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Abstract. Building on a generalization of classical Henkin-Hintikka eval-
uation games to Giles’ game semantics for  Lukasiewicz logic, a concept
for evaluating (semi-)fuzzy quantifiers by randomizing the choice of wit-
nessing elements is developed. In particular the adequateness of simple
dialogue game rules for so-called proportionality quantifiers is shown.

1 Introduction

Fuzzy quantification combines the theory of generalized quantifiers [16] with
degree based reasoning. As pointed out in Glöckner’s monograph [11], there is
what can be called an “embarrassment of richness” in modeling vague natural
language quantifiers like many, few, about half, etc.: the space of candidates for
truth functions is simply too complex and large, even if we restrict attention
to monadic quantifiers, as we will do here. Glöckner addresses this challenge by
focusing on semi-quantifiers first, i.e. quantifiers with classical (bi-valued) scope,
and proposes an axiomatically defined scheme for lifting these to fully fuzzy
quantification in a later step. Here we want to embed certain semi-fuzzy quanti-
fiers into  Lukasiewizc logic, which is not only one of most important formalisms
of deductive (mathematical) fuzzy logics in the sense of Hájek [12, 13, 5], but
also allows for a particularly interesting semantic characterization in terms of
dialogue games combined with bets on dispersive experiments, introduced by
Giles [10, 9]. In a sense, this reacts to the mentioned embarrassment of riches by
suggesting a bottom-up approach: we start with a convincing and well explored
semantic framework for standard first-order  Lukasiewicz logic and extend it in
a rather lean manner that remains close to its spirit.

Since we do not want to assume familiarity with Giles’ game, we begin with
the familiar Henkin-Hintikka evaluation game for classical logics and, unlike
Giles, introduce many-valued games in reference to that classical game.

2 Randomizing Henkin-Hintikka games

As already shown by Hintikka [14], building on an idea of Henkin, the Tarskian
notion of truth in a model can be characterized—and in fact generalized—by a
two person game played on a first order formula with respect to a given model.
We present the classical evaluation game in a slightly unusual terminology that
will make the later transition to Giles’ game more transparent.



The H-game. There are two players, say me and you, who can both act in the
roles of either the attacker or the defender of a formula. The game is played with
respect to a given classical first order interpretation M . To simplify the exposi-
tion we will identify domain elements with constants and restrict to a language
without function symbols here. M can thus be identified with an assignment of
0 (false) or 1 (true) to the variable free atoms of the language. By vM (F ) we
denote the truth value to which F evaluates in M .

Every state of the game is determined by a sentence (closed formula) F and a
role assignment: either me or you act as the defender of F , the opponent player is
the attacker. We will say that player X asserts F , if X is the defender of F . The
game starts with my assertion of some formula and proceeds according to the
following rules corresponding to the form of the currently considered formula.

(R∧) If I assert F ∧ G then you attack by pointing either to the left or to the
right subformula. I then have to assert F or G, accordingly.

(R∨) If I assert F ∨G then I have to assert either F or G at my own choice.
(R¬) If I assert ¬F then our roles are switched and you have to assert F .
(R∃) If I assert ∃xF (x) then I have to pick a constant c and assert F (c).
(R∀) If I assert ∀xF (x) then you pick c and I have to assert F (c).

Note that we have stated the rules only for me in the role of the defender.
However, because of (R¬), the roles may switch. Since the rules for you asserting
F (and me attacking) are completely dual, they need not be stated explicitly.
Moreover, we emphasize that the role assignment remains unchanged for all state
transitions, except for the one explicitly triggered by (R¬).

Once the game has arrived at an atomic state, i.e., at a state where either I
or you assert an atomic formula A, I win (and you lose) if vM (A) = 1 and I lose
(and you win) if vM (A) = 0. We call the game starting with my assertion of F
the H-game for F under M .

Theorem 1 (Hintikka) A sentence F is true in an interpretation M (in sym-
bols: vM (F ) = 1) iff I have a winning strategy in the H-game for F under M .

Our aim is to provide a similarly elegant characterization of graded truth for
first order fuzzy logics. While game semantics can be generalized to cover a wide
range of different many-valued logics (see [2, 4, 8]) we will stick here to infinite
valued  Lukasiewicz logic, which is one of, if not the most important example of
a deductive fuzzy logic.

 Lukasiewicz logic  L provides two forms of conjunction: weak conjunction (∧),
and strong conjunction (&); negation (¬), implication (→), (weak) disjunction
(∨), and standard quantifiers (∀ and ∃); specified semantically as follows:

vM (F ∧G) = min(vM (F ), vM (G)) vM (F ∨G) = max(vM (F ), vM (G))
vM (F&G) = max(0, vM (F ) + vM (G)− 1) vM (⊥) = 0
vM (¬F ) = 1− vM (F ) vM (F → G) = min(1, 1− vM (F ) + vM (G))
vM (∀xF (x)) = infc∈D(vM (G(c))) vM (∃xF (x)) = supc∈D(vM (G(c)))

where D is the domain of M (which we identify with the set of constants).



There are many good reasons to base  L on the full syntax, as specified above.1

In particular this nicely fits the general theory of t-norm based fuzzy logics as in-
troduced by Hájek [12, 13] and developed into a prolific subfield of mathematical
logic by many researchers since, as witnessed by the recent

ook [3]. However, in the vast literature on fuzzy logic and on many-valued
logics in general one frequently considers only ∧, ∨, and ¬ as propositional con-
nectives. We will call this fragment of  L, together with the standard quantifiers
(∀, ∃), weak  Lukasiewicz logic  Lwhere. The restrictions of  L and  Lw to the
propositional part will be denoted by  Lp and  Lwp , respectively.

In order to transfer H-games into a many-valued setting we borrow an idea
of Giles [10, 9] and reformulate the winning condition in a way that will lead to
an interesting interpretation of intermediate truth values in terms of expected
risks of payments. We conceive of the evaluation of the atomic formula A at the
final state of an H-game as a (binary) experiment EA that either fails, meaning
vM (A) = 0, or succeeds, meaning vM (A) = 1. The experiment E⊥ always fails.
Moreover, we stipulate that I have to pay 1€ to you if I lose the game. Hence
winning strategies turn into strategies for avoiding payment.2 So far this just
amounts to an alternative way to present the original game. The main innova-
tion of Giles is to let the experiments EA be dispersive. This means that EA
may show different results upon repetition, where the individual trials of the
experiment are understood as independent events. (Of course, E⊥ remains non-
dispersive: it simply always fails.) The reader is invited to think about intended
applications modeling vague language: while in concrete dialogues competent
language users either (momentarily and provisionally) accept or don’t accept
grammatical utterances upon receiving them, vagueness results in a brittleness
or dispersiveness of such highly context dependent decisions. (See, e.g, [17, 1].)
In order to arrive at ‘degrees of truth’ for an atomic A in such a model, one as-
sumes that the dialogue partners associate a fixed success probability π(EA) to
the experiment EA, which may be thought of as (implicitly) answering the ques-
tion “Do you accept F (at this instance)?” By 〈A〉 = 1 − π(EA) we denote the
risk associated with A, i.e., the expected (average) loss of money associated with
an assertion of A. The function 〈·〉 that maps each atomic sentence into a fail-
ure probability of the corresponding experiment is called risk value assignment.
Note that risk value assignments are in 1-1-correspondence with (many-valued)
interpretations via 〈A〉M = 1− vM (A).

For weak propositional  Lukasiewicz logic  Lwp the characterization of graded
truth via H-games in this setting with randomized payoff is straightforward.

1 Actually one can define all connectives of  L from just → and ⊥ or alternatively from
& and ⊥. But neither → nor & can be defined from the remaining connectives.

2 Note the asymmetry of the payoff scheme: even when the roles of attacker and
defender are switched, it is me, not you, who has to pay upon losing the game. This
is necessary to ensure that enforceable payments (inversely) correspond to truth
values. Giles’ extended game scenario allows one to restore perfect symmetry, as we
will see in Section 3.



Theorem 2 A  Lwp -sentence F is evaluated to vM (F ) = x in interpretation M
iff in the H-game for F under the corresponding risk value assignment 〈·〉M I
have a strategy that limits my expected risk to (1−x)€, while you have a strategy
that ensures that my expected risk is not below this value.

Proof. We use 〈| G〉∗ to denote my final expected risk in a game where I am
defending and you are attacking G assuming that we both play optimally by
employing the usual min-max strategy.3 If I am the attacker and you are the
defender of G this value is denoted by 〈G |〉∗.

If F is atomic then 〈F |〉∗ = 1−〈F 〉M and 〈| F 〉∗ = 〈F 〉M and thus my risk is
vM (F ) in the former case and 1−vM (F ) in the latter case, as required. Otherwise
we argue by induction on the complexity of F that 〈| F 〉∗ = 1− vM (F ).

– If I assert ¬G, the game continues with your assertion of G and 〈| ¬G〉∗
reduces to 〈G |〉∗ = 1− 〈| G〉∗, just like in the truth function for ¬.

– If I assert G ∨H then I will pick G or H according to where my associated
expected risk is smaller. Therefore 〈| G ∨H〉∗ = min(〈| G〉∗ , 〈| H〉∗), and
thus vM (G ∨H) = max(vM (G), vM (H)) = 1−min(1− 〈| G〉∗ , 1− 〈| H〉∗).

– If I assert G ∧ H then you will pick G or H according to where my as-
sociated risk, i.e., your expected gain, is higher. Therefore 〈| G ∧H〉∗ =
max(〈| G〉∗ , 〈| H〉∗), corresponding to vM (G ∧H) = min(vM (G), vM (H)).

The cases where you defend and I attack F are completely dual. �

Note that we are only interested in expected payoffs. Since individual trials of
experiments are independent events, truth functionality is preserved. Consider
a game for A ∨ ¬A for example. While I will finally have to pay either 1€ or
nothing, depending on the result of EA, my optimal expected loss under the risk
value assignment corresponding to interpretation M is min(〈A〉M , 1− 〈A〉M )€,
which indeed amounts to (1− vM (A ∨ ¬A))€.

There is a slight complication in lifting Theorem 2 to the first order level:
in an [0, 1]-valued interpretation M witnessing domain elements for quantified
sentences may not exist. More precisely, we may have vM (∀xF (x)) < vM (F (c))
and vM (∃xF (x)) > vM (F (c)) for all constants c. For this reason we define the
following general notion for games with randomized payoff (as in our new version
of the H-game, above, and in G-games, introduced below).

Definition 1. A game with randomized payoff is r-valued for player X if, for
every ε > 0, X has a strategy that guarantees that her expected loss is at most
(r + ε)€, while her opponent has a strategy that ensures that the loss of X is at
least (r − ε)€. We call r the risk for X in that game.

This notion allows us to state the generalization of Theorem 2 to  Lw concisely:

3 We assume the reader to be familiar with basic notions of game theory. Formally,
we have described a finite zero-sum two person game in extended form with perfect
information. Although the payoff is defined in terms of expected payments, proba-
bilities do not enter the game itself. The min-max principle induces pure optimal
strategies. I.e., mixed strategies are not needed to arrive at the (unique) equilibrium.



Theorem 3 A  Lw-sentence F is evaluated to vM (F ) = x in interpretation M
iff the H-game for F under risk value assignment 〈·〉M is (1− x)-valued for me.

Proof. Building on the proof of Theorem 2, it only remains to consider the
induction steps for quantified sentences:

– If I assert ∃xF (x), then the game continues with my assertion of F (c) for a
constant c picked by me in a manner that minimizes my risk. In fact, since
there might be no domain element witnessing the infimum vM (∃xF (x)) =
infc∈D(vM (F (c))), we can only ensure that, for any given δ > 0, 〈| ∃xF (x)〉∗ =
〈| F (c)〉∗ = 1− vM (∃xF (x)) + δ.

– If I assert ∀xF (x), the game continues with my assertion of F (c), where c
is chosen by you to maximize my risk. Therefore, analogously, we obtain
〈| ∀xF (x)〉∗ = 〈| F (c)〉∗ = 1− vM (∀xF (x))− δ for some δ > 0.

The cases where you are the defender of a quantified formula are dual. �

Note that the value ε mentioned in Definition 1 does not directly correspond
to δ as used in the above proof, but rather results from the accumulation of
appropriate δs. In any case, since our intended applications assume finite do-
mains, we may from now on safely ignore the fact that, in general, truth values
of statements involving quantifiers are only approximated by expected risk in
concrete instances of a game. We nevertheless retain the notion of the value of
a game, but could actually simplify Definition 1 by dropping all references to ε.

3 From H-games to G-games

Already in the 1970s Robin Giles [10, 9] introduced an evaluation game that
was intended to provide ‘tangible meaning’ to reasoning about statements with
dispersive semantic tests as they appear in physics. For the logical rules of his
game Giles referred not to Henkin or Hintikka, but to Lorenzen’s dialogue game
semantics for intuitionistic logic [15]. In particular, (essentially) the following
rule for implication was proposed:

(R→) If I assert F → G then you may attack by asserting F , which obliges me
to assert G. (Analogously if you assert F → G.)

In contrast to H-games, such a rule introduces game states, where more than
one formula may be currently asserted by each of us. Since, in general, it matters
whether we assert the same statement just once or more often, game states are
now denoted as pairs of multisets of formulas. We call such games G-games. A
final state of a G-game where {p1, . . . , pn} is the multiset of atomic assertions
made by you and {q1, . . . , qm} is the multiset of atomic assertions made by me
is denoted by

[A1, . . . , An | B1, . . . , Bm] .

Again we assume that a binary experiment EA is associated with every atomic A
with corresponding risk 〈A〉 = 1−π(EA). We now make payments fully dual and



stipulate that I have to pay 1€ to you whenever an instance of an experiment
corresponding to one of my atomic assertion fails, while you have to pay me 1€
for each instance of a failing experiment corresponding to one of your atomic
assertions. We obtain the following value for the expected total amount of money
(in €) that I have to pay to you at the exhibited final state:

〈A1, . . . , An | B1, . . . , Bm〉 =
∑

1≤i≤m

〈Bi〉 −
∑
≤j≤n

〈Aj〉 .

We call this value briefly my risk associated with that state. Note that the risk
can be negative in G-games, i.e., the risk values of the relevant propositions may
be such that I expect a net payment by you to me.

Interestingly, the logical rules (R∧), (R∨), (R∀), and (R∃) defined in Section 2
remain unchanged for G-games. By adding the above implication rule (R→) and
defining ¬F = (F → ⊥) we arrive at Giles’ game for  Lukasiewicz logic.

We like to point out that (R→) contains a hidden principle of limited liability :
the player opposing the defender of F → G may (instead of asserting F in return
for the opponent’s assertion of G) explicitly choose not to attack F → G at all.
This option results in a branching of the game tree. The state [Γ | ∆,F → G],
where Γ and ∆ are multisets of sentences asserted by you and me, respectively,
and where the exhibited occurrence indicates that you currently refer to my as-
sertion of F → G, has the two possible successor states: [F, Γ | ∆,G] and [Γ | ∆].
In the latter state you have chosen to limit your liability in the following sense.
Attacking an opponent’s assertion should never incur an expected (positive) loss,
which were the case if the risk associated with asserting F is higher than that for
asserting G. In such cases a rational player in the attacking role will explicitly
renounce an attack on F → G. For all other logical connectives the principle
is ensured by the fact that—in all games considered here—each occurrence of
a formula can be attacked at most once. (The attacked occurrence is removed
from the state in the transition to a corresponding successor state.)

Another form of the principle of limited liability can be considered for de-
fending moves. In defending any sentence F , the defending player has to be able
to hedge her (possible) loss associated with the assertions made in defense of F
to at most 1€. This is already the case for all logical rules considered so far.
However, as shown in [6, 7], by making this principle explicit we arrive at a rule
for strong conjunction, that is missing in Giles:

(R&) If I assert F&G, I have to assert either both F and G, or assert ⊥ instead.

This allows us to characterize strong  Lukasiewicz logic  L by a G-game:

Theorem 4 (essentially Giles, but see also [7]) A  L-sentence F is evalu-
ated to vM (F ) = x in interpretation M iff the G-game for F under risk value
assignment 〈·〉M is (1− x)-valued for me.

4 (Semi-)Fuzzy quantifiers and random witnesses

As Glöckner emphasizes in his important monograph on fuzzy quantifiers [11],
the very concept of generalized quantifiers over [0, 1] poses a challenge that may



be termed an embarrassment of riches: even when we focus on logical quantifiers
of type 〈1〉, i.e., monadic quantifiers like ∃ and ∀, the space of possible truth
functions is too large and complex to support the selection of plausible candidates
for linguistically adequate models.4 We argue that a simple generalization of the
game for  L, described in Section 3, allows one to address this challenge by singling
out a lean class of quantifiers that nicely fits Giles’ idea to provide “tangible
meaning” to logical connectives in terms of bets on the results of dispersive
experiments. Remember that the only difference between the rules (R∀) and
(RE) for defending assertions ∀xF (x) and ∃xF (x), respectively, is that either
the defender or the attacker has to pick the constant c that determines the new
sentence F (c) that remains to be defended. Because of the randomized setting of
G-games, the following rule for a new type of (unary) quantifier Π seems natural:

(RΠ) If I assert ΠxF (x) then I have to assert F (c) for a randomly picked c.

The random choice refers to a uniform distribution of the domain. Note that,
while all kinds of other forms of randomly picking domain elements might be
considered in principle, we recall from the literature on generalized quantifiers
(see, e.g., [16, 19]) that a necessary condition for a quantifier to be called logi-
cal is the domain invariance of its semantics.5 As will get clear below, this is
guaranteed for Π (and for the quantifiers considered in Section 5) by insisting
on random choices with respect to a uniform distribution.

While (RΠ), arguably, makes sense for arbitrary  L-formulas F in the scope
of Π, we will view Π as a semi-fuzzy quantifier and hence insist on classical
formulas in its scope. To explain and motivate this design choice, we point out
that Glöckner [11] responses to the above mentioned challenge (“too many”
candidates for modeling fuzzy quantifiers) by focusing on semi-fuzzy quantifiers
first and employing an axiomatically specified scheme for lifting those semi-
fuzzy quantifiers to fully fuzzy quantifiers later. We follow this suggestion and
enrich the language of  L by distinguishing between classical (two-valued) and
(possibly) fuzzy formulas already at the syntactic level. More formally, we specify
the language for logic  L(Qs), where Qs is a list of (unary) quantifier symbols
other than ∀ or ∃, as follows:

γ ::= ⊥ | P̂ (t) | ¬γ | (γ ∨ γ) | (γ ∧ γ) | ∀vγ | ∃vγ
ϕ ::= γ | P̃ (t) | ¬ϕ | (ϕ ∨ ϕ) | (ϕ ∧ ϕ) | (ϕ→ ϕ) | (ϕ&ϕ) | ∀vϕ | ∃vϕ | Qvγ

where P̂ and P̃ are meta-variables for classical and for general (i.e., possible
fuzzy) predicate symbols, respectively, Q ∈ Qs; v is our meta-variable for object

4 We use the term “linguistically adequate” here for vague determiners like “many”,
“few”, “about half” etc. in the same sense as Glöckner [11], but want to emphasize
that this amounts to a much less stringent criterion than empirical adequateness
with respect to observable behavior of competent speakers as studied in (formal)
semantics of natural language by linguists (see, e.g., [18]).

5 There is no agreement in the literature on when a generalized quantifier is to be
called logical. However it is at least clear that invariance with respect to isomorphisms
between domains is a necessary condition. See [16] for a discussion of this issue.



variables; t denotes a sequence of terms, i.e. either object variable or a constant
symbol, matching the arity of the preceding predicate symbol. Note the scope of
the additional quantifiers from Qs is always a classical formula. Otherwise the
syntax is as for  L itself.

The following notion supports a crisp specification of truth functions for
semi-fuzzy quantifiers over finite interpretations.

Definition 2. Let Ĝ(x) be a classical formula and vM (·) a corresponding eval-
uation function over the finite domain D. Then

Propx Ĝ(x) =

∑
c∈D vM (Ĝ(c))

|D|

Rule (RΠ) matches the specification of Π by vM (ΠxF (x)) = Propx F (x).

Theorem 5 A  L(Π)-sentence F is evaluated to vM (F ) = x in an interpreta-
tion M iff the G-game for F augmented by rule (RΠ) is (1 − x)-valued for me
under risk value assignment 〈·〉M .

Theorem 5 will turn out to be an instance of a more general result to be
proved in the next section.

5 Proportionality quantifiers

Remember that in the context of our G-games we have considered three types of
challenges to the defender X of a quantified sentence QxF (x). In each case X
has to assert F (c), but the constant (domain element) is either

(A) chosen by the attacker, or
(D) chosen by the defender, or
(R) chosen randomly.

We will speak of a challenge of type A, D or R, respectively. The need to variate
these three challenges arises when we allow the defender (and possibly also the
attacker) of QxF (x) to bet either for or against F (c). Betting for F (c) simply
means to assert F (c), betting against F (c) is equivalent to betting for ¬F (c)
and thus amounts to an assertion of ⊥ in exchange for an assertion of F (c)
by the opposing player. Note that we can view this as follows: X pays 1€ for
a betting ticket regarding F (c) that entitles her to receive whatever payment
by her opponent Y is due for Y’s assertion of F (c) according to the results of
associated dispersive experiments made at the end of the game.

By allowing the players to choose between various successor states that result
from an attack on QxF (x) by certain numbers of bets for or against various
instances of F (x), where the constants replacing x can be of type A, D, or R,
we arrive at a rich set of possible quantifier rules. Here we will only investigate
the family of proportionality quantifiers Πm

k specified by the following schematic

game rule, where F̂ is a classical formula:



(RΠk
m

) If I assertΠk
mxF̂ (x) then k+m constants are chosen randomly and I have

to pick k of those constants, say c1, . . . , ck, and bet for F̂ (c1), . . . , F̂ (ck), while
simultaneously betting against F̂ (c′1), . . . , F̂ (c′m), where c′1, . . . , c

′
m are the

remaining m random constants. (Likewise for your assertion of Πk
mxF̂ (x).)

Although not mentioned explicitly we emphasize that the principle of limited
liability remains in place: after the constants are chosen, I may assert ⊥ (i.e.,
agree to pay 1€) instead of betting as indicated above.

We claim that this rule matches the extension of  L to  L(Πk
m) by

vM (Πk
mF̂ (x)) =

(
k +m

k

)
(Propx F̂ (x))k(1− Propx F̂ (x))m.

Theorem 6 A  L(Πk
m)-sentence F is evaluated to vM (F ) = x in interpreta-

tion M iff the G-game for F augmented by rule (RΠk
m

) is (1− x)-valued for me.
under risk value assignment 〈·〉M .

Proof. Relative to the proof of Theorem 4 (see [10, 9, 7]) we only have to consider

states of the form
[
Γ | ∆,Πk

mxF̂ (x)
]
. (I.e, we only consider my assertions of

proportionally quantified sentences. The case for your assertions of Πk
mxF̂ (x) is

dual.) For my enforceable risk at such a state we have〈
Γ | ∆,Πk

mxF̂ (x)
〉∗

= 〈Γ | ∆〉∗ +
〈
| Πk

mxF̂ (x)
〉∗

and it remains to show that my optimal way to reduce the exhibited quantified
formula to instances as required by rule (RΠk

m
) results in a risk that corresponds

to the specified truth function. In order to do so remember that the principle of
limited liability is in place. Moreover remember that F̂ is classical. This means
that I either finally have to pay 1€ for my assertion of Πk

mxF̂ (x) or do not
have to pay anything at all for it. The latter is only the case if all my bets for
F̂ (c1), . . . , F̂ (ck), as well as all my bets against F̂ (c′1), . . . , F̂ (c′m), for c1, . . . , ck,
c′1, . . . , c

′
m as specified in rule (RΠk

m
) succeed. The probability that this event

obtains, i.e., the inverse of my associated risk, is readily calculated to be(
k +m

k

)
pk(1− p)m,

where p = Propx F̂ (x), which matches the relevant truth function in  L(Πk
m). �

6 Conclusion

We have extended Giles’ game based semantics for  Lukasiewicz logic by con-
sidering randomly chosen domain elements as witnessing constants for certain
instances of (semi-fuzzily) quantified statements. This allows one to specify the
meaning of certain semi-fuzzy quantifiers in a manner that nicely fits the spirit
of Giles’ dialogue and betting game approach to approximate reasoning.



This short introduction into that topic is not the place to discuss the employ-
ment of corresponding quantifiers to model vague natural language quantifiers
like most, few, or about about half. Here we rather have to confine ourselves to
the remark that, in order to arrive at linguistically adequate models, one should
move from monadic to binary quantifiers and moreover combine appropriate
game based definitions with mechanisms that incorporate context dependent
parameters. Together with other relevant questions, like lifting to fully fuzzy
quantifiers, axiomatization, complexity, the relation to other forms of random-
ized and game based semantics, etc., this is a topic for future work.
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