting that usually introduce new normal forms and select re-
spectively forbid certain reductions according to the syntactic structure of a
redex and/or its surrounding context.

The most well-known approach to context restrictions is context-sensitive
rewriting. There, a replacement map µ specifies the arguments µ(f) ⊆ {1, . . . ,
ar(f)} which can be reduced for each function f . However, regarding Example
1, context-sensitive rewriting does not improve the situation, since allowing
the reduction of the second argument of ‘:’ leads to non-termination, while
disallowing its reduction leads to incompleteness in the sense that for instance
a term like 2nd(inf(x)) cannot be normalized via the corresponding context-
sensitive reduction relation, despite having a normal form in the unrestricted
system.

Other ideas of context restrictions range from explicitly modeling lazy eval-
uation (cf. e.g. [9, 17, 19]), to imposing constraints on the order of argument
evaluation of functions (cf. e.g. [10, 7]), and to combinations of these concepts,

2

also with standard context-sensitive rewriting (cf. e.g. [15, 2]). The latter
generalized versions of context-sensitive rewriting are quite expressive and pow-
erful (indeed some of them can be used to restrict the reduction relation of the
TRS in Example 1 in a way, so that the restricted relation is terminating and
still powerful enough to compute (head-)normal forms), but on the other hand
tend to be hard to analyze and understand, due the subtlety of the strategic
information specified.

The approach we present in this paper is simpler in that its definition only
relies on matching and simple comparison of positions rather than on laziness
or prioritizing the evaluation of certain arguments of functions over others. In
order to reach the goal of restricting the reduction relation in such a way that
it is terminating while still being powerful enough to compute useful results, we
provide a method to verify termination of a reduction relation restricted by our
approach (Section 5) as well as a criterion which guarantees that normal forms
computed by the restricted system are head-normal forms of the unrestricted
system (Section 4).

Recently it turned out that, apart from using context-sensitivity as compu-
tation model for standard term rewriting (cf. e.g. [16, 14]), context-sensitive
rewrite systems naturally also appear as intermediate representations in many
areas relying on transformations, such as program transformation and termi-
nation analysis of rewrite systems with conditions [6, 20] / under strategies
[8].

This suggests that apart from using restrictions as guidance and thus as
operational model for rewrite derivations, a general, flexible and well-understood
framework of restricted term rewriting going beyond context-sensitive rewriting
may be useful as a valuable tool in many other areas, too.

The major problem in building such a framework is that imposing context
restrictions on term rewriting in general invalidates the closure properties of
term rewriting relations, i.e., stability under contexts and substitutions. Note
that in the case of context-sensitive rewriting à la [14, 16] only stability under
contexts is lost.

In this work we will sketch and discuss a generalized approach to context-
sensitivity (in the sense of [14, 16]) relying on forbidden patterns rather than on
forbidden arguments of functions. From a systematic point of view we see the
following design decisions to be made.

• What part of the context of a (sub)term is relevant to decide whether the
(sub)term may be reduced or not?

• In order to specify the restricted reduction relation, is it better/advanta-
geous to explicitly define the allowed or the forbidden part of the context-
free reduction relation?

• What are the forbidden/allowed entities, for instance whole subterms,
contexts, positions, etc.?

• Does it depend on the shape of the considered subterm itself (in addition

3

to its outside context) whether it should forbidden or not (if so, stability
under substitutions may be lost)?

• Which restrictions on forbidden patterns seem appropriate (also w.r.t.
practical feasibility) in order to guarantee certain desired closure and
preservation properties.

The remainder of the paper is structured as follows.1 In Section 2 we briefly
recall some basic notions and notations. Rewriting with forbidden patterns is
defined, discussed and exemplified in Section 3. In the main Sections 4 and 5
we develop some theory about the expressive power of rewriting with forbidden
patterns (regarding the ability to compute original (head-)normal forms), and
about how to prove ground termination for such systems via a constructive
transformational approach. Crucial aspects are illustrated with the two running
Examples 1 and 3. Finally, in Section 6 we summarize our approach and its
application in the examples, discuss its relationship to previous approaches and
briefly touch the important perspective and open problem of (at least partially)
automating the generation of suitable forbidden patterns in practice.

2 Preliminaries

We assume familiarity with the basic notions and notations in term rewriting,
cf. e.g. [4], [5].

Since we develop our approach in a many-sorted setting, we recall a few
basics on many-sorted equational reasoning (cf. e.g. [5]). A many-sorted signa-
ture F is a pair (S, Ω) where S is a set of sorts and Ω is a family of (mutually
disjoint) sets of typed function symbols: Ω = (Ωω,s | ω ∈ S∗, s ∈ S). We also
say, f is of type ω → s (or just s if ω = ∅) if f ∈ Ωω,s. V = (Vs | s ∈ S) is
a family of (mutually disjoint) countably infinite sets of typed variables (with
V ∩ Ω = ∅). The set T (F , V)s of (well-formed) terms of sort s is the least
set containing Vs, and whenever f ∈ Ω(s1,...,sn),s and ti ∈ T (F , V)si

for all
1 ≤ i ≤ n, then f(t1, . . . , tn) ∈ T (F , V)s. The sort of a term t is denoted by
sort(t). Rewrite rules are pairs of terms l → r where sort(l) = sort(r). Subse-
quently, we make the types of terms and rewrite rules explicit only if they are
relevant. Throughout the paper x, y, z represent (sorted) variables.

Positions are possibly empty sequences of natural numbers (the empty se-
quence is denoted by ǫ). We use the standard partial order ≤ on positions given
by p ≤ q if there is some position p′, such that p.p′ = q (i.e., p is a prefix of q).
Pos(s) (PosF (s)) denotes the set of (non-variable) positions of a term s. By

s
p
→ t we mean rewriting at position p. Given a TRS R = (F , R) we partition

F into the set D of defined function symbols, which are those that occur as root
symbols of left-hand sides of rules in R, and the set C of constructors (given by
F \D). For TRSs R = (F , R) we sometimes confuse R and R, e.g., by omitting
the signature.

1For the sake of readability, the proofs of the results presented are not included in the main

part, but collected in the appendix.

4

3 Rewriting with Forbidden Patterns

In this section we define a generalized approach to rewriting with context restric-
tions relying on term patterns to specify forbidden subterms/superterms/posi-
tions rather than on a replacement map as in context-sensitive rewriting.

Definition 1 (forbidden pattern). A forbidden pattern (w.r.t. to a signature
F) is a triple 〈t, p, λ〉, where t ∈ T (F , V) is a term, p a position from Pos(t)
and λ ∈ {h, b, a}.

The intended meaning of the last component λ is to indicate whether the
pattern forbids reductions

• exactly at position p, but not outside (i.e., strictly above or parallel to p)
or strictly below – (h for here), or

• strictly below p, but not at or outside p – (b for below), or

• strictly above position p, but not at, below or parallel to p – (a for above).

Abusing notation we sometimes say a forbidden pattern is linear, unifies with
some term etc. when we actually mean that the term in the first component of
a forbidden pattern has this property.

We denote a finite set of forbidden patterns for a signature F by ΠF or just
Π if F is clear from the context or irrelevant. For brevity, patterns of the shape
〈 , , h/b/a〉 are also called h/b/a-patterns, or here/below/above-patterns.2

Note that if for a given term t we want to specify more than just one re-
striction by a forbidden pattern, this can easily be achieved by having several
triples of the shape 〈t, , 〉.

In contrast to context-sensitive rewriting, where a replacement map defines
the allowed part of the reduction, the patterns are supposed to explicitly define
its forbidden parts, thus implicitly yielding allowed reduction steps as those that
are not forbidden.

Definition 2 (forbidden pattern reduction relation). Let R = (F , R) be a TRS
with forbidden patterns ΠF . The forbidden pattern reduction relation →R,ΠF

,
or →Π for short, induced by some set of forbidden patterns Π and R, is given

by s →R,ΠF
t if s

p
→R t for some p ∈ OF (s) such that there is no pattern

〈u, q, λ〉 ∈ ΠF , no context C and no position q′ with

• s = C[uσ]q′ and p = q′.q, if λ = h,

• s = C[uσ]q′ and p > q′.q, if λ = b, and

• s = C[uσ]q′ and p < q′.q, if λ = a.

2Here and subsequently we use a wildcard notation for forbidden patterns. For instance,

〈 , , i〉 stands for 〈t, p, i〉 where t is some term and p some position in t of no further relevance.

5

Note that for a finite rewrite system R (with finite signature F) and a finite
set of forbidden patterns ΠF it is decidable whether s →R,ΠF

t for terms s
and t. We write (R,Π) for rewrite systems with associated forbidden patterns.
Such a rewrite system (R,Π) is said to be Π-terminating (or just terminating if
no confusion arises) if →R,Π is well-founded. We also speak of Π-normal forms
instead of →R,Π-normal forms.

Special degenerate cases of (R,Π) include e.g. Π = ∅ where →R,Π=→R, and
Π = {〈l, ǫ, h〉 | l → r ∈ R} where →R,Π= ∅.

In the sequel we use the notions of allowed and forbidden (by Π) redexes.

A redex s|p of a term s is allowed if s
p

→Π t for some term t, and forbidden
otherwise.

Example 2. Consider the TRS from Example 1. If Π = {(x : (y : inf(z)), 2.2, h)},
then →Π can automatically be shown to be terminating. Moreover, →Π is pow-
erful enough to compute original head-normal forms if they exist (cf. Examples
6 and 11 below).

Example 3. Consider the non-terminating TRS R given by

take(0, y : ys) → y app(nil, ys) → ys
take(s(x), y : ys) → take(x, ys) app(x : xs, ys) → x : app(xs, ys)

take(x, nil) → 0 inf(x) → inf(s(x))

with two sorts S = {Nat, NatList}, where the types of function symbols are as
follows: nil : NatList, 0 : Nat, s : Nat → Nat, : is of type Nat, NatList →
NatList, inf : Nat → NatList, app : NatList, NatList → NatList and take :
Nat, NatList → Nat. If one restricts rewriting in R via Π given by

〈x : inf(y), 2, h〉 〈x : app(inf(y), zs), 2.1, h〉 〈x : app(y : app(z, zs), us), 2, h〉,

then →Π is terminating and still every well-formed ground term can be nor-
malized with the restricted relation →Π (provided the term is normalizing). See
Examples 7 and 12 below for justifications of these claims.

Several well-known approaches to restricted term rewriting as well as to
rewriting guided by reduction strategies occur as special cases of rewriting
with forbidden patterns. In the following we provide some examples. Context-
sensitive rewriting, where a replacement map µ specifies the arguments µ(f) ⊆
{1, . . . , ar(f)} which can be reduced for each function f , arises as special case of
rewriting with forbidden patterns by defining Π to contain for each function sym-
bol f and each j ∈ {1, . . . , ar(f)}\µ(f) the forbidden patterns (f(x1, . . . , xar(f)),
j, h) and (f(x1, . . . , xar(f)), j, b).

Moreover, with forbidden patterns it is also possible to simulate position-
based reduction strategies such as innermost and outermost rewriting. The
innermost reduction relation of a TRS R coincides with the forbidden pattern
reduction relation if one uses the forbidden patterns 〈l, ǫ, a〉 for the left-hand
sides l of each rule of R. Dually, if patterns (l, ǫ, b) are used, the forbidden

6

pattern reduction relation coincides with the outermost reduction relation w.r.t.
R.

However, note that more complex layered combinations of the aforemen-
tioned approaches, such as innermost context-sensitive rewriting cannot be mod-
eled by forbidden patterns as proposed in this paper.

Still, the definition of forbidden patterns and rewriting with forbidden pat-
terns is rather general and leaves many parameters open. In order to make this
approach feasible in practice, it is necessary to identify interesting classes of for-
bidden patterns that yield a reasonable trade-off between power and simplicity.
For these interesting classes of forbidden patterns we need methods which guar-
antee that the results (e.g. normal forms) computed by rewriting with forbidden
patterns are meaningful, in the sense that they have some natural correlation
with the actual results obtained by unrestricted rewriting. For instance, it is
desirable that normal forms w.r.t. the restricted rewrite system are original
head-normal forms. In this case one can use the restricted reduction relation
to compute original normal forms (by an iterated process) whenever they exist
(provided that the TRS in question is left-linear, confluent and the restricted
reduction relation is terminating) (cf. Section 4 below for details). We define
a criterion ensuring that normal forms w.r.t. the restricted system are original
head-normal forms in the following section.

4 Computing Meaningful Results

We are going to use canonical context-sensitive rewriting as defined in [14, 16]
as an inspiration for our approach. There, for a given (left-linear) rewriting
system R certain restrictions on the associated replacement map µ guarantee
that →µ-normal forms are →R-head-normal-forms. Hence, results computed by
→µ and →R share the same root symbol.

The basic idea is that reductions that are essential to create a more outer
redex should not be forbidden. In the case of context-sensitive rewriting this is
guaranteed by demanding that whenever an f -rooted term t occurs (as subterm)
in the left-hand side of a rewrite rule and has a non-variable direct subterm t|i,
then i ∈ µ(f).

It turns out that for rewriting with forbidden patterns severe restrictions
on the shape of the patterns are necessary in order to obtain results similar to
the ones for canonical context-sensitive rewriting in [14]. First, no forbidden
patterns of the shape 〈 , ǫ, h〉 or 〈 , , a〉 may be used as they are in general
not compatible with the desired root-normalizing behaviour of our forbidden
pattern rewrite system.

Moreover, for each pattern 〈t, p, 〉 we demand that

• t is linear,

• p is a variable or maximal (w.r.t. to the prefix ordering ≤ on positions)
non-variable position in t, and

7

• for each position q ∈ Pos(t) with q||p we have t|q ∈ V .

We call the class of patterns obtained by the above restrictions simple pat-
terns.

Definition 3 (simple patterns). A set Π of forbidden patterns is called simple if
it does not contain patterns of the shape 〈 , ǫ, h〉 or 〈 , , a〉 and for every pattern
(t, p,) ∈ Π it holds that t is linear, t|p ∈ V or t|p = f(x1, . . . , xar(f)) for some
function symbol f , and for each position q ∈ Pos(t) with q||p we have that t|q
is a variable.

Basically these syntactical properties of forbidden patterns are necessary to
ensure that reductions which are essential to enable other, more outer reductions
are not forbidden. Moreover, these properties, contrasting those defined in
Definition 4 below, are independent of any concrete rewrite system.

The forbidden patterns of the TRS (R,Π) in Example 4 below are not simple,
since the patterns contain terms with parallel non-variable positions. This is
the reason why it is not possible to head-normalize terms (w.r.t R) with →Π:

Example 4. Consider the TRS R given by

f(b, b) → g(f(a, a)) a → b

and forbidden patterns 〈f(a, a), 1, h〉 and 〈f(a, a), 2, h〉. f(a, a) is linear and 1
and 2 are maximal positions (w.r.t. ≤) within this term. However, positions 1
and 2 are both non-variable and thus e.g. for 〈f(a, a), 1, h〉 there exists a position
2||1 such that f(a, a)|2 = a 6∈ V . Hence, Π is too restrictive to compute all R-
head-normal forms in this example. Indeed, f(a, a) →∗

R f(b, b) →R g(f(a, a))
where the latter term is a R-head-normal form.

The term f(a, a) is a Π-normal form, although it is not a head-normal form
(w.r.t. R). Note also that the (first components of) forbidden patterns are not
unifiable with the left-hand side of the rule that is responsible for the (later)
possible root-step when reducing f(a, a), not even if the forbidden subterms in
the patterns are replaced by fresh variables.

Now we are ready to define canonical rewriting with forbidden patterns
within the class of simple forbidden patterns. To this end, we demand that
patterns do not overlap with left-hand sides of rewrite rules in a way such that
reductions necessary to create a redex might be forbidden.

Definition 4 (canonical forbidden patterns). Let R = (F , R) be a TRS with
simple forbidden patterns ΠF (w.l.o.g. we assume that R and ΠF have no vari-
ables in common). Then, ΠF is R-canonical (or just canonical) if the following
holds for all rules l → r ∈ R :

1. There is no pattern (t, p, λ) such that

• t′|q and l unify for some q ∈ OF (t) where t′ = t[x]p and q > ǫ, and

• there exists a position q′ ∈ OF (l) with q.q′ = p for λ = h respectively
q.q′ > p for λ = b.

8

2. There is no pattern (t, p, λ) such that

• t′ and l|q unify for some q ∈ OF (l) where t′ = t[x]p, and

• there exists a position q′ with q.q′ ∈ OF (l) and q′ = p for λ = h
respectively q′ > p for λ = b.

Here, x denotes a fresh variable.

Example 5. Consider the TRS R given by the single rule

l = f(g(h(x))) → x = r .

Then, Π = {〈t, p, h〉} with t = g(f(a)), p = 1.1 is not canonical since t[x]p|q =
g(f(y))|1 = f(y) and l unify where q = q′ = 1 and thus q.q′ = p (hence
root(l|q′) = g). Moreover, also Π = {〈t, p, h〉} with t = g(i(x)), p = 1 is not
canonical, since l|q = g(h(x)) and t[x]p = f(y) unify for q = 1 and q.p = 1.1 is
a non-variable position in l.

On the other hand, Π = {〈g(g(x)), 1.1, h〉} is canonical. Note that all of the
above patterns are simple.

In order to prove that normal forms obtained by rewriting with simple and
canonical forbidden patterns are actually head-normal forms w.r.t. unrestricted
rewriting, and also to provide more intuition on canonical rewriting with forbid-
den patterns, we define the notion of a partial redex (w.r.t. to a rewrite system
R) as a term that is matched by a non-variable term l′ which in turn matches
the left-hand side of some rule of R. We call l′ a witness for the partial match.

Definition 5 (Partial redex). Given a rewrite system R = (F , R), a partial
redex is a term s that is matched by a non-variable term l′ which in turn matches
the left-hand side of some rule in R. The (non-unique) term l′ is called witness
for a partial redex s.

Thus, a partial redex can be viewed as a candidate for a future reduction step,
which can only be performed if the redex has actually been created through more
inner reduction steps. Hence, the idea of canonical rewriting with forbidden
patterns could be reformulated as guaranteeing that the reduction of subterms
of partial redexes is allowed whenever these reductions are necessary to create
an actual redex.

Lemma 1. Let R = (F , R) be a left-linear TRS with canonical (hence, in
particular simple) forbidden patterns ΠF . Moreover, let s be a partial redex
w.r.t. to the left-hand side of some rule l with witness l′ such that l|p 6∈ V but
l′|p ∈ V . Then in the term C[s]q the position q.p is allowed by ΠF for reduction
provided that q is allowed for reduction.

Theorem 1. Let R = (F , R) be a left-linear TRS with canonical (hence in
particular simple) forbidden patterns ΠF . Then →R,ΠF

-normal forms are →R-
head-normal forms.

9

Given a left-linear and confluent rewrite system R and a set of canonical
forbidden patterns Π such that →Π is well-founded, one can thus normalize
a term s (provided that s is normalizing) by computing the →Π-normal form
t of s which is R-root-stable according to Theorem 1, and then do the same
recursively for the immediate subterms of t. Confluence of R assures that the
unique normal form of s will indeed be computed this way.

Example 6. As the forbidden pattern defined in Example 2 is (simple and)
canonical, Theorem 1 yields that →R,δ-normal forms are →R-head-normal forms.
For instance we get 2nd(inf(0)) →∗

Π s(0).

Example 7. Consider the TRS with R and forbidden patterns Π from Example
3. We will prove below that R is Π-terminating (cf. Example 12).

Furthermore we are able to show that every well-formed ground term that
is reducible to a normal form in R is reducible to the same normal form with
→R,Π and that every →R-normal form is root-stable w.r.t. →R.

5 Proving Termination

We provide another example of a result on a restricted class of forbidden pat-
terns, this time concerning termination. We exploit the fact that, given a finite
signature and linear h-patterns, a set of allowed contexts complementing each
forbidden one can be constructed. Thus, we can transform a rewrite system
with this kind of forbidden patterns into a standard (i.e., context-free) one by
explicitly instantiating and embedding all rewrite rules (in a minimal way) in
contexts (including a designated top-symbol representing the empty context)
such that rewrite steps in these contexts are allowed.

To this end we propose a transformation that proceeds by iteratively instan-
tiating and embedding rules in a minimal way. This is to say that the used
substitutions map variables only to terms of the form f(x1, . . . , xar(f)) and the
contexts used for the embeddings have the form g(x1, . . . , xi−1,�, xi+1, xar(f))
for some function symbols f ∈ F , g ∈ F ⊎ {top} and some argument position
i of f (resp. g). It is important to keep track of the position of the initial rule
inside the embeddings. Thus we associate to each rule introduced by the trans-
formation a position pointing to the embedded original rule. To all initial rules
of R we thus associate ǫ.

Note that it is essential to consider a new unary function symbol tops for
every sort s ∈ S (of type s → s) representing the empty context. This is
illustrated by the following example.

Example 8. Consider the TRS given by

a → f(a) f(x) → x

with F = {a, f} and the set of forbidden patterns Π = {〈f(x), 1, h}〉}. This
system is not Π-terminating as we have

a →Π f(a) →Π a →Π . . .

10

Whether a subterm s|p = a is allowed for reduction by Π depends on its context.
Thus, according to the idea of our transformation we try to identify all contexts
C[a]p such that the reduction of a at position p is allowed by Π. However, there
is no such (non-empty) context, although a may be reduced if C is the empty
context. Moreover, there cannot be a rule l → r in the transformed system where
l = a, since that would allow the reduction of terms that might be forbidden by Π.
Our solution to this problem is to introduce a new function symbol top explicitly
representing the empty context. Thus, in the example the transformed system
will contain a rule top(a) → top(f(a)).

Abusing notation we subsequently use only one top-symbol, while we actually
mean the tops-symbol of the appropriate sort. Moreover, in the following by
rewrite rules we always mean rewrite rules with an associated (embedding)
position, unless stated otherwise. All forbidden patterns used in this section
(particularly in the lemmata) are linear here-patterns. We will make this general
assumption explicit only in the more important results.

Definition 6 (instantiation and embedding). Let F = (S, Ω) be a signature,
let 〈l → r, p〉 be a rewrite rule of sort s over F and let Π be a set of forbidden
patterns (linear, h). The set of minimal instantiated and embedded rewrite rules
TΠ(〈l → r, p〉) (or just T (〈l → r, p〉)) is T i

Π(〈l → r, p〉) ⊎ T e
Π(〈l → r, p〉) where

T e(〈l → r, p〉) = {〈C[l] → C[r], i.p〉 | C = f(x1, . . . , xi−1,�, xi+1, . . . , xar(f)),

f ∈ Ω(s1,...,si−1,s,si+1,...,sar(f)),s′ ,

f ∈ F ⊎ {tops | s ∈ S}, i ∈ {1, . . . , ar(f)},

∃〈u, o, h〉 ∈ Π.u|qθ = lθ ∧ q 6= ǫ ∧ o = q.p}

T i
Π(〈l → r, p〉) = {〈lσ → rσ, p〉 | xσ = f(x1, . . . , xar(f)),

sort(x) = sort(f(x1, . . . xar(f))),

f ∈ F , y 6= x ⇒ yσ = y, x ∈ RVΠ(l, p)}

and RVΠ(l, p) = {x ∈ V ar(l) | ∃〈u, o, h〉 ∈ Π.θ = mgu(u, l|q)∧q.o = p∧xθ 6∈ V }.
We also call the elements of T (〈l → r, p〉) the one-step T -successors of 〈l →

r, p〉. The reflexive-transitive closure of the one-step T -successor relation is the
many-step T -successor relation or just T -successor relation. We denote the set
of all many-step T -successors of a rule 〈l → r, p〉 by T ∗(〈l → r, p〉).

The set RVΠ(l, p) of “relevant variables” is relevant in the sense that their
instantiation might contribute to a matching by some (part of a) forbidden
pattern term.

Note that in the generated rules 〈l′ → r′, p′〉 in TΠ(〈l → r, p〉), a fresh tops-
symbol can only occur at the root of both l′ and r′ or not at all, according to
the construction in Definition 6.

Example 9. Consider the TRS (R,Π) where R = ({a, f, g}, {f(x) → g(x)})
and the forbidden patterns Π are given by {〈g(g(f(a))), 1.1, h〉}. T (〈f(x) →

11

g(x), ǫ〉) consists of the following rewrite rules.

〈f(f(x)) → g(f(x)), ǫ〉 (1)

〈f(g(x)) → g(g(x)), ǫ〉 (2)

〈f(a) → g(a), ǫ〉 (3)

〈f(f(x)) → f(g(x)), 1〉 (4)

〈g(f(x)) → g(g(x)), 1〉 (5)

Note that RVΠ(f(x), ǫ) = {x} because g(g(f(a)))1.1 = f(a) unifies with f(x)
and mgu θ where xθ = a 6∈ V . On the other hand RVΠ(f(f(x)), 1) = ∅.

Lemma 2 (finiteness of instantiation and embedding). Let 〈l → r, p〉 be a
rewrite rule and let Π be a set of forbidden patterns. The set of (many-step)
instantiations and embeddings of 〈l → r, p〉 (i.e. T ∗(〈l → r, p〉)) is finite.

The transformation we are proposing proceeds by iteratedly instantiating
and embedding rewrite rules. The following definitions identify the rules for
which no further instantiation and embedding is needed.

Definition 7 (Π-stable). Let 〈l → r, p〉 be a rewrite rule and let Π be a set of
forbidden patterns. 〈l → r, p〉 is Π-stable (stbΠ(〈l → r, p〉) for short) if there is
no context C and no substitution σ such that C[lσ]q|q′ = uθ and q.p = q′.o for
any forbidden pattern 〈u, o, h〉 ∈ Π and any θ.

Note that Π-stability is effectively decidable (for finite signatures and finite
Π), since only contexts and substitutions involving terms not exceeding a certain
depth depending on Π need to be considered.

Definition 8 (Π-obsolete). Let 〈l → r, p〉 be a rewrite rule and let Π be a set of
forbidden patterns. 〈l → r, p〉 is Π-obsolete (obsΠ(〈l → r, p〉) for short) if there
is a forbidden pattern Π = 〈u, o, h〉 such that l|q = uθ and p = q.o.

In Example 9, the rules (1), (2) and (4) are Π-stable, while rules (3) and
(5) would be processed further. After two more steps e.g. a rule 〈g(g(f(a))) →
g(g(g(a))), 1.1〉 is produced that is Π-obsolete.

The following lemmata state some properties of Π-stable rules.

Lemma 3. Let Π be a set of forbidden patterns and let 〈l′ = C[lσ]p → C[rσ]p =
r′, p〉 be a Π-stable rewrite rule corresponding to l → r. If s → t with l′ → r′,
then s →Π t with l → r.

Lemma 4. Let 〈l → r, p〉 be a rule and Π be a set of forbidden patterns. If
T (〈l → r, p〉) = ∅, then 〈l → r, p〉 is either Π-stable or Π-obsolete.

Definition 9. Let R = (F , R) be a TRS with an associated set of forbidden
patterns Π where F = (S, Ω). The transformation T maps TRSs with forbidden
patterns to standard TRSs T (R,Π). It proceeds in 5 steps.

1. Rtmp = {〈l → r, ǫ〉 | l → r ∈ R}
Racc = ∅

12

2. Racc = {〈l → r, p〉 ∈ Rtmp | stbΠ(〈l → r, p〉)}
Rtmp = {〈l → r, p〉 ∈ Rtmp | ¬stbΠ(〈l → r, p〉) ∧ ¬obsΠ(〈l → r, p〉)}

3. Rtmp =
⋃

〈l→r,p〉∈Rtmp T (〈l → r, p〉)

4. If Rtmp 6= ∅ go to 2

5. T (R,Π) = (F ⊎ {tops | s ∈ S}, {l → r | 〈l → r, p〉 ∈ Racc})

In the transformation rewrite rules are iteratively created and collected in
Rtmp (temporary rules). Those rules that are Π-stable and will thus be present
in the final transformed system are collected in Racc (accepted rules).

Lemma 5. Let R be a rewrite system and Π be a set of forbidden (linear h-
)patterns. If s →R,Π t for ground terms s and t, then top(s) → top(s) in
T (R,Π).

Theorem 2. Let R be a TRS and Π be a set of linear here-patterns. We have
s →+

Π t for ground terms s and t if and only if top(s) →+
T (R,Π) top(t).

Proof. The result is a direct consequence of Lemmata 3 and 5.

Corollary 1. Let R be a TRS and Π be a set of linear h-patterns. R is ground
terminating under Π if and only if T (R,Π) is ground terminating.

Note that the restriction to ground terms is crucial in Corollary 1. More-
over, ground termination and general termination do not coincide in general for
rewrite systems with forbidden patterns (observe that the same is true for other
important rewrite restrictions and strategies such as the outermost strategy).

Example 10. Consider the TRS R = (F , R) given by F = {a, f} (where a is
a constant) and R consisting of the rule

f(x) → f(x).

Moreover, consider the set of forbidden patterns Π = {〈f(a), ǫ, h〉, 〈f(f(x)), ǫ, h〉}.
Then R is not Π-terminating because we have f(x) →Π f(x) but it is Π-
terminating on all ground terms, as can be shown by Theorem 2, since T (R,Π) =
∅.

Example 11. Consider the TRS of Example 2. We use two sorts NatList and
Nat, with function symbol types 2nd : NatList → Nat, inf : Nat → NatList,
top : NatList → NatList (note that another “top” symbol of type Nat → Nat
is not needed here), s : Nat → Nat, 0 : Nat, nil : NatList and : of type
Nat, NatList → NatList. According to Definition 9, the rules of T (R,Π) are:

2nd(inf(x)) → 2nd(x : inf(s(x))) 2nd(x : (y : zs)) → y

top(inf(x)) → top(x : inf(s(x))) 2nd(x′ : inf(x)) → 2nd(x′ : (x : inf(s(x))))
top(x′ : inf(x)) → top(x′ : (x : inf(s(x)))).

This system is terminating (and termination can be verified automatically, e.g.
by AProVE [12]). Hence, by Corollary 1 also the TRS with forbidden patterns
from Example 2 is ground terminating.

13

Example 12. The TRS R and forbidden patterns Π from Example 3 yield the
following system T (R,Π). For the sake of saving space we abbreviate app by a,
take by t and inf by i.

top(i(x)) → top(x : i(s(x))) t(y, i(x)) → t(y, x : i(s(x)))
a(y, i(x)) → a(y, x : i(s(x))) top(a(i(x), y)) → top(a(x : i(s(x)), y))

t(a(i(x), y), z) → t(a(x : i(s(x)), y), z) t(z, a(i(x), y)) → t(z, a(x : i(s(x)), y))
a(a(i(x), y), z) → a(a(x : i(s(x)), y), z) a(z, a(i(x), y)) → a(z, a(x : i(s(x)), y))

top(a(x : xs, ys)) → top(x : a(xs, ys)) t(z, a(x : xs, ys)) → t(z, x : a(xs, ys))
a(a(x : xs, ys), z) → a(x : a(xs, ys), z) a(z, a(x : xs, ys)) → a(z, x : a(xs, ys))

a(x : i(zs), ys) → x : a(i(zs), ys) a(x : s(zs), ys) → x : a(s(zs), ys)
a(x : (y : zs), ys) → x : a(y : zs, ys) a(nil, x) → x

t(s(x), y : ys) → t(x, ys) t(0, y : ys) → y

t(x, nil) → 0

This system is terminating (and termination can be verified automatically,
e.g. by AProVE [12]). Hence, again by Corollary 1 also the TRS with forbidden
patterns from Example 3 is ground terminating.

6 Conclusion and Related Work

We have presented and discussed a novel approach to rewriting with context
restrictions using forbidden patterns to specify forbidden/allowed positions in a
term rather than arguments of functions as it was done previously in context-
sensitivity. Thanks to their flexibility and parametrizability, forbidden patterns
are applicable to a wider class of TRSs than traditional methods. In particular,
position-based strategies and context-sensitive rewriting occur as special cases
of such patterns.

For the TRSs in Examples 1 and 3 nice operational behaviours can be
achieved by using rewriting with forbidden patterns. The restricted reduction
relation induced by the forbidden patterns is terminating while still being pow-
erful enough to compute (head-) normal forms. When using simpler approaches
such as position-based strategies or context-sensitive rewriting in these exam-
ples, such operational properties cannot be achieved. For instance, consider
Example 1. There is an infinite reduction sequence starting from inf(x) with
the property that every term has exactly one redex. Thus, non-termination
is preserved under any reduction strategy (as strategies do not introduce new
normal forms by definition). On the other hand, in order to avoid this infi-
nite sequence using context-sensitive rewriting, we must set 2 6∈ µ(:) (regardless
of any additional reduction strategy). But in this case →µ does not compute
head-normal forms.

In [15] on-demand rewriting was introduced, which is able to properly deal
with the TRS of Example 1. This means that with the on-demand rewriting the
reduction relation induced by the TRS of Example 1 can be restricted in a way
such that it becomes terminating while still normal forms w.r.t. the restricted
relation are head-normal forms w.r.t. the unrestricted one. Indeed, Example 1

14

was the main motivating example for the introduction of on-demand rewriting
in [15].

However, for Example 3 we get that by restricting rewriting by the proposed
forbidden patterns we obtain a terminating relation that is able to compute the
normal forms of all well-formed ground terms. As the system is orthogonal,
any outermost-fair reduction strategy, e.g. parallel outermost, is normalizing.
Yet, by using such a strategy the relation still remains non-terminating. In
particular, our forbidden patterns approach yields an effective procedure for
deciding whether a ground term is normalizing or not (it is not normalizing if
its →Π-normal form is not an →-normal form) for this example.

On the other hand, by using context-sensitive rewriting, termination can
only be obtained if 2 6∈ µ(:) which in turn implies that the term 0 : app(nil, nil)
cannot be normalized despite having a normal form 0 : nil.

For Examples 1 and 3 effective strategies like parallel outermost or Sω of [3]
are normalizing (though under either strategy there are still infinite derivations).
We provide another example for which these strategies fail to provide normaliza-
tion while the use of appropriate forbidden patterns yields normalization (and
termination)

Example 13. Consider the TRS R consisting of the following rules

a → b b → a c → c
g(x, x) → d f(b, x) → d

Using a parallel outermost strategy the term g(a, b) is not reduced to its (unique)
normal form d. Using Sω, f(a, c) is not reduced to its (unique) normal form d.

However, it is easy to see that when using a Π = {〈c, ǫ, h〉, 〈b, ǫ, h〉}, →Π is
terminating and all R-normal forms can be computed.

Note however, that the forbidden patterns used in Example 13 are not canon-
ical. Thus it is not clear how to come up with such patterns automatically.

We argued that for our forbidden pattern approach it is crucial to identify
reasonable classes of patterns that provide trade-offs between practical feasibil-
ity, simplicity and power, favoring either component to a certain degree. We
have sketched and illustrated two approaches to deal with the issues of verify-
ing termination and guaranteeing that it is possible to compute useful results
(in our case original head-normal forms) with the restricted rewrite relation.
To this end we proposed a transformation from rewrite systems with forbidden
patterns to ordinary rewrite systems and showed that ground termination of
both induced reduction relations coincide. Moreover, we provided a criterion
based on canonical rewriting with forbidden patterns to ensure that normal
forms w.r.t. the restricted reduction relation are original head-normal forms.

In particular “here”-patterns seem interesting as their use avoids context
restrictions to be non-local. That is to say that whether a position is allowed
for reduction or not depends only on a restricted “area” around the position in
question regardless of the actual size of the whole object term. Note that this

15

is not true for ordinary context-sensitive rewriting and has led to various com-
plications in the theoretical analysis (cf. e.g. [11, Definition 23] [1, Definition
7] and [13, Definitions 1-3]).

Regarding future work, among many interesting questions and problems
one particularly important aspect is to identify conditions and methods for
the automatic (or at least automatically supported) synthesis of appropriate
forbidden pattern restrictions.

Acknowledgements: We are grateful to the anonymous referees for numerous
helpful and detailed comments and criticisms.

References

[1] B. Alarcón, F. Emmes, C. Fuhs, J. Giesl, R. Gutiérrez, S. Lucas,
P. Schneider-Kamp and R. Thiemann. Improving context-sensitive de-
pendency pairs. In I. Cervesato, H. Veith and A. Voronkov, eds.,
Proc. LPAR’08, Doha, Qatar, November 22-27, 2008, LNCS 5330, pp. 636–
651. Springer, 2008.

[2] M. Alpuente, S. Escobar, B. Gramlich and S. Lucas. On-demand strat-
egy annotations revisited: An improved on-demand evaluation Strategy.
Theoretical Computer Science, 411(2):504–541, 2010.

[3] S. Antoy and A. Middeldorp. A sequential reduction strategy. Theoretical
Computer Science, 165(1):75–95, 1996.

[4] F. Baader and T. Nipkow. Term rewriting and All That. Cambridge Uni-
versity Press, 1998.

[5] M. Bezem, J. Klop, and R. de Vrijer, eds. Term Rewriting Systems. Cam-
bridge Tracts in Theoretical Computer Science 55. Cambridge University
Press, Mar. 2003.

[6] F. Durán, S. Lucas, C. Marché, J. Meseguer and X. Urbain. Proving op-
erational termination of membership equational programs. Higher-Order
and Symbolic Computation, 21(1-2):59–88, 2008.

[7] S. Eker. Term rewriting with operator evaluation strategies. Electr. Notes
Theor. Comput. Sci., 15:311–330 (Proc. WRLA’98, Abbaye des Prémontrés
at Pont-à-Mousson, France, September 1998, C. Kirchner and H. Kirchner,
eds.), 1998.

[8] J. Endrullis and D. Hendriks. From outermost to context-sensitive rewrit-
ing. In R. Treinen, ed., Proc. RTA’09, Brasilia, Brazil, June 29 - July 1,
2009, LNCS 5595, pp. 305–319, Springer, June 2009.

16

[9] W. Fokkink, J. Kamperman and P. Walters. Lazy rewriting on eager
machinery. ACM Transactions on Programming Languages and Systems
(TOPLAS), 22(1):45–86, 2000.

[10] K. Futatsugi, J. Goguen, J.-P. Jouannaud and J. Meseguer. Principles
of OBJ2. In Conference Record of the 12th Annual ACM Symposium on
Principles of Programming Languages (POPL’85), pp. 52–66. ACM Press,
1985.

[11] J. Giesl and A. Middeldorp. Transformation techniques for context-
sensitive rewrite systems. Journal of Functional Programming, 14(4):379–
427, Jul. 2004.

[12] J. Giesl, P. Schneider-Kamp and R. Thiemann AProVE 1.2: Automatic
termination proofs in the dependency pair framework. In U. Furbach and
N. Shankar , eds., Proc. IJCAR’06, Seattle, Wasington, USA, August 17-
20, 2006, LNCS 4130, pp. 281–286. Springer, 2006.

[13] B. Gramlich and S. Lucas. Generalizing Newman’s Lemma for left-linear
rewrite systems. In F. Pfenning, ed., Proc. RTA’06, Seattle, Washington,
USA, August 12-14, 2006, LNCS 4098, pp. 66–80. Springer, 2006.

[14] S. Lucas. Context-sensitive computations in functional and functional logic
programs. Journal of Functional and Logic Programming, 1998(1), Jan.
1998.

[15] S. Lucas. Termination of on-demand rewriting and termination of OBJ
programs. In Proc. PPDP’01, September 5-7, 2001, Florence, Italy, pp. 82–
93. ACM, 2001.

[16] S. Lucas. Context-sensitive rewriting strategies. Information and Compu-
tation, 178(1):294–343, 2002.

[17] S. Lucas. Lazy rewriting and context-sensitive rewriting. Electr. Notes
Theor. Comput. Sci. 64:234–254 (Proc. WFLP’01, Kiel, Germany, Septem-
ber 13-15, 2001, Selected Papers, M. Hanus, ed.), 2002.

[18] M.J. O’Donnell. Computing in systems described by equations. LNCS 58,
Springer, 1977.

[19] F. Schernhammer and B. Gramlich. Termination of lazy rewriting revis-
ited. Electronic Notes in Theoretical Computer Science, 204:35–51 (Final
Proc. WRS’07, Jürgen Giesl, ed.), Apr. 2008.

[20] F. Schernhammer and B. Gramlich. Characterizing and proving operational
termination of deterministic conditional term rewriting systems. Journal
of Logic and Algebraic Programming, Selected revised papers of NWPT’08,
to appear, 2009.

17

[21] F. Schernhammer and B. Gramlich. VMTL – a modular termination lab-
oratory. In R. Treinen, ed., Proc. RTA’09, Brasilia, Brazil, June 29 - July
1, 2009, LNCS 5595, pp. 285–294, Springer, June 2009.

[22] F. Schernhammer and B. Gramlich. On some implementation aspects of
VMTL. In A. Geser and J. Waldmann, eds., Proc. WST’09, Leipzig, Ger-
many, pp. 72-75, June 2009.

A Appendix – Missing Proofs

Lemma 1. Let R = (F , R) be a left-linear TRS with canonical (hence, in
particular simple) forbidden patterns ΠF . Moreover, let s be a partial redex
w.r.t. to the left-hand side of some rule l with witness l′ such that l|p 6∈ V but
l′|p ∈ V . Then in the term C[s]q the position q.p is allowed by ΠF for reduction
provided that q is allowed for reduction.

Proof. Assume on the contrary that q.p is forbidden in C[s]q. As position q is
allowed this means that there is a forbidden pattern 〈t, o, λ〉, such that λ ∈ {h, b}
and t matches C[s]q at some position q′ and q < q′.o ≤ q.p. Assume λ = b. As s
partially matches l, we have that root(s|p′) = root(l|p′) for all p′ < p. Hence, as
all positions parallel to p are variable positions in t (due to simplicity of Π) and
t is linear, we have that either t|o′ unifies with l[x]p for some position o′ such
that o′.p > o (if q′ ≤ q), or t unifies with l[x]p|o′ such that p > o′.o (if q′ > q).
Either way, we get a contradiction to the canonicity of Π (cf. Definition 4). The
case where λ = h is analogous.

Theorem 1. Let R = (F , R) be a left-linear TRS with canonical and simple
forbidden patterns ΠF . Then →R,ΠF

-normal forms are →R-head-normal forms.

Proof. For a proof by minimal counterexample assume s is an →R,ΠF
-normal

form, but not a →R-head-normal form, and has minimal depth.
If the depth of s is 0 then it is either a constant or a variable. In case it is

a variable, it is a →R-head-normal form. Otherwise, if it is a constant and not
→R-head-normal, then it is not a →R,ΠF

-normal form, because only patterns
of the shape 〈 , ǫ, h〉 can forbid root reduction steps and these are not simple
(cf. Definition 3).

Note that s cannot be an R-redex itself, because in this case it would also
be →R,ΠF

-reducible, as there are no 〈 , ǫ, h〉-patterns.
Now assume the depth of s is greater than 0. Since the term s is not an

→R-head-normal form, there exists a reduction sequence S : s
>ǫ
→

∗

R t = lσ.
Hence, s is a partial redex and there is some maximal subterm s|p of s where
p ∈ PosF (l) that is not an →R-head-normal form (otherwise s would be a redex
because of left-linearity of R). According to the minimality of s, s|p must be
→R,ΠF

-reducible.
Thus, as s is not →R,ΠF

-reducible, there must be some forbidden pattern
〈t, o, λ〉, where t matches s at some position q < p and forbids the reduction of

18

some position q.o ≥ p (because of Lemma 1). We distinguish two cases. First, if
s|p is a redex, then s is →R,ΠF

-reducible because position p cannot be forbidden
in s according to Lemma 1.

Second, if s|p is not a redex, then it is a partial redex w.r.t. to some l → r ∈ R
and contains a maximal proper subterm s|p′ (p′ > p) which is →R,ΠF

-reducible
and not a →R-head-normal form. Again position p′ cannot be forbidden in s
according to Lemma 1. Thus, again either s|p′ is a redex implying →R,ΠF

-
reducibility of s or it contains a →R,ΠF

-reducible proper subterm s|q′′ .
Eventually, either an allowed redex in s is found or there is some subterm

s|p(n) of s such that |p(n)| − |p| > n where n is the maximal term depth of

all forbidden patterns. Thus, s is reducible below p(n) if and only if s|p is
reducible below o where p.o = p(n). Since s|p is reducible below o (because by
our construction this reduction step is necessary to head-normalize s|p), we have
a contradiction to s being irreducible w.r.t. →Π.

Propositions in Example 7. Consider the TRS with R and forbidden pat-
terns Π from Example 3. We will prove below that R is Π-terminating (cf.
Example 12). Furthermore we are able to show that every well-formed ground
term that is reducible to a normal form in R is reducible to the same normal
form with →R,Π and that every →R-normal form is root-stable w.r.t. →R.

Proof. Regarding root-stability of →R,Π-normal forms, assume on the contrary
that there is a non-root stable →R,Π normal-form s of minimal term depth.
Since s is non-root-stable, root(s) ∈ {app, inf, take}. The immediate subterms
of s are reducible (in R) to terms such that eventually s becomes a redex. Each
of these relevant terms is rooted by a constructor, hence if s is not a redex
then some immediate subterm of s is not root-stable. Moreover, this subterm is
also a →R,Π-normal form as no forbidden pattern term in Π has a defined root
symbol. Thus, we have a contradiction to minimality of s.

Regarding the power of →R,Π to compute R-normal forms, assume on the
contrary that there is a well-formed ground Π-normal form s that is reducible
to an R-normal form t 6= s in R, and that s has minimal depth among all such
terms.

First, note that no well-formed ground R-normal form t can contain a de-
fined symbol, as all functions are completely defined over ground constructor
arguments of the respective types (otherwise, any subterm of t rooted by some
innermost defined symbol would have to be reducible, thus contradicting R-
irreducibility of t).

Let f = root(s|p) be an outermost defined symbol in s. First, f cannot be inf,
as in this case s would not be →R-normalizing. Second, assume f = root(s|p) =
take. As take is not part of any forbidden pattern term the immediate subterms
of s|p must be →R,Π normal-forms and thus root-stable. Hence, as s|p must
eventually be reducible in some R-reduction and all immediate subterms of s|p
are root-stable (and root(s|p) is an outermost defined symbol in s) s|p itself
must be a redex and we get a contradiction to s being a →R,Π normal form,
because no take-rooted redex is forbidden by Π.

19

Finally, assume f = app. We distinguish two cases. First, assume s|p is not
forbidden for reduction by Π. Then either, s|p is an app-rooted →R,Π-normal
form that is reducible in R to an R-normal form (remember that there are
no defined symbols in s above p) which is a contradiction (as this R-normal
form must be rooted by a constructor and s|p can thus not be root-stable).
Otherwise, s|p has the form app(inf(s1), s2) which is non-normalizing, hence we
get a contradiction to our assumption of s being R-normalizable.

Second, assume s|p is forbidden in s. thus s = C[s1 : app(s2 : app(s3, s4), s5)]q
where q.1 = p and root(C|o) is a constructor for all o ≤ q. In this case we take
a closer look at the inner app-term, i.e. at s|p.1.2. Again this subterm could be
forbidden by Π or allowed. We investigate the general case of having several
nested app-symbols, i.e. where s has the shape C[s1 : app(s2 : app(s3 : app(s4 :
. . . app(sn, s′n)), . . .), s′4), s

′
3), s

′
2)] and sn is not matched by x : app(y, z). Thus

app(sn, s′n) is not forbidden for reduction by Π. Either sn is rooted by inf in
which case it is easy to see that s is not R-normalizing, or sn is a →R,Π normal
form in which case it must be rooted by : or nil, because it must be reducible to
a :-rooted term or nil in R in a normalizing reduction of s, since the app-symbol
cannot be erased. In the latter case s would not be a →R,Π normal form, as
the innermost (indicated) app term would be reducible and we would have a
contradiction.

Lemma 2. Let 〈l → r, p〉 be a rewrite rule and let Π be a set of forbidden
patterns. The set of (many-step) instantiations and embeddings of 〈l → r, p〉
(i.e. T ∗(〈l → r, p〉)) is finite.

Proof. Assume towards a contradiction that T ∗(〈l → r, p〉)) were infinite. Each
rule from T ∗(〈l → r, p〉)) has the form 〈C[l]qσ → C[r]qσ, q.p〉 for some context
C and some substitution σ. Now infinity of T ∗(〈l → r, p〉)) implies that the
term depth of its terms is not bounded. Thus, it either contains rules 〈C[l]qσ →
C[r]qσ, q.p〉 where the term depth of xσ is n for arbitrarily high n and some
(fixed) x, or it contains rules 〈C[l]qσ → C[r]qσ, q.p〉 where |q| is arbitrarily big.

We investigate both cases. First, assume there is some variable x such
that the term depth of xσ is not bounded in T ∗(〈l → r, p〉)). Let 〈C[l]qσ →
C[r]qσ, q.p〉 be a rule such that the term depth of xσ = n for some x ∈
V ar(C[l]q) where n > max〈u,o,h〉∈Π(depth(u)). As the term depth of xσ is
not bounded in T ∗(〈l → r, p〉)), some rule of this shape must have a one-step T -
successor 〈C[l]qσ

′ → C[r]qσ
′, q.p〉 with depth(xσ′) > depth(xσ). Say σ′ = σσ′′,

yσ′′ 6= y and xσ|r = y with depth(r) = n. Thus, according to Definition 6,
y ∈ RVΠ(C[l]q, q.p). Therefore, C[l]qσ|q′θ = uθ for some 〈u, o, h〉 ∈ Π with
q′ ≤ p.q and yθ 6= y. However, because of linearity of u this means u|p′′ is
non-variable where p′′ = q′′.r for some q′′. However this contradicts the fact
that the term depth of u is smaller than n = |r|.

Second, assume we have rules 〈C[l]qσ → C[r]qσ, q.p〉 with arbitrarily high |q|.
Let 〈C[l]qσ → C[r]qσ, q.p〉 be a rule such that |q| = n where
n > max〈u,o,h〉∈Π(depth(u)). Some rule of this shape must have a one-step

20

T -successor 〈C[l]q′σ → C[r]q′σ, q.p〉 with |q′| > |q|. Thus, according to Defini-
tion 6 there is a forbidden pattern 〈u, o, h〉 ∈ Π such that u|p′ = l and o = p′.q.p
which contradicts |o| < |q|.

Lemma 3. Let Π be a set of forbidden patterns and let 〈l′ = C[lσ]p → C[rσ]p =
r′, p〉 be a Π-stable rewrite rule corresponding to l → r. If s → t with l′ → r′,
then s →Π t with l → r.

Proof. Suppose s = s[l′θ]q → s[r′θ]q = t. If s|q.p were forbidden for reduction
by Π (say through a forbidden pattern 〈u, o, h〉), then s|p′ = uθ′ and q.p = p′.o.
This is a direct contradiction to the fact that l′ → r′ is Π-stable according to
Definition 7.

Lemma 4. Let 〈l → r, p〉 be a rule and Π be a set of forbidden patterns. If
T (〈l → r, p〉) = ∅, then 〈l → r, p〉 is either Π-stable or Π-obsolete.

Proof. Assume 〈l → r, p〉 is neither Π-stable nor Π-obsolete. Then, there exist
a context C and a substitution σ such that C[lσ]q|q′ = uθ and q.p = q′.o for
some pattern 〈u, o, h〉 and on the other hand there is no pattern 〈u, o, h〉 such
that l|q = uθ and p = q.o. Hence, either C or σ are non-trivial (i.e. C 6= �

or xσ 6= x for some x). Assume C is non-trivial, then there exists a pattern
〈u, o, h〉 with u|qθ = lθ, q 6= ǫ and o = q.p, hence T e

Π(〈l → r, p〉) 6= ∅ and we get
a contradiction.

On the other hand assume σ is non-trivial and C is trivial (say xσ 6= x).
Then x ∈ RVΠ(l, p) and thus T i

Π(〈l → r, p〉) 6= ∅. Hence we get a contradiction
as well.

Lemma 5. Let R be a rewrite system and let Π be a set of forbidden (linear
h-)patterns. If s →R,Π t for ground terms s and t, then top(s) → top(s) in
T (R,Π).

Proof. Assume the step s →Π t occurs at position p with rule l → r. If 〈l → r, ǫ〉
is Π-stable, we have top(s) → top(t) with l → r at position 1.p and the claim
holds. 〈l → r, ǫ〉 cannot be Π-obsolete, since this would contradict the fact that p
is allowed in s according to Π. Thus, according to Lemma 4, T (〈l → r, ǫ〉) is non-
empty and thus in particular contains a rule 〈l′ → r′, p′〉 such that top(s)|q = l′σ
and 1.p = q.p′, since all possible instantiations and embeddings are covered
by T (note that the rule is also embedded in the top(�)-context). This rule
cannot be Π-obsolete, as this would imply that p is a forbidden position in s,
because l′ matches (a subterm of) top(s) and thus a forbidden pattern matching
l′ would also match s (note that forbidden pattern terms do not contain top).
Hence, again either the rule is Π-stable in which case we use it for the reduction
top(s) →T (R) top(t) or it is further instantiated and embedded. By repetition
we obtain new sets of rules each containing rules whose left-hand sides match
top(s) and thus are not Π-obsolete. By Lemmata 4 and 2 eventually one of
these rules must be Π-stable and thus be in T (R,Π). Hence we finally get
top(s) →T (R,Π) top(t).

21

