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Abstract

We investigate the practically crucial property of operational termi-
nation of deterministic conditional term rewriting systems (DCTRSs), an
important declarative programming paradigm. We show that operational
termination can be equivalently characterized by the newly introduced no-
tion of context-sensitive quasi-reductivity. Based on this characterization
and an unraveling transformation of DCTRSs into context-sensitive (un-
conditional) rewrite systems (CSRSs), context-sensitive quasi-reductivity
of a DCTRS is shown to be equivalent to termination of the resulting
CSRS on original terms (i.e. terms over the signature of the DCTRS).
This result enables both proving and disproving operational termination
of given DCTRSs via transformation into CSRSs. A concrete procedure
for this restricted termination analysis (on original terms) is proposed and
encouraging benchmarks obtained by the termination tool VMTL, that
utilizes this approach, are presented. Finally, we show that the context-
sensitive unraveling transformation is sound and complete for collapse-
extended termination, thus solving an open problem of [Duran et al. 2008].

1 Introduction and Overview

Conditional term rewriting systems (CTRSs) are a natural extension of un-
conditional such systems (TRSs) allowing rules to be guarded by conditions.
Conditional rules tend to be very intuitive and easy to formulate and are there-
fore used in several declarative programming and specification languages, such
as Maude [9] or ELAN [8]. Here we focus on the particularly interesting class of
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deterministic (oriented) CTRSs (DCTRSs) which allows for extra variables in
conditions and right-hand sides to some extent (corresponding to let-constructs
or where-clauses in other functional-(logic) languages) and has been used for
instance in proofs of termination of (well-moded) logic programs [15] (cf. also
[31, 33]).

When analyzing the termination behaviour of conditional TRSs, it turns out
that the proof-theoretic notion of operational termination [24] is more adequate
than ordinary termination in the sense that practical evaluations w.r.t. oper-
ationally terminating DCTRSs always terminate (which is indeed not true for
other similar notions like effective termination [31]).

Example 1. Consider the following DCTRS R.

a → b ⇐ a →∗ b

The induced rewrite relation is empty and thus in particular well-founded and
decidable. Hence, R is effectively terminating (cf. [31]). On the other hand a
naive algorithm recursively evaluating conditions of conditional rules in order
to check applicability might loop. This is taken into account in the notion of
operational termination. Indeed R is not operationally terminating.

For the analysis of operational termination of DCTRSs the equivalent prop-
erty of quasi-decreasingness is usually used [24]. In [31], [30], based on the idea
of unravelings of [26], a transformation from DCTRSs into TRSs is proposed
such that termination of the transformed TRS implies quasi-reductivity of the
given DCTRS which in turn implies its quasi-decreasingness.

We propose an alternative definition of quasi-reductivity using context-sensi-
tivity ([22]), that will be proved to be equivalent to operational termination of
DCTRSs. Furthermore, we use a simple modification of Ohlebusch’s transfor-
mation ([31]) that allows us to completely characterize the new property of
context-sensitive quasi-reductivity of a DCTRS by means of termination of the
context-sensitive (unconditional) TRS, that is obtained by the transformation,
on original terms (i.e. terms over the signature of the DCTRS).

This complete characterization yields a method for disproving operational
termination of DCTRSs by disproving termination of CSRSs on original terms.
Moreover, we will show that the proposed transformation is sound and complete
with respect to collapse-extended termination even if this notion is not restricted
to original terms in the transformed system. As a corollary we obtain modularity
of collapse-extended operational termination of DCTRSs.

Finally, we present an approach, which is based on the dependency pair
framework of [18] (cf. also [5]), for proving termination of a CSRS on original
terms, thus exploiting the given equivalence result. This approach has been
implemented in the tool VMTL ([32])1 and evaluated on a set of 24 examples.
Several of these examples, where other existing approaches fail, could be shown
to be operationally terminating thanks to the new method.2

1http://www.logic.at/vmtl/
2First partial results of the current approach were presented at WST 2007, and some

progress was reported at NWPT 2008.
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For the sake of readability, only selected proofs will be presented inline. All
other proofs can be found in the appendix.

2 Preliminaries

We assume familiarity with the basic concepts and notations of term rewriting
and context-sensitive rewriting (cf. e.g. [6], [7] and [22]). Throughout the paper
we assume that all CTRSs, CSRSs and TRSs (i.e., their induced reduction
relations) are finitely branching.

By Var(t) we denote the set of variables occurring in the term t. Varµ(t) de-
notes the set of replacing variables and Varµ(t) the set of non-replacing variables
w.r.t. a replacement map µ of t.

Conditional Rewriting We are concerned with oriented 3-CTRSs. Such
systems consist of conditional rules l → r ⇐ c, with c being of the form s1 →∗

t1, . . . , sn →∗ tn such that l is not a variable and Var(r) ⊆ Var(l) ∪ Var(c).
The conditional rewrite relation induced by a CTRS R is inductively defined
as follows: R0 = ∅, Rj+1 = {lσ → rσ | l → r ⇐ s1 →∗ t1, . . . , sn →∗ tn ∈
R ∧ siσ →∗

Rj
tiσ for all 1 ≤ i ≤ n}, and →R=

⋃

j≥0 →Rj
. We say that a

reduction step s →R t has depth i if s →Ri
t and s 6→Rj

t for all j < i.
A deterministic CTRS (DCTRS) is an oriented 3-CTRS where for each rule

l → r ⇐ s1 → t1, . . . , sn → tn it holds that Var(si) ⊆ Var(l) ∪
⋃i−1

j=1 Var(tj).
A DCTRS (Σ, R) is called quasi-reductive, cf. [31], [15], if there exists an

extension Σ′ of Σ and a well-founded partial order ≻ on T (Σ′, V ), which is
monotonic, i.e., closed under contexts, such that for every rule l → r ⇐ s1 →∗

t1, . . . , sn →∗ tn ∈ R, every σ : V → T (Σ′, V ) and every i ∈ {0, . . . , n − 1}:

• If sjσ � tjσ for every 1 ≤ j ≤ i, then lσ ≻st si+1σ.

• If sjσ � tjσ for every 1 ≤ j ≤ n, then lσ ≻ rσ.

Here ≻st= (≻ ∪ ⊲)+ (⊲ denotes the proper subterm relation).
A DCTRS R = (Σ, R) is quasi-decreasing [31] if there is a well-founded

partial ordering ≻ on T (Σ, V ), such that →R ⊆ ≻, ≻ = ≻st, and for every
rule l → r ⇐ s1 →∗ t1, . . . , sn →∗ tn ∈ R, every substitution σ and every
i ∈ {0, . . . , n − 1} it holds that sjσ →∗

R tjσ for all j ∈ {1, . . . , i} implies
lσ ≻ si+1σ.

In [24] the notion of operational termination of (D)CTRSs is defined via the
absence of infinite well-formed trees in a certain logical inference system. In the
case of DCTRSs, this notion is shown to be equivalent to quasi-decreasingness
[24].

The latter notions are related as follows ([31], [24]):

quasi-reductivity ⇒ quasi-decreasingness ⇔ operational termination
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Context-Sensitive Narrowing and Orderings Given a CSRS R = (Σ, R)
with replacement map µ, the relation of context-sensitive narrowing (written
 

µ
R) is defined as t 

µ
R s if there is a replacing non-variable position p in t such

that t|p and l unify (l → r ∈ R and we assume that t and l → r do not share
any variables) with mgu θ and s = t[r]pθ. We say that s is a one-step, context-
sensitive narrowing of t. Note that in contrast to ordinary rewriting, here we
allow for rules in R to have extra variables in the right-hand sides and variable
left-hand sides. The reason for this general definition of narrowing is that we
are going to use a backward narrowing relation that is induced by reversing all
rules of a TRS (cf. Lemma 7 and Definition 13 below).

An ordering ≻ on terms T (Σ, V ) is called µ-monotonic if f is monotonic in
its ith argument whenever i ∈ µ(f) for all f ∈ Σ, i.e.,

si ≻ ti ⇒ f(s1, . . . , si−1, si, si+1 . . . , sn) ≻ f(s1, . . . , si−1, ti, si+1 . . . , sn).

Context-Sensitive Dependency Pairs ([1] , cf. also [3, 2, 23]) Given a
TRS R = (Σ, R), the signature Σ is partitioned into its defined and constructor
symbols D ⊎ C, where the defined symbols are exactly those that occur as root
symbols of the left-hand sides of rules in R. A term t is hidden w.r.t. to a CSRS
(R = ((D ⊎ C, R), µ)) if root(t) ∈ D and t appears non-µ-replacing in the right-
hand side of a rule of R. Moreover, we say that a function f hides a position
i if there is a rule l → r ∈ R such that some term f(r1, . . . , ri, . . . , rn) occurs
at a non-replacing position of r, i ∈ µ(f) and ri contains a defined symbol or a
variable at a replacing position.

The set of context-sensitive dependency pairs ([1]) of a CSRS (R, µ), denoted
DP (R, µ), is DPo(R, µ) ∪ DPu(R, µ) where

DPo(R, µ) = {l♯ → s♯ | l → r ∈ R, r Dµ s, root(s) ∈ D, l 6⊲µ s}

and DPu(R, µ) is the union of the following “unhiding” dependency pairs:

• {l♯ → D♯(x) | l → r ∈ R, x ∈ Varµ(r) − Varµ(l)},

• D♯(f(x1, . . . , xi, . . . , xn)) → D♯(xi) for every function symbol f of any
arity n and every 1 ≤ i ≤ n where f hides position i, and

• D♯(t) → t♯ for every hidden term t.

Here, t♯ denotes the term f ♯(t1, . . . , tn), if t = f(t1, . . . , tn) and f ♯ is a new
dependency pair symbol. Moreover, D♯ is a fresh function symbol. The relation
Dµ is defined as sDµ t if s = s[t]p and p ∈ Posµ(t).

We denote by Σ♯ the signature Σ plus all dependency pair symbols plus the
new symbol D♯. The replacement map µ is extended into µ♯ where µ♯(f) = µ(f)
if f ∈ Σ, µ♯(f ♯) = µ(f) if f ♯ is a dependency pair symbol and µ(D♯) = ∅.

Let DP and R be TRSs and µ be a replacement map for their combined
signature. A (possibly infinite) sequence of rules s1 → t1, s2 → t2, . . . from DP

is a (DP,R, µ)-chain if there is a substitution σ, such that tiσ →∗
R,µ si+1σ for

all i > 0. We say that σ enables the chain s1 → t1, s2 → t2, . . .
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We call a triple (DP,R, µ), where DP and R are TRSs and µ is a replace-
ment map for the combined signatures of DP and R, a (context-sensitive) de-
pendency pair problem (CS-DP-problem). A context-sensitive dependency pair
problem is finite if there is no infinite (DP,R, µ)-chain.

A CSRS (R, µ) is µ-terminating if and only if the dependency pair problem
(DP (R, µ),R, µ) is finite ([1]).

3 Context-Sensitive Quasi-Reductivity

The goal of this work is to provide methods for proving operational termination
of DCTRSs. We define the notion of context-sensitive quasi-reductivity, which
is equivalent to operational termination (cf., Corollary 4 below), and the key to
several main results of this paper.

Definition 1 (context-sensitive quasi-reductivity). A DCTRS R (R = (Σ, R))
is called context-sensitively quasi-reductive ( cs-quasi-reductive) if there is an
extension of the signature Σ′ (Σ′ ⊇ Σ), a replacement map µ (s.t. µ(f) =
{1, . . . , ar(f)} for all f ∈ Σ) and a µ-monotonic, well-founded partial order ≻µ

on T (Σ′, V ) satisfying for every rule l → r ⇐ s1 →∗ t1, . . . , sn →∗ tn, every
substitution σ : V → T (Σ, V ) and every i ∈ {0, . . . , n − 1}:

• If sjσ �µ tjσ for every 1 ≤ j ≤ i then lσ ≻st
µ si+1σ.

• If sjσ �µ tjσ for every 1 ≤ j ≤ n then lσ ≻µ rσ.

The ordering ≻st
µ is defined as (≻µ ∪ ⊲µ)+ where t ⊲µ s if and only if s is

a proper subterm of t at some position p ∈ Posµ(t). Moreover � = (≻ ∪ =).

To be entirely precise, the notion of cs-quasi-reductivity should be parame-
terized by the set of function symbols that may not be restricted by the replace-
ment map µ. However, as throughout the paper this set of function symbols is
the set of functions of the signature of the DCTRS in question, we refrain from
giving a reference to this parameter in the notion cs-quasi-reductivity for the
sake of simplicity.

Cs-quasi-reductivity generalizes quasi-reductivity in the sense that the ex-
tended signature may be equipped with a replacement map (which must leave
the original signature untouched, though) and the monotonicity requirement
of the ordering is relaxed accordingly. Furthermore, and this is crucial, in the
ordering constraints for the conditional rules the substitutions replace variables
only by terms over the original signature, whereas in the original definition (of
quasi-reductivity) terms over the extended signature are substituted.

The latter generalization appears to be quite natural, since the main impli-
cations of quasi-reductivity remain valid (cf. Proposition 2). Moreover, it is the
key to the completeness results that we will prove (cf. Corollary 4).

Proposition 1. If a DCTRS R is quasi-reductive, then it is cs-quasi-reductive.

Proposition 2. If a DCTRS R is cs-quasi-reductive, then it is quasi-decreasing.
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Corollary 1. Let R be DCTRS. If R is cs-quasi-reductive, then it is opera-
tionally terminating.

4 Proving Context-Sensitive Quasi-Reductivity

In the following, we use a transformation from DCTRSs into CSRSs such that µ-
termination of the transformed CSRS implies cs-quasi-reductivity of the original
DCTRS. The transformation is actually a variant of the one in [31], which in
turn was inspired by [26, 27].3

Definition 2 (unraveling of DCTRSs, [31]). Let R be a DCTRS (R = (Σ, R)).
For every rule α : l → r ⇐ s1 →∗ t1, . . . , sn →∗ tn we use n new function
symbols Uα

i (i ∈ {1, . . . , n}). Then α is transformed into a set of unconditional
rules in the following way:

l → Uα
1 (s1,Var(l))

Uα
1 (t1,Var(l)) → Uα

2 (s2,Var(l), EVar(t1))

...

Uα
n (tn,Var(l), EVar(t1), . . . , EVar(tn−1)) → r

Here Var(s) denotes an arbitrary but fixed sequence of the set of variables of

the term s. Let EVar(ti) be Var(ti) \ (Var(l) ∪
⋃i−1

j=1 Var(tj)). By abuse of
notation, by EVar(ti) we denote an arbitrary but fixed sequence of the variables
in the set EVar(ti). Any unconditional rule of R is transformed into itself. The
transformed system U(R) = (U(Σ), U(R)) is obtained by transforming each rule
of R where U(Σ) is Σ extended by all new function symbols. In case R has only
one conditional rule α, we also write Ui instead of Uα

i .

Henceforth, we use the notion of U -symbols of a transformed signature,
which are function symbols from U(Σ) \ Σ. Moreover, by U -terms or U -rooted
terms we mean terms with a U -symbol as their root.

Next, we define the function tb, whose intended meaning is to undo non-
finished meta-evaluations, i.e., evaluations of the form s →∗

U(R) U(v1, ..., vl).
We call reductions of this shape meta-evaluations, because they are used for
the evaluation of encoded conditions. This evaluation does not have an explicit
counterpart in conditional rewrite sequences. The function tb and its properties
will play a crucial role in understanding and proving the main results of this
paper.

3Note that there exist also various other transformations from conditional to unconditional
TRSs in the literature, cf. e.g. [4], [34] and [19] for more recent ones. However, for our pur-
pose of analyzing operational termination of conditional systems, the chosen transformation
appears to be the most appropriate one, as other transformations typically focus on efficiency
in the simulation of conditional reductions and are thus more complicated and less suitable
for termination analysis.
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Definition 3. The mapping tb : T (U(Σ), V ) → T (Σ, V ) (read “translate back”)
which is equivalent to Ohlebusch’s mapping ▽ ([31, Definition 7.2.53]) is defined
by

tb(t) =























x if t = x ∈ V

f(tb(t1), . . . , tb(tl)) if t = f(t1, . . . , tl)
and f ∈ Σ

lσ if t = Uα
j (v1, v2, . . . , vk+1, . . . , vmj

)
and α = l → r ⇐ c

where Var(l) = x1, . . . , xk and σ is defined as xiσ = tb(vi+1) for 1 ≤ i ≤ k.
Note that from Definition 2 it follows that mj ≥ k + 1.

Informally, the mapping tb translates back an evaluation of conditions to
its start. Thus, tb(u) = u for every term u ∈ T (Σ, V ). Note that in general
s = tb(t) does not imply s →∗

U(R) t. The reason is that, for a term t =

Uα
j (v1, . . . , vl), the definition of tb(t) completely ignores the first argument t1

of Uα
j .

Example 2. Let R be a DCTRS consisting of one rule

f(x) → a ⇐ x → b

U(R) is given by the two rules

f(x) → U(x, x)

U(b, x) → a

Consider the term t = U(a, b). We have tb(t) = f(b) and clearly f(b) 6→∗
U(R)

U(a, b).

Informally, the term t = Uα
j (v1, . . . , vmj

) represents an intermediate state of
a reduction in U(R) issuing from an original term, i.e., a term from T (Σ, V ),
only if v1 can be obtained (by reduction in U(R)) from the corresponding in-
stance of the left-hand side of the corresponding condition of the applied con-
ditional rule α.

The transformation of Definition 2 is suitable for verifying quasi-reductivity
by proving termination of a TRS, as whenever the transformed system U(R)
is terminating, the original DCTRS R is quasi-reductive [31]. However, the
converse implication does not hold.

Example 3. ([26]) Consider the DCTRS R = (Σ, R) given by

a → c c → l h(x, x) → g(x, x, f(k))
a → d d → m g(d, x, x) → A

b → c k → l A → h(f(a), f(b))
b → d k → m α : f(x) → x ⇐ x →∗ e

c → e

7



The system U(R) = (U(Σ), U(R)) is given by U(Σ) = Σ∪{Uα
1 } and U(R) = R

except that rule α is replaced by the rules f(x) → Uα
1 (x, x) and Uα

1 (e, x) → x. R
is quasi-reductive (and thus operationally terminating) (cf. Example 7, below),
nevertheless U(R) is non-terminating ([31]).

Roughly speaking, the problem in Example 3 is that subterms at the second
position of Uα

1 are reduced, which is actually only supposed to “store” the
variable bindings for future rewrite steps. These reductions can be prevented
by using context-sensitivity. More precisely, we intend to forbid reductions of
subterms which occur at or below a second, third, etc. argument position of
an auxiliary U -symbol, according to the intuition that during the evaluation of
conditions, the variable bindings should remain untouched. This leads to the
following modification of the transformation, which has already been proposed
independently by several authors (e.g., [10], [29], [11]) with slight differences.4

Definition 4. (context-sensitive unraveling of a DCTRS) Let R = (Σ, R) be a
DCTRS. The context-sensitive rewrite system Ucs(R) uses the same signature
and the same rules as U(R). Additionally, a replacement map µUcs(R) is used
with µUcs(R)(U) = {1} if U ∈ U(Σ) \ Σ and µUcs(R)(f) = {1, . . . , ar(f)} if
f ∈ Σ.

For notational simplicity we refer to µUcs(R) just as µ if no confusion arises,
e.g. in “µ-termination of Ucs(R)”. Moreover, we omit an explicit reference to the
replacement map µUcs(R) if it is clear from the context, for instance in →Ucs(R)

reductions.
Consider the following reduction:

Ui(siσ
′, ~xiσi)

>ǫ
→

∗

Ucs(R) Ui(tiσ
′′, ~xiσi)

ǫ
→Ucs(R) Ui+1(si+1σ

′′′, ~xi+1σi+1)

where ~xi (resp. ~xi+1) denotes the sequence x1, . . . , xki
(resp. x1, . . . , xki+1

) of
variables. Context-sensitivity assures that σi and σi+1 are not contradictory,
i.e., xσi = xσi+1 for all x ∈ Dom(σi) ∩ Dom(σi+1).

Observation 1. Let R be a DCTRS. For every reduction

Ui(siσ
′, ~xiσi)

>ǫ
→

∗

Ucs(R) Ui(tiσ
′′, ~xiσi)

ǫ
→Ucs(R) Ui+1(si+1σ

′′′, ~xi+1σi+1)

it holds that xσi = xσi+1 for all x ∈ Dom(σi) ∩ Dom(σi+1).

In fact this is a crucial property of Ucs(R), because given a DCTRS R =
(Σ, R) it guarantees that for each term t ∈ T (U(Σ), V ) we have tb(t) →∗

Ucs(R) t

provided that t is reachable by any term s ∈ T (Σ, V ) (see Corollary 2, below).
This is in general not true, if context-sensitivity is dropped.

4See Section 7 for more details.
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Example 4. Let R = (Σ, R) be the DCTRS of Example 2 extended by two
unconditional rules

f(x) → a ⇐ x → b

a → b

a → c

The transformed system U(R) is

f(x) → U(x, x)

U(b, x) → a

a → b

a → c

Consider the term t = U(b, c). It is reachable in U(R) from f(a) ∈ T (Σ, V ):

f(a) →U(R) U(a, a) →U(R) U(b, a) →U(R) U(b, c)

However, it is obviously not reachable from tb(t) = f(c) as b is not reachable
from c. On the other hand, within Ucs(R), U(b, c) is not reachable by any
term from T (Σ, V ) because in Ucs(R) reachability of a term t by any term
s ∈ T (Σ, V ) (i.e. s →∗

Ucs(R) t) coincides with reachability of t from tb(t) (cf.

Corollary 2 below).

The fact that in a CSRSs Ucs(R), obtained by the context-sensitive trans-
formation after transforming a DCTRS R = (Σ, R), each term t is reachable
from tb(t) if t is part of reduction sequence issuing from a term of T (Σ, V ), will
be used extensively in the proofs of some of the main results of this paper (e.g.
Theorems 1 and 4).

Certain Ucs(R)-reduction steps inside a U -term t will have no effect on the
result of the function tb, i.e., t → s and tb(t) = tb(s). This motivates the
definition of tb-preserving reduction steps in Ucs(R). First, obviously reductions
that occur strictly inside a U -term t do not alter the result of tb. The reason is
that because of context-sensitivity these reductions can only take place in the
first argument of the root U -symbol and furthermore according to the definition
of tb this first argument is irrelevant for the computation of tb.

Second, if a rule of the form U i
α(s1, ..., sn) → U i+1

α (s1, ..., sn) (whose right-
hand side is a U -term) is applied to t then tb applied to the resulting term also
yields the same result as tb(t). The reason is that the variable bindings inside
the U -term are preserved in such a step and all the variables that are present in
l (where α = l → r ⇐ c) are already bound. For the same reason tb(t) = tb(s)
if t is not a U -term, s is a U -term and t → s.

Definition 5 (tb-preserving reduction steps). Let R be a DCTRS (R = (Σ, R))

and Ucs(R) its transformed CSRS. A step s
p
→Ucs(R) t5 is called tb-preserving

if either p is strictly below some position q of s, where root(s|q) is a U -symbol,
or (t|p) is a U -term.

5 p
→ denotes a reduction step at position p.
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The intuition behind tb-preserving steps is that whenever s →Ucs(R) t with
some tb-preserving step, we have tb(s) = tb(t).

Proposition 3. Let R be a DCTRS. If s, t ∈ T (U(Σ), V ) and s →Ucs(R) t with
a tb-preserving step, then tb(s) = tb(t).

Proof. If the reduction step from s to t, say at position p, occurs strictly inside
a U -term, then it occurs strictly inside the first argument of some maximal U -
rooted subterm u at position q < p in s. According to Definition 3 we have
tb(s|q) = tb(t|q) and thus tb(t) = tb(s).

Otherwise, t|p is a U -term, this means that either a rule of the shape l →
U(c, ~x) or a rule of the shape U(c1, ~xi) → Ui+1(c2, ~xi+1) was applied. So s|p = lσ

or s|p = U(c1, ~xi)σ and t|p = U(c, ~x)σ. Hence, according to Definition 3 we have
tb(s|p) = tb(t|p) and thus tb(s) = tb(t).

Example 5. Consider a CSRS R

f(x) → U(b, x)

U(c, x) → x

b → c

with µ(U) = µ(f) = {1}. The following reductions are tb-preserving:

f(a) →µ U(b, a), as tb(f(a)) = tb(U(b, a)) = f(a)

U(b, a) →µ U(c, a), as tb(U(b, a)) = tb(U(c, a)) = f(a)

while the following one is not:

U(c, a) →µ a, due to tb(U(c, a)) = f(a) 6= tb(a) = a

Before investigating the effects of using context-sensitivity in the unraveling
transformation of Definition 4 on the power of proving operational termination,
let us consider the capability of Ucs(R) to simulate reductions of a DCTRS R.
While simulation completeness, i.e., the property of Ucs(R) being able to mimic
reductions of R, is easy to obtain, simulation soundness, i.e., the property of
Ucs(R) to allow only those reductions (from original terms to original terms)
that are also possible in R, is non-trivial.

In [29] it was shown that simulation soundness is obtained for their version
of the transformation if an additional restriction is imposed on reductions in
Ucs(R), which roughly states that only redexes without U -symbols (except at
the root position) may be contracted. However, for our transformation this
additional “membership condition” is not needed (see also Section 7 below for
further details).

Theorem 1 (simulation completeness). Let R = (Σ, R) be a DCTRS. For every
s, t ∈ T (Σ, V ) we have: if s →R t, then s →+

Ucs(R) t.

10



Theorem 2 (simulation soundness). Let R = (Σ, R) be a DCTRS. For every
s, t ∈ T (U(Σ), V ) we have: If s →∗

Ucs(R) t and s is reachable from an original

term (i.e., s′ →∗
Ucs(R) s for some s′ ∈ T (Σ, V )), then tb(s) →∗

R tb(t). Moreover,

if s, t ∈ T (Σ, V ), then s →+
Ucs(R) t implies s →+

R t .

Before proving Theorem 2 we need two auxiliary lemmas. The first one
(Lemma 1 below) states that whenever we have a Ucs(R)-reduction sequence D

of the shape

s1 →∗
Ucs(R) s2[lσ]p1

→Ucs(R) s2[U
α
1 (s1, ~x1)σ]p1

→∗
Ucs(R) s3[U

α
1 (t1, ~x1)σ

′]p2

→Ucs(R) s3[U
α
2 (s2, ~x2)σ

′]p2

→∗
Ucs(R) . . .

→∗
Ucs(R) sn+1[U

α
n (tn, ~xn)σn]pn

→Ucs(R) sn+1[rσ
n]pn

→∗
Ucs(R) sn+2,

where s1 is an original term which means that D contains the complete simula-
tion of the application of a conditional rule α : l → r ⇐ s1 →∗ t1, . . . sn →∗ tn,
the reductions satisfying its conditions siσ

n →∗
Ucs(R) tiσ

n occur as subreduc-

tions of D for all i ∈ {1, . . . , n}.
The second auxiliary result (Lemma 2 below) will be crucial for the overall

inductive proof structure of Theorem 2 to work.
For the former we first introduce some terminology for tracing subterms (es-

pecially U -subterms) in reduction sequences, in a forward and backward man-
ner. In the above reduction sequence D the positions pi mark descendants of
the subterms si−1|pi−1

of si−1. More formally, the set of one-step descendants

of a subterm position p of t w.r.t. a (one-step) reduction t = C[s]p
q
→ t′ is the

set of subterm positions in t′ given by

• {p}, if q ≥ p or q || p,

• {q.o′.p′ | t|q = lσ, l|o ∈ Var , q.o.p′ = p, l|o = r|o′}, if q < p and (a
superterm of) s is bound to a variable in the matching of t|q with the
left-hand side of the applied rule, and

• ∅, otherwise.

Slightly abusing terminology, when t = C[s]p
q
→ t′ with set {p1, . . . , pk} of

one-step descendants in t′, we also say that t|p has descendants t′|pi
in t′.

The descendant relation (w.r.t given derivations) is obtained as the (reflex-
ive-)transitive closure of the one-step descendant relation. Note that the set
of one-step descendants of a U -subterm (w.r.t. a one-step derivation) is non-
empty unless the subterm is erased by an erasing rule (i.e., a rule l → r such

11



that x ∈ Var(l) \ Var(r)), because U -symbols occur only at but not below the
root position in left-hand sides of rules of systems obtained by the transforma-
tion of Definition 4. The notions of one-step (and many-step) antecedents of a
subterm position (w.r.t. a given reduction sequence) are defined analogously (in
a backward manner).

Note that with a similar argument as for the existence of descendants of
U -subterms we get that every U -subterm has at least one one-step antecedent
w.r.t. every (one-step) reduction sequence.

Now we can express the notion of a complete simulated rule application
more formally. By a complete simulated rule application we mean that all rules
obtained by transforming one conditional rule are eventually applied to a certain
subterm and its descendants during the reduction sequence in the right order.
Yet, these (unconditional) rule applications need not be consecutive.

Note also that it makes sense to talk about descendants of U -subterms,
because they can only be copied, eliminated or duplicated but not otherwise
modified by more outer reductions. This is due to the special shape of the rules
in systems obtained by the transformation of Definition 4. More precisely, it is
due to the fact that U -symbols occur only at, but not below the root of left-hand
sides of rules.

Lemma 1. Let R = (Σ, R) be a DCTRS and let α : l → r ⇐ cl
1 →∗ cr

1, . . . c
l
n →∗

cr
n be a rule from R. Moreover, assume that D : s →∗

Ucs(R) t is a non-empty

Ucs(R)-reduction such that s ∈ T (Σ, V ) and the last step is due to an application
of the rule Uα

n (cr
n, ~xn) → r ∈ Ucs(R) (r ∈ T (Σ, V )) with a substitution σn.

Then, the reductions Ci : cl
iσ

n →∗
Ucs(R) cr

i σ
n occur as subreductions of D6 for

every i ∈ {1, . . . , n}.

Proof. Let the last step of D be t′
p
→Ucs(R) t. Hence, t′|p must be a U -term.

We identify the first term s′ in D such that

1. s′ contains at least one antecedent of t′|p,

2. all antecedents of t′|p in s′ are U -terms, and

3. conditions (1) and (2) also hold for all terms occurring later (but before
t′) in D.

Note that t′ itself has the demanded properties. Thus the existence of s′ is
guaranteed. We now claim:

Some antecedent s′|q of t′|p has the form Uα
1 (cl

1, ~x1)σ
1. (1)

In order to show (1) assume s′ did not contain a subterm of this shape. Then,
consider s0 which is the subterm preceding s′ in D (this subterm exists as s′

contains U -terms but s does not, so s 6= s′). The term s0 contains antecedents

6not necessarily consecutively, and embedded in some surrounding context, i.e. they can
be obtained by “extraction” from D

12



of t′|p, because s′ contains antecedents of t′|p which are U -terms. This in turn
implies the existence of one-step antecedents in s0.

Assume some antecedent of t′|p in s0 is not a U -term. As this term has a
one-step descendant in s′ being in turn a antecedent of t′|p and thus a U -term,
this very U -term in s′ must be of the shape Uα

1 (cl
1, ~x1)σ

1 as it must have been
introduced by an application of the rule l → Uα

1 (cl
1, ~x1). This contradicts our

assumption that (1) does not hold for s′. Thus all antecedents of t′|p in s0 must
be U -terms.

This in turn contradicts the minimality of s′, i.e. being the first term on D

containing only U -term antecedents of t′|p. Hence, we derived a contradiction
from ¬(1). This concludes the proof of Claim 1.

Let s′|q = Uα
1 (cl

1, ~x1)σ
1. By our choice of s′ and the fact that s′|q is a

antecedent of t′|p, every term between s′ and t′ in D contains a descendant of
s′|q which is also a antecedent of t′|p and a U -term.

Some descendant (of s′|q) must be of the shape Uα
1 (cr

1, ~x1)σ
′1, because oth-

erwise t′|p could not be reached (cf. Definition 4). We inspect D between s′

and s′′ where s′′ contains such a descendant of s′|q say at position q′. Then,
s′|q and its descendants which are also antecedents of s′′|q′ are only (syntac-
tically) modified by rule applications below their roots. The reason is that a
term rooted by some U -symbol Ui cannot be reduced to another term having
the same root symbol with reduction steps containing at least one root step,
unless the reduction sequence contains a non-U -term (cf. Definition 4).

Hence, we can extract the reduction cl
1σ

1 →∗
Ucs(R) cr

1σ
′1 from D.

The same argumentation applies also to all other conditions as Uα
i (cl

i, ~xi)σ
i

must occur (by our choice of s′ and q), as descendants of s′|q and antecedents
of t′|p in D (in particular in such a way that σi does not contradict σ′i−1).
Moreover, by Observation 1 the used substitutions are not contradictory and
their domains are subdomains of the one of σn, which is due to the fact that
the set of variables stored by a U -symbol Uα

i is a subset of the ones stored by
Uα

j provided that i ≤ j (cf. Definition 4).

The second lemma states that if there exists a parallel reduction sequence
s −−‖−→∗

Ucs(R) t, where s is an original term, then for all positions p of t there

is also a parallel reduction s′ −−‖−→∗
Ucs(R) t|p for some original term s′ such that

its length is less than or equal to the length of the former parallel reduction
sequence.

In order to formalize this proposition we introduce the notion of the minimal
parallel Σ-distance of a term (over T (U(Σ), V )) (from any original term).

Definition 6 (minimal parallel Σ-distance). Let R = (Σ, R) be a DCTRS and
t ∈ T (U(Σ), V ). The minimal parallel Σ-distance of t (w.r.t. a DCTRS R) is
given by

mpdΣ(t) = inf{n | ∃s ∈ T (Σ, V ).s −−‖−→n
Ucs(R) t}

where −−‖−→n
Ucs(R) means that n parallel reductions are performed.

13



Note that inf ∅ = +∞, so the minimal parallel Σ-distance of any term t

that is not reachable from an original term is +∞. Note on the other hand that
if t is reachable from an original term, then the inf in Definition 6 is actually
a min, as lengths of reductions are natural numbers and hence we can find a
concrete (parallel) reduction from an original term to t with length mpdΣ(t).

Lemma 2. Let R = (Σ, R) be a DCTRS and t ∈ T (U(Σ), V ) with mpdΣ(t) <

∞. Then for every subterm t|p of t we have mpdΣ(t|p) ≤ mpdΣ(t). Moreover,
if t|p occurs strictly inside a U -term in t, then mpdΣ(t|p) < mpdΣ(t).

Proof. Let D : u −−‖−→∗
Ucs(R) t where u ∈ T (Σ, V ) be a reduction sequence of

length mpdΣ(t). We prove the result by induction on mpdΣ(t). If mpdΣ(t) = 0,
the result holds vacuously as t is an original term and thus every subterm of t

is an original term as well.
Assume mpdΣ(t) = m, then we can write D as

u −−‖−→m−1
Ucs(R) t′ −−‖−→Ucs(R) t.

We consider the maximal U -rooted subterms u1, . . . , un of t|p s.t.

t|p = C[u1, . . . un]p1,...,pn
.

Each subterm ui has at least one one-step antecedent u′
i in t′ and the induction

hypothesis yields that mpdΣ(u′
i) ≤ mpdΣ(t′) ≤ m − 1. Hence, as we are using

parallel reduction we obtain

mpdΣ(C[u′
1, . . . u

′
n]p1,...,pn

) ≤ m − 1. (2)

Moreover, we have u′
i−−‖−→

∗
Ucs(R) ui with zero or one reduction steps and as all

ui are parallel in t|p we have C[u′
1, . . . u

′
n]p1,...,pn

−−‖−→∗
Ucs(R) C[u1, . . . un]p1,...,pn

=

t|p with zero or one steps. Thus, mpdΣ(t|p) ≤ m.
Now assume that t|p occurs strictly inside a U -term in t. We distinguish two

cases.

• If u′
i 6= ui for some i ∈ {1, . . . , n} (i.e. if some reduction step from t′ to

t occurred inside a antecedent of some ui), then by the definition of the
descendant relation and the shape of the rules in Ucs(R), i.e. the fact that
U -symbols occur only at but not below the root of left- and right-hand
sides of all rules, we get that if ui occurs at position q ≥ p in t, then
u′

i occurs at position q in t′ and there must have been a reduction in
t′ −−‖−→Ucs(R) t at or below q. Hence, in the same parallel step there was
no reduction above p and thus all u′

i occur inside a U -term in t′ as they
occur inside t′|p.

Hence, the induction hypothesis yields mpdΣ(u′
i) ≤ m − 2 and we get

mpdΣ(t|p) ≤ m − 1.

• Otherwise, if u′
i = ui for all i ∈ {1, . . . , n}, (2) and C[u′

1, . . . u
′
n]p1,...,pn

=
t|p yield mpdΣ(t|p) ≤ m − 1.
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Indeed Lemma 2 does not hold if one considers ordinary Ucs(R)-reduction
instead of parallel reduction.

Example 6. Consider the following one-rule DCTRS R

f(x) → b ⇐ g(x, x) →∗ a

Ucs(R) is given by

f(x) → U(g(x, x), x)

U(a, x) → b

Now consider the following Ucs(R) reduction sequence of length 2

f(f(x)) → f(U(g(x, x), x))

→ U(g(U(g(x, x), x), U(g(x, x), x)), U(g(x, x), x)) = t

However, it is easy to see that at least 2 reduction steps are necessary to derive

t|1 = g(U(g(x, x), x), U(g(x, x), x))

from an original term although it occurs as subterm strictly below a U -symbol
in t.

Now we are ready to prove Theorem 2.

Proof of Theorem 2. For the first part of the theorem, we prove the equivalent
result that s −−‖−→∗

Ucs(R) t implies tb(s) −−‖−→∗
R tb(t) provided that s, t ∈ T (U(Σ), R)

and s is reachable from an original term.
In order to prove this by induction, we associate to each reduction sequence

S : s −−‖−→∗
Ucs(R) t with s, t ∈ T (U(Σ), V ) a non-negative integer (its order) k

where k = mpdΣ(s)+ l and l is the length (i.e. the number of parallel reduction
steps) of S. We use induction over k (note that mpdΣ(s) and l are both non-
negative for every reduction sequence S).

For the base case (i.e., k = 0) the theorem holds trivially, since s = t. For
the inductive step, consider a reduction sequence S : s −−‖−→∗

Ucs(R) s′ −−‖−→Ucs(R) t.

The induction hypothesis yields tb(s) →∗
R tb(s′). Thus, for tb(s) →∗

R tb(t) it
suffices to show that

tb(s′) →∗
R tb(t) (3)

holds.
We prove this by (nested) induction over the number of single (non-parallel)

reduction steps in s′ −−‖−→Ucs(R) t. If this number is zero, then s′ = t and thus
tb(s′) = tb(t).

Otherwise, we split s′ −−‖−→Ucs(R) t into s′ −−‖−→Ucs(R) t′ →Ucs(R) t and the
induction hypothesis yields tb(s′) →∗

R tb(t′).
We distinguish 3 cases depending on the reduction from t′ to t.
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1. Assume the step is tb-preserving. Then we have tb(t′) = tb(t) and hence
tb(s′) →∗

R tb(t), i.e., (3).

2. If the step is non-tb-preserving and using a rule l → r which already
occurred in the DCTRS (i.e. as unconditional rule) say at position p,
then t′|p = lσ. As the reduction is non-tb-preserving, there is no U -
symbol in t′ above p (cf. Definition 5). Moreover, there are no U -symbols
in l (as it already occurred in R), hence tb(t′)|p.q = tb(t′|p.q) for all variable
positions q of l, i.e. tb(t′)|p = lσ′ and xσ′ = tb(xσ) for all x ∈ Dom(σ).
Thus, tb(t′) = tb(t′)[lσ′]p →R tb(t′)[rσ′]p = tb(t), and finally (3).

3. Assume the step (at position p) is non-tb-preserving and using a rule
U(u, x1, . . . , xo) → r where root(r) ∈ Σ (say t′|p = U(u, x1, . . . , xo)σ).
This rule stems from a conditional rule α : l → r ⇐ cl

1 →∗ cr
1, . . . c

l
m →∗

cr
m ∈ R.

In order to perform the corresponding reduction in the conditional system
R, we need to make sure that tb(cl

iσ) →∗
R tb(cr

i σ) holds for every i ∈
{1, . . . ,m}.

We consider the following reduction sequence S′ in Ucs(R)

S′ : u −−‖−→∗
Ucs(R) s −−‖−→∗

Ucs(R) s′

where u is some original term such that the length of the reduction from
u to s is exactly mpdΣ(s). Note that s′|p = U(u, x1, . . . , xo)σ) because all
reduction steps from s′ to t′ were parallel to p.

The existence of S′ ensures that for each condition cl
i →

∗ cr
i the reduction

cl
iσ −−‖−→∗

Ucs(R) cr
i σ occurred as subreduction of S′, by Lemma 1.

Consider a term cl
iσ occurring as a subterm of some term v in S′. We

partition the reduction sequence S′ in reduction steps that happen before
v (which we call the head of S′) and in reduction steps happening after v

(which we call the tail of S′).

The reduction from cl
iσ to cr

i σ is part of the tail of S′ and thus its (par-
allel) length is not longer than this tail. Moreover, Lemma 2 yields that
mpdΣ(cl

iσ) is shorter than the head of S′, because cl
iσ occurs inside a U -

term. Hence, the order of the reduction sequence cl
iσ −−‖−→∗

Ucs(R) cr
i σ is

smaller than (or equal to) the length of the reduction sequence S′ which
is exactly the order of the reduction from s to s′ and thus smaller than
the order of our initial reduction sequence S. Hence, the induction hy-
pothesis (of the outer induction) applies yielding tb(cl

iσ) →∗
R tb(cr

i σ) for
all i ∈ {1, . . . ,m} .

Now consider t′ = t′[U(u, x1, . . . , xo)σ]p. Let τ = tb(σ), i.e. xτ = tb(xσ)
for all x ∈ Dom(σ). Then we have tb(t′) = tb(t′)[lτ ]p. And since cl

iτ →∗
R

cr
i τ for all i ∈ {1, . . . ,m}, we finally obtain tb(t′)[lτ ]p →R tb(t′)[rτ ]p =

tb(t).
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This concludes the inner induction and also the outer step case.
Note that, in the inner induction above, if not all steps in a reduction se-

quence S are tb-preserving, i.e. whenever items (2) or (3) apply, then the cor-
responding sequence in the conditional system is non-empty. Hence, whenever
s →+

Ucs(R) t and s, t ∈ T (Σ, V ), then tb(s) →+
R tb(t) is non-empty, too.

Next we show that for any term t that is reachable from an original one, say
s, the corresponding reduction can be factored through tb(t) such that the first
part only uses R-steps and the latter one only tb-preserving Ucs(R)-steps.

Lemma 3. Let R = (Σ, R) be a DCTRS. If a term t ∈ T (U(Σ), V ) is reachable
from an original term (i.e., if mpdΣ(t) < ∞), then we have tb(t) →∗

Ucs(R) t with
tb-preserving steps.

Proof. We prove the result by induction on mpdΣ(t). If mpdΣ(t) = 0, then t is
an original term and the result is immediate.

Otherwise, let mpdΣ(t) = n > 0. Then, there is a parallel Ucs(R)-reduction
sequence D : u −−‖−→n−1

Ucs(R) t′ −−‖−→Ucs(R) t of length n. Let u1, . . . , um be the

maximal U -rooted subterms of t s.t.

t = C[u1, . . . , um]p1,...,pm

Each ui has one or several one-step antecedents u
j
i (in t′) for j ∈ {1, . . . , ki},

where ki is the number of one-step antecedents of ui in D. For all i ∈ {1, . . . ,m}
and all j ∈ {1, . . . , ki} mpdΣ(uj

i ) < n by Lemma 2, hence the induction hypoth-

esis yields tb(uj
i ) →

∗
Ucs(R) u

j
i with tb-preserving steps.

Moreover, we get u
j
i →Ucs(R) ui for all i ∈ {1, . . . ,m} and all j ∈ {1, . . . , ki},

and these steps are tb-preserving, because the ui’s are U -terms. Hence we obtain
tb(ui) = tb(uj

i ) →
∗
Ucs(R) u

j
i →Ucs(R) ui with tb-preserving steps and as the ui’s

are the maximal U -rooted terms in t, we finally get

tb(t) = C[tb(u1), . . . , tb(um)]p1,...,pm
→∗

Ucs(R) C[u1, . . . , um]p1,...,pm
= t

with only tb-preserving steps.

Corollary 2. Let R = (Σ, R) be a DCTRS. Whenever s →∗
Ucs(R) t and t, s ∈

T (U(Σ), V ) where s is reachable from an original term, then tb(s) →∗
Ucs(R)

tb(t) →∗
Ucs(R) t, such that tb(t) →∗

Ucs(R) t consists only of tb-preserving steps.

Proof. Immediate consequence of Theorems 2, 1 and Lemma 3.

Regarding termination, the transformation of Definition 4 is sound for cs-
quasi-reductivity in the sense that µ-termination of Ucs(R) implies context-
sensitive quasi-reductivity and thus operational termination of R.

Theorem 3 (sufficiency for cs-quasi-reductivity). Let R = (Σ, R) be a DCTRS.
If Ucs(R) is µ-terminating, then R is cs-quasi-reductive.
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Proof. As Ucs(R) is µUcs(R)-terminating, ≻µ=→+
Ucs(R) is a µ-reduction ordering

on T (U(Σ), V ) (where U(Σ) ⊇ Σ). Assume sjσ �µ tjσ for every 1 ≤ j ≤ i < n

for a rule α : l → r ⇐ s1 →∗ t1, ..., sn →∗ tn (σ : V → T (Σ, V )). Then we have
the following sequence in Ucs(R):

lσ →Ucs(R) Uα
1 (s1,Var(l))σ

→∗
Ucs(R) Uα

1 (t1,Var(l))σ

→Ucs(R) Uα
2 (s2,Var(l), EVar(t1))σ

→∗
Ucs(R) Uα

2 (t2,Var(l), EVar(t1))σ

. . .

→Ucs(R) Uα
i (si,Var(l), EVar(t1), ..., EVar(ti−1))σ

→∗
Ucs(R) Uα

i (ti,Var(l), EVar(t1), ..., EVar(ti−1))σ

→Ucs(R) Uα
i+1(si+1,Var(l), EVar(t1), ..., EVar(ti))σ

Thus lσ ≻st
µ si+1σ. If sjσ �µ tjσ for all 1 ≤ j ≤ n, then it is easy to see that

there is a reduction sequence lσ →+
Ucs(R) rσ, thus lσ ≻µ rσ.

The following corollary (of Theorem 3 and Corollary 1) has already been
proved in [11].

Corollary 3. ([11]) Let R be a DCTRS. If Ucs(R) is µ-terminating, then R is
operationally terminating.

Obviously, as U(R) and Ucs(R) differ only in that Ucs(R) uses an additional
replacement map, the context-sensitive transformation is more powerful when
it comes to verifying operational termination.

Proposition 4. ([11]) Let R be a DCTRS. If U(R) is terminating, then Ucs(R)
is µ-terminating.

Example 7. Consider the DCTRS R of Example 3. The transformed system
Ucs(R) (which is identical to the non-terminating TRS U(R), except for the
fact that an additional replacement map is used) is µ-terminating. This can for
instance be proved by minimal counterexample and case analysis. However, we
will see that in order to verify operational termination of R, it is sufficient to
prove a weaker form of termination, which can be handled automatically (see
Theorem 5 and Example 12 below).

Unfortunately, and interestingly, cs-quasi-reductivity of a DCTRS R does
not imply µ-termination of Ucs(R).

Example 8. ([31, Ex. 7.2.51]) Consider the DCTRS R given by

g(x) → k(y) ⇐ h(x) →∗ d, h(x) →∗ c(y)

h(d) → c(a)

h(d) → c(b)

f(k(a), k(b), x) → f(x, x, x)
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This system is quasi-reductive (and thus cs-quasi-reductive) (cf., [31]). How-
ever, the system Ucs(R), where the conditional rule is replaced by

g(x) → U1(h(x), x)

U1(d, x) → U2(h(x), x)

U2(c(y), x) → k(y)

with µ(Ui) = {1} for i ∈ {1, 2}, is not µ-terminating.

f(k(a), k(b), U2(h(d), d))

→Ucs(R) f(U2(h(d), d), U2(h(d), d), U2(h(d), d))

→+
Ucs(R) f(U2(c(a), d), U2(c(b), d), U2(h(d), d))

→+
Ucs(R) f(k(a), k(b), U2(h(d), d))

Note that in this counterexample the crucial subterm t′ = U2(h(d), d) which
reduces to both k(a) and k(b) does not have a counterpart in the original system,
i.e., a term t ∈ T (Σ, V ) with t →∗

Ucs(R) t′. Hence, it seems natural to conjecture
that such counterexamples are impossible if we only consider derivations issuing
from original terms. This is indeed the case, even for quasi-decreasing systems
(cf. Theorems 4 and 5 below).

Definition 7 (µ-termination on original terms). A CSRS R = (U(Σ), U(R))
with replacement map µ, obtained by the transformation of Definition 4 is called
µ-terminating on original terms, if there is no infinite reduction sequence issuing
from a term t ∈ T (Σ, V ) in R.

Now we can state the main results of this section.

Theorem 4. Let R = (Σ, R) be a DCTRS. If R is quasi-decreasing, then
Ucs(R) is µ-terminating on T (Σ, V ).

Proof. For notational simplicity in the sequel we write → instead of →Ucs(R).
For a proof by minimal counterexample suppose that s ∈ T (Σ, V ) initiates an
infinite →-reduction D : s → . . . such that there is no s′ ∈ T (Σ, V ), s ≻ s′ with
this property (where ≻ is the quasi-decreasing ordering). Since ≻ contains the
subterm ordering, this implies that every proper subterm of s is →-terminating.
Hence, D must have at least one root reduction step, i.e., be of the shape
s →∗ t

ǫ
→ u → . . . where t

ǫ
→ u is the first root reduction step. Since the root

symbol of s is from the original signature, the left-hand side of the rule applied
to t must be a term of the original signature. There are two possibilities now.

First, assume an unconditional rule l → r (l, r ∈ T (Σ, V )) was applied to t.
Then, t = lσ, u = rσ. According to Corollary 2 we have s →∗

tb(t) →∗ t. Since
t = lσ, we get tb(t) = lσ′, because the steps from tb(t) to t are tb-preserving and
xσ′ →∗ xσ for all x ∈ Dom(σ). Thus, we have s →∗

tb(t) = lσ′ → rσ′ →∗ rσ =
u. Furthermore, by quasi-decreasingness we get s ≻ rσ′ because of →R ⊆ ≻
and s →+ rσ′ ⇒ s →+

R rσ′ ∈ T (Σ, V ) (according to Theorem 2). This means
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that in every infinite reduction sequence starting from s we eventually arrive
at rσ′ ≺ s, which hence also initiates an infinite →-reduction, thus yielding a
smaller counterexample (since s ≻ rσ′). But this contradicts our minimality
assumption.

Secondly, assume the transformed version of a conditional rule l → r ⇐
s1 →∗ t1, . . . , sn →∗ tn is applied to t. Hence, t = lσ and as before we get
tb(t) = lσ′ where xσ′ →∗ xσ for all x ∈ Dom(σ). Thus u = U1(s1, x1, . . . , xk1

)σ
and we have tb(t) → U1(s1, x1, . . . , xk1

)σ′. By quasi-decreasingness we get
lσ′ ≻ s1σ

′, x1σ
′, . . . , xk1

σ′, hence all the latter terms are terminating by min-
imality of the counterexample. Therefore, s1σ and x1σ, . . . , xk1

σ are termi-
nating, too, because of yσ′ →∗ yσ for all y ∈ Dom(σ). Thus, the only
possibility of an infinite reduction from u is via a next root reduction step:
u = U1(s1, x1, . . . , xk1

)σ →∗ U1(t1, x1, . . . , xk1
)σ1

ǫ
→ U2(s2, x1, . . . , xk2

)σ1. So
s1σ

′ →∗ s1σ →∗ t1σ1, and Corollary 2 yields s1σ
′ →∗

tb(t1σ1) = t1σ
′
1 →∗ t1σ1.

Then it also holds that U1(t1, x1, . . . , xk1
)σ′

1 → U2(s2, x1, . . . , xk2
)σ′

1 and as
s1σ

′
1 →∗ t1σ

′
1, we have s1σ

′
1 →∗

R t1σ
′
1 ∈ T (Σ, V ) according to Theorem 2 and

thus lσ′
1 ≻ s2σ

′
1. By minimality, s2σ

′
1 and x1σ

′
1, . . . , xk2

σ′
1 are terminating,

hence also s2σ1 and x1σ1, . . . , xk2
σ1 because of xσ′ →∗ xσ for all x ∈ Dom(σ).

Similarly, an infinite reduction from U2(s2, x1, . . . , xk2
)σ1 is only possible via

a next reduction step for which we need s2σ1 →∗ t2σ2 for some σ2. By con-
tinuing this argumentation, we finally get that lσ must eventually be reduced
to Un(tn, x1, . . . , xkn

)σn and lσ′ can be reduced to U(tn, x1, . . . , xkn
)σ′

n. We
have that tnσ′

n ∈ T (Σ, V ) is terminating by minimality (and quasi-decreasing-
ness) and tnσn is terminating because of tnσ′

n →∗ tnσn. Therefore, the term
U(tn, x1, . . . , xkn

)σn is reduced to rσn and U(tn, x1, . . . , xkn
)σ′

n can be reduced
to rσ′

n. We have lσ′(= lσ′
n) ≻ rσ′

n because of lσ′ →+ rσ′
n ∈ T (Σ, V ) and thus

lσ′ →+
R rσ′

n by Theorem 2. Hence, rσ′
n (with s →∗ rσ′

n →∗ rσn) is terminating
because of minimality and rσn is terminating due to rσ′

n →∗ rσn. But this
contradicts the counterexample property (of s). Hence, we are done.

Conversely, cs-quasi-reductivity follows from termination of the transformed
system on original terms.

Theorem 5. Let R = (Σ, R) be a DCTRS. If Ucs(R) is µ-terminating on
T (Σ, V ), then R is cs-quasi-reductive.

Proof. We define the ordering ≻ by s ≻ t if s →+
Ucs(R) t and s is reachable

(in →Ucs(R)) by a term of the original signature (i.e. tb(s) →∗
Ucs(R) s). This

relation is well-founded because →Ucs(R) is terminating on T (Σ, V ). Let ≻µ

be the µ-monotonic closure of ≻ w.r.t. T (U(Σ), V ), i.e., C[s]p ≻µ C[t]p if s ≻
t∧ p ∈ Posµ(C[s]p). We show that R is cs-quasi-reductive w.r.t. ≻µ. Note that
≻µ ⊆ →+

Ucs(R).

First, we will deal with well-foundedness of ≻µ. Consider decreasing ≻µ-
chains starting from a term t. If s →∗

Ucs(R) t for some term s ∈ T (Σ, V ) (i.e., t

is reachable from an original term), there cannot be an infinite decreasing ≻µ-
chain starting from t because this would contradict termination of →Ucs(R) on
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T (Σ, V ). Otherwise, t = C[t1 . . . tn]p1...pn
, such that si →

∗
Ucs(R) ti, si ∈ T (Σ, V )

and pi ∈ Posµ(t) for all i ∈ {1, . . . , n} and the same is true for no proper
superterm of any ti. Thus, if t ≻µ u, then u = C[t1 . . . ui . . . tn]p1...pi...pn

and
ti ≻ ui. Furthermore, if u ≻µ v, then v = C[t1 . . . ui . . . vj . . . tn]p1...pi...pj ...pn

and tj ≻ vj . It is easy to see that there cannot be an infinite decreasing ≻µ-
sequence of this shape, as each decreasing ≻-sequence starting at some ti is
finite. Hence, ≻µ is well-founded.

If we have siσ ≻µ tiσ for all 1 ≤ i < j, then we get (cf., the proof of
Theorem 3) lσ →∗

Ucs(R) U(sj , x1, . . . , xm)σ and thus lσ ≻st
µ siσ for all rules

l → r ⇐ s1 →∗ t1, . . . , sn →∗ tn, all 0 ≤ j ≤ n and all substitutions σ : V →
T (Σ, V ). Analogously, if siσ �µ tiσ for all 1 ≤ i ≤ n, then we have lσ →∗

Ucs(R)

rσ and thus lσ ≻µ rσ.
Hence, R is cs-quasi-reductive.

As a corollary we obtain the following equivalences between the various
notions.

Corollary 4. Let R = (Σ, R) be a DCTRS. The following properties of R
are equivalent: µ-termination of Ucs(R) on original terms, cs-quasi-reductivity,
quasi-decreasingness, and operational termination.

5 Disproving Collapse-Extended Operational Ter-

mination

While proving termination on original terms is (at least theoretically) easier than
proving general termination, disproving termination on original terms and thus
disproving operational termination of DCTRSs might be significantly harder
than ordinary non-termination analysis. However, in this section we show that
the transformation of Definition 4 is complete with respect to collapse-extended
termination (CE-termination), thus solving an open problem from [11]. Hence,
if a transformed system can be proved to be non-terminating, we can deduce
non-CE-operational termination of the underlying DCTRS.

Furthermore, whenever operational termination and CE-operational termi-
nation of a DCTRS R coincide, then Ucs(R) is µ-terminating if and only if R
is operationally terminating.

Definition 8 (CE-termination, [20, 31]). We call a CSRS R with replacement
map µ CE-µ-terminating (or just CE-terminating) if R ⊎ CE

7 with µ(G) =
{1, 2} is µ-terminating. Moreover, we define CE = {G(x, y) → x, G(x, y) → y}.

Definition 9 (CE-cs-quasi-reductivity). Let R be a DCTRS. We call R CE-
cs-quasi-reductive if R ⊎ CE is cs-quasi-reductive.

Lemma 4. Let Ucs(R) be a CSRS obtained by the transformation of Definition
4 from a DCTRS R = (Σ, R). If Ucs(R) is not µ-terminating, then there exists

7We use the notation R⊎CE as abbreviation for (Σ⊎{G}, R⊎{G(x, y) → x, G(x, y) → y}).
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an infinite reduction sequence starting from a term t, such that root(t) ∈ Σ and
every replacing subterm of t is µ-terminating.

Proof. In the following we call non-µ-terminating terms containing only µ-
terminating proper subterms minimal non-terminating.

The basic idea of the proof is to show that a minimal non-terminating term
u rooted by a U -symbol must either be reduced to a minimal non-terminating
term that is not rooted by a U -symbol, or it must contain a (forbidden) U -
rooted minimal non-terminating proper subterm. In both cases we will derive
a contradiction to the assumption that every minimal non-terminating term is
rooted by a U -symbol.

Let Uα
1 , . . . , Uα

n be the U -symbols introduced when transforming a condi-
tional rule α (cf. Definition 2). Assume towards a contradiction that

Ucs(R) is not µ-terminating and no term t as in the lemma exists. (4)

Thus, there exists a non-terminating U -term u where every replacing proper
subterm of u is µ-terminating, because the existence of a non-µ-terminating
term containing only µ-terminating µ-replacing subterms is obvious and this
term cannot have a root symbol from Σ because of our assumption. Hence,
there exists an infinite reduction sequence D starting from u. We inspect D.

Assume u = Uα
j (u1, . . . , um). We first prove the following claim by induction

on n − j where n is the number of conditions of α.

If u is minimal non-terminating, then the forbidden subterm ui contains

an allowed minimal non-terminating subterm for some 2 ≤ i ≤ m.

First assume u = Uα
n (u1, u2, . . . , um) and u is minimal non-terminating. Hence,

eventually in every infinite reduction there will be a (first) root reduction step

u →∗
Ucs(R) u′ ǫ

→Ucs(R) rσ where r ∈ T (Σ, V ) (cf. Definition 4). From our

assumption (4) it follows that rσ must contain a minimal non-terminating U -
subterm inside the substitution. The arguments u2, . . . , um are forbidden for
reduction in u, so for every x ∈ Var(r) either xσ occurred as forbidden subterm
in u or it occurred allowed in u′ in which case it cannot be non-terminating
as u′ is minimal non-terminating (obviously a minimal non-terminating term
cannot be reduced to a term containing a non-terminating proper subterm by
reduction steps below the root). Hence, the claim holds.

Second, assume u = Uα
j (u1, u2, . . . , uk) with j < n and u is minimal non-

terminating. In every infinite reduction sequence issuing from u there will be a
(first) root reduction step

u →∗
Ucs(R) u′ ǫ

→Ucs(R) u′′ = Uα
j+1( , u2, . . . , uk, uk+1, . . . , uk+l).

The term u′′ is non-terminating (as it is part of an infinite reduction) and thus
contains an allowed minimal non-terminating subterm. We distinguish two cases

• If u′′ itself is minimal non-terminating, then we apply the induction hy-
pothesis yielding that an allowed subterm of ui is minimal non-terminating
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for some i ∈ {2, . . . k+ l}. The terms {uk+1, . . . , uk+l} occurred at allowed
positions in u′ (these terms are variable bindings of variables occurring in
the right-hand side of the jth condition of α). Thus they cannot contain a
minimal non-terminating allowed subterm as this would contradict mini-
mal non-termination of u′ and thus of u. Hence, one of the terms u2, . . . uk

contains an allowed minimal non-terminating subterm.

• If a proper subterm of u′′ is minimal non-terminating, then this subterm
must be in the substitution part of rσ = Uα

j+1(s, x2, . . . xk+l)σ = u′′, where
r is the right-hand side of the rule applied in the root reduction, because
all proper subterms of r are either variables or rooted by symbols from
Σ and thus cannot be minimal non-terminating because of assumption
(4). However, for every x ∈ Var(r), the term xσ already occurred in
u′ and as u′ is minimal non-terminating, the terms xk+1σ, . . . , xk+lσ are
terminating. Hence, an allowed subterm of xiσ is minimal non-terminating
for some i ∈ {2, . . . , k}.

Now we have shown that under assumption (4) it holds that every minimal
non-terminating term contains a forbidden (and thus proper) subterm with the
same property which is obviously a contradiction. Hence, assumption (4) cannot
hold and the lemma is proved.

The following definition will be useful in proving the subsequent complete-
ness result concerning termination.

Definition 10 (partial evaluation). Let Ucs(R) be a CSRS obtained from a
DCTRS R = (Σ, R) by the transformation of Definition 4 and let t be a term
such that every maximal U -rooted subterm of t is µ-terminating. Then we define
pevalR(t) as

pevalR(t) =























x, if t = x ∈ V

f(pevalR(v1), . . . , pevalR(vn)),
if t = f(v1, . . . , vn) and f ∈ Σ

G′(pevalR(u1), . . . , pevalR(um)),
if t = Uα

i (v1, . . . , vn) and Uα
i 6∈ Σ

where G′(g1, . . . , gk) stands for G(g1, G(g2, . . . G(gk−1, G(gk, A)) . . .)) or A and
the terms ui are all terms satisfying t →+

Ucs(R) ui and root(ui) ∈ Σ ∪ Var, in

an arbitrary but fixed order. If there is no such term then peval(t) = A. Here,
A is a fresh constant and G is a fresh binary symbol (which will be used as
non-deterministic projection symbol, i.e., by including the rules G(x, y) → x,
G(x, y) → y, in Theorem 6 below).

Note that whenever a U -term t is µ-terminating and t →∗
Ucs(R) t′, then the

maximal U -rooted subterms of t′ are µ-terminating as well, because they occur
at replacing positions in t′ since all arguments of all non-U function symbols
are replacing according to Definition 4. Hence, peval is well-defined.

Informally, peval(t) represents all descendants of t (w.r.t. →Ucs(R)) that do
not contain any U -symbols.
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Definition 11 (correspondence w.r.t to peval). Let R be a DCTRS and Ucs(R)
be the system obtained by the transformation of Definition 4. Furthermore, let
s, t ∈ T (U(Σ)⊎{G, A}, V ). We say that s weakly corresponds to t w.r.t. peval,
denoted by t y s, if s = C[s1, . . . , sn]p1,...,pn

, t = C[t1, . . . , tn]p1,...,pn
, and for

all 1 ≤ i ≤ n we have that ti is a µ-terminating U -term with si = peval(ti).

Note that the context C in Definition 11 may contain U -symbols and is
unique for all terms s and t with s y t.

Lemma 5. Let R be a DCTRS and let Ucs(R) be the system obtained by the
transformation of Definition 4. Given two terms s, t ∈ T (U(Σ)∪{G, A}, V ) with
t y s, i.e. t = C[t1, . . . , tn]p1,...,pn

and s = C[peval(t1), . . . , peval(tn)]p1,...,pn

1. t
q
→Ucs(R)∪CE

t′ and q ≥ pi for some 1 ≤ i ≤ n implies s →∗
Ucs(R)∪CE

s′

and t′ y s′, and

2. t
q
→Ucs(R)∪CE

t′ and q < pi for some 1 ≤ i ≤ n implies s →+
Ucs(R)∪CE

s′

and t′ y s′.

Proof. (1.) Let q ≥ pj . The term peval(t′|pj
) = G′(peval(u1), . . . , peval(un))

where the set {u1, . . . , un} is the set of all terms ui satisfying that t′|pj
→∗

Ucs(R)

ui and root(ui) ∈ Σ ∪ Var according to Definition 10.
On the other hand peval(t|pj

) = G′(peval(v1), . . . , peval(vm)). Whenever
t′|pj

→∗
Ucs(R) ui, then also t|pj

→∗
Ucs(R) ui, because t|pj

→Ucs(R) t′|pj
→∗

Ucs(R)

ui. Hence, {u1, . . . , un} ⊆ {v1, . . . , vm} and peval(t|pj
) →∗

Ucs(R)∪CE
peval(t′|pj

)

by applying G-rules to filter those vis that do not occur in {u1, . . . , un}. Hence,
s = s[peval(t|pj

)]pj
→∗

Ucs(R)∪CE
s[peval(t′|pj

)]pj
= s′.

(2.) Let q < pi for some 1 ≤ i ≤ n. We have t = t[lσ]q and thus s = s[lσ′]q
because q < pi for some i, and hence q.q′ < pi for all q′ ∈ PosU(Σ)∪{G}(l)
because l does not contain a U -symbol below the root and t|pi

is a U -term for
all i. Moreover, for all 1 ≤ i, j ≤ n we have that ti = tj implies si = sj . Hence,
l matches s|q even if it is non-linear. Obviously, xσ y xσ′ for all x ∈ Dom(σ),
because xσ cannot be a proper subterm of t|pi

for any i.
Hence, we have s = s[lσ′]q →Ucs(R)∪CE

s′ = s[rσ′]q and t′ = t[rσ]q y s′,
because s′ = C ′[s′1, . . . s

′
m]q1,...,qm

and t′ = C ′[t′1, . . . t
′
m]q1,...,qm

where t′i is µ-
terminating for all 1 ≤ i ≤ m since it is equal to tj for some 1 ≤ j ≤ n.

Theorem 6 (completeness for CE-termination). Let R be a DCTRS and let
Ucs(R) be its transformed system according to Definition 4. Then R is CE-cs-
quasi-reductive if and only if Ucs(R) is CE-µ-terminating.

Proof. Ucs(R
CE ) = Ucs(R) ⊎ CE and RCE = R ⊎ CE . Note that Ucs(R

CE ) is
the system obtained by transforming RCE .

The if part of the proof is therefore covered by Theorem 5, because µ-
termination of Ucs(R

CE ) implies cs-quasi-reductivity of RCE .
The only if part of the theorem will be proved indirectly by showing that

non-µ-termination of Ucs(R
CE ) implies non-µ-termination of Ucs(R

CE ) on orig-
inal terms, i.e. terms of the original signature of R (plus {G, A}), which further
implies non-cs-quasi-reductivity of RCE according to Theorem 4.
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So assume Ucs(R
CE ) is non-terminating. According to Lemma 4 there exists

an infinite reduction sequence D : t0 →∗
Ucs(RCE )

t1 →∗
Ucs(RCE )

. . . starting from

a term t0 with a root symbol from Σ⊎{G, A}, such that each replacing subterm
of t0 is terminating. We will prove the existence of another infinite reduction
D′ starting at t′0 = pevalRCE (t0), which does not contain any U -symbols. Note
that t0 = C[t10, . . . t

m
0 ]p1,...,pm

y t′0 = C[peval(t10), . . . peval(tm0 )]p1,...,pm
where C

is non-empty because t0 is not a U -term.
Now to prove by induction that an infinite reduction sequence D′ starting

at t′0 can be constructed we show that tj y t′j implies tj+k y t′j+k for some

k ≥ 1 with t′j →+
Ucs(RCE )

t′j+k.

Assume tj y t′j , i.e. tj = C[t1j , . . . , t
n
j ]p1,...,pn

and t′j = C[peval(t1j ), . . . ,
peval(tnj )]p1,...,pn

. Consider the subreduction tj →Ucs(RCE ) tj+1 · · · →Ucs(RCE )

tj+k of D such that the last step of this subreduction occurs at a position q < pi

for some 1 ≤ i ≤ n. Note that such a reduction must appear in each tail of D,
because the terms t1j , . . . t

n
j are all µ-terminating.

We get t′j →+
Ucs(RCE )

t′j+k and tj+k y t′j+k through iterated (k times)

applications of Lemma 5.
Hence, we can construct an infinite Ucs(R

CE )-reduction sequence starting
from t′0 which implies non-cs-quasi-reductivity of RCE according to Corollary
4.

As corollaries of Theorem 6 we get the following modularity results.

Corollary 5. The property of CE-cs-quasi-reductivity is modular for disjoint
unions.

Corollary 6. CE-operational termination (defined for a DCTRS R as opera-
tional termination of R⊎ CE) is modular for disjoint unions.

Example 9. Consider the following DCTRS R

α1 : div(x, y) → pair(0, x) ⇐ greater(y, x) →∗ true

α2 : div(x, y) → pair(s(q), r) ⇐ leq(y, x) →∗ true,

div(x − y, y) →∗ pair(q, r)

x − 0 → x

0 − y → 0

s(x) − s(y) → x − y

greater(s(x), s(y)) → greater(x, y)

greater(s(x), 0) → true

leq(s(x), s(y)) → leq(x, y)

leq(0, x) → true

performing a simple division with residual. Transforming the conditional rules
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Property of Ucs(R) Implied property of R Proved in

µ-Termination Operational termination
Theorem 3 and

Corollary 1
Non-µ-termination Non-(CE-operational termination) Theorem 6
µ-Termination on

Operational termination
Theorem 5 and

original terms Corollary 1
Non-µ-(termination on

Non-(operational termination) Theorem 4
original terms)
CE-termination CE-operational termination Theorem 6

Non-(CE-termination) Non-(CE-operational termination) Theorem 6

Table 1: Properties of Ucs(R) and the implied properties of a DCTRS R.

α1 and α2 yields

div(x, y) → Uα1

1 (greater(y, x), x, y)

Uα1

1 (true, x, y) → pair(0, x)

div(x, y) → Uα2

1 (leq(y, x), x, y)

Uα2

1 (true, x, y) → Uα2

2 (div(x − y, y), x, y)

Uα2

2 (pair(q, r), x, y) → pair(s(q), r)

Ucs(R) consists of these rules and the unconditional rules from R. Indeed
Ucs(R) is non-µ-terminating

div(x, 0) → Uα2

1 (leq(0, x), x, 0) → Uα2

1 (true, x, 0)

→ Uα2

2 (div(minus(x, 0), 0), x, 0) → Uα2

2 (div(x, 0), x, 0) → . . .

Hence, we deduce non-CE-operational termination of R according to Theorem
6 which points to a flaw in the specification of R allowing division by zero.

Table 1 summarizes the relations between a DCTRS R and Ucs(R).

6 Proving Termination on the Set of Original

Terms

Theorem 5 suggests that in order to prove operational termination of a DCTRS
R, termination of Ucs(R) on original terms has to be proved. However, although
termination on original terms is a weaker property than ordinary termination,
its analysis might be harder and has, despite being an interesting problem, to
the authors’ knowledge, rarely been investigated.

In the following, we introduce a simple approach to deal with this problem
based on the dependency pair framework of [18]. We refer to the property
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of a CSRS ((Σ, R), µ) being µ-terminating on a set of terms identified by a
sub-signature Σ′ of Σ as (Σ′)-sub-signature termination or just sub-signature
termination if Σ′ is clear from the context.

In our setting we extend the notion of dependency pair problems, in order to
take into account our intention of proving termination only on restricted sets of
terms, by adding an additional component specifying a (sub-)signature. Thus,
we define SS-CS-DP-problems (sub-signature context-sensitive dependency pair
problems) to be quadruples (DP,R, µ,Σ′) where DP = (Σ♯, R♯) and R = (Σ, R)
are TRSs, µ is a replacement map for the combined signature Σ♯ ∪ Σ, and
Σ′ ⊆ Σ is a signature determining the starting terms, whose µ-termination
we are interested in. An SS-CS-DP-problem (DP,R, µ,Σ′) is finite if there
is no infinite (DP,R, µ)-chain starting with a dependency pair u1 → v1 and
using a substitution σ such that u1σ ∈ T ((Σ♯ \ Σ) ∪ Σ′, V ) (more precisely
root(u1σ) ∈ Σ# and every proper subterm of u1σ is in T (Σ′, V )). Analogously
to the case without subsignature restriction dealt with in [1, Theorem 12], we
can characterize termination of a CSRS on terms identified by a subsignature
by finiteness of a corresponding SS-CS-DP-problem.

Proposition 5. A TRS R = (Σ, R) with replacement map µ is µ-terminating
on terms T (Σ′, R) if and only if the SS-CS-DP-problem (DP (R, µ),R, µ,Σ′) is
finite.

Following the dependency pair framework of [18], an SS-CS-dependency pair
processor (SS-CS-DP-processor) is a function Proc that takes as input an SS-
CS-DP-problem and returns either a set of SS-CS-dependency pair problems
or “no”. We call an SS-CS-DP-processor sound if finiteness of all SS-CS-DP-
problems in Proc(d) implies finiteness of the input SS-CS-DP-problem d. An
SS-CS-DP-processor is complete if for all SS-CS-DP-problems d, d is infinite
whenever Proc(d) is “no” or Proc(d) contains an infinite SS-CS-DP-problem.

6.1 Narrowing Processors

We introduce two SS-CS-DP-processors that are tailored to the task of proving
finiteness of SS-CS-DP-problems. These processors build upon the well-known
narrowing processor for the dependency pair framework (see e.g. [18]).

The basic idea of this processor is to anticipate the first step of all possible
rewrite sequences in a potential dependency pair chain between two dependency
pairs. If siσ →∗ ti+1σ is part of a chain and siσ and ti+1σ are not equal
(actually we demand that si and ti+1 are not unifiable) then the rewrite sequence
siσ →∗ ti+1σ is non-empty and contains at least one reduction step at a position
p ∈ PosΣ(vi) (see the proof of Theorem 7 for a justification of this claim).
Thus, all possibilities of the first such step are covered by replacing ti → si

by the set {tiθj → s
j
i | 1 ≤ j ≤ n} with s1

i , . . . s
n
i being all possible (one

step, context-sensitive) narrowings of si and θ1, . . . , θn being the¡ corresponding
mgu’s. Theorem 7 below shows that replacing a rule ti → si ∈ DP in an SS-
CS-DP-problem P = (DP,R, µ,Σ′) by the set of narrowings does neither alter
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finiteness nor infinity of P provided that si is linear and does not unify with a
left-hand side of any rule in DP .

Analogously, a rule ti → si occurring in a chain can be replaced under the
corresponding preconditions by the set {tji → siθj | 1 ≤ j ≤ m}, where t1i , . . . t

m
i

are the (one step, context-sensitive) backward narrowings of ti and θ1, . . . , θm

are the corresponding mgu’s.
Applying these narrowing approaches in proofs of termination of CSRSs,

obtained from DCTRSs by the transformation of Definition 4, allows us to
restrict the set of narrowings that we have to consider.

The following lemmata provide the basis for this restriction. Lemma 6 states
that the evaluation of conditions inside U -terms is only necessary if the U -
term can eventually be reduced to an original term, i.e., if the conditions are
satisfiable. Lemma 7 states that in a chain whose initial term does not contain
U -symbols no U -terms can occur that are not reachable by an original term.

Lemma 6. Let R = (Σ, R) be a DCTRS. Assume that u1
ǫ
→ v1, u2

ǫ
→ v2 . . . is

an infinite (DP (Ucs(R)), Ucs(R), µ)-chain and let σ be a substitution enabling
this chain. If the term u1σ does not contain any U -symbol, then there also exists
an infinite (DP (Ucs(R)), Ucs(R), µ)-chain, such that for each term f ♯(t1, ..., tn)
in this chain, each subterm ti is reducible to a term from T (Σ, V ).

Lemma 7. Let R = (Σ, R) be a DCTRS. Assume that u1
ǫ
→ v1, u2

ǫ
→ v2 . . . is

an infinite (DP (Ucs(R)), Ucs(R), µ)-chain and let σ be a substitution enabling
this chain. If the term u1σ does not contain any U -symbol, then no term in this
chain contains a U -term that is not reachable by a term from T (Σ, V ).

Lemmata 6 and 7 motivate the definition of two dependency pair processors
based on the standard narrowing processor.

Definition 12 (restricted forward narrowing). Let (DP,R, µ,Σ′) be an SS-CS-
DP-problem with R = (Σ, R). If ui → vi ∈ DP , Varµ(ui) ∩ Varµ(vi) = ∅, vi

is not unifiable with any left-hand side of a rule in DP and vi is linear, then
Procrfn yields a new SS-CS-DP-problem (DP ′,R, µ,Σ′) where

DP ′ = (DP − {ui → vi}) ∪ {uk
i θk → vk

i | 1 ≤ k ≤ n}

and {v1
i , . . . , vn

i } is the set of all (one-step, context-sensitive) narrowings of vi

with corresponding mgu’s θ1, . . . , θn, such that all subterms of vk
i are reducible

to Σ′-terms for all 1 ≤ k ≤ n.

Theorem 7. The dependency pair processor Procrfn is sound and complete for
an SS-CS-DP-problem (DP,Ucs(R), µ,Σ′) where DP = (Σ♯, S♯) and Ucs(R) =
(Σ, R) provided that Ucs(R) is obtained by the transformation of Definition 4
from some DCTRS R and Σ♯ ∩ (Σ \ Σ′) = ∅ (i.e., Σ♯ does not contain any
U -symbols).

Proof. Soundness: Let P = (P,R, µ,Σ′) be the initial SS-CS-DP-problem.
Lemma 6 shows that if P is infinite then there exists an infinite dependency
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pair chain containing only such U -terms that are reducible to Σ′-terms. Let
v1 → u1, . . . , vi → ui, s → t, vi+1 → ui+1, . . . be such a chain. Thus, let S be
the set of substitutions satisfying ujσ →∗

Ucs(R) vj+1σ for all {j > 0 | j 6= i},
uiσ →∗

Ucs(R) sσ and tσ →∗
Ucs(R) vi+1σ. Moreover, let σ ∈ S be the substitution

such that the reduction sequence tσ →∗
Ucs(R) vi+1σ has minimal length (among

all substitutions in S).
We take a closer look at the sequence tσ →∗

Ucs(R) vi+1σ and show that due
to the minimality of its length the first reduction step must take place at a
position p ∈ PosΣ(t): Assume that the first step is at position q 6∈ PosΣ(t) and
t|q = x. Thus

tσ
q
→ t′ = tσ′ →∗ vi+1σ

We define a new substitution σ′ by xσ′ = t′|q and yσ′ = yσ for all y 6= x.
Since all pairs on a chain are considered to be variable disjoint, we have uiσ

′ =
uiσ →∗

Ucs(R) sσ →Ucs(R) sσ′, tσ′ →∗
Ucs(R) vi+1σ

′ and vjσ
′ →∗

Ucs(R) uj+1σ
′

for all {j > 0 | j 6= i}. Thus, the reduction sequence tσ′ →∗
Ucs(R) vi+1σ

′

has a smaller length than tσ →∗
Ucs(R) vi+1σ which contradicts our minimality

assumption for σ. Note that the existence of the subsequence sσ →Ucs(R) sσ′ is

guaranteed by the fact that Varµ(s) ∩ Varµ(t) = ∅.
Hence, the sequence tσ →∗

Ucs(R) vi+1σ starts with a reduction step at po-

sition p ∈ PosΣ(t). We assume that the reduction sequence is non-empty,
otherwise t and vi+1 would unify. Moreover, t is assumed to be linear. We show
that there is a narrowing t of t obtained by narrowing t with mgu θ, such that
v1 → u1, . . . vi → ui, sθ → t, vi+1 → ui+1, . . . is an infinite chain and each term
in this chain can be instantiated such that it can be reduced to a Σ′-term.

The reduction sequence tσ →∗
Ucs(R) vi+1σ starts with a single reduction

tσ = t[lρ]pσ →Ucs(R) t[rρ]pσ using a rule l → r. Since we consider l and t to
be variable disjoint, we extend σ so that xσ = xρ for all x ∈ Dom(ρ). Thus, σ

unifies l and t|p and there is also an mgu θ for l and t|p (σ = τ ◦ θ).
Then t narrows to t = t[rθ]p and since sθ → t is assumed to be variable

disjoint from all other pairs in a chain, we can adapt σ to behave like τ on the
variables of sθ and t. Thus,

uiσ →∗
Ucs(R) sσ = sθτ = sθσ

tσ = tτ = t[rθτ ]pθτ = σt[σr]p = σt[rρ]p →∗
Ucs(R) vi+1σ

and v1 → u1, . . . vi → ui, sθ → t, vi+1 → ui+1, . . . is an infinite chain. Moreover,
an instance (obtained through σ) of each subterm of t is reducible to a Σ′-term,
because this was true for the chain we started with and all terms of the new
chain occurred already in the original one. Thus, we showed that infinity of an
SS-CS-DP-problem P implies infinity of the problem Procrfn(P ).

Completeness: Let P = (P ∪ {s → t},R, µ,Σ′) be an SS-CS-DP-problem
such that t is linear and does not unify with any left-hand side of a rule in P,
and let (P ∪ {sθ1 → t1, . . . sθn → tn},R, µ,Σ′) be Procrfn(P ). We show that if
v1 → u1, . . . , vi → ui, sθm → tm, vi+1 → ui+1, . . . is a (P ∪ {sθ1 → t1, . . . sθn →
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tn},R, µ)-chain for some 1 ≤ m ≤ n, then v1 → u1, . . . , vi → ui, s → t, vi+1 →
ui+1, . . . is a chain as well.

As v1 → u1, . . . , vi → ui, sθm → tm, vi+1 → ui+1, . . . is a chain, there
is substitution a σ such that ujσ →∗

Ucs(R) vj+1σ for all {j > 0 | j 6= i},
uiσ →∗

Ucs(R) sθmσ and tmσ →∗
Ucs(R) vi+1σ.

As s → t does not share any variables with the rules vj → uj for all j > 0,
we can define σ′ to behave like θσ on the variables of s → t and like σ on all
other variables. Thus, we have

uiσ
′ →∗

Ucs(R) sθσ = sσ′

and because of tθ →Ucs(R) tm (by the definition of context-sensitive narrowing)
we get

tσ′ = tθσ →∗
Ucs(R) tmσ′ →∗

Ucs(R) vi+1σ
′

Thus, v1 → u1, . . . , vi → ui, s → t, vi+1 → ui+1, . . . is a chain and we can
construct a (P ∪ {s → t}, Ucs(R, µ)-chain out of a (P ∪ {sθ1 → t1, . . . sθn →
tn}, Ucs(R, µ)-chain this way.

Note that the precondition of the narrowed dependency pair not containing
variables that are forbidden in its left-hand side but allowed in its right-hand
side is crucial as the following example illustrates.

Example 10. Consider the DP problem P = (DP,R, µ,Σ) given by

DP =

{

t#(f(x)) → t#(h(x))
t#(b) → t#(f(a))

R =







a → b

h(x) → U(x, x)
U(x, x) → x

Σ = {a, b, f, h, t} and µ(g) = {1} for all g ∈ {h, U, t, t#}, µ(g) = ∅ for all
g ∈ {f}. Note that R is the transformed version of the DCTRS {a → b, h(x) →
x ⇐ x →∗ x}. P is infinite because there exists an infinite DP chain:

t#(f(a))
ǫ
→ t#(h(a)) →µ t#(h(b)) →µ t#(U(b, b)) →µ t#(b)

ǫ
→ t#(f(a))

The right-hand side of the first pair is linear and it does not unify with a
left-hand side of any other pair. However, there are forbidden variables in its
left-hand side that occur replacing in the right-hand side. Narrowing the first
pair and thus replacing it by t#(f(x)) → t#(U(x, x)) would yield a finite DP
problem. Thus the precondition Varµ(l) ∩ Varµ(r) = ∅ for the narrowed rule
l → r ∈ DP is really needed.

The second dependency pair processor makes use of backward narrowing.
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Definition 13 (restricted backward narrowing). Let (DP,R, µ,Σ′) be an SS-
CS-DP-problem with R = (Σ, R). If ui → vi ∈ DP , Varµ(vi) ∩ Varµ(ui) = ∅,
ui is not unifiable with any right-hand side of a rule in DP and ui is linear,
then Procrbn yields a new SS-CS-DP-problem (DP ′,R, µ,Σ′) where

DP ′ = (DP − {ui → vi}) ∪ {uk
i → vk

i θk | 1 ≤ k ≤ n}

and {u1
i , . . . , u

n
i } is the set of (one-step, context-sensitive) backward narrow-

ings of ui with corresponding mgu’s θ1, . . . , θn, such that all subterms of uk
i are

reachable from Σ′-terms for all 1 ≤ k ≤ n.

Theorem 8. The dependency pair processor Procrbn is sound and complete for
an SS-CS-DP-problem (DP,Ucs(R), µ,Σ′) where DP = (Σ♯, S♯) and Ucs(R) =
(Σ, R) provided that Ucs(R) is obtained by the transformation of Definition 4
from some DCTRS R and Σ♯ ∩ (Σ \ Σ′) = ∅ (i.e., Σ♯ does not contain any
U -symbols).

Proof. Analogous to the proof of Theorem 7.

The narrowing processors use the notions reducible to respectively reachable
from which are both undecidable in general. Thus, in order to apply these
processors in practice, we need to use heuristics to approximate these notions.
A very simple approach would be to discard only those narrowings that are
U -terms and (forward resp. backward) narrowing normal forms. This heuristic
is also used in the implementation of these processors in VMTL [32]. Note that
when using approximations of the notions “reducible to” and “reachable from”
the narrowing processors may no longer be complete (cf. Example 11), hence
they cannot be used to prove non-termination on original terms in general.

Examples 11 and 12 below show that this simple approximation is already
sufficient to prove termination on original terms where ordinary termination
does not hold (Example 11), or to significantly reduce the number of narrowings
that have to be considered (Example 12).

Apart from such simple approximations one could also think of more so-
phisticated ones. For instance in the “forward” approach non-reducibility to
original terms could be detected by root-stability which is still undecidable but
for which non-trivial decidable approximations exist (e.g. strong root stability
[21]).

Example 11. Consider the transformed CSRS R of Example 8 and the SS-CS-
DP-problem P0 = (DP0,R, µ,Σ′) where DP0 = DP (R), µ has been extended
to take dependency pair symbols into account and Σ′ is Σ minus all U -symbols.
DP (R) = {f ♯(k(a), k(b), x) → f ♯(x, x, x)}8 . Applying Procrbn to P0, we obtain
a new problem P1 = (DP1,R, µ,Σ′) where

DP1 = {f ♯(U2(c(a), z), k(b), x) → f ♯(x, x, x),

f ♯(k(a), U2(c(b), z), x) → f ♯(x, x, x)}.

8Here, we restrict the set of dependency pairs to those that are possibly part of a cycle in
the dependency graph. See [1] for a motivation and justification of this approach.
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Procrbn can be applied again using either rule in DP1 for narrowing. After
iterated applications of Procrbn, all narrowings of left-hand sides of rules in
DPi contain the term U1(d, d) as their first or second argument. As this term
is a backward narrowing normal form, DPi+1 = ∅ and we conclude termination
on original terms according to Theorem 8.

Note that in this example it is critical to discard narrowings that contain
the term U(d, d), because this term is not reachable by an original term. If
one used to rough approximations for reachability by original terms and con-
sidered terms containing U(d, d) as valid terms appearing on DP chains, then
indeed infinite DP-chains would exist. However, the conclusion that the sys-
tem is non-µ-terminating on original terms would be incorrect, because when
using approximations for the notion “reachable from” the backward narrowing
processor is no longer complete.

Example 12. Consider the transformed CSRS R of Example 3. We use forward
narrowing on the rule.

A♯ → h♯(f(a), f(b))

Thus, the pair is replaced by two new rules

A♯ → h♯(U(a, a), f(b))

A♯ → h♯(f(a), U(b, b))

Procrfn can be applied again to the resulting problem, such that the right-hand
sides of the new rules are narrowed. Eventually, one of the arguments of h♯ will
narrow to instances of U(d, x), U(k, x), U(l, x) or U(m, x). As all instances of
these terms are root stable9 , those narrowings can be disregarded according to
Definition 12. Thus, in the row of SS-CS-dependency pair problems obtained
by repeated application of Procrfn, the size of the TRSs (to be precise of the
TRS in the first component of the tuples) will not grow as fast as it would,
if no narrowings were discarded and smaller problems are obviously easier to
handle (also with other dependency pair processors) than bigger ones. Indeed,
termination of the CSRS of this example can be shown automatically with the
described method (cf. Example 14 below).

6.2 Instantiation Processors

In a sense, the transformation of Definition 4 distributes the evaluation of the
conditions of one conditional rule among several unconditional rules. The re-
sults of these single evaluations are propagated through the variables from one
unconditional rule to the next one. With our narrowing approach we try to ap-
proximate the results of single evaluations, but still we need a way to propagate
these results in proofs of termination.

To this end we propose an instantiation processor, whose informal goal is to
propagate the results of condition evaluations approximated through narrowing

9A term t is root stable w.r.t. to a rewrite system R if there is no R reduction issuing from
t that contains a root reduction step.
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to subsequent conditions (i.e. subsequent rules in the transformed system).10

The following lemma provides the theoretical basis for our instantiation proces-
sor.

Lemma 8. Let P = (Σ, R) and R = (D ⊎ C, R′) be TRSs with a combined

replacement map µ. If sθ
ǫ
→P,µ tθ

>ǫ
→

∗

R,µ s′θ′
ǫ
→P,µ t′θ′, s′σ = t for some

substitution σ, Varµ(t′) ∩ Varµ(s′) = ∅ and all variables of s′ are contained
only in constructor subterms (w.r.t. R) (i.e. s′|p ∈ Var ⇒ ∀q < p : root(s′|q) ∈

(Σ ∪ C) \ D), then s′σθ
ǫ
→P,µ t′σθ →∗

R,µ t′θ′ for some θ, such that xθ = xθ for
all x ∈ Var(t).

Definition 14 (backward instantiation processor). Let (DP = {s → t} ∪
DP ′,R, µ,Σ′) be an SS-CS-DP-problem with R = (Σ, R), such that all variables
of s are contained only in constructor subterms of s (w.r.t. R) and Var

µ
(t) ∩

Varµ(s) = ∅. The set Preds→t = {l → r ∈ DP | γ = mgu(cap(ren(r)),
cap(ren(s))} defines all potential antecedents of the pair s → t on (DP,R, µ)-
chains.11 If, for all l → r ∈ Preds→t ,r = sσ for some σ, then the processor
Procbi yields (DP ′ ∪ {sσ → tσ | l → r ∈ Preds→t ∧ r = sσ},R, µ,Σ′).

Theorem 9. The processor Procbi is sound and complete.

Proof. Soundness: Assume there is an infinite dependency pair chain w.r.t.
to a DP problem P = (DP,R, µ,Σ). We show that there also exists an infinite
chain w.r.t. to the problem Procbi(P) = P ′.

Consider an arbitrary fragment of the initial infinite chain:

. . . tiθ →∗
R,µ si+1θ

′ ǫ
→DP ti+1θ

′ . . . .

Then, we can construct an analogous chain fragment in Procbi(P), as either
si+1 → ti+1 is contained in the dependency pairs of the derived problem P ′, or
ti = si+1σ and thus there is a dependency pair si+1σ → ti+1σ in P ′. In the
latter case the new chain fragment is

. . . tiθ = si+1σθ
ǫ
→P′ ti+1σθ →∗

R,µ ti+1θ
′

(according to Lemma 8).

Completeness: Consider an infinite chain w.r.t. P ′. . . . siσθ
ǫ
→ tiσθ . . . .

As we assume that all dependency pairs in chains are variable disjoint we can
adapt θ to behave like σθ and thus obtain an infinite DP chain w.r.t. to the
original problem P.

10Note that our instantiation processor is similar to, but incomparable to the one in [18],
as in [18] variables are only instantiated by constructor terms while according to Definition
14 in our approach also terms containing defined symbols can be substituted (cf. Example 13
below).

11To be precise this definition of Preds→t identifies a superset of potential antecedent pairs
of s → t in DP chains. The exact set is in general undecidable, however one could use
other/better approximations here as well.
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Example 13. Consider an SS-CS-DP-problem P = (DP,R, µ,Σ′) where

DP =

{

d# → U
#
1 (c)

U
#
1 (x) → c#

R =







d → U1(c)
U1(x) → c

c → b

µ(U#
1 ) = µ(U1) = {1} and Σ′ = {c, d}. The problem originates from the

dependency pair analysis of the DCTRS R :

d → x ⇐ c →∗ x

c → b

The backward instantiation processor can be applied to P . The dependency pair
s → t is U

#
1 (x) → x and its only potential antecedent is d# → U

#
1 (c). Since

all functions in s above the variable x are constructors (i.e. x is contained in a
constructor context in s) and the variable of t is replacing (i.e. Var

µ
(t) = ∅), the

additional preconditions for the application of the processor are satisfied. Thus,
according to Definition 14 the result of the application of the processor is a new
dependency pair problem (DP ′,R, µ,Σ′) where

DP ′ =

{

d# → U
#
1 (c)

U
#
1 (c) → c#

Note that finiteness of this resulting SS-CS-DP-problem is obvious and can easily
be shown be repeated application of the forward narrowing processor of Definition
12.

Example 14. Inside the dependency pair framework termination on original
terms of Ucs(R) and thus operational termination of R for the DCTRS R from
Example 3 can be proved by repeated application of forward narrowing and back-
ward instantiation. Our experiments showed that µ-termination of Ucs(R) is
hard to prove using other, standard techniques for termination analysis, thus
the introduced dependency pair processors seem crucial for this particular exam-
ple.

Analogously to the backward instantiation processor we can also define a
processor for forward instantiation.

Definition 15 (forward instantiation processor). Let (DP = {s → t}∪DP ′,R,

µ,Σ′) be an SS-CS-DP-problem with R = (Σ, R), such that all variables of t are
contained only in constructor subterms of t (w.r.t. R) and Varµ(t)∩Var

µ
(s) =

∅. The set Succs→t = {l → r ∈ DP | γ = mgu(cap(ren(t)), cap(ren(l))}
defines all potential descendants of the pair s → t on (DP,R, µ)-chains.12 If,

12To be precise this definition of Succs→t identifies a superset of potential descendant pairs
of s → t in DP chains. The exact set is in general undecidable, however one could use
other/better approximations here as well.
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for all l → r ∈ Succs→t, l = tσ for some σ, then the processor Procfi yields
(DP ′ ∪ {sσ → tσ | l → r ∈ Succs→t ∧ l = tσ},R, µ,Σ′).

In order to prove soundness and completeness we proceed as for the backward
instantiation processor and show the following lemma that is dual to Lemma 8.

Lemma 9. Let P = (Σ, R) and R = (D ⊎ C, R′) be TRSs with a combined

replacement map µ. If sθ
ǫ
→P,µ tθ

>ǫ
→

∗

R,µ s′θ′
ǫ
→P,µ t′θ′, tσ = s′ for some

substitution σ, Var
µ
(s) ∩ Varµ(t) = ∅ and all variables of t are contained only

in constructor subterms (w.r.t. R) (i.e. t|p ∈ Var ⇒ ∀q < p : root(t|q) ∈ (Σ ∪
C) \ D), then sθ →∗

R,µ sσθ for some θ, such that xθ = xθ′ for all x ∈ Var(tσ).

Theorem 10. The processor Procfi is sound and complete.

Proof. Soundness: Assume there is an infinite dependency pair chain w.r.t.
to a DP problem P = (DP,R, µ,Σ). We show that there also exists an infinite
chain w.r.t. to the problem Procfi(P) = P ′.

Consider an arbitrary fragment of the initial infinite chain:

. . . siθ
ǫ
→DP tiθ →∗

R,µ si+1θ
′ . . . .

Then, we can construct an analogous chain fragment in Procfi(P), as either
si → ti is contained in the dependency pairs of the derived problem P ′, or
si+1 = tiσ and thus there is a dependency pair siσ → tiσ in P ′. In the latter
case the new chain fragment is

. . . siθ →∗
R,µ siσθ

ǫ
→P′ tiσθ = si+1θ

′

(according to Lemma 9).

Completeness: Consider an infinite chain w.r.t. P ′. . . . siσθ
ǫ
→ tiσθ . . . .

As we assume that all dependency pairs in chains are variable disjoint, we can
adapt θ to behave like σθ and thus obtain an infinite DP chain w.r.t. to the
original problem P.

Note that the narrowing and instantiation approach is just one out of many
methods to analyze dependency pair problems for their finiteness in the setting
of ordinary termination analysis. However, regarding the structure of the sys-
tems that we analyze and using the fact that they were obtained from DCTRSs,
narrowing and instantiation seem to be an adequate tool in our special setting,
because they are in some cases able to identify those instances of left-hand sides
of rules for which the conditions of the corresponding DCTRS are satisfiable.

Taking into account that finding such instances or identifying instances for
which the conditions are not satisfiable is potentially crucial for proving or
disproving termination of (transformed) systems, narrowing and instantiation
are important tools for this task. Moreover, our narrowing dependency pair
processors allow us to reduce the number of narrowings generated and thus
make the narrowing approach more efficient in practice.
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In the experiments we performed to evaluate our approach, the combination
of narrowing and instantiation was only part of the strategy for finding proofs
in the dependency pair framework. More precisely, we applied the narrowing
processors (backward and forward in parallel; cf. [32, Section 3.1]) until they
were no longer applicable and used the instantiation processors afterwards. See
Section 6.3 for details on other DP processors available in our tool VMTL.

Example 15. In Example 11, after several narrowing steps the first TRS of the
SS-CS-DP-problem is empty, thus the conditions of the conditional rule are un-
satisfiable. Note that this DCTRS R is operationally terminating while Ucs(R)
is not µ-terminating. Hence, operational termination cannot be verified with
standard ordering-based methods. Thus, again the presented narrowing proces-
sor is crucial for a successful automatic proof of operational termination.

6.3 Experimental Evaluation and Practical Issues

In order to evaluate the practical use of the context-sensitive unraveling as well
as our approach to prove termination on restricted sets of terms, we imple-
mented both the transformation and our proposed dependency pair processors
in the tool VMTL ([32]). Moreover, VMTL contains implementations of various
standard (mostly ordering based) DP processors. These are

• a dependency graph processor,

• reduction pair processors based on RPOS and polynomial orderings, and

• a size-change-principle processor.

In addition a simple check for infinity of DP problems is included that can be
viewed as a DP processor returning “no”, hence enabling VMTL to prove non-
termination. Note that, as the narrowing processors (using approximations for
deciding reducibility to resp. reachability from) are not complete, infinity of a
DP problem does not imply non-termination of the original rewrite system on
original terms after they have been used during the proof search. For a more
thorough description of the features of VMTL we refer to [32]. The results and
details of our tests can be found at the tool’s homepage.1 Out of 27 tested
systems our implementation was able to prove operational termination of 17.
Note that for only one DCTRS in this collection the transformed system is not
µ-terminating on all, but only on original terms (i.e. Example 8). However,
we refrained from providing more examples of this kind, since we conjecture
that they would all have a structure similar to the DCTRS in Example 8. This
conjecture is supported by the fact that for such TRSs R (i.e., where R is
operationally terminating while Ucs(R) is non-µ-terminating), R ∪ CE is not
operationally terminating (cf. Theorem 6 and Corollary 4). Moreover, DCTRSs
with this property are rather pathological and do not arise naturally as pro-
gram specifications. We showed, however, that our approach is useful also for
proving termination of DCTRSs not belonging to this class. This is supported
by our experiments where operational termination of several DCTRSs R could
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be shown whereas they could not be handled by traditional methods despite
R∪ CE being operationally terminating as well.

The examples used in the experiments were taken from the termination
problem database (TPDB)13 and from standard literature on conditional term
rewriting (e.g. [31] and [26]).

In our experiments other termination tools supporting conditional rewrite
systems scored worse on this set of examples. We tested AProVE [17] on the
set of examples. It was able to prove operational termination of 15 through the
web-interface. However, the batch version (i.e. AProVE 1.214) could only prove
operational termination of 12 examples. This illustrates that termination of
CSRSs obtained by our transformation may be hard to verify, and sophisticated
and complicated proof methods (as implemented only in the most recent version
of AProVE) may be needed.

Overall, VMTL was able to prove operational termination of 6 DCTRSs for
which AProVE failed. On the other hand, operational termination of 4 other
DCTRSs could only be successfully proved by AProVE. In the 6 examples where
VMTL was successful while AProVE was not, the narrowing and instantiation
processors of Section 6 played a crucial rule.

On the negative side, repeated application especially of narrowing proces-
sors can be expensive with respect to execution time (and space). Yet, we
did not restrict the application of the narrowing and instantiation processors
by imposing complex applicability conditions as for instance described in [18,
Section 5.2] using the concept of safe transformations. The reason is that for
the particular class of rewrite systems obtained by transformations from con-
ditional systems it might be necessary to spend more time on narrowing and
instantiation techniques than on the search for applicable orderings. Still such
applicability conditions tailored to systems obtained by the transformation of
Definition 4 would be an interesting direction for future work.

Note also that inside the dependency pair framework DP processors may
be applied to DP-problems in an arbitrary order. Choosing and fixing such an
order can significantly influence the power and efficiency of a termination tool.
In our experiments, the narrowing and instantiation approach was only tried
after other ordering-based methods to prove finiteness of DP-problems, which
are more efficient, failed. This strategy turned out to be the most efficient and
powerful one.

7 Related Work

The idea of using context-sensitivity to improve the unraveling transformation
of [26, 27, 30, 31] is not new. In [10, 29, 11] the same idea is used in conjunction
with another optimization. The second optimization is to store the bindings of

13http://www.lri.fr/∼marche/tpdb/
14Newer batch versions of AProVE failed to prove termination of any DCTRSs with extra

variables in our experiments.
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only those variables in the arguments of a Uα
j symbol that occur in a subsequent

condition or in the right-hand side of the rule α.
For clarity we provide a formal definition of this optimization.

Definition 16 (Optimized transformation according to [10, 29, 11]). Let R be
a DCTRS (R = (Σ, R)). For every rule α : l → r ⇐ s1 →∗ t1, . . . , sn →∗ tn we
use n new function symbols Uα

i (i ∈ {1, . . . , n}). Then α is transformed into a
set of unconditional rules in the following way:

l → Uα
1 (s1, ~x1)

Uα
1 (t1, ~x1) → Uα

2 (s2, ~x2)

...
Uα

n (tn, ~xn) → r

Here the sequences of variables ~xi are given by (an arbitrary but fixed se-
quentialization of the set of variables)

(Var(l) ∪ Var(t1) . . .Var(ti−1)) ∩
(Var(ti) ∪ Var(si+1) ∪ Var(ti+1) . . .Var(sn) ∪ Var(tn) ∪ Var(r)).

The transformed system Uopt(R) = (U(Σ), Uopt(R)) is obtained by transforming
each rule of R where U(Σ) is Σ extended by all new function symbols. We use
a replacement map µopt given by µopt(U) = {1} for every auxiliary symbol U

(i.e. U ∈ U(Σ) \ Σ) and µopt(f) = {1, . . . , ar(f)} for every f ∈ Σ.

Indeed, according to [11] it holds that whenever Uopt(R) is µopt-terminating,
R is operationally terminating.15 16 Since the transformation of Definition 16
produces smaller transformed systems than the one from Definition 4, it might
be advantageous to use it in termination analysis. However, there is a price
to pay for this optimization. That is, one loses the property of simulation-
soundness (cf. Theorem 2).

Example 16. Consider a DCTRS R given by

f(x) → c ⇐ a →∗ b

g(x, x) → g(f(a), f(b))

The transformed system Ucs(R) consists of the following rules

f(x) → U(a, x)

U(b, x) → c

g(x, x) → g(f(a), f(b))

15The transformation we presented in Definition 16 is actually a special case of the trans-
formation introduced in [11]. There, the authors work in a more general setting where R itself
may be context-sensitive and rewriting modulo an equational theory is used.

16Note, however, that in [11, p. 78] the authors introduce both Ucs(R) and Uopt(R), but
do not clearly distinguish between them subsequently. This appears to be justified in the
context of [11, Theorem 2 and Lemma 3] (because the proofs of these latter results work for
both versions of the transformation), but not in general, since the two transformations have
different properties, cf. Examples 16, 17! In particular, µopt-termination of Uopt(R) implies
µUcs(R)-termination of Ucs(R), but not vice versa.
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Ucs(R) is µ-terminating and thus R is operationally terminating. However,
Uopt(R) given by

f(x) → U(a)

U(b) → c

g(x, x) → g(f(a), f(b))

is easily seen to be non-(µopt-)terminating (even on original terms) due to the
cyclic reduction sequence

g(f(a), f(b)) →+
Uopt(R) g(U(a), U(a)) →Uopt(R) g(f(a), f(b))

Hence, Theorems 2 and 4 and Corollary 4 do not hold for this optimized
transformation.17

Note that the DCTRS in Example 16 is not left-linear. However, this prop-
erty is not crucial as the following left-linear example shows (also the left-hand
sides of conditions are linear).

Example 17. Consider the DCTRS R given by

f(x) → y ⇐ a →∗ h(y)

g(x, b) → g(f(c), x) ⇐ f(b) →∗ x, x →∗ c

a → h(b)

a → h(c)

Uopt(R) is given by

f(x) → Uf (a)

Uf (h(y)) → y

g(x, b) → U1
g (f(b), x)

U1
g (x, x) → U2

g (x, x)

U2
g (c, x) → g(f(c), x)

a → h(b)

a → h(c)

Then R is operationally terminating (however, this has been proved by hand –
via analyzing the shape of potentially existing minimal counterexamples – as au-
tomated termination tools currently fail to prove µ-termination of Ucs(R)), but

17Technically, this is reflected in the fact that the definition of the back-translation function
tb (which is crucial for the proofs of these results) according to Definition 3 would not be
well-defined for Uopt(R) instead of Ucs(R)! The reason is that the substitution σ involved
in Definition 3 may become non-well-defined due to the existence of erasing rules in Uopt(R)
that forget certain variable bindings (cf. the first rule of Uopt(R) in Examples 16 and 17,
respectively). For a more general and thorough discussion of (desirable) properties of back-
translation functions in the setting of transforming CTRSs into TRSs we refer to [19].
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Uopt(R) is again non-terminating due to the following cyclic reduction sequence.

g(f(c), b) → g(Uf (a), b) → U1
g (f(b), Uf (a)) → U1

g (Uf (a), Uf (a))

→ U2
g (Uf (a), Uf (a)) → U2

g (Uf (h(c)), Uf (a)) → U2
g (c, Uf (a))

→ g(f(c), Uf (a)) → g(f(c), Uf (h(b))) → g(f(c), b)

In [29] it is shown that left-linearity (and right linearity in combination with
non-erasingness) of the transformed system Uopt(R) is sufficient to guarantee
simulation-soundness (even if context-sensitivity is dropped).

However, despite being an interesting question we refrain from giving a more
precise assessment of conditions under which the optimized transformation is
simulation sound. Yet, solving this problem could also be useful in practice
because automated termination provers could base the decision on which trans-
formation to use on this knowledge.

In [29] simulation-soundness is obtained by restricting Uopt(R)-evaluations.18

The idea is to contract only redexes not containing auxiliary U -symbols. Hence,
it would be sufficient to prove termination of Uopt under this restriction in order
to deduce operational termination of the original conditional system. While
this might be feasible, given the recent advances in proving termination under
strategies (cf. e.g. [12]), no concrete methods for this particular task exist to the
authors’ knowledge.

8 Discussion and Conclusion

We analyzed the context-sensitive modification of the unraveling transformation
of DCTRSs into TRSs ([26, 27, 30, 31]). This transformation plays a crucial role
in several approaches for the termination analysis of current programming and
specification languages (cf., [25, 11]). Moreover, conditions are inherent features
of several functional programming languages. Hence, methods for the analysis
of conditional systems are of utmost importance when it comes to verify such
programs.

With our characterization of operational termination by termination of a
CSRS on original terms, on the one hand we gain the opportunity to disprove
operational termination (cf. also [16]). On the other hand, the task of proving
termination on original terms is (at least) theoretically easier than proving gen-
eral termination. This latter aspect of proving termination of rewrite systems
not on all terms, but only on a subset of all terms, is an instance of a general in-
teresting problem which has hardly been studied so far (of course, it also applies
to other properties like confluence, having the normal form property etc.), with
few exceptions like e.g. [14, 33, 13]. Little seems to be known on questions of
this type. In our case, clearly more research is necessary for exploiting the fact
that termination only needs to be proved for certain terms, but not (necessarily)
for all ones.

18Note that our notion of simulation-soundness is called simulation-completeness there.
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In Section 6 we introduced a simple approach to address the problem of
proving termination on the set of original terms. Benchmarks performed with
the termination tool VMTL indicate the practical relevance of our method. In
particular, VMTL managed to prove operational termination automatically for
several DCTRSs for which other existing termination tools, using more tradi-
tional approaches, fail. However, our approach should be understood as only a
starting point for the task of analyzing restricted termination and leaves plenty
of space for future improvements. We also conjecture that termination analysis
on a restricted set of terms may be of interest in several areas where transforma-
tions are used. It is very common that transformations introduce new (auxiliary)
functions that may give rise to spurious reduction chains. Restricting the atten-
tion to reductions starting from original terms may be more adequate in many
situations.

In Section 5 we introduced the notion of CE-operational termination and
proved its modularity. We also showed that the context-sensitive version of the
unraveling transformation is sound and complete for CE-operational termina-
tion. This indicates that DCTRSs for which the operational termination and
the CE-operational termination behavior differ have a certain (Toyama-like)
pathological structure as in the unconditional case.

In [29] and [28] the same transformation as in the current paper (with re-
finements) is used for the simulation of conditional rewriting rather than for
termination analysis. We proved that our context-sensitive transformation is
simulation sound and simulation complete in their sense.

To summarize we see three main contributions of this paper:

1. An exact characterization of operational termination of DCTRSs by ter-
mination of CSRSs on original terms.

2. The basis for proving non-(operational termination) of DCTRSs by means
of proving non-(µ-termination) of CSRSs. Furthermore, it was shown that
with the transformation of Definition 4 it is possible to characterize CE-
operational termination of a DCTRS by CE-µ-termination of a CSRS.

3. Finally we provided two simple dependency pair processors (the narrowing
processors) that are specialized for the task of analyzing the termination
behaviour of CSRSs obtained by our transformation and showed that with
their help operational termination of systems can be verified where other
existing methods fail (cf. e.g. Example 11).
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Appendix: Missing Proofs

Proposition 1 If a DCTRS R is quasi-reductive, then it is cs-quasi-reductive.

Proof. The result is obvious, since if a DCTRS is quasi-reductive with respect to
a signature extension Σ′ and an ordering ≻, then it is cs-quasi-quasi-reductive
w.r.t. the same signature extension and the same ordering and the replacement
map µ with µ(f) = {1, . . . , ar(f)} for all f ∈ Σ′.

Proposition 2 If a DCTRS R is cs-quasi-reductive, then it is quasi-decreasing.

Proof. Let R be cs-quasi-reductive w.r.t. the ordering ≻µ. First, we show that
→R ⊆ ≻µ: Assume s →R t (s, t ∈ T (Σ, V )). We will use induction on the
depth of the rewrite step in order to prove s ≻µ t. Assume the step s →R t has
depth 1, i.e., an unconditional rule (or a rule with trivially satisfied conditions)
is applied. In this case s ≻µ t follows immediately from cs-quasi-reductivity of
R and µ-monotonicity of ≻µ.

Next, assume the step s →R t has depth d > 1. Thus, a rule l → r ⇐
s1 → t1, . . . , sn → tn is applied (i.e., s|p = lσ). From the applicability of the
conditional rule it follows that σ can be extended to σ′ such that siσ

′ →∗
R tiσ

′ for
all 1 ≤ i ≤ n. Moreover, each reduction step in each of these reduction sequences
has a depth smaller than d. Thus, the induction hypothesis and transitivity of
≻µ yield siσ

′ � tiσ
′ for all 1 ≤ i ≤ n. Hence, by cs-quasi-reductivity we get

lσ′ ≻µ rσ′, and finally s ≻µ t by µ-monotonicity of ≻µ.
Next we prove that R is quasi-decreasing with respect to the ordering > :=

≻st
µ |T (Σ,V )×T (Σ,V ):

1. →R ⊆ >: Follows immediately from →R ⊆≻µ⊆ > if we restrict attention
to terms of the original signature.

2. > = >st: Assume there is a term s which is a proper subterm of a term
t ∈ T (Σ, V ) (t = C[s]p), such that t 6> s. This implies t 6≻st

µ s, which
contradicts the definition of ≻st

µ as p is a replacing position of t (because
all positions in t are replacing).

3. For every rule l → r ⇐ s1 → t1, . . . , sn → tn, every substitution σ : V →
T (Σ, V ) and every i ∈ {0, . . . , n − 1} we must show sjσ →∗ tjσ for every
j ∈ {1, . . . , i} implies lσ > si+1σ. We know that sjσ →∗ tjσ ⇒ sjσ �µ

tjσ. Because of cs-quasi-reductivity this implies lσ ≻st
µ sj+1σ and thus

lσ > sj+1σ, since lσ, sj+1σ ∈ T (Σ, V ).

Theorem 1 Let R be a DCTRS (R = (Σ, R)). For every s, t ∈ T (Σ, V ) we
have: If s →R t, then s →+

Ucs(R) t.

Proof. We use induction on the depth of the step s →R t. If s →R t with a rule
l → r (i.e., an unconditional rule), then l → r ∈ Ucs(R) and thus s →Ucs(R) t.
Assume s →R t with a rule α : l → r ⇐ s1 →∗ t1, . . . , sn →∗ tn. Then
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s = C[lσ]p and t = C[rσ]p. All rewrite sequences siσ →∗
R tiσ have lower

depths than lσ →R rσ, thus we can apply the induction hypothesis to obtain
the following rewrite sequence in the transformed system:

C[lσ]p →Ucs(R) C[Uα
1 (s1σ,Var(l)σ)]p

→∗
Ucs(R) C[Uα

1 (t1σ,Var(l)σ)]p

→Ucs(R) C[Uα
2 (s2σ,Var(l)σ, EVar(t1)σ)]p

→∗
Ucs(R) . . .

→∗
Ucs(R) C[Uα

n (tnσ,Var(l)σ, EVar(t1)σ, . . . ,

EVar(tn−1)σ)]p →Ucs(R) C[rσ]p = t

Proposition 4 Let R be a DCTRS. If U(R) is terminating, then Ucs(R) is
µ-terminating.

Proof. The result is immediate, since we have →U(R) ⊇ →Ucs(R).

Corollary 4 Let R = (Σ, R) be a DCTRS. The following properties of R
are equivalent: µ-termination of Ucs(R) on original terms, cs-quasi-reductivity,
quasi-decreasingness, and operational termination.

Proof. The equivalence of quasi-decreasingness and operational termination was
proved in [24]. Theorem 5, Proposition 2 and Theorem 4 show: µUcs(R)-
termination of Ucs(R) on T (Σ, V ) ⇒ cs-quasi-reductivity of R ⇒ quasi-de-
creasingness of R ⇒ µUcs(R)-termination of Ucs(R) on T (Σ, V ).

Corollary 5 CE-cs-quasi-reductivity is modular for disjoint unions.

Proof. Let R and S be DCTRSs with disjoint signatures that are both CE-cs-
quasi-reductive. According to Theorem 6, Ucs(R) and Ucs(S) are CE-µ-termina-
ting. In [20], modularity of CE-µ-termination is proved. Thus, Ucs(R)⊎Ucs(S)
is CE-µ-terminating. As Ucs(R) ⊎ Ucs(S) = Ucs(R⊎ S), R⊎ S is CE-cs-quasi-
reductive.

Proposition 5 A TRS R = (Σ, R) with replacement map µ is µ-terminating
on terms T (Σ′, R) if and only if the SS-CS-DP-problem (DP (R, µ),R, µ,Σ′) is
finite.

Proof. IF: Assume R is not µ-terminating on original terms. Then there exists
a sequence of terms

t1
>ǫ
→

∗

R,µ t′1
ǫ
→R,µ s1 Dµ t2

>ǫ
→

∗

R,µ t′2
ǫ
→R,µ s2 Dµ t3

>ǫ
→

∗

R,µ t′3
ǫ
→R,µ . . .

such that t1 ∈ T (Σ′, V ) and ti and t′i are minimal not µ-terminating for all i,
i.e., there is an infinite reduction sequence starting from ti (resp. t′i) but all their
proper replacing subterms are terminating.
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According to the proof of [1, Theorem 12] there also exists a (DP (R, µ),R, µ)-

chain (DP (R, µ) = (Σ♯, R♯)) starting with the term t
♯
1 = l♯σ for some rule

l♯ → r♯ ∈ DP (R, µ). Clearly, t
♯
1 ∈ T ((Σ♯ \ Σ) ∪ Σ′, V ).

only if: In the completeness part of the proof of [1, Theorem 12], an infinite
reduction sequence in (R, µ) is constructed out of an infinite (DP (R, µ),R, µ)-
chain in a way such that if the chain starts with a rule l♯ → r♯ and σ enables
the chain, the constructed reduction sequence starts with the term lσ. If l♯σ ∈
T ((Σ♯ \Σ)∪Σ′, V ) then lσ ∈ T (Σ′, V ). Note that for each infinite chain we can
find a suffix, such that the root symbol of the first rule in the chain is not D♯

(cf. [1, Theorem 12]). It is easy to see that the starting term of such a maximal
tail does not contain functions from Σ \ Σ′ if the starting term of the whole
chain did not, because µ(D♯) = ∅ and the rules defining D♯ in DP (R, µ) do not
introduce such symbols. Moreover, note that the minimality of the chain, which
we do not demand in the proposition, is not used in the proof of [1, Theorem
12].

Lemma 6 Let R = (Σ, R) be a DCTRS. Assume that u1
ǫ
→ v1, u2

ǫ
→ v2 . . . is an

infinite (DP (Ucs(R)), Ucs(R), µ)-chain and let σ be a substitution enabling this
chain. If the term u1σ does not contain any U -symbol, then there also exists an
infinite (DP (Ucs(R)), Ucs(R), µ)-chain, such that for each term f ♯(t1, ..., tn) in
this chain, each subterm ti is reducible to a term from T (Σ, V ).

Proof. According to Corollary 2 we get for all i ≥ 1 that viσ →∗
Ucs(R) ui+1σ

implies tb(viσ) →∗
Ucs(R) tb(ui+1σ) where tb(viσ) = viσ

′, resp. tb(ui+1) = ui+1σ
′

and xσ′ = tb(xσ) for all x ∈ Dom(σ) because vj , uj do not contain U -symbols
(only U ♯-symbols) for all j ≥ 1.

Note that Corollary 2 is applicable because u1σ is an original term (de-
pendency pair symbols are interpreted as constructors when applying Corol-
lary 2) and thus v1σ is an original term as well, thus v1σ →∗ u2σ implies
tb(v1σ) → tb(u2σ) = u2σ

′ where xσ′ = tb(xσ) for all x ∈ Dom(σ) and moreover
xσ′ →∗ xσ. Thus tb(v2σ) = v2σ

′ →∗ v2σ, i.e. v2σ is reachable by an original
term and thus Corollary 2 is applicable to the reduction sequence v2σ →∗ u3σ.
Analogously, reachability of viσ by an original term can be shown for all i > 0
and thus the application of Corollary 2 is justified.

It remains to be shown that it is not necessary to introduce a U -term u,
such that no descendant of u has a root symbol from Σ in any of the reductions
Di : viσ

′ →∗
Ucs(R) ui+1σ

′. In order to show this we identify those reduction
steps in Di where the reductum is such a U -term or is inside such a U -term and
call them U-steps.

Assume Di contains a reduction sequence s
p1,...,pn
→

∗

Ucs(R) s′ →Ucs(R) s′′ such
that the first steps are U -steps and the last one is not. Then the last step, say
using a rule l → r, occurs outside all U -subterms of s′ that are not reduced to
original terms by properly finishing the simulated conditional rule application
in Di. Hence, the first steps occur in the variable part of (or parallel to) the
second one (because U -symbols occur only at but not below the root position of
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rules in Ucs(R)) and we can change the order of the steps and perform the last
step first, i.e., s →Ucs(R) s and the U -steps afterwards. Depending on whether
the variables of l to which superterms of s|pi

are bound in the reduction, are
eliminated, copied or duplicated, zero, one or several U -reductions are necessary
to derive s′′, s.t. s →∗

Ucs(R) s′′. Note that non-linearity of l is not a problem if

we perform these rearrangements always for the first U -step(s) occurring in the
reductions viσ

′ →∗
Ucs(R) ui+1σ

′, because whenever two U -terms, that have been

introduced in a Ucs(R)-reduction are equal, the tb version of these terms are
equal as well. Thus, if all U -steps preceding the non-U -steps are shifted after
this step simultaneously, this is also possible in the presence of non-left-linear
rules.

Hence, we can shift all U -steps to the end of the reduction sequence Di.
However, as ui+1σ

′ is an original term and the reductum of each U -step is per
definition inside a U -term the number of U -steps at the end of Di must be zero
after this rearrangement and thus viσ

′ →∗
Ucs(R) ui+1σ

′ is without U -steps.

Lemma 7 Let R = (Σ, R) be a DCTRS. Assume that u1
ǫ
→ v1, u2

ǫ
→ v2 . . . is

an infinite (DP (Ucs(R)), Ucs(R), µ)-chain and let σ be a substitution enabling
this chain. If the term u1σ does not contain any U -symbol, then no term in this
chain contains a U -term that is not reachable by a term from T (Σ, V ).

Proof. According to Corollary 2 we get for all i ≥ 1 that viσ →∗
Ucs(R) ui+1σ

implies tb(viσ) →∗
Ucs(R) tb(ui+1σ) where tb(viσ) = viσ

′, resp. tb(ui+1) = ui+1σ
′

and xσ′ = tb(xσ) for all x ∈ Dom(σ) because vj , uj do not contain U -symbols
(only U ♯-symbols) for all j ≥ 1.

Note that Corollary 2 is applicable because u1σ is an original term (de-
pendency pair symbols are interpreted as constructors when applying Corol-
lary 2) and thus v1σ is an original term as well, thus v1σ →∗ u2σ implies
tb(v1σ) → tb(u2σ) = u2σ

′ where xσ′ = tb(xσ) for all x ∈ Dom(σ) and moreover
xσ′ →∗ xσ. Thus tb(v2σ) = v2σ

′ →∗ v2σ, i.e. v2σ is reachable by an original
term and thus Corollary 2 is applicable to the reduction sequence v2σ →∗ u3σ.
Analogously, reachability of viσ by an original term can be shown for all i > 0
and thus the application of Corollary 2 is justified.

Hence, whenever a term s not reachable from an original term occurs in the
dependency pair chain, then we have viσ

′ →∗
Ucs(R) C[s]. However, according to

Lemma 2 this implies that s is reachable from an original term contradicting
the existence of such an s. Note that the root symbol of vi is interpreted as a
constructor when applying Lemma 2.

Lemma 8 Let P = (Σ, R) and R = (D ⊎ C, R′) be TRSs with a combined

replacement map µ. If sθ
ǫ
→P,µ tθ

>ǫ
→

∗

R,µ s′θ′
ǫ
→P,µ t′θ′, s′σ = t for some

substitution σ, Var
µ
(t′) ∩Varµ(s′) = ∅ and all variables of s′ are contained only

in constructor subterms (w.r.t. R) (i.e. s′|p ∈ Var ⇒ ∀q < p : s′|q ∈ (Σ∪C)\D),

then s′σθ
ǫ
→P,µ t′σθ →∗

R,µ t′θ′ for some θ, such that xθ = xθ for all x ∈ Var(t).
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Proof. Let {x1, . . . , xn} be the variables of t′. We distinguish two cases for each
variable xi. First, assume xi occurs in s′ at position q. Then, we have that
xiσθ →∗

R,µ xiθ
′, as xiσθ = t|qθ and xiθ

′ = s′|qθ
′ and all positions above q are

constructors in t and s′. Thus, we set yθ = yθ for all y ∈ Var(Codom(σ)) and
obtain t′|q′σθ →∗

R,µ t′|q′θ′ for any position q′ with t′|q′ = xi. Note that if q is
replacing in s′, then so is q′ in t′. Otherwise, xiσθ = xiθ

′.
Secondly, if xi does not occur in s′, then it does neither occur in Dom(σ)

nor in Var(Codom(σ)). Thus, we set xiθ = xiθ
′ and obtain t′|pσθ = t′|pθ

′ for
any position p with t′|p = xi.

Hence, s′σθ
ǫ
→P,µ t′σθ and we have that xσoverlineθ →∗

R,µ xθ′ for all x ∈ t′

and thus t′σθ →∗
R,µ t′θ′.

Lemma 9 Let P = (Σ, R) and R = (D ⊎ C, R′) be TRSs with a combined

replacement map µ. If sθ
ǫ
→P,µ tθ

>ǫ
→

∗

R,µ s′θ′
ǫ
→P,µ t′θ′, tσ = s′ for some

substitution σ, Var
µ
(s) ∩ Varµ(t) = ∅ and all variables of t are contained only

in constructor subterms (w.r.t. R) (i.e. t|p ∈ Var ⇒ ∀q < p : t|q ∈ (Σ∪C) \D),
then sθ →∗

R,µ sθσ for some θ, such that xθ = xθ′ for all x ∈ Var(tσ).

Proof. Let {x1, . . . , xn} be the variables of s. We distinguish two cases for each
variable xi. First, assume xi occurs in t at position q. Then, we have that
xiθ →∗

R,µ xiσθ′, as xiθ = t|qθ, xiσθ′ = s′|qθ
′ and all positions above q are

constructors in t and s′. Thus, we set yθ = yθ′ for all y ∈ Var(Codomain(σ))
and obtain s|q′θ →∗

R,µ s|q′σθ for any position q′ with s|q′ = xi. Note that if q

is replacing in t, then so is q′ in s. Otherwise, xiθ = xiσθ′.
Secondly, if xi does not occur in t, then it does neither occur in Dom(σ) nor

in Var(Codomain(σ)). Thus, we set xiθ = xiθ and obtain s|pθ = s|pσθ for any
position p with s|p = xi.
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