
On the Complexity of Linear Authorization Logics
Vivek Nigam

Ludwig-Maximilians-Universität, Munich, Germany
Email: vivek.nigam@ifi.lmu.de

Abstract—Linear authorization logics (LAL) are logics based
on linear logic that can be used for modeling effect-based
authentication policies. LAL has been used in the context of the
Proof-Carrying Authorization framework, where formal proofs
are constructed in order for a principal to gain access to some
resource elsewhere. This paper investigates the complexity of
the provability problem, that is, determining whether a linear
authorization logic formula is provable or not. We show that
the multiplicative propositional fragment of LAL is already
undecidable in the presence of two principals. On the other
hand, we also identify a first-order fragment of LAL for which
provability is PSPACE-complete. Finally, we argue by example
that the latter fragment is natural and can be used in practice.

Keywords: Authorization Logics, Complexity, Linear Logic,
Subexponentials

I. Introduction

There are many situations where using and issuing autho-
rizations may have effects. For example, a professor that is
away might want to provide an authorization to one of his
students to enter his office at most once in order to pick a
book. Once this student has consumed this authorization by
entering the office, the student can no longer enter it unless
he obtains another authorization.

Such a scenario has been implemented [4] following the
Proof-Carrying Authorization framework (PCA) [3], where
access control policies are specified as logical theories and
whenever a principal (or agent) requests permission to access
some resource, she provides a formal proof demonstrating
that such an access follows from the policies. While the
use of logic to specify access control policies dates back to
some decades ago [1], the main difference between PCA and
previous approaches is the existence of proof objects. The
use of proof objects reduces the required trust base of the
principals in a system, as a principal just needs to check
whether the attached proof object is correct.

Access control logics for distributed systems are called
authorization logics [2]. Traditionally classical logics have
been used to specify policies. However, in order to specify
effect-based policies, such as the one illustrated above, one
moves to linear logic [15]. As linear logic formulas can be
interpreted as resources, linear logic theories can model state-
based systems and therefore are suitable for specifying policies
that involve consumable credentials, such as money or the
right to access a room at most once. Linear authorization
logics (LAL) [13] are authorization logics based on linear logic
extended with modality operators [2], e.g., says or has.

A central requirement in PCA is the construction of proof
objects from policies specified using (linear) authorization

logics. Although it is easy to check whether a proof object
is correct, finding a correct proof object involves proof search
which may be hard. In PCA, it is the burden of the requesting
principal, which is normally assumed to be more powerful,
to construct such objects from the policies available. It is
therefore important to determine how hard is the task of
constructing proofs, that is, to determine the complexity of
the provability problem for LAL.

The contribution of this paper is twofold: (1) we propose
a logical framework for LAL and (2) we investigate the
complexity of the provability problem for different fragments
of LAL.

For our first contribution, we propose using the sequent
calculus proof system SELL, introduced in [23], as a logical
framework where one can specify different linear authorization
logics. First, we show how to encode existing authorization
logics [13]. Then we show how SELL allows one to specify
a wider range of policies that did not seem possible before.
For instance, we modularly increase the expressiveness of
our encoding by showing that one can also express in SELL
policies of the form: “A principal may use a lower-ranked set
of policy rules, but not a higher-ranked set of policy rules.”

Our second main contribution is of investigating the com-
plexity of the provability problem for LAL. We show that the
provability problem is undecidable already for the proposi-
tional multiplicative fragment with no function symbols and
only two principals that have only consumable credentials.
The proof follows by encoding a two-counter Minsky ma-
chine [21], which is known to be Turing complete. This
means that constructing proof objects for simple policies may
already not be computable. Interestingly, the upper bound for
the provability problem for the same fragment (MELL) of
linear logic [15] is not known. As exponentials can be seen
as modalities, this result means that adding an extra modality
to MELL possibly leads to undecidability.

Finally, we propose a first-order fragment of LAL for which
the provability problem is PSPACE-complete with respect
to the size of the given formula. In particular, we restrict
policies to be only balanced bipoles with no function symbols
and where principals have only consumable credentials, i.e.,
principals have credentials that can be used exactly once.

Bipoles is a class of logical formulas that often appear
in proof theory literature [20]. From a proof search perspec-
tive, one can make precise connections (sound and complete
correspondence) between the reachability problem of multiset
rewriting systems (MSR) and the provability problem of linear
logic bipoles [5], [23]. However, the same correspondence

does not work as smoothly when using LAL due to the
presence of modalities, e.g., says. But as we show in this
paper, it works when using the expressiveness gained by using
SELL. In particular, we use the ability to specify in SELL
when formulas should be proved without using any policy
rules. That is, such a formula should be necessarily derived
using only the set of already derived formulas. This condition
can be intuitively interpreted as checking whether a formula
follows from the state of the system (or table of a principal).

On the other hand, a sequence of recent papers [18],
[17], [16] have investigated the complexity of the reachability
problem for systems whose actions are balanced. An action
is classified as balanced if its pre and post-conditions have
the same number of atomic formulas. It has been shown
that the reachability problem for MSR with balanced actions
is PSPACE-complete. Given the correspondence between the
reachability and provability problem of bipoles formulas, we
show that the provability problem for balanced bipoles is also
PSPACE-complete.

This paper is structured as follows:
• Section II reviews the proof system SELL, showing how

one can encode existing linear authorization logics and how
to modularly extend such encoding in order to express a
wider range of policies.

• Section III contains the undecidability proof for the propo-
sitional multiplicative fragment of the linear authorization
logic proposed in [13].

• Section IV describes the connections between bipoles and
MSR, formalizing a novel correspondence between prov-
ability of a first-order fragment of linear authorization
logics, namely, when policies are bipoles, and MSR reach-
ability.

• Section V contains the PSPACE-completeness proof for the
provability problem when policies are balanced bipoles.

• Section VI contains a student registration example based
on a similar example from [13], but that is specified using
balanced bipoles.

Finally, in Section VII we conclude and comment on related
work.

II. A Framework for Linear Authorization Logics

We propose using linear logic with subexponentials (SELL)
as a framework for specifying LAL. The system for classical
linear logic with subexponentials was proposed in [7] and
further investigated in [23]. However, as argued in [14],
the use of intuitionistic logic seems more adequate to PCA
applications as it allows only constructive proofs. We now
review the proof system for intuitionistic linear logic with
subexponentials.

Besides sharing all connectives with linear logic, SELL may
include as many exponential-like connectives, called subexpo-
nentials, as one needs. Subexponentials, written !l and ?l , are
labeled with an index, l. The subexponentials indexes available
in a system are formally specified by the tuple 〈I,�,U〉, where
I is the set of labels for subexponentials, � is a preorder
relation among the elements of I, and U ⊆ I specifies which

subexponentials allow weakening and contraction. The pre-
order �, on the other hand, specifies the provability relation
among subexponentials and is upwardly closed with respect
to the set U, i.e., if x � y and x ∈ U, then y ∈ U.

Given a signature Σ, the proof system SELLΣ is constructed
as follows: The system contains all the introduction rules
for &,⊕,⊗,(,∃,∀ and the units, 1,> and 0 as well as the
exchange rules exactly as in linear logic [15]. For every index
a ∈ I, we add the rules:

∆, F −→ G
∆, !aF −→ G

!aL
!x1 F1, . . . !xn Fn −→ G

!x1 F1, . . . !xn Fn −→ !aG
!aR

!x1 F1, . . . !xn Fn, F −→ ?xn+1G
!x1 F1, . . . !xn Fn, ?aF −→ ?xn+1G

?aL
∆ −→ G

∆ −→ ?aG
?aR

where the rules !aR and ?aL have the side condition that a � xi
for all i. That is, one can only introduce a !a on the right (or a
?a on the left) if all other formulas in the sequent are marked
with indexes that are greater or equal than a.

Finally, for all indexes a ∈ U, we add the following
structural rules:

∆, !aF, !aF −→ G
∆, !aF −→ G

C ,
∆ −→ G

∆, !aF −→ G
W and

∆ −→ ·

∆ −→ ?aG W

That is, we are also free to specify which indexes are un-
restricted, namely those appearing in the set U, and which
indexes are linear or consumable, namely the remaining in-
dexes.

Danos et al. showed in [7] that the classical version of SELL
admits cut-elimination. It is also possible to show that the
intuitionistic version shown above admits cut-elimination for
any signature Σ.

Theorem 2.1: For any signature Σ, the cut-rule is admissi-
ble in SELLΣ.

In the remainder of the paper, we elide the subscript Σ from
SELLΣ, whenever it is clear from the context.

A. Specifying Linear Authorization Logics

This section enters into the details of how one can encode
LAL in SELL. Besides containing all the connectives of linear
logic, except the exponentials, ! and ?, LAL contains three
sorts of families of modalities, namely says, has, and knows,
indexed by principal names [13], e.g., K saysC, K hasC, and
K knowsC, where K is a principal name and C is a formula.
The says modality expresses the intent of a principal, while
the has modality expresses that a principal possesses some
consumable resource, which can only be used once, e.g.,
money, and the knows modality expresses the knowledge of a
principal, which can be used as many times as needed, i.e., it is
an unrestricted resource that can be weakened and contracted.

Intuitively, one can conclude that a principal possesses some
resource if one can derive it only from her possessions and
from her knowledge base. On the other hand, one can conclude
that a principal knows some knowledge if it can be derived
only from her knowledge base. Formally, the introduction rules
for possession and knowledge modalities are as follows:

2

Γ, F −→ G
Γ,K has F −→ G

hasL
Ψ,∆ −→ G

Ψ,∆ −→ K hasG
hasR

Γ, F −→ G
Γ,K knows F −→ G

knowsL
Ψ −→ G

Ψ −→ K knowsG
knowsR

where Ψ contains only formulas of the form K knowsC, while
∆ contains only formulas of the form K hasC. Moreover,
K knows F can be weakened and contracted on the left.

Γ,K knows F,K knows F −→ G
Γ,K knows F −→ G

C
Γ −→ G

Γ,K knows F −→ G
W

On the other hand, says are families of lax modalities [11],
whose introduction rules are as follows:

Γ, F −→ K saysG
Γ,K says F −→ K saysG

saysL
Γ −→ G

Γ −→ K saysG
saysR

The left inference rule specifies that to prove K saysG one
may use the affirmations of the principal K, while the right
rule specifies that principals are rational and always affirm
formulas that are provable.

Finally, it is assumed that all principals know a common set
of global policies Θ. In [13], it was assumed that these rules
are in the knowledge base of all principals, i.e., for all formulas
F ∈ Θ and principal names K, the formula K knows F appears
to the left-hand-side of sequents. Notice that they can be used
as many times needed as knowledge is unrestricted.

We start by encoding these modalities in SELL and later in
Section II-B we propose extensions that allow one to express
a wider range of policies.

Assume given a finite set of principal names K . The set of
subexponential indexes is given below:

IK = {hK , kK , sLK , sRK | K ∈ K} ∪ {gl, lin}.
Intuitively, hK is used for specifying has modalities, kK is
used for specifying knows modalities, sLK and sRK are used
for specifying says modalities, lin for linear formulas appear-
ing on the left-hand-side of sequents, and gl for the policy rules
shared among the principals. Moreover, only the kK indexes
and the index gl are unrestricted, that is, kK , gl ∈ U, for
all K ∈ K , while the remaining subexponentials are linear.
Finally, these indexes are organized in the partial order � as
depicted in Figure 1. The subexponential signature specifying
this system is denoted by ΣK . We will normally use the Greek
letter Θ to denote the set of formulas specifying the global
policies that are known to all principals.

We encode says, has, and knows modalities using the four
types of subexponential indexes above and two encodings ~·�L

and ~·�R, for, respectively, negative and positive occurrences
of formulas, (or to the left and right-hand-side of the sequent):

~K hasC�L = !hK ~C�L ~K hasC�R = !hK ~C�R

~K knowsC�L = !kK ~C�L ~K knowsC�R = !kK ~C�R

~K saysC�L = !sLK ?sRK ~C�L ~K saysC�R = ?sRK ~C�R

Notice the asymmetry of the encoding of says modalities.
Its left encoding uses !sLK ?sRK , while the right encoding
uses ?sRK . As we show below, these encodings capture the

kK1

yysss
sss

hK1
oo sLK1

xxqqqqq· · · · · · · · ·

gl kKi
oo hKi

oo linoo

eeLLLLLL

yysss
sss

sLKi
oo

ddJJJJJJoo

zztttttt
· · · · · · · · ·

kKn

eeKKKKKK
hKn

oo sLKn

ffMMMMM



sRK1

· · ·

sRKi

· · ·

sRKn

Fig. 1. Graphical representation of the partial order � among subexponential
indexes. Here if a −→ b means that a � b. For instance, hKj

� kKj
for all

principal names K j. The bracket denotes that index sRK is less than sLK

for all principals K ∈ K , e.g., sRK1 � sLKn . The subexponential signature
specifying this system is denoted by ΣK , where K = {K1, . . . ,Kn}.

requirement for the introduction of a lax modality on the left.
For the remaining formulas whose main connective is not a
modality, the left-encoding adds an additional !lin, while the
right-encoding does not do that. For example the encoding of
formulas whose main connective is a (is shown below:

~F (G�L = !lin(~F�R (~G�L)
~F (G�R = ~F�L (~G�R

We show in detail some of the the introduction rules of
SELLΣK . In the derivations below, we write !a{F1, . . . , Fn} to
denote the formulas !aF1, . . . , !aFn.

Due to the condition on the right introduction of bangs, the
right introduction rules for !kK and !hK have necessarily the
following forms:

!gl{Θ}, !kK {Γ} −→ F

!gl{Θ}, !kK {Γ} −→ !kK F

!gl{Θ}, !kK {Γ}, !hK {∆} −→ F

!gl{Θ}, !kK {Γ}, !hK {∆} −→ !hK F

As one can easily verify by using the encoding given above
and by instatiating Θ as ∅, the rule to the left corresponds to
the right introduction rule for knows modalities, as it specifies
that one can derive a knows formula for a principal K on the
right if this formula is derivable using only the knowledge of
K. On the other hand, the rule to the right corresponds to the
right introduction rule for has modalities, as it specifies that
one can introduce a has formula for the principal K on the
right if this formula is derivable only from K’s possessions
and K’s knowledge.

Furthermore, the rules above also illustrate the possibility
of distinguishing by using the subexponential gl the set of
global policies from the private knowledge base of principals.
Since they can be contracted and weakened they can be safely
be used in LAL proofs. In [13] such global policies were
specified by assuming that all principals know these global
policies. Both approaches are equivalent as the knowledge
of principals is also unrestricted. We use here, however, the
former approach, as it explicitly distinguishes the collective
global policies which are known to all principals from the
private knowledge of principals.

In order to specify the lax restriction for says modalities,
we use the indexes sLK and sRK . Due to the restriction on
the left introduction of question-marks, the left introduction
rule for ?sRK has the following shape:

Γ, F −→ ?sRKG

Γ, ?sRK F −→ ?sRKG

3

where all formulas in Γ are marked with bangs whose indexes
belong to the set {kKi

,hKi
, sLKi

| Ki ∈ K} ∪ {lin, gl}. That is,
one is only allowed to introduce a ?sRK on the left if the
formula to the right hand side of the sequent is marked with
?sRK . Furthermore, notice that Γ can contain affirmations of
other principals and even formulas that are not part of the
knowledge nor possession nor affirmation of any principal.
This is the reason why in the encoding above we translate
says modalities on the left by adding !sLKi ?sRKi and formulas
whose main connective is not a modality with !lin.

We can prove that the encoding above is sound and com-
plete. One needs to take extra care with the !lin used in the
encoding. However, since they appear only on the left-hand
side of sequents, they do not cause any problems.

Theorem 2.2: A sequent Γ −→ F is provable in the proof
system for linear authorization logic shown above if and only
if ~Γ�L −→ ~F�R is provable in SELL.

B. Additional Constructs using SELL

We can use subexponentials to partition policy rules into
hierarchies and control their use. Intuitively, higher ranked
policies can only be used by principals with higher credentials,
such as system administrators, while lower-ranked policies can
also be used by other principals with lower credentials. We
show how to specify when such policies can and cannot be
used in a proof in a simple and declarative fashion by using
SELL’s subexponentials. For simplicity, assume that, besides
the set of global policies, there are only two different sets
of policy rules a lower-ranked, ΓL, and a higher-ranked, ΓH .
The general case where there are a greater number of types
of policy rules can be specified in a similar fashion.

Formally, we extend the system described in Section II-A
with five more indexes:

ILH
K

= IK ∪ {l,h, el , eh, elh}.
Intuitively, l and h are used to mark formulas specifying
the lower and higher-ranked policies as follows !l{ΓL} and
!h{ΓH}; the index el is used to disallow the use of lower-ranked
policies; the index eh is used to disallow the use of higher-
ranked policies; and the index elh is used to disallow the use
of both higher and lower-ranked policies. Since policies can
be used in an unrestricted fashion, we assume that l and h
are unrestricted indexes, i.e., l,h ∈ U. The previous partial
order relation among the indexes is extended as depicted in
Figure 2. The subexponential signature specifying this system
is denoted by ΣLH

K
.

The derivation below illustrates, formally, the use of el to
disallow the use of lower ranked policies in a derivation.

Γ −→ F
Γ −→ !el F

!el R

Γ, !l{ΓL} −→ !el F
n ×W

Notice that according to the preorder depicted in Figure 2,
to introduce !el on the right one needs to weaken all the
formulas marked with !l , that is, weaken the lower-ranked
policies. Hence, the formula F should be provable without

kK1

yyrrrrrr
sRK1

· · · · · · · · ·

gl kKi
oo · · · sRKi

eeKKKKKKoo

yyssssss
· · · · · · · · ·

kKn

eeLLLLLL
sRKn


el OOO

''OOO
l

eh

77oooooo
h

elh

Fig. 2. Graphical representation of the partial order � among subexponential
indexes. Here if a −→ b means that a � b. The bracket denotes that the three
indexes el , eh, and elh are less than sRK for all principals K ∈ K , e.g.,
elh � sRK1 . Notice that the indexes l and h are not related to the indexes
sRK , sLK ,hK nor kK . The elided part corresponds to the same sub-graph as
in Figure 1. The subexponential signature specifying this system is denoted
by ΣLH

K
, where K = {K1, . . . ,Kn}.

using lower ranked policies. The same reasoning applies to
eh, and elh, but for, respectively, higher-ranked policies and
both higher and lower-ranked policies. The subexponential elh
will also play an important role for our PSPACE-completeness
result described in Section V.

For a small example using the constructs above, consider
the following theory, where we assume all free variables to be
universally quantified (including principal names):

admin knows (superuser(K1)) ⊗ K1 says (K2 has P)(K2 has P
admin knows (user(K1)) ⊗ !ehK1 says (K2 has P)(K2 has P

The first clause specifies that if the administrator knows that
the principal K1 is a super-user and if K1 is able to derive
from both lower and higher-ranked policies that K2 has access
to P, then K2 has access to P. On the other hand, the second
clause specifies that if administrator knows that K1 is a normal
user, then K1 may only use the lower ranked policies ΓL to
show that K2 has access to some resource P. In both cases,
however, one can use the global policies Θ.

III. Undecidability

We show that the provability problem for propositional
multiplicative fragment of LAL, as described in Section II-A,
which is equivalent to the logic described in [13], is unde-
cidable. In particular, we encode a two-counter machine [21],
which is known to be Turing complete, as a linear authoriza-
tion theory. Notice that in our encoding we do not use the
extra expressiveness described in Section II-B.

This result is important in the context of PCA, as it
shows that PCA using simple linear authorization policies
may be not feasible. Moreover, this undecidability result is
also interesting from a proof complexity point of view. It
is has been shown that the provability problem for propo-
sitional multiplicative additive linear logic with exponentials
(MAELL) is undecidable [19]. The same problem, however,
for propositional multiplicative linear logic with exponentials
(MELL) is still open. In fact, it is believed to be decidable [8].
The difference between MELL and the MELL fragment of
LAL is the presence of different modalities, such as says, has,
and knows. As we show in our encoding, these modalities
play a crucial role for the sound and complete encoding of
two-counter Minsky machines, namely for specifying the 0-
test instructions. Although we are still not able to make any

4

(Add r1) ak: r1 = r1 + 1; goto b j

(Add r2) bk: r2 = r2 + 1; goto a j

(Sub r1) ak: r1 = r1 − 1; goto b j

(Sub r2) bk: r2 = r2 − 1; goto a j

(0-test r1) ak: if r1 = 0 then goto b j1 else goto b j2
(0-test r2) bk: if r2 = 0 then goto a j1 else goto a j2
(Jump1) ak: goto b j

(Jump1) bk: goto a j

Fig. 3. Instructions of a two-counter Minsky machine.

ADD1: (A has r1 (B says b j)(A says ak

ADD2: (Bhas r2 (A says a j)(B says bk

SUB1: (Ahas r1 ⊗ B says b j)(A says ak

SUB2: (Bhas r2 ⊗ A says a j)(B says bk

0-IF1: Bhas (B says b j1)(A says ak

0-IF2: Ahas (A says a j1)(B says bk

0-ELSE1: (A has r1 (B says b j2) ⊗ A has r1 (A says ak

0-ELSE2: (Bhas r2 (A says a j2) ⊗ Bhas r2 (B says bk

JUMP1 B says b j (A says ak

JUMP2 A says a j (B says bk

FINAL Ahas> ⊗ Bhas>(A says a0

Fig. 4. Translation of the instructions of a two-counter Minsky machine M
as a set of linear authorization logic formulas ΘM .

claims about the upper-bound of MELL, it is still interesting
that the use of extra modalities leads already to undecidability.
Two-Counter Minsky Machines Let M be a standard two-
counter machine containing two registers r1 and r2 with natural
numbers. Assume that M contains two types of instructions
one for a-states and another for b-states. The instructions
are depicted in Figure 3. Instructions of M specify its state
transition rules. We assume that no instructions are labeled
with the same state. The initial state is a1 and the final state
is a0. Furthermore, a0 is a halting state so it is distinct from
the label of any of M’s instructions.

M’s configuration is a triple of the form 〈m, n1, n2〉, where
m is a state, while n1 and n2 are the values of the registers
r1 and r2. A computation performed by M is a sequence of
M’s configurations such that each step is obtained by applying
one of M’s instructions: 〈a1, n, 0〉

a1
−→ · · · 〈ai, ni,mi〉

ai
−→

〈bk, nk,mk〉
bk
−→ · · · . A terminating computation is one that

ends with a configuration of the form 〈a0, n0,m0〉 with any
values n0 and m0 for registers r1 and r2.
Encoding Two-Counter Minsky Machines We assume the
existence of only two principals A and B. Intuitively, A will
be responsible for incrementing and decrementing the register
r1, while B will be responsible for the register r2.

A machine configuration is encoded as a sequent as follows:
The value of the register r1 is the number of occurrences
of A has r1 formulas in the sequent, while the value of the
register r2 is the number of occurrences of Bhas r2 formulas
in the sequent. The state of the configuration is encoded as the
formula appearing to the right-hand-side of the sequent. If this
formula is A says ak, then the configuration’s state is ak and

similarly, if this formula is B says b j, then the configuration’s
state is b j. For example, the following sequent is the translation
of the machine M’s configuration 〈a4, 2, 1〉

!gl{ΘM}, Ahas r1, Ahas r1, Bhas r2 −→ A says a4.

Instructions, on the other hand, are translated as the set
of global policy rules, ΘM , depicted in Figure 4.1 In the
derivations below, we will normally elide the !gl{ΘM} from
the sequents, in order to improve presentation. We also assume
that they are contracted and weakened whenever needed.

ADDi is the translation of the instruction Add ri. Once the
clause ADD1 is used, for example, by back-chaining on it, one
obtains a derivation with the following shape containing one
open premise:

A says ak −→ A says ak
I

Γ, Ahas r1 −→ B says b j

Γ −→ Ahas r1 (B says b j
(R

Γ −→ A says ak
ADD1

Seeing this derivation from bottom-up, one can verify that
it specifies M’s Add r1 instructions. In particular, its end
sequent corresponds to the configuration 〈ak,m, n〉, while the
derivation’s open premise corresponds to 〈b j,m + 1, n〉. The
clause SUBi and JUMPi follow the same idea, only that SUB1
consumes a has formula, specifying M’s Sub instructions,
while JUMP1 just changes the formula appearing on the right-
hand-side, specifying M’s Jump instructions.

The most interesting clauses are the 0-IFi clauses. In these
clauses, we use the modalities explicitly to specify the if case
of M’s 0-test instructions. In particular, once one back-chains
on the clause 0-IF1, due to the restriction on has modalities,
the formula Bhas (B says b j2) can only be introduced if there
are no Ahas r1 formulas in the context. The derivation ob-
tained has therefore the following shape:

A says ak −→ A says ak
I

Γ −→ B says b j1

Γ −→ Bhas (B says b j1)
hasR

Γ −→ A says ak
0-IF1

with proviso that Γ has no occurrences of Ahas r1. Intuitively,
this proviso corresponds to the check that r1 = 0. On the other
hand, the operational semantics of the else part of the 0-test is
captured by using the 0-ELSEi clauses. In particular, once one
back-chains on the clause 0-ELSE1, one obtains a derivation
with the following shape, where Ak is the formula A says ak

and R1 is the formula A has r1:

Ak −→ Ak
I

Γ,R1 −→ B says b j

Γ −→ R1 (B says b j
(R

R1 −→ R1
I

Γ,R1 −→ (R1 (B says b j) ⊗ R1
⊗R

Γ,R1 −→ Ak
0-ELSE1

Notice that the number of A says r1 in the open premise is the
same as in the end-sequent. However, one can only use this

1For better presentation we use the notation with says,has, and knows
modalities. However, formally these should be interpreted using the left
encoding described in Section II-A. For example, the clause ADD1 is in fact
!lin[(!hA !linr1 (?sRB b j)(!sLA?sRA !linak].

5

clause if there is at least one A says r1 in the context of the
end-sequent, otherwise the right-most branch is not provable.

Finally, the clause FINAL specifies that one is done once
one has reached the final state a0. By back-chaining on this
clause, one obtains the following derivation:

F −→ F I

ΓA −→ >
>R

ΓA −→ Ahas>
hasR

ΓB −→ >
>R

ΓB −→ Bhas>
hasR

ΓA,ΓB −→ Ahas> ⊗ Bhas>
⊗R

ΓA,ΓB −→ A says a0
FINAL

where F is the formula A says a0 and ΓA contains only
formulas of the form Ahas r1, while ΓB contains only formulas
of the form Bhas r2. Therefore, any sequent whose right-hand-
side is the formula A says a0 is provable, regardless of how
many A has r1 and Bhas r2 appear in the sequent.

From the discussion above, it should be clear that our
encoding is complete. Soundness is more complicated. In
particular, we need invariants on how says formulas may be
moved when the context is split. The following two lemmas are
enough. The first one states that if two says formulas appear
on the left-hand-side of a sequent, then the sequent is not
provable, while the second lemma states that if a says formula
appears to the left-hand-side of a sequent that is provable, then
there is a computation of M that does not contain any instance
of the if case of the 0-test.

Lemma 3.1: Let M be an arbitrary two-counter ma-
chine and Γ be an arbitrary multiset of formulas of the
form Ahas r1 and Bhas r2. Let ΘM be the theory encod-
ing M’s instructions. Then for any states q j, qi and qk of
M and for any principals C,D, E ∈ {A, B} the sequent
!gl{ΘM},C says qi,D says q j,Γ −→ E says qk is not provable.

Proof: We proceed by contradiction. Assume that the
sequent above is provable and consider its lowest height proof.
We cannot apply the initial rule since there are at least two
linear formulas, which cannot be weakened, to the left of
the sequent, namely, C says qi and D says q j. Hence the only
alternative is to use one of the formulas in the theory ΘM .
We can also not use the clause FINAL, since to introduce
A has> and Bhas> the context must contain only has and/or
knows formulas, which is not the case due to the extra says
formula. Moreover, one can easily check that at least one
premise obtained by using any other clause in ΘM also has
at least two linear formulas of the form says formulas in the
left-hand-side of the sequent. This contradicts the assumption
of that the proof has the lowest height.

Lemma 3.2: Let M be an arbitrary two-counter machine M
and Γ be a multiset of formulas containing only Ahas r1 and
Bhas r2 formulas with multiplicity of m and n, respectively.
Let ΘM be the theory encoding M’s instructions. For any
C,D ∈ {A, B} and any states q j and qk of M if the sequent
!gl{ΘM},D says q j,Γ −→ C says qk is provable, then there is
an execution of M from the configuration 〈qk,m, n〉 to the con-
figuration 〈q j, 0, 0〉, such that the execution does not contain
any transition using the if case of a zero test instruction.

Proof: The proof is by induction on the height of the

proof of !gl{ΘM},D says q j,Γ −→ C says qk. The base case is
when the proof ends with an initial rule, in which case Γ = ∅

and qk = q j. That is, this proof corresponds to the zero length
execution.

For the inductive case, one has to consider all possible ways
to prove the sequent above. We show only the case for the
clause ADD1. The remaining cases follow the same reasoning:

A says ak,Γ
′ −→ C says qk

D says q j,Γ
′′, Ahas r1 −→ B says b j

D says q j,Γ
′′ −→ Ahas r1 (B says b j

D says q j,Γ −→ C says qk

where Γ = Γ′ ∪ Γ′′. Notice that from Lemma 3.1, the formula
D says q j has to be moved to the right branch, otherwise
the resulting left premise would contain both A says ak and
D says q j to the left and not be provable. From the inductive
hypothesis on the left and right branches, we have that there is
an execution from 〈qk,m′, n′〉 to 〈ak, 0, 0〉 and moreover from
〈b j,m′′+1, n′′〉 to 〈q j, 0, 0〉, where m = m′+m′′ and n = n′+n′′.
Since there is no if case of a zero test in any one of these two
executions, we can join them as follows:

〈qk,m′ + m′′, n′ + n′′〉 −→ . . . −→ 〈ak,m′′, n′′〉
ak
−→

〈b j,m′′ + 1, n′′〉 −→ · · · −→ 〈q j, 0, 0〉.

We now show that there is no transition corresponding to
the if case of a zero test instruction. As described above, these
instructions are specified by the clauses 0-IF1 and 0-IF2. Given
Lemma 3.1, the only possible way to use, for instance, the
clause 0-IF1 would be as follows:

A says ak,Γ
′ −→ C says qk Γ′′,D says q j −→ Bhas (B says b j1)

D says q j,Γ −→ C says qk

where Γ = Γ′ ∪ Γ′′ and where the formula D says q j

moves to the right-branch. However, one cannot introduce
Bhas (B says b j1) due to the presence of D says q j and there-
fore the right-premise of this derivation is not provable.

With the lemmas above, we can easily show the soundness
direction of the following soundness and completeness theo-
rem: (The proof is in the technical report [22].)

Theorem 3.3: Given a two-counter Minsky machine, M,
and its translation ΘM , then there is a terminating computation
from 〈a1, n, 0〉 if and only if the sequent encoding 〈a1, n, 0〉
and the M’s instructions, as described above, is provable in
SELLΣK , where K = {A, B}.

From the encoding above, we can infer that the unde-
cidability of propositional multiplicative fragment of linear
authorization logics.

Corollary 3.4: The provability problem for the proposi-
tional multiplicative fragment of LAL is undecidable.

IV. Proof Search andMSR

This section paves the way for specifying a fragment of first-
order linear authorization logics whose provability problem is
PSPACE-complete on the size of the given formula. For this,
we use the system introduced in Section II-B, which allows
one to express when a formula is provable without using
policy rules. This type of operation allows us to formalize

6

a correspondence between the provability problem and the
reachability problem for multiset rewrite systems (MSR).

Informally, the state of the system consists of a multiset of
facts, specifying the affirmations, possessions, and knowledge
of principals, and a state changes by means of rewrite rules that
may remove facts from the state, while inserting other facts.
However, as in MSR, we would like to determine whether
a rule is applicable by using easy operations, e.g., checking
for membership. In order to capture this intuition, we use the
expressiveness gained in Section II-B, namely the ability of
specifying when a formula can only be derivable without using
policy rules.

Firstly, assume that the set of global policies Θ is empty.
Moreover, since for simplicity we do not make a distinction
between lower-ranked (ΓL) and higher-ranked policies (ΓH) in
the remainder of this paper, let us assume that all policies
are higher-ranked policies (see Section II-B). Consider the
following grammar with different types of formulas.

T ::= K says A | K has A | K says T | K has T
Pr ::= !elhT | Pr ⊗ Pr Ps ::= T | Ps ⊗ Ps
Psn ::= Ps | ∃x.Ps P ::= Pr (Psn | ∀x.P
G ::= !elhT ⊗ >

Here, A is an atomic formula. T -formulas are consumable
possessions and affirmations of principals. Intuitively, a state
of the system consists of a multiset of T -formulas. Notice that
T -formulas do not contain knows formulas. As we comment
later in this section, adding knows formulas easily leads to
the undecidability of the logic.

Policy rules are specified as P-formulas, which are con-
structed using Pr-formulas (for pre-condition) and Psn (for
post-condition with nonce creation). According to the grammar
above, policy rules have the following shape:

∀~y.[︸︷︷︸
FV

!elhT1 ⊗ · · · ⊗ !elhTm︸ ︷︷ ︸
Pre-condition

(∃~x.︸ ︷︷ ︸
Nonces

[T ′1 ⊗ · · · ⊗ T ′k]]︸ ︷︷ ︸
Post-condition (1)

Such a formula can be interpreted as a multiset rewrite rule.
The existential variables, ~x, appearing in the post-condition
specify the creation of nonces, while all free variables (FV) in
the pre and post-condition appear in the universally quantified
variables ~y. Following terminology in proof theory [20], we
call this fragment bipoles.2

The novelty with respect to usual encodings of MSR in
linear logic [5], [23] is on the occurrences of !elh appearing
before T -formulas in the pre-condition of P-formulas. As
discussed in Section II-B, this connective specifies that one
should be able to prove the formulas Tis in the pre-condition
without using any policy rules, i.e., the Tis must be derivable
only from the T -formulas in the state. The following derivation
illustrates the shape of a derivation obtained when using in a
proof an instance of a bipole as shown in Equation 1, where
fresh values are created accordingly:

2In fact, the class of bipoles is bit more general than the P-formulas above.
However, for the lack of a better name and since P-formulas contain most
bipoles, we use the same name.

T ′′1 −→ T1 · · · T ′′m −→ Tm !h{ΓH},T ,T ′1, . . . ,T
′
k −→ G

!h{ΓH},T ,T ′′1 ,T
′′
2 , . . . ,T

′′
m −→ G (2)

The derivation above can be seen as an inference rule, which
from bottom-up behaves like a rewrite rule replacing the T -
formulas T ′′1 , . . . ,T

′′
m by the T -formulas T ′1, . . . ,T

′
k appearing

at the post-condition of the P-formula used. More importantly,
however, all open premises except the right-most have to
be proved without using any policy rules. This means that
the derivations introducing these open premises are simple.
In fact, the height of their derivations is bounded by the
number of occurrences of modalities in the corresponding
open premise (see Lemma 5.1). The paper [13] also points out
the importance of such type of derivations in order to prove
properties of policies.

G-formulas also deserve some explanation. They are of the
form !elhTG ⊗ >, specifying the goal that one wants to prove
(the T -formula TG) and appearing at the right-hand-side of
sequents. As in the pre-condition of P-formulas, the formula
!elhTG can be intuitively interpreted as checking whether the
formula TG is provable from the state of the system without
using policy rules. On the other hand, the formula > specifies
that if TG is provable, then one is not interested on the
remaining formulas (T). Formally, G-formulas are introduced
by derivations of the following form:

T ′′ −→ TG !h{ΓH},T −→ >
>R

!h{ΓH},T ,T ′′ −→ !elhTG ⊗ > (3)

That is, there is necessarily a T -formula T ′′ from which
one can derive TG and the right-branch is closed by the
introduction of >.

The use of > is a way of abstracting infinite computations.
As argued in [5], [9], distributed systems are endless processes
where principals exchange credentials and affirmations forever.
Since proofs are finite, we need an abstraction. This is exactly
the role that > is playing. There might be an infinite derivation
introducing the right-branch of the derivation above, but by
using >, we specify that we are not really interested on it.
We are only interested on determining whether the formula
TG can be derived and not on how the remaining credentials
are used afterwards.

We can formally show that a sequent is provable if and
only if it is provable using derivations of the shapes shown in
Derivations 2 and 3. This soundness and completeness result
is formally shown by using the soundness and completeness
of the focused discipline for SELL [23] and the following
auxiliary lemma, which is proved by using the fact that T -
formulas are linear, that is, they cannot be contracted nor
weakened. The proof can be found in the technical report [22].

Lemma 4.1: Let ∆ ∪ {T } be a multiset of T -formulas. If
the sequent ∆ −→ T is provable in SELL, then ∆ has exactly
one T -formula, i.e., the sequent has the form T ′ −→ T .

Theorem 4.2: Let T be a multiset of T -formulas, ΓH be a
multiset of P-formulas, and G be a G-formula. Let R be the set

7

of inference rules obtained from the derivations corresponding
to the P-formula in ΓH (as shown in Derivation 2) and
the derivation obtained from the G-formula G (as shown in
Derivation 3). Then the sequent !h{ΓH},T −→ G is provable
in SELL if and only if it is provable using the rules in R.
Comparison with existing logics In order to illustrate the
importance of !elh for proof search, consider the following
clause: (i) A says ak (K has F, where F is an arbitrary
formula which could be written in the logic presented in
Section II-A or in [13] and the clauses, ΘM , in Figure 4
encoding a two-counter Minsky machine. The formula (i)
specifies that if the principal A says ak, then the principal
K has the formula F. A derivation introducing (i) has the
following shape:

!h{ΘM},Γ −→ A says ak !h{ΘM},Γ
′,K has F −→ G

!h{ΘM},Γ,Γ
′ −→ G

(i)

As we have shown above, to prove the left-premise of the
derivation above is undecidable in general. Therefore, check-
ing whether one can use the clause (i) during proof search
is not easy in general. On the other hand, by using !elh all
premises except the right-most in a derivation introducing a
P-formula (see Equation 2) can be proved (see Lemma 5.1)
since those premises do not contain any P-formulas.
Adding knowledge leads to undecidability From the grammar
shown above, one is not allowed to use formulas of the form
K knows P. If we allow such formulas, then one can easily
show that the provability problem is undecidable.

The proof of undecidability follows from a sound and
complete encoding of the Horn implication problem with
existentials, which has been shown to be undecidable even
without function symbols [10]. In particular, we translate a
Horn clause of the form ∀~y.[A1 ∧ · · · ∧ An ⊃ ∃~x.A], as

∀~y.[K knows A1 ⊗ · · · ⊗ K knows An ⊃ ∃~x.K knows A],

where A, A1, . . . , An are atomic formulas and where we use
a single principal K. Since knows formulas are unrestricted,
one can easily show, by induction on the height of derivations,
the soundness and completeness of this translation. That is an
atomic formula A is provable from a a Horn theory if and only
if the formula K knows A is provable from its translation. We
leave the details to the reader.

Remark: One could refine P-formulas even further. For
instance, one could allow formulas in the post-condition of an
action to also have bangs marked with some subexponential
index, loc(k), denoting the location where some credential is
stored. Then by using the same indexes in the bangs of the
formulas appearing in the pre-condition, one could enforce
that a formula should be only proved using the facts that
are in some particular location. For example, the formula
!loc(k1)T (!loc(k2)T ′ specifies that the formula T should be
proved using only the formulas in loc(k1) and that the formula
T ′ is to be stored in location loc(k2). This seems to be an
interesting application of subexponentials for which leave as
future work.

V. PSPACE-completeness

This section shows that the provability problem for a
fragment of the system introduced in Section IV is PSPACE-
complete. We use most of the machinery used in [16] on
the complexity of the reachability problem for MSRs and the
machinery introduced in Section IV. In particular, based on a
similar notion given in [18], we assume that all policy rules
are balanced, that is, the number of facts in the pre and post
conditions of actions is the same. Formally, in Eq. (1) m = k.
That is, our policy rules are balanced bipoles. This restriction
enforces that whenever a policy rule is used during proof
search the number of T -formulas in the resulting right-most
sequent in Derivation 2 does not change.

As in [18], [17], we assume a finite alphabet, L, with no
function symbols. Notice, however, that due to nonce creation,
there can be an arbitrary number of symbols in a proof.

PSPACE-hardness It is easy to show that the provability
problem for balanced bipoles is PSPACE-hard. We proceed
as in [16] by encoding a non-deterministic Turing Machine
M that accepts in space n, by using a single principal K. The
details are given in [22].

PSPACE upper bound The PSPACE upper bound is more
interesting and is where the machinery introduced in Sec-
tion II-B pays off. Our PSPACE upper bound is on the
following assumptions/inputs:
• L is finite first-order alphabet without function symbols with
J predicate symbols and D constant symbols;
• k is an upper bound on the arity of predicate symbols;
• P is a finite multiset of balanced bipoles specifying the
policy rules;
• T is a multiset of exactly m T -formulas specifying the initial
contents of the sequent. Recall that since all policy rules are
balanced bipoles, a policy rule removes and adds the same
number of T -formulas from a sequent;
• G is G-formula appearing at the right-hand-side of the
sequent.

The problem is to determine whether the sequent
!h{P},T −→ G is provable or not in SELL. Since SELL
admits cut-elimination, it is enough to determine whether there
is or not a cut-free proof introducing the sequent above.

Our PSPACE upper bound is proved by using some of the
machinery in [16] and the connections between proof search
and MSR execution described in Section IV. However, a main
difference to [16] is that here we need to show that it is
possible to determine in PSPACE whether one can use a policy
rule while searching for a proof. In particular, as illustrated in
the Derivation 2 in Section IV, we need to show that one can
determine in PSPACE whether a sequent of the form T1 −→ T2
is provable or not, where T1 and T2 are T -formulas.

We define the size of a T -formula, F, written |F|, inductively
as follows: K has T = K says T = |T |+1, and the size of atomic
formulas is zero, i.e., |A| = 0. The following lemma provides
a polynomial bound on the number of steps one needs to take
in order to check whether a derivation is a proof the sequent
T1 −→ T2. The lemma’s proof follows from the observation

8

that any (cut-free) derivation introducing the sequent T1 −→

T2 does not branch and has its height bounded by |T1| + |T2|.
Lemma 5.1: Let T1 and T2 be two arbitrary T -formulas.

The problem of determining whether the sequent T1 −→ T2 is
provable or not is in NP. In particular, it takes |T1|+ |T2| steps
to check whether an arbitrary cut-free derivation is a proof of
the sequent T1 −→ T2.

We also show that, while searching for a (cut-free) proof,
the size of T -formulas does not grow, i.e., one cannot obtain
T -formulas of arbitrary sizes.

Lemma 5.2: Let S = !h{P},T −→ G be a sequent, such
that the size of any occurrence of a T -formula (including sub-
formulas) in S is bounded by M. Let Ξ be an arbitrary cut-free
derivation introducing S. Then the size of all occurrences of
T -formulas (including sub-formulas) in Ξ are also bounded by
M.

From the parameters above, we obtain M by checking which
T -formula appearing anywhere in P,T and G, including
subformulas, has the greatest size. In typical specifications,
such as those given in [13], the value of M is less than 3.
Given the lemmas above, we can conclude that the problem of
determining whether a policy rule’s pre-condition is derivable
from some given T -formulas is in PSPACE.

We can now use the machinery given in [16]. First we
show the following upper bound on the number of different
T -formulas in the system. Notice that following [16], we fix
a set with 2mk fresh constants to be used as nonces whenever
needed. Using the same reasoning as [16], we can show that
with this number of constants one can always guarantee the
freshness of nonces.

Lemma 5.3: Let L be a finite alphabet and let M be an
upper bound on the size of T -formulas. Then there are at most
MJ(D + 2mk)k different T -formulas in the system, where the
parameters are described above.

The following theorem formalizes the PSPACE upper bound
for the provability problem when using balanced bipoles.

Theorem 5.4: Given a finite alphabet L, a multiset P of
balanced bipoles, a multiset T of T -formulas, and a G-formula
G, then there is an algorithm that determines whether a sequent
!h{P},T −→ G is provable or not and runs in PSPACE with
respect to the following parameters:
1) M is the upper bound on the size of T -formulas;
2) J and D are the number of predicates and constant symbols,

respectively, in the alphabet L;
3) m is the number of facts in T ;
4) k is an upper bound on the arity of predicate symbols in

the alphabet L.
Proof: (Sketch) We use the fact that PSPACE is equal to

NPSPACE [24]. Let i = 0 and Ci = T and G = TG ⊗>. Check
whether any formula in T entails TG. If so, then output yes. If
i > mMJ(D + 2mk)k, then it means that we have encountered
the same sequent twice, hence output no. Otherwise, choose
non-deterministically a formula P in P such that its pre-
condition is derivable from some formulas T1, . . . ,Tn in Ci.
Construct Ci+1 from Ci by replacing the T -formulas T1, . . . ,Tn

by the post-condition of P. If necessary chose fresh nonces

from the set of 2mk constants available. Finally let i := i + 1
and repeat.

We show that this algorithm runs in PSPACE. In particular,
we can store in PSPACE the set of T -formulas in Ci since it
has the same size as the size of T . This is because all formulas
in P are balanced bipoles. Moreover, we can store in PSPACE
the value of i in binary as shown below:

log(mMJ(D + 2mk)k) =
log(m) + log(M) + log(J) + k log(D + 2mk).

Finally from Lemma 5.1 and 5.2, one can always check in
PSPACE whether the pre-condition of a formula in P is
derivable from Ci. Hence the algorithm runs in polynomial
space.

VI. Example

We show how to specify the student registration similar
to the example described in [13] by using balanced bipoles.
This example consists of a university registration example,
where students may register to courses, which take place at
specific timeslots. There are two main principals, a calendar,
cal, which authorizes free time slots available, and a registrar,
reg, that controls the entire registration process. We assume
the following set of atomic formulas:
• slot(S,T) denoting that the student S is available at time
T;
• cr(S, av/C) denoting that the student S has one available
credit (av) or that he used a credit to register in the course C .
• seat(C , av/S) denoting that a seat of the course C is
available or occupied by the student S.
• reg(S,C ,T) denoting the student S is registered at the
course C at the time T.
• course(C ,T) denoting the course C runs at time slot T.

The goal is to specify this system in such a way that (1)
no student registers for more than a stipulated credits, (2) a
student does not register for two courses that have the same
timeslots, and (3) a maximum registration limit is respected.
Here, for simplicity, we assume that each course requires one
credit. (It is also possible to specify the general case, but that
would require more rules.)

We assume that at the beginning of the semester, the
registrar issues an initial number of certificates of the form
reg says (cr(S, av)), for each student, and an initial number
of certificates of the form reg says (seat(C)) and a unique
certificate reg says (course(C ,T)) for each course C . More-
over, students get one certificate from the calendar of the form
cal says (slot(S,T,no)) for all timeslots T.

The policy specifying this scenario is depicted in Figure 5.
It specifies that if the course C at time T has an available seat
and the student S has an available credit and is has the timeslot
T available, then the student can register causing the seat to
be occupied by the student, one of the student’s credit to no
longer be available and the calender to allocate the timeslot T
of the student S as attending the course C .

Notice that since this policy rule behaves as a rewriting rule,
it is straightforward to show that the requirements above for
this scenario are all satisfied.

9

∀C ,S,T.[!elhreg says (course(C ,T)) ⊗ !elhreg says (seat(C , av)) ⊗ !elhreg says (cr(S, av)) ⊗ !elhcal says (slot(S,T))
(reg says (course(C ,T)) ⊗ reg says (seat(C ,S)) ⊗ reg says (cr(S,C)) ⊗ cal says (reg(S,C ,T))]

Fig. 5. Balanced bipole specifying when a student may register a course.

VII. Conclusions and RelatedWork

This paper proposed a framework for specifying linear
authorization logics that allows one to specify a wider range of
policies. We then investigated the complexity of several linear
authorization logics including existing logics. We have shown
that the provability problem for the propositional multiplicative
fragment is undecidable. Then by demonstrating novel connec-
tions to multiset rewriting systems, we have also identified a
first-order fragment that is PSPACE-complete.

As previously discussed, we improve the work in [13]
by proposing a general framework where different linear
authorization logics can be specified, which allow for more
policies to be specified. For instance, it does not seem possible
to specify in the logic proposed in [13] when one is disallowed
to use some policies in order to prove a formula. As illustrated
by our complexity results, this extra expressiveness seems key
to specify tractable fragments for these logics.

Cervesato and Scedrov [5] proposed a framework based on
multiset rewriting (MSR) for specifying concurrent processes
and also relate their system to linear logic provability. We
share some of their concerns, in particular, in conciliating the
fact that processes may run forever, while proofs are finite.
Our solutions to this problem are similar. While [5] considers
open derivations, we close them by using >. [9] applies some
of the ideas in [5] to the linear authorization logic proposed
in [13]. From our work it seems possible to recover some of
the results in [9]. Similarly to our work, [9] also makes use of
a focused proof system to reason about policies. We strongly
believe that the same reasoning techniques used in [9] can also
be apply in our work.

On the complexity of authorization logics, [12] shows that
provability problem for propositional classical authorization
logics is also PSPACE-complete. On the other hand, there has
also been a number of complexity results on linear logic (too
many to cite them all here). For instance, [19] investigates the
complexity of many fragments of propositional linear logic. In
particular, [19] shows that the multiplicative additive fragment
with exponentials is undecidable. The unpublished note [6]
also shows that the propositional multiplicative fragment of
linear logic with subexponentials is undecidable. However,
up to our knowledge, this paper contains the first complexity
results on linear authorization logics.

This paper also continues the on-going program of inves-
tigating MSR systems with balanced actions. In a series of
papers [18], [17], [16], we have investigated together with
others the complexity for the reachability problem for such
MSR systems. This paper capitalized and extends [18], [17],
[16] by investigating systems with modalities. For instance,
we use the same ideas proposed in [16] to overcome the fact
that actions may create fresh values and therefore a proof may

contain an unbounded number of symbols. Our PSPACE upper
bound algorithm is a conservative extension of the PSPACE
upper bound algorithms proposed in [18], [17], [16].
Acknowledgments: We would like to thank Deepak Garg,

Cedric Fournet, Max Kanovich, Tajana Ban Kirigin, Hubert
Comon-Lundh, Andre Scedrov, and Alwen Tiu for fruitful
discussions. Nigam was supported by the Alexander von
Humboldt Foundation.

References
[1] M. Abadi. Logic in access control (tutorial notes). In FOSAD, 2009.
[2] M. Abadi, M. Burrows, B. W. Lampson, and G. D. Plotkin. A calculus

for access control in distributed systems. ACM Trans. Program. Lang.
Syst., 15(4):706–734, 1993.

[3] A. W. Appel and E. W. Felten. Proof-carrying authentication. In CCS,
pages 52–62, 1999.

[4] K. D. Bowers, L. Bauer, D. Garg, F. Pfenning, and M. K. Reiter.
Consumable credentials in linear-logic-based access-control systems. In
NDSS. The Internet Society, 2007.

[5] I. Cervesato and A. Scedrov. Relating state-based and process-based con-
currency through linear logic (full-version). Inf. Comput., 207(10):1044–
1077, 2009.

[6] K. Chaudhuri. On the expressivity of two refinements of multiplicative
exponential linear logic. Unpublished, 2009.

[7] V. Danos, J.-B. Joinet, and H. Schellinx. The structure of exponentials:
Uncovering the dynamics of linear logic proofs. In Kurt Gödel
Colloquium, volume 713, pages 159–171. Springer, 1993.

[8] P. de Groote, B. Guillaume, and S. Salvati. Vector addition tree automata.
In LICS, pages 64–73. IEEE Computer Society, 2004.

[9] H. DeYoung and F. Pfenning. Reasoning about the consequences
of authorization policies in a linear epistemic logic. Workshop on
Foundations of Computer Security, Aug. 2009.

[10] N. A. Durgin, P. Lincoln, J. C. Mitchell, and A. Scedrov. Multiset
rewriting and the complexity of bounded security protocols. Journal of
Computer Security, 12(2):247–311, 2004.

[11] M. Fairtlough and M. Mendler. Propositional lax logic. Inf. Comput.,
137(1):1–33, 1997.

[12] D. Garg and M. Abadi. A modal deconstruction of access control logics.
In FoSSaCS, pages 216–230. Springer, 2008.

[13] D. Garg, L. Bauer, K. D. Bowers, F. Pfenning, and M. K. Reiter. A
linear logic of authorization and knowledge. In ESORICS, pages 297–
312. Springer, 2006.

[14] D. Garg and F. Pfenning. Non-interference in constructive authorization
logic. In CSFW, pages 283–296. IEEE Computer Society, 2006.

[15] J.-Y. Girard. Linear logic. Theor. Computer Science, 50:1–102, 1987.
[16] M. Kanovich, T. B. Kirigin, V. Nigam, and A. Scedrov. Bounded

memory Dolev-Yao adversaries in collaborative systems. In FAST, pages
18–33. Springer, 2010.

[17] M. Kanovich, P. Rowe, and A. Scedrov. Policy compliance in collabo-
rative systems. In CSF ’09, pages 218–233, 2009.

[18] M. I. Kanovich, P. Rowe, and A. Scedrov. Collaborative planning with
confidentiality. J. Autom. Reasoning, 46(3-4):389–421, 2011.

[19] P. Lincoln, J. C. Mitchell, A. Scedrov, and N. Shankar. Decision
problems for propositional linear logic. In FOCS, pages 662–671. 1990.

[20] D. Miller and E. Pimentel. A formal framework for specifying sequent
calculus proof systems. Journal submission, July 2011.

[21] M. Minsky. Recursive unsolvability of post’s problem of ’tag’ and other
topics in the theory of turing machines. Annals of Mathematics, 1961.

[22] V. Nigam. On the complexity of linear authorization logics. 2012.
Available from the author’s homepage.

[23] V. Nigam and D. Miller. Algorithmic specifications in linear logic with
subexponentials. pages 129–140, 2009.

[24] W. J. Savitch. Relationship between nondeterministic and deterministic
tape classes. Journal of Computer and System Sciences, 4:177–192,
1970.

10

	Introduction
	A Framework for Linear Authorization Logics
	Specifying Linear Authorization Logics
	Additional Constructs using SELL

	Undecidability
	Proof Search and MSR
	PSPACE-completeness
	Example
	Conclusions and Related Work
	References

