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Abstract. Confluence criteria for non-terminating rewrite systems are
known to be rare and notoriously difficult to obtain. Here we prove a
new result in this direction. Our main result is a generalized version
of Newman’s Lemma for left-linear term rewriting systems that does
not need a full termination assumption. We discuss its relationships to
previous confluence criteria, its restrictions, examples of application as
well as open problems. The whole approach is developed in the (more
general) framework of context-sensitive rewriting which thus turns out
to be useful also for ordinary (context-free) rewriting.

1 Introduction and Overview

Besides termination, confluence is the most fundamental property of virtually
any kind of rewrite systems (cf. e.g. [1], [2]). Newman’s Lemma [19] is well-known
to be the major tool for checking confluence of rewrite systems. It states that
local confluence implies confluence for terminating reduction relations. However,
without termination Newman’s Lemma is not applicable, i.e., local confluence
may be insufficient for guaranteeing confluence. In general, confluence proofs
without termination are much harder. For the case of not necessarily terminating
term rewriting systems (TRSs), a couple of rather restrictive criteria - mostly
via strong confluence properties – are known, both for abstract rewrite systems
(cf. e.g. [11], [13], [2]) as well as for TRSs (cf. e.g. [26], [11], [27], [29], [8], [23],
[24], [21]). Known related decidability results include [7], [6]. Also structural
and modularity properties and considerations may help in certain cases to prove
confluence of non-terminating systems (cf. e.g. [25], [28], [14], [20]). The latter
type of criteria is based on a divide-and-conquer approach, where certain sub-
TRSs are shown to be confluent which in turn implies, under certain combination
conditions, confluence of the whole system.

In term rewriting it is well-known that local confluence of (finite) terminating
TRSs is decidable since it amounts to joinability of all critical pairs (Critical
Pair Lemma, [11]). Hence, for (finite) terminating TRSs Newman’s Lemma
combined with the Critical Pair Lemma yields a decision procedure for con-
fluence.

F. Pfenning (Ed.): RTA 2006, LNCS 4098, pp. 66–80, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Generalizing Newman’s Lemma for Left-Linear Rewrite Systems 67

The approach for proving confluence of (non-terminating) TRSs that we are
going to present here is novel and differs methodologically from virtually all of
these previous approaches in the sense that we do not consider sub-TRSs but
rather certain sub-relations of the rewrite relation that are not generated by
sub-TRSs.

The basic idea of our approach is as follows: Given a (non-terminating) TRS
R with induced rewrite relation →R, we first try to identify an appropriate
terminating sub-relation →′ ⊆ →R (that is not induced by a sub-TRS of R),
to prove its confluence via Newman’s Lemma, and then to deduce confluence of
the entire TRS R, i.e., of →R, under some additional conditions.

The setting we are working in is context-sensitive term rewriting (CSR), a
framework that properly extends ordinary (context-free) term rewriting by in-
troducing context-sensitivity restrictions in the rewrite relation (cf. e.g. [17]).
The necessary technical background will be provided below. CSR has turned
out to be very useful for obtaining better computational properties of equational
and rewrite specifications, e.g., for increased efficiency, a better termination be-
haviour, and an effective handling of infinite data structures (cf. e.g. [15,16,17]).
Given the fact that termination is sometimes very difficult to prove and that non-
termination is in many cases inherently unavoidable, CSR often provides ways
for such examples to get a (restricted) terminating context-sensitive rewrite rela-
tion, while still preserving the desired computational power (e.g., for computing
normal forms). Our confluence criterion will be based on such a context-sensitive
view of a given ordinary TRS R.

Let us give two simple motivating examples illustrating the problem with
proving confluence.

Example 1. Consider the following TRS R, which is a slightly modified variant
of [4, Ex. (27)], and the essential part of its reduction graph:

(1) g(a) → f(g(a))
(2) g(b) → c
(3) a → b
(4) f(x) → h(x, x)
(5) h(x, y) → c

g(a) � f(g(a))

h(g(a), g(a))
�

g(b)
�

� c
�

Example 2. This example involves the generation of (all) natural numbers (via
the constant nats and using a recursive increment operation inc) with some list
destructors h(ea)d, t(ai)l and : as (infix) list constructor. The TRS R and the
essential part of its reduction graph are as follows:

(1) nats → 0 : inc(nats)
(2) inc(x : y) → s(x) : inc(y)
(3) hd(x : y) → x
(4) tl(x : y) → y
(5) inc(tl(nats)) → tl(inc(nats))
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inc(tl(nats)) � tl(inc(nats))

inc(tl(0 : inc(nats)))
�

tl(inc(0 : inc(nats)))
�

inc(inc(nats))
�

� tl(s(0) : inc(inc(nats)))
�

In both examples the rewrite system R has the following properties: It is left-
linear, non-terminating and locally confluent. But as far as we know there are
no known confluence criteria in the literature that would allow us to directly
infer confluence in these examples. In particular, since both systems are non-
terminating, Newman’s Lemma is not applicable, i.e., a test for joinability of
critical pairs is not sufficient. The systems are not orthogonal, since there exist
critical pairs (in Ex. 1 rule (3) overlaps into (1), and in Ex. 2 rule (1) overlaps
into (5)). Even though these critical pairs are joinable (cf. the reduction graphs),
none of the critical pair based confluence criteria for left-linear rewrite systems
in [11,8,23,24,21] is applicable here. Also, decidability results of [7], [6] are not
applicable.1 Yet, both systems are indeed confluent as we shall prove later on
with our new criterion.

2 Preliminaries

We assume familiarity with the basic theory, terminology and notations in term
rewriting (cf. e.g. [1], [2]). For the sake of readability some important notions
and notations are recalled here.

Given a set A, P(A) denotes the set of all subsets of A. Given a binary
relation →, on a set A, we denote the transitive closure of → by →+, and
its reflexive and transitive closure by →∗. The inverse →−1 of → defined by
{(b, a) | (a, b) ∈ → is also denoted by ←. An element a ∈ A is an →-normal
form, if there exists no b such that a → b; NF(→) is the set of →-normal
forms. We say that b is a →-normal form of a, if a →∗ b ∈ NF(→). We say
that → is terminating iff there is no infinite sequence a1 → a2 → a3 · · · . → is
locally confluent iff ← · → ⊆ →∗ · ∗←, and confluent (or Church-Rosser) iff
←∗ · →∗ ⊆ →∗ · ←∗. Terms are constructed as usual over some countable set V
of variables and a signature F of functions symbols equipped with a fixed arity
given by ar : F → N. The set of all terms over F and V is denoted by T (F , V).
A term is linear if it has no multiple occurrences of a single variable. Terms
are viewed as labelled trees in the usual way. Positions p, q, . . . in terms are

1 With the decreasing diagrams method of [22], [2, Section 14.2], however, it is possible
to prove confluence of the linear system of Example 2 above, by finding an appropri-
ate well-founded labelling for rewrite steps. Yet, this powerful and general method
does not directly yield easily applicable confluence criteria, but requires careful and
smart design choices to become applicable. For Example 1, (practical) applicability
of this method remains unclear, due to non-right-linearity.
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represented by sequences of positive natural numbers. Given positions p, q, we
denote their concatenation by p.q. Positions are ordered by the standard prefix
ordering ≤. Two positions p and q are parallel (or disjoint), denoted p ‖ q, if
neither p ≤ q nor q ≤ p. The set of all positions of a term t is Pos(t), the set
of all its variable positions and of all its non-variable positions by VPos(t) and
FPos(t), respectively. We denote the ‘empty’ root position by ε. The subterm
of t at position p is denoted by t|p and t[s]p is the term t with the subterm
at position p replaced by s. We shall also make free use of (term) contexts as
usual. The symbol labelling the root of t is denoted as root(t). For the set of all
variables occurring in a term s we write Var(s).

A rewrite rule is an ordered pair (l, r), written l → r, with l, r ∈ T (F , V), l �∈ V
and Var(r) ⊆ Var(l). A term rewriting system (TRS) is a pair R = (F , R)
where F is a signature and R is a set of rewrite rules over T (F , V). We will often
omit the signature when it is implicitly given by the set of rules, and identify
R and R. A TRS R is left-linear if for all l → r ∈ R, l is linear. The rewrite
relation induced by a TRS R is defined by s →R t if s|p = lσ, t = s[rσ] for
some l → r ∈ R, some p ∈ Pos(s) and some substitution σ. Instead of s →R t
we also write s → t if R is clear from the context, and s →R,p t or s →p t to
indicate the position of the redex contraction. Critical pairs and critical peaks
of rewrite rules and systems are defined as usual. A TRS R is terminating,
confluent, locally confluent, etc. if → has the respective property.

Next we need some additional notions and notations for context-sensitive
rewriting. Given a signature F , a mapping μ : F → P(N) is a replacement map
(or F -map) if for all f ∈ F , μ(f) ⊆ {1, . . . , ar(f)} ([15]). The set Posμ(t) of
(μ-)replacing or active positions of t ∈ T (F , V) is given by Posμ(t) = {ε}, if t ∈ V
or t ∈ F with ar(f) = 0, and Posμ(t) = {ε}∪

⋃
i∈μ(root(t)){i.q | q ∈ Posμ(t|i)},

otherwise. The set Posμ(t) of non-(μ-)replacing or inactive positions of t ∈
T (F , V) is just the complement of the former, i.e., Posμ(t) = Pos(t) \ Posμ(t).
Replacement maps are ordered by 
, with μ 
 μ′ if for all f ∈ F , μ(f) ⊆ μ′(f).
Thus, μ 
 μ′ means that μ considers less positions than μ′ (for reduction).
If μ 
 μ′, we also say that μ is more restrictive than μ′. A context-sensitive
rewrite system (CSRS) is a pair (R, μ) (also denoted by Rμ), where R is a
TRS and μ is a replacement map (over the signature of R). In context-sensitive
rewriting (CSR [15]), only replacing redexes are contracted. s μ-rewrites to t,
denoted by s →R,μ t or just s →μ t, if s →R,p t and p ∈ Posμ(t). Note
that this means that →R,μ t is stable under substitutions, but in general not
under contexts, i.e., the monotonicity property (of →R) is lost. Slightly abusing
notation, we denote rewriting at non-replacing positions by →μ, i.e., s →μ t

if s →p t for some p ∈ Posμ(s). Observe that in general →μ ∪ →μ need not
be a disjoint union. A simple example illustrating this is the TRS consisting of
the two rules f(x) → f(b), a → b with μ(f) = ∅. Here we have both f(a) →μ

f(b) and f(a) →μ f(b). A CSRS Rμ is terminating, confluent, locally confluent
etc. if →μ has the respective property. Finally, for a given CSRS Rμ, we will
need certain replacement maps that are not very restrictive. More precisely, all
positions of non-variable subterms in the left-hand sides of the rules should be
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replacing (this will guarantee in particular that rewrite steps that are involved
in critical overlaps of R are also Rμ-steps). The canonical replacement map
μcan
R : F → P(N) is defined by i ∈ μcan

R (f) ⇐⇒ ∃l → r ∈ R, p ∈ FPos(l) :
root(l|p) = f, p.i ∈ FPos(l). The set CMR of replacement maps (for R) that
are at most as restrictive as μcan

R is given by CMR = {μ ∈ MR | μcan
R 
 μ}.

The most liberal replacement map (for R) μ� is the greatest element of MR,
i.e., with μ�(f) = {1, . . . , ar(f)} for all f ∈ F .

3 Weakening the Termination Assumption in Newman’s
Lemma for Left-Linear Rewrite Systems

Suppose R is a locally confluent non-terminating TRS. In order to try to prove
confluence of R, we will impose context-sensitivity restrictions on R, i.e., a
replacement map μ such that →R,μ (hopefully) becomes terminating and such
that confluence of →R,μ implies confluence of →R (hence of R).

3.1 Confluence Via Context-Sensitive Confluence

For reasons that will become clear later on (cf. Lemmas 3, 4, 5) we need as
general assumptions, besides termination of →R,μ, that R is left-linear, and
that μ is at most as restrictive as the canonical replacement map μcan

R .

Remark 1. To see why requiring μ ∈ CMR makes sense, consider the rewrite
system R consisting of the rules c → b, b → c and h(b) → a, together with
μ(h) = ∅. Here we have one critical overlap h(c) ← h(b) → a (which is joinable
via h(c) → h(b) → a). However, we cannot deduce this using only → −μ-
reduction (in Rmu this critical peak does not even exist, since h(c) ← h(b) is
not a → −μ-step; moreover, for joinability we need the h(c) → h(b) which is
also not a → −μ-step).

– R is left-linear. (1)
– μ ∈ CMR. (2)
– Rμ is terminating. (3)

A first question is whether, for any such Rμ, its context-free version R is al-
ready (necessarily) confluent if R is locally confluent? Actually, when looking
at examples in the literature, especially in papers on CSR, we have not found
a single counterexample to this tempting conjecture. However, it turns out that
conditions (1)–(3), together with local confluence of R, are not yet sufficient for
concluding confluence of R. A simple counterexample is the following modified
and extended version of the basic counterexample to the equivalence of local
confluence and confluence (cf. [10]).

Example 3. Suppose the TRS R is given as follows, again with the relevant part
of its reduction graph on the right.



Generalizing Newman’s Lemma for Left-Linear Rewrite Systems 71

(1) b → a
(2) b → c
(3) c → h(b)
(4) c → d
(5) a → h(a)
(6) d → h(d)

b � c

a
�

h(b) ��
h(c) d

�

h(a)
� �

h(h(b)) �
�

h(h(c)) h(d)
��

. . .
�� . . . . . .� . . . . . . . . . . . .

��

Clearly, R is not confluent, since for instance for a ← b → c → d there is no
common successor of a and d. However, R is obviously locally confluent. The two
critical peaks a ← b → c and h(b) ← c → d are joinable via a → h(a) ← h(b) ← c
and h(b) → h(c) → h(d) ← c, respectively. Moreover, choosing μ with μ(h) = ∅
we have μ = μcan

R ∈ CMR. For this choice of μ, →R,μ is easily seen (and proved)
to be terminating. However, what goes wrong in this example is the fact that
→μ is not (locally) confluent. To see this, consider again the critical peaks. For
a ←μ b →μ c, reduction of a and c to a common successor is not possible by
→μ-steps only: a →μ h(a) ←μ h(b) ←μ c. Similarly, for h(b) ←μ c →μ d we
only get h(b) →μ h(c) →μ h(d) ←μ d. In other words, although → (hence R) is
locally confluent, →μ is not. Thus we cannot argue using Newman’s Lemma for
→μ.

Example 3 and Remark 1 suggest that in order to be able to use Newman’s
Lemma for the context-sensitive restriction →μ of → (in proofs of confluence of
→), we have to additionally require the following property of Rμ.

– Every critical peak t1 ← s → t2 of R is joinable with →μ-steps. (4)

For locally diverging μ-steps (i.e., of the form t1 ←μ s →μ t2) that correspond
to a variable overlap we also have to ensure →μ-joinability.2 Actually, for proof-
technical reasons we need a stronger property. To describe this formally, we first
need some additional terminology.

Definition 1 (level of subterms). Given Rμ and a term t, the level of a
subterm t|p of t (and of p), denoted by level(t, p) is the number of all non-
replacing positions q = q′.i on the path in t from ε to p with i �∈ μ(root(t|q′ )).
Formally:

level(t, p) =

⎧
⎨

⎩

0, if p = ε
level(ti, p′), if p = i.p′, t = f(t1, . . . , tn), i ∈ μ(f)

1 + level(ti, p′), if p = i.p′, t = f(t1, . . . , tn), i �∈ μ(f)

If x ∈ V ar(t) (for an arbitrary term t), we define – slightly abusing notation
– level(t, x) = max{level(t, p) | t|p = x} if x ∈ V ar(t), and level (t, x) = 0 if
x �∈ V ar(t).
2 E.g., consider f(x) → g(x) and a → b with μ(f) = {1}, μ(g) = ∅. Then we have

f(b) ←μ f(a) →μ g(a), which is →-joinable via f(b) → g(b) ← g(a), but not →μ-
joinable, because the latter step is not a →μ-step.
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Intuitively, level (t, p) describes ‘the degree of how forbidden’ it is to reduce the
subterm t|p of t.

Definition 2 (level-decreasingness). Given Rμ, a rule l → r ∈ R is said
to be level-decreasing, if for every variable x ∈ V ar(l) we have level(l, x) ≥
level(r, x). Rμ is level-decreasing if every rule of Rμ is level-decreasing.

Note that ground TRSs are trivially level-decreasing.
Our last condition for the announced confluence criterion now reads as follows.

– Rμ is level-decreasing. (5)

Definition 3 (level of reduction steps). Given Rμ we define binary relations
→μ,i and →μ,≤i, for all i ≥ 0 as follows:

s →μ,i t ⇐⇒ s →R,p t, level (s, p) = i .

s →μ,≤i t ⇐⇒ s →μ,k t for some k ≤ i .

For the sake of readability, if μ is clear from the context, we also write →i and
→≤i instead of →μ,i and →μ,≤i, respectively.

From the definitions of →μ and →k it is obvious that →μ =
⋃

k≥1 →k holds.
Clearly, s →k t (s →≤k t) means that t can be obtained from s by contracting
some redex at level k (at some level ≤ k). And s →μ t says that we can get t
from s by contracting a redex s|p of s at some non-replacing position p of s (i.e.,
such that the level of s|p of s is equal to some k ≥ 1).

Example 4 (Example 3 continued). Adding levels to reduction steps, we have
here e.g. a ←0 b →0 c and a →0 h(a) ←1 h(b) ←0 c as well as h(b) ←0 c →0 d
and h(b) →1 h(c) →1 h(d) ←0 d.

Proposition 1. Given Rμ the following properties hold:

(a) →k ⊆ →≤k ⊆ →≤k+1 for all k ≥ 0.
(b) →μ = →0, →μ =

⋃
k≥1 →k.

(c) → =
⋃

k≥0 →≤k =
⋃

k≥0 →k = →μ ∪ →μ.

Proof. Straightforward by the respective definitions.

Lemma 1 (confluence criterion for →μ, cf. [15]). Let Rμ be a CSRS sat-
isfying (1), (3), (4) and (5). Then →μ is confluent.

Proof. Local confluence of →μ can be easily directly shown by considering all
cases of local divergences and exploiting properties (1), (4) and (5) which to-
gether with Newman’s Lemma yields confluence because of (3). In particular,
our conditions (1) and (5) imply the property that →μ has left-homogeneous
replacing variables (cf. [15, Def. 5]) which guarantees that variable overlaps in
Rμ are uncritical.3

3 Actually, condition (5) could still be weakened a bit here by requiring only that
level-decreasingness need only hold for rules with variables of level 0 in left-hand
sides. However, Lemma 1 is anyway a special case of [15, Theorem 5] and we will
not use the above slight generalization later on.
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Lemma 2 (extraction lemma). Given Rμ, suppose s →≤k+1 t at some level
≥ 1. Then s has the form s = C[s1, . . . , sn]p1,...,pn where the pi’s are all minimal
non-replacing positions in s, and t = C[t1, . . . , tn]p1,...,pn , with si →≤k ti for
some i ∈ {1, . . . , n} and sj = tj for all j ∈ {1, . . . , n} \ {i}.

Proof. Straightforward by definition of →≤i.

The next result gives conditions under which reduction sequences can be re-
arranged such that →0-steps are done first.4

Lemma 3 (exchange lemma). Let Rμ be given with (1), (2) and (5), i.e.,
such that R is left-linear, μ ∈ CMR and Rμ is level-decreasing. Then the fol-
lowing rearrangement property holds for every k ≥ 0:5 →≤k · →0 ⊆ →0 · →∗

≤k .

Proof. First we observe that for k = 0 the inclusion holds trivially. Thus suppose
k ≥ 1. Furthermore let s →k′ t at position p with 0 ≤ k′ ≤ k and t →0 u at
position q. Again, if k′ = 0, the inclusion holds trivially, hence we may assume
k′ ≥ 1. Now, p and q must be distinct (otherwise we have a contradiction,
because a position cannot be both replacing and non-replacing). We distinguish
the following cases.

(a) p ‖ q: Then the two steps commute and we get s →0 s[u|q]q →k′ s[u|q][t|p]p =
u.

(b) p < q: This is impossible, since s →k′ t at p with k′ ≥ 1 implies p ∈ Posμ(s)
and p ∈ Posμ(t), hence also q ∈ Posμ(t) (because of p < q). But on the
other hand, due to t →0 u at position q, we have q ∈ Posμ(t), hence a
contradiction.

(c) p > q: In this case we have s = s[lσ]p →k′ s[rσ]p = t = t[l′τ ]q →0 t[r′τ ]q = u
(for some l → r, l′ → r′ ∈ R and substitutions σ, τ). If we can show that
position p in t is below the pattern of l′ in t[l′τ ]q we are done, because then we
have – by left-linearity of R – s = s[l′τ ′]q →k′ t = t[l′τ ]q →0 t[r′τ ]q = u (for
some rewrite rule l′ → r′ ∈ R and some substitution τ ′) which commutes
via s = s[l′τ ′]q →0 s[r′τ ′]q →∗

≤k′ s[r′τ ]q = t[r′τ ]q = u. Note that for the
reduction s[r′τ ′]q →∗

≤k′ s[r′τ ]q in the variable parts of the right-hand side
r′ of l′ → r′, more precisely for the bound k on the level of the reduction
steps) we need assumption (5). Now suppose p in t were in the pattern of l′.
This would imply by (2) that p ∈ Posμ(t) and p ∈ Posμ(s), hence k′ = 0.
But this is a contradiction to our assumption k′ ≥ 1 from above. Hence we
are done.

The next commutation result will be needed to prove a kind of backward preser-
vation of →μ-normal forms along non-replacing reduction steps (cf. Lemma 5).
4 This is similar to standardization in left-linear TRSs (cf. e.g. [2]), except for the fact

that we need additional information about the individual steps.
5 Actually, from the proof it is clear that we even have the stronger statement →≤k

· →0 ⊆ →0 · −−‖−→≤k where −−‖−→≤k denotes a parallel reduction step with each
contraction being at a level at most k. However, we don’t need this stronger version
later on.



74 B. Gramlich and S. Lucas

Lemma 4 (commutation lemma). Let Rμ be given with (1), (2) and (5), i.e.,
such that R is left-linear, μ is at most as restrictive as μcan

R and Rμ is level-
decreasing. Then the following commutation property holds for every k ≥ 1:6

Proof. Suppose t ←k s →0 u at positions p and q, respectively. Hence, t =
s[t|p]p ←k s[s|p]p = s = s[s|q]q →0 s[u|q]q = u. We proceed by case analysis.

(a) p ≤ q: Due to k ≥ 1 we have p ∈ Posμ(s) and thus also q ∈ Posμ(s).
However, s →0 u at q implies q ∈ Posμ(s), hence a contradiction.

(b) p ‖ q: In this case the reductions commute as usual: t = s[t|p]p →0 s[t|p][u|q]q
←k s[u|q]q = u where the left step is at position q and the right one at p.

(c) p > q: Because of assumption (2), μ ∈ CMR, and since k ≥ 1, this case
corresponds to a variable overlap. Moreover, due to assumption (1), left-
linearity of R, we have t = s[lσ′]q ←k s = s[lσ]q →0 s[rσ]q = u for some
l → r ∈ R and substitutions σ, σ′. Hence, t and u are joinable via t =
s[lσ′] →0 s[rσ′] ←∗

≤k s[rσ]q = u. Note that the (parallel) reduction u =
s[rσ]q →∗ s[rσ′] is of level at most k because of assumption (5), i.e., level-
decreasingness of R.

The next lemma states conditions under which reduction of some term to a
→μ-normal form implies that the original term is already a →μ-normal form.

Lemma 5 (a condition for backward invariance of →μ-normal forms).
Let Rμ be given with (1), (2) and (5), i.e., such that R is left-linear and level-
decreasing, and μ ∈ CMR. Then s →∗

μ t ∈ NF(→μ) implies s ∈ NF(→μ).

Proof. We prove the statement for one step, i.e., s →μ t ∈ NF(→μ) implies
s ∈ NF(→μ). The result then follows by transitivity (that is by induction on
the number of steps in s →∗

μ t). Suppose, for a proof by contradiction, that
s �∈ NF(→μ). Hence, there exists some s′ with s →0 s′. Moreover, s →μ t means
s →k1 t for some k1 ≥ 1. By Commutation Lemma 4 this implies that there
exists some t′ with s′ →∗

≤k1
t′ ←0 t. But this is a contradiction to t ∈ NF(→μ).7

3.2 Main Results

Now we are ready to prove the main results of the paper. The first one is a ‘level
confluence’ criterion for CSRSs.

Theorem 1 (level confluence criterion / technical key lemma). Let Rμ

be given satisfying (1)-(5). Then →≤k is confluent for every k ≥ 0.

Proof. We prove confluence of →≤k for all k by induction on k.

(o) Base case k = 0: Confluence of →≤0 = →0 = →μ follows from Lemma 1.

6 Again, from the proof it follows that even the stronger property ←≤k · →0 ⊆ →0

· ←‖−− ≤k holds.
7 Note that the assumptions (1), (2), (5) in the lemma are needed to enable applica-

bility of Lemma 4.
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(i) Induction step “k =⇒ k + 1”: Consider an arbitrary →≤k+1-divergence
t′1 ←∗

≤k+1 s →∗
≤k+1 t′2. Due to assumption (3) we may →μ-normalize t′1

and t′2 yielding D1 : s →∗
≤k+1 t′1 →∗

0 t1 ∈ NF(→μ) and D2 : s →∗
≤k+1

t′2 →∗
0 t2 ∈ NF(→μ). Now, by repeated application of Exchange Lemma 3

and termination of →μ we can rearrange these derivations into D′
1 : s →∗

0
s1 →∗

≤k+1 t1 ∈ NF(→μ) and D′
2 : s →∗

0 s2 →∗
≤k+1 t2 ∈ NF(→μ), where

the →≤k+1-reduction steps are all non-replacing, i.e., of level ≥ 1. From
Lemma 5 we infer that s1, s2 ∈ NF(→μ). Together with confluence of →0 (see
base case) this implies s1 = s2. Hence the divergence diagram collapses to
t1 ←∗

≤k+1 s1 = s2 →≤k+1 t2. Now, let s′ = s1 = s2. Repeated applications of
the Extraction Lemma 2 yield s′ = C[u1, . . . , um] →∗

≤k+1 C[w1, . . . , wm] = t2
and s′ = C[u1, . . . , um] →∗

≤k+1 C[v1, . . . , vm] = t1 for some context C[. . .]
such that vi ←∗

≤k ui →∗
≤k wi for 1 ≤ i ≤ m. Applying the induction hy-

pothesis (for k) to all i, 1 ≤ i ≤ m, we conclude that there exist ui for
all i with v1 →∗

≤k ui ←∗
≤k wi. Putting back these reductions in the non-

extracted version, we get t1 = C[v1, . . . , vm] →∗
≤k+1 C[u1, . . . um] ←≤k+1

C[w1, . . . , wm] = t2. Hence, s′ = C[u1, . . . um] is a common →≤k+1-reduct of
both t1 and t2 as desired, and we are done.

As a consequence of this level confluence criterion we thus obtain our main result,
a generalized version of Newman’s Lemma for left-linear TRSs.8

Theorem 2 (main result). Let R be a TRS and μ be a replacement map on
the signature of R such that (1)-(5) are satisfied, i.e., such that R is left-linear,
μ ∈ CMR, Rμ is terminating and level-decreasing and all critical pairs of R are
Rμ-joinable. Then R is confluent.

Proof. Due to Proposition 1(c) this is an immediate corollary of Theorem 1.

Note that Newman’s Lemma (for left-linear TRSs) is obtained from Theorem
2 as a special case, namely by taking – for some given R – μ to be the most
liberal replacement map μ = μ�. This choice of μ clearly implies (2) and (5),
and also that → = →μ, hence termination of → is equivalent to termination
of →μ. Actually, Theorem 2 properly generalizes Newman’s Lemma (for left-
linear TRSs) since there are cases (cf. e.g. Examples 1, 2) where the former is
applicable, but not the latter because the system (as a TRS) is not terminating.

3.3 Examples and Comparison

Let us first reconsider our Examples 3, 1 and 2. In Example 3, R with μ as
specified satisfies all preconditions of Theorem 2 except (4). Hence the latter
is not (and should not be) applicable. In Example 1, choosing μcan

R , i.e., with
μ(f) = μ(h) = ∅, conditions (1)-(5) are all satisfied as is easily verified. In
particular, termination of Rμ is not difficult to prove by some of the methods
proposed in the literature (cf. e.g. [3], [9], [5], [18]). Observe that, when choosing
some μ ∈ CMR, in order to ensure termination of Rμ we must obviously have

8 more precisely, for the abstract reduction systems induced by left-linear TRSs.
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μ(f) = ∅ (because otherwise this entails non-termination of Rμ). Hence, for h
the only choice is μ(h) = ∅. Otherwise, (5) would be violated.

In Example 2, choosing μ = μcan
R (hence μ(:) = μ(s) = μ(hd) = ∅, μ(inc) =

μ(tl) = {1}) it is easy to verify that (1)-(5) do indeed hold. Hence, confluence of
the TRS follows by Theorem 2.

When applying Theorem 2, there is a certain flexibility in the sense that the
parameter μ may be chosen differently. We require μ ∈ CMR, but not necessarily
μ = μcan

R as in the above examples. In fact, in certain cases the canonical μcan
R

need not be a good choice, whereas a more liberal μ can work, cf. conditions
(3)-(5).

Example 5 (Example 1 modified). Consider R consisting of the rules (1) {g(a) →
f(g(a)), (2′) g(b) → c(a), (3) a → b, (4) f(x) → h(x) and (5′) h(x) → c(b). Here,
choosing μcan

R we cannot apply Theorem 2 to infer confluence, since property (4)
is violated. However, choosing μ ∈ CMR with μ(g) = μ(c) = {1} and μ(i) = ∅ for
all other function symbols i, Theorem 2 is applicable and shows indeed confluence
of R.

Comparing our new confluence criterion of Theorem 2 with other known criteria
(or decision procedures, respectively) for (possibly non-terminating) TRSs, cf.
in particular those of [26], [11], [8], [23], [24], [21], [7], [6] it turns out to be
incomparable w.r.t. all of them. This is easy to show by exhibiting examples
where our criterion is applicable whereas the other ones are not, and vice versa.
This incomparability is not really surprising, because all other confluence criteria
above do not rely on a (partial) termination assumption, whereas our criterion
crucially does.

3.4 Discussion

Let us first discuss the preconditions for applying Theorem 2, namely, (1)-(5),
the effectiveness of using it for confluence proofs, and the inherent limitations of
this confluence criterion. Then we will see how these latter limitations naturally
lead to some interesting open problems.

Recall that applicability of Theorem 2 requires the following properties:

– R is left-linear. (1)
– μ ∈ CMR. (2)
– Rμ is terminating. (3)
– Every critical peak t1 ← s → t2 of R is joinable with →μ-steps. (4)
– Rμ is level-decreasing. (5)

Note that checking (1), (2) (and (4) provided (3) holds) is easy. Furthermore, in
(2), there are only finitely many possibilities for choosing some μ ∈ CMR (for
finite R), hence the search for an appropriate μ ∈ CMR can also be automated.
Proving termination of Rμ, i.e., (3), is of course undecidable in general, but
nowadays numerous powerful methods and tools exist for such context-sensitive
termination proofs, cf. e.g. [5], [18]. Thus, the applicability of the confluence
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criterion of Theorem 2 is effectively decidable, provided that (3) holds, for some
μ ∈ CMR.

Having a closer look at the preconditions, termination of →μ (3) is crucial
to get a Newman style confluence criterion. The conditions (1) left-linearity of
R, and (2) μ ∈ CMR, are essential for several important lemmas (especially
Lemmas 3, 4 and 5) used in the proof of the main Theorem 2. Condition (4),
at least in combination with (2), seems to be unavoidable to infer confluence of
→μ using (1). The only condition which appears to be less clear and intuitive is
level-decreasingness of →μ (5). Besides termination of →μ, this condition is the
most restrictive application condition in practical examples. It would be nice if it
could be dropped or weakened. Currently we do not know any counterexample
to the modified (generalized) statement of Theorem 2 where condition (5) is
dropped. On the other hand, the proof of Theorem 2 (via the “level confluence”
criterion of Theorem 1) as well as Lemmas 3 and 4 heavily rely on this condition.
Hence we have the following

Open Problem 1 (necessity of level-decreasingness?). Does the state-
ment of Theorem 2 also hold if precondition (5) is omitted? In other words,
is any TRS R s.t

– R is left-linear,
– μ ∈ CMR,
– Rμ is terminating, and
– every critical pair of R is Rμ-joinable

necessarily confluent?

A positive solution to this open problem would be particularly nice, since there
are numerous examples (cf. e.g. the literature on CSR) where level-decreasing-
ness is not satisfied. A basic one is the following (cf. e.g.[17]).

Example 6. Consider the R given by

from(x) → x : from(s(x))
sel(0, y : z) → y

sel(s(x), y : z) → sel(x, z)

where from models a kind of parameterized version of generating infinite lists of
natural numbers (cf. Example 2 for a non-parameterized version), and sel serves
for extracting elements from a list. This system is clearly non-terminating as a
TRS, but becomes terminating as Rμ with e.g. μ = μcan

R (hence, with μ(:) =
{1}). Conditions (1)-(4) of Theorem 2 are easily verified, but (5) is violated,
since the first rule is not level-decreasing. Hence Theorem 2 cannot be applied,
although R is indeed confluent, simply because it is orthogonal ([26]).

Another issue that is related to (the preconditions and the statement of) Theo-
rem 2 is the following which we will only touch (cf. e.g. [2] for more details and
background). Let us reconsider the introductory counterexample 3 that we used
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to motivate the requirement that all critical pairs should be →μ-joinable. In the
example this was not the case, and R was not confluent, because a and d with
a ← b → c → d did not have a common reduct. But, interestingly, it turns out
that, when switching from finitary rewriting and confluence to infinitary rewrit-
ing and confluence (cf. e.g. [4], [12], [16], [2]), then Example 3 behaves nicely, in
the sense that R is infinitary confluent (ω-confluent). Intuitively this is easy to
see since the infinitary normal forms of both a and d are hω, hence the system
is indeed ω-confluent. A tempting conjecture in this direction which we state as
open problem is the following.

Open Problem 2 (criterion for ω-confluence?). Is any left-linear, non-
collapsing, locally confluent TRS R, with μ ∈ CMR and →R,μ terminating,
necessarily ω-confluent?

Orthogonal systems are known to be ω-confluent (for strongly converging reduc-
tions) provided they are non-collapsing (cf. [12], [2]). The typical counterexample
showing that the non-collapsingness in this result cannot be dropped is as follows
([12]): Let R consist of the rules a(x) → x, b(x) → x and c → a(b(c)). Then we
get the reductions

c → a(b(c)) → a(c) → a(a(b(c))) → a(a(c)) →ω aω

c → a(b(c)) → b(c) → b(a(b(c))) → b(b(c)) →ω bω ,

hence aω ←ω c →ω bω, but there is no term t with aω →≤ω t ←≤ω bω. Now, R
is clearly non-terminating, but Rμ is also non-terminating for any μ here. This
phenomenon also applies to other collapsing counterexamples (to ω-confluence)
in [12]. If instead of the above system we consider R consisting of a(x) → x,
b(x) → x and c → d(a(b(c))), then Rμ becomes obviously terminating e.g. for
μ ∈ CMR with μ(a) = μ(b) = {1}, μ(d) = ∅. However, for (da)ω ←ω c →ω (db)ω

we can now find a common reduct (in infinitary rewriting): (da)ω →ω dω ←ω

(db)ω. Hence, in the above Open Problem 2 it could even make sense to generalize
the statement by omitting the non-collapsing requirement.

If the answer to the above open problem were “yes”, then this would be a
nice way to prove ω-confluence. To the best of our knowledge it would also be
the first confluence criterion for non-orthogonal infinitary rewrite systems.

4 Conclusion

To conclude, we have presented a new confluence criterion for (possibly non-
terminating) left-linear TRSs which properly generalizes Newman’s Lemma (for
left-linear TRSs). The criterion is We think that not only the result itself is
interesting, but also the proof technique employed that uses the more general
framework of context-sensitive rewriting to finally derive a result about ordinary
(context-free) rewriting. Methodologically, the approach strongly differs from
related confluence criteria. It is neither based on critical pair criteria nor on
modularity properties, but rather on a combination of Newman’s Lemma (for a
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terminating sub-relation of the rewrite relation, that is not induced by a sub-
TRS) with a level-based approach that exploits rearrangement and commutation
properties.

Acknowledgements. We would like to thank the anonymous referees for var-
ious useful comments and hints.
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