
Intermediate logics and
concurrent λ-calculi: A

proof-theoretical approach

DISSERTATION

zur Erlangung des akademischen Grades

Doktor der Technischen Wissenschaften

eingereicht von

Francesco Antonio Genco
Matrikelnummer 01428996

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Agata Ciabattoni
Zweitbetreuung: Federico Aschieri
und Ezio Bartocci

Diese Dissertation haben begutachtet:

Arnon Avron Michel Parigot

Philip Wadler

Wien, 11. März 2019
Francesco Antonio Genco

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Intermediate logics and
concurrent λ-calculi: A

proof-theoretical approach

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor der Technischen Wissenschaften

by

Francesco Antonio Genco
Registration Number 01428996

to the Faculty of Informatics

at the TU Wien

Advisor: Agata Ciabattoni
Co-advisors: Federico Aschieri
and Ezio Bartocci

The dissertation has been reviewed by:

Arnon Avron Michel Parigot

Philip Wadler

Vienna, 11th March, 2019
Francesco Antonio Genco

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Francesco Antonio Genco
Schönburgstraße 26, Top 23
1040 Wien
Österreich

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 11. März 2019
Francesco Antonio Genco

v

Acknowledgements

vii

Kurzfassung

Der mögliche Zusammenhang des Hypersequentialkalküls in der Beweistheorie mit der
Theorie der nebenläufigen Programmierung wurde 1991 von Avron vermutet. Er schlug
vor, ein Hypersequent als parallele Verknüpfung mehrerer Sequente zu betrachten, und
hielt es für möglich, die von den Hypersequentialkalkülen beschriebenen intermediären
Logiken als Grundlage paralleler λ-Kalküle zu verwenden.

In der vorliegenden Dissertation entwickeln wir auf der Curry-Howard-Korrespondenz
basierende parallele und nebenläufige λ-Kalküle für solche Logiken, die sich im Hyper-
sequentialkalkül formalisieren lassen. Die erhaltenen Kalküle sind ausdrucksstärker als
der einfach typisierte Lambda-Kalkül, und erlauben die Formalisierung interessanter
paralleler und nebenläufiger Programme. Damit bestätigen wir also Avrons Vermutung.

In einem ersten Schritt gewinnen wir aus dem Hypersequentialkalkül für die betrachtete
Logik einen geeigneten Kalkül des natürlichen Schließens. Um dies zu erreichen, übersetzen
wir den Hypersequentialkalkül zunächst in einen Kalkül mit Regelsystemen. Hierbei
handelt es sich um eine Erweiterung des Sequentialkalküls um Regeln, die globalen
Nebenbedingungen unterliegen, ähnlich derjenigen wie sie in den Arbeiten Schroeder-
Heisters zum natürlichen Schließen in höhereren Stufen vorkommen.

Wir beschreiben die Curry-Howard-Korrespondenz der erhaltenen Kalküle des natürlichen
Schließens für die klassische Logik und die Logik von Gödel-Dummett. Beide Kalküle λCl
und λG erweitern den einfach typisierten λ-Kalkül durch einen Parallelitätsoperator, der
die Kommunikation zwischen parallelen Prozessen ermöglicht. Wir beweisen für beide
Systeme die Normalisierung, zeigen dass normalisierte Terme die Subformeleigenschaft
besitzen, und erhalten damit die ersten Interpretation dieser bekannten Logiken als
Systeme nebenläufiger Berechnung.

In der Folge verallgemeinern wir die obigen Ergebnisse, indem wir einen Erweiterung λ‖
des λ-Kalküls durch Parallelismus beschrieben. Diese Erweiterung zeichnet sich durch
unendlich viele Typisierungsregeln aus, welche solchen Axiomen entsprechen, die sich
als Regel im Hypersequentialkalkül ausdrücken lassen. Die Regeln verallgemeinern jene
von λCl und λG und ermöglichen die Typisierung komplexer Kommunikationstopologien.
Wir entwickeln einen Algorithmus, der aus jeder Kommunikationstopologie in Form
eines direkten Graphen automatisch eine Typisierungsregel von λ‖ berechnet. Umgekehrt
können die durch die Regel typisierten Terme ausschließlich entsprechend der Topologie

ix

kommunizieren. Die starke Normalisierung des Systems stellt sicher, dass alle Berechnun-
gen – unabhängig von der angewandten Strategie – terminieren. Schließlich demonstrieren
wir die Ausdrucksstärke von λ‖ anhand mehrerer Beispiele paralleler Programme, die
von numerischen Berechnungen bis zu Algorithmen auf Graphen reichen.

Der Kalkül λ‖ nutzt Axiome intermediärer Logiken zur Typisierung paralleler Programme.
Allerdings ermöglicht er keine computationale Interpretation der betrachteten Logiken,
da seinem Typisierungssystem Regeln für die Disjunktion fehlen; selbige sind in vielen
der Logiken nicht definierbar. Außerdem lässt sich aus der Normalisierung des Systems
nicht die Subformeleigenschaft gewinnen. Wir überwinden diese Probleme durch die
Beschreibung einer Curry-Howard-Korrespondenz für die vollständigen Logiken, und
indem wir allgemeinere Reduktionen für die Kommunikationen zulassen. Diese Reduktio-
nen, welche bereits in λCl und λG vorkommen, gewährleisten die Subformeleigenschaft
und implementieren Techniken der sogenannten Code Mobility für die Übertragung des
Funktionsabschlusses.

Abstract

Avron speculated in 1991 that the proof-theoretical formalism of hypersequents might be
deeply connected with concurrent computation. He suggested that a hypersequent can
be seen as the parallel composition of several sequents and he envisaged the possibility of
using the intermediate logics that can be naturally captured by hypersequent calculi “as
bases for parallel λ-calculi” [Avr91].

In this dissertation we define parallel and concurrent λ-calculi based on Curry–Howard
correspondences for intermediate logics that can be formalized as hypersequent calculi.
The introduced calculi are more expressive than simply-typed λ-calculus and can formalize
interesting parallel and concurrent programs. We thus confirm Avron’s thesis.

Our first step in this direction is the extraction of suitable natural deduction calculi from
hypersequent calculi for these logics. In order to do so, we first embed the hypersequent
calculi into system of rules calculi: a proof-theoretical formalism which extends sequent
calculus by rules featuring non-local conditions similar to those of higher-level natural
deduction à la Schroeder-Heister.

We present Curry–Howard correspondences for the introduced natural deduction calculi
for classical and Gödel–Dummett logic. The resulting calculi λCl and λG are concurrent
extensions of simply typed λ-calculus. We prove normalization results for both, show that
normal proof terms enjoy the subformula property, and thus present the first concurrent
computational interpretations of these well-known logics.

We then generalize the previous results by introducing a parallel extension of λ-calculus,
denoted λ‖, which features infinitely many type assignment rules corresponding to axioms
that can be represented as hypersequent rules. These rules generalize those of λCl and
λG, and enable us to type complex communication topologies. We present an algorithmic
procedure which extracts a λ‖ type assignment rule from any communication topology
that can be represented as a directed graph. The terms typed by the rule, in turn, can
only communicate according to the topology. A strong normalization result for the system
guarantees the termination of all computations, regardless of the employed strategy. The
expressive power of λ‖ is showcased by examples of parallel programs which range from
numeric computation to algorithms on graphs.

The calculus λ‖ successfully exploits axioms characterizing intermediate logics for typing
parallel programs. Nevertheless, it does not provide a computational interpretation of the

xi

considered logics because its type system does not contain disjunction rules, which are not
definable in many of these logics, and its normalization does not imply the subformula
property. We fill this gap by presenting Curry–Howard correspondences for the full logical
systems and by introducing more general communication reductions. These reductions –
also featured in λCl and λG – ensure that the subformula property holds and implement
code mobility techniques for function closure transmission.

Contents

Kurzfassung ix

Abstract xi

Contents xiv

1 Introduction 1
1.1 Outline of the dissertation . 4
1.2 Publications . 5

2 Logics, calculi and computations 7
2.1 Intuitionistic and intermediate logics . 7
2.2 Sequents and hypersequents . 10
2.3 Systems of rules . 14
2.4 Natural deduction and the Curry–Howard correspondence 17

3 From hypersequent calculi to natural deduction 29
3.1 From 2-systems to hypersequent rules and back 30
3.2 Embedding the two formalisms . 31
3.3 Applications of the embeddings . 50

4 Classical logic and Gödel–Dummett logic 59
4.1 One-way communication: λCl . 60
4.2 Adding the symmetry: λG . 91
4.3 Comparison between λCl, λG and related calculi 112

5 A typed parallel λ-calculus based on disjunctive tautologies 115
5.1 The type system of λ‖ . 117
5.2 Communications in λ‖ . 119
5.3 Properties of the communication in λ‖ . 124
5.4 From communication topologies to programs 127
5.5 The strong normalization theorem . 129
5.6 Computing with λ‖ . 135
5.7 Related work . 144

xiv

6 A computational interpretation of intermediate logics 147
6.1 The type system of λ‖L and its reduction rules 148
6.2 The normalization theorem . 156
6.3 The subformula property . 178

7 Conclusion and future work 183

Index 189

Bibliography 193

CHAPTER 1
Introduction

Proofs have always been a central concern in mathematics, but only at the beginning
of XX century they started to be studied as formal mathematical objects. This change
of perspective is due to Hilbert, and gave rise to the meta-mathematical viewpoint
which is the foundation of proof theory. Approximately half a century later the formal
notion of proof used in this context has been associated with the notion of function
and, not much later, of algorithm. The notion of intuitionistic proof was the first to
be directly associated to that of computer program as formalized by λ-calculus. The
development of a deep and fruitful research line followed the first results by Haskell Curry
and William Howard [How80] associating these seemingly distant notions. Nowadays
several different logics have been related to various notions of computation. These
logics include classical logic [Gri90, Par92, dG95, Wad03, AZ16], linear logic [CP10a] and
modal logics [MCHP04]; the list is long, and we refer the reader to [Wad15]. In-depth
investigations of the computational aspects of intermediate logics, on the other hand,
have been conducted only in the last few years [Asc16]. This class of logics contains all
the propositional extensions of intuitionistic logic that are not stronger than classical
logic and the first signs of interest in their computational content date back to 1991.
In this year, Avron introduced the hypersequent calculus – a proof calculus based on
multisets of sequents – for one of the best known intermediate logic: Gödel–Dummett
logic, and speculated that there might be a strong connection between hypersequents
and concurrent computation [Avr91]. He suggested that a hypersequent might be seen as
the parallel composition of several sequents and he envisaged the possibility of using the
intermediate logics that can be captured by hypersequent calculi “as bases for parallel
λ-calculi”.

In this dissertation we define parallel and concurrent λ-calculi based on Curry–Howard
correspondences for intermediate logics that can be formalized as hypersequent calculi.
We thus confirm Avron’s thesis. The resulting calculi are strictly more expressive than

1

1. Introduction

simply-typed λ-calculus and suitable systems for the representation of concurrent systems
and for encoding parallel algorithms.

In order to define Curry–Howard correspondences for extracting the concurrent content
of hypersequent proofs, we identify a class of proof systems which exhibit parallel features
similar to those of hypersequent calculi but, at the same time, are simple enough to
admit an elegant computational interpretation. We obtain this class by translating
hypersequent calculi into suitable natural deduction calculi. To this aim, we first embed
the hypersequent calculi into system of rules calculi [Neg16]: a proof-theoretical formalism
which extends sequent calculus by rules featuring non-local conditions similar to those of
higher-level natural deduction à la Schroeder-Heister [SH14]. Consider, for example, the
hypersequent rule (1) – which is a version of the rule that Avron calls communication
and characterizes Gödel–Dummett logic – the corresponding system of rules (2) and
higher-level natural deduction rule (3):

(1)
G | B,Σ1 ⇒ ∆1 G | A,Σ2 ⇒ ∆2
G | A,Σ1 ⇒ ∆1 | B,Σ2 ⇒ ∆2

(3)

A
B
†

....
C

B
A
†

....
C

C
?

(2)

B,Σ1 ⇒ ∆1
A,Σ1 ⇒ ∆1

†

....
Γ⇒ Π

A,Σ2 ⇒ ∆2
B,Σ2 ⇒ ∆2

†

....
Γ⇒ Π

Γ⇒ Π
?

where the schemata (2) and (3) mean that the rules marked by † can only be applied in
the subtree above the relative premise of ?. As we will formally show in Chapter 3, the
structural connective | of hypersequents – interpreted as a disjunction – simply allows
us to represent in a local way the connection between the sequent rules marked by † in
(2). The global structure of the system of rules reflects, in turn, the structure of the
higher-level natural deduction rules. Following these intuitions, we show the equivalence
between the hypersequent formalism and a fragment of the system of rules formalism,
and provide a translation of hypersequent rules into higher-level natural deduction rules.

Using the obtained natural deduction calculi for classical and Gödel–Dummett logic, we
then define Curry–Howard correspondences resulting in two typed concurrent extensions
of λ-calculus: λCl and λG, respectively. Although the computational content of classical
proofs has been investigated for a long time, the computational interpretation of classical
logic that we present here is the first in terms of concurrent computation. On the other
hand, no Curry–Howard correspondence had been defined for Gödel–Dummett logic
despite the attempts in [BCF00], [Hir12] and [BP15].

From a computational viewpoint, both λCl and λG can encode parallel processes connected
by higher-order communication channels for the trasmission of terms. While λCl only
features unidirectional communication channels connecting two processes, as represented
below on the left, λG features symmetric channels, as shown below on the right:

2

From a technical point of view, in λCl we can type a term of the form C[a t] ‖a D such
that a occurs in D. This term represents the parallel composition of the processes C[a t]
and D and their connection by a communication channel a, which behaves similarly to a
π-calculus binder (νa). The λCl reduction

C[a t] ‖a D 7→c D[t/a]

formalizes then the transmission of the term t from the process C[a t] to the process D.
For a λG term of the form C[a u] ‖a D[a v], on the other hand, we have both reductions
for transmitting the message u from left to right

C[a u] ‖a D[a v] 7→g C[a u] ‖a D[u]

and reductions for transmitting the message v from right to left

D[a u] ‖a C[a v] 7→g C[v] ‖a C[a v]

Generalizing the ideas at the base of λCl and λG but strengthening the features that are
relevant for parallel programming, we obtain the typed parallel λ-calculus λ‖. On the
one hand, the type system of λ‖ presents strong simplifications with respect to those of
λCl and λG, on the other hand, its individual type assignment rules are based on a rather
general class of axioms that can be formalized as hypersequent rules and enable us to
type whole network topologies. For instance, a single application of a λ‖ type assignment
rule enables us to type networks based on the following graph:

. . .

In general, we can automatically extract a λ‖ type assignment rule from any communica-
tion topology that can be represented as a directed graph. The possibility of typing at
once a whole network greatly increases the control over the interactions between processes,
and thus makes λ‖ ideal for encoding parallel algorithms. The restrictions on λ‖ type
system, moreover, enable us to show a strong normalization result which guarantees that
all possible reduction strategies for λ‖ terms are terminating. To show the expressivity of
λ‖, we encode several algorithms, including a parallel version of Floyd–Warshall algortihm,
see [Loo11], for computing the shortest path between two nodes in a graph.

The strong computational properties of λ‖, though, come at the cost of its unsuitability
as a computational interpretation for the considered intermediate logics. The type system
of λ‖ does not contain disjunction rules, which are not definable in many of these logics.

3

1. Introduction

Moreover, the normalization of λ‖ does not imply the subformula property. We fill this
gap by presenting λ‖L, a framework for Curry–Howard correspondences for intermediate
logics, and by introducing more general communication reductions. These reductions
– also featured in λCl and λG – ensure that the subformula property holds and enable
the communication of terms that depend on their computational environment. The
problem of restoring the required dependencies after such a communication is often
called the problem of the transmission of closures. This is, as explained in [EBPJ11], a
“fundamental problem in any distributed implementation of a statically-typed, higher-order
programming language”. Our proof systems provide a solution to this problem: a new
communication channel is established on the fly in order to handle the dependencies, or
closure, of the transmitted functions. Consider for example the λCl-term

C[λy a(y + 2)] ‖a D[a+ 3]

in which the two parallel processes C[λy a(y + 2)] and D[a + 3] are connected by the
communication channel a. Suppose for the sake of simplicity that only one instance
of the variable a occurs in each of them and that natural numbers and addition are
defined in our calculus. If we simply transmit the message y + 2 to the other term and
obtain D[(y + 2) + 3], we violate the dependence of y on λy. To avoid this, the following
reduction is triggered

C[λy a(y + 2)] ‖a D[a+ 3] 7→∗c C[λy by] ‖b D[(b+ 2) + 3]

in which the message y + 2 is transmitted to the other process, but the new channel b
is established to keep track of the dependence of y + 2 – which is now b+ 2 – on λy by.
Thus, when the value of y will be available in C[λy by], it will be transmitted through b
to D[(b+ 2) + 3]. For instance, if

C[λy by] ‖b D[(b+ 2) + 3] 7→∗c C′[b1] ‖b D[b+ 5]

then we have the λCl communication

C′[b1] ‖b D[b+ 5] 7→∗c D[1 + 5]

Finally, while the reduction conditions of the calculi λCl, λG and λ‖ are essentially based
on the type of terms, λ‖L reduction rules are purely based on the syntactic structure of
terms and make no reference to their type. Therefore the set of reduction rules of λ‖L
shows a possible approach to the problem of defining a well-behaved untyped concurrent
λ-calculus.

1.1 Outline of the dissertation
The structure of the dissertation is the following.

In Chapter 2 we define logics, proof-theoretical calculi and formalisms used throughout
this work, we present the reasons that led to their introduction and the background of
the problems addressed in the dissertation.

4

1.2. Publications

In Chapter 3 we present a double embedding between hypersequent calculi and sequent
calculi with two-level system of rules, which is a proper fragment of the formalism of
system of rules. This result consists in a translation that produces from any calculus in
one of the two formalisms an equivalent calculus in the other. By exploiting the similarity
between the non-local conditions of systems of rules and natural deduction discharge
mechanism, we introduce a translation from hypersequent rules to higher-level natural
deduction rules.

Chapter 4 is devoted to the typed concurrent λ-calculi λCl (Section 4.1) and λG (Sec-
tion 4.2). They are introduced by defining Curry–Howard correspondences on natural
deduction calculi for classical logic and Gödel–Dummett logic, respectively. We introduce
the reduction systems for the calculi and we discuss the general communication reduc-
tions – called cross reductions – that enable us to transmit terms that depend on their
computational environment. We prove that the subformula property holds for normal
proof terms. The normalization proof is based on the same technique for both calculi and
uses the subformula property as a computational criterion for triggering communication
reductions. We analyze the expressive power of the calculi and present some examples
of computations. A comparison of λCl, λG and existing related calculi concludes the
chapter.

In Chapter 5 we introduce the parallel λ-calculus λ‖. We define the calculus by com-
putationally interpreting an infinite class of natural deduction rules corresponding to
axioms that can be formalized as hypersequent rules. Exploiting the generality of the
class of axioms on which λ‖ is based, we provide an algorithm for extracting λ‖ type
assignment rules from network topologies that can be represented as directed graphs.
Moreover, we show that the terms typed by these rules will only communicate according
to the topologies. We then prove the strong normalization result for λ‖ by using the
Tait-Girard reducibility technique of [GLT89]. We use λ‖ to encode parallel algorithms
ranging from numeric computation to graph analysis. Finally, we compare λ‖ to similar
existing systems.

In Chapter 6 we present the general framework λ‖L for defining Curry–Howard correspon-
dences for intermediate logics that can be formalized by hypersequent calculi. We present
the type system of λ‖L which, unlike the type system of λ‖, also includes disjunction
rules, and we discuss its correspondence with complete natural deduction systems for
the considered logics. We explain the differences between the reduction rules of λ‖L,
which are exclusively based on the shape of terms and do not make any reference to their
type, and those of λCl, λG and λ‖. Finally, we prove that the reduction system of λ‖L is
terminating and that normal λ‖L proof terms enjoy the subformula property.

We conclude and discuss several future research directions in Chapter 7.

1.2 Publications

This dissertation is based on the following publications.

5

1. Introduction

1. Gödel logic: from natural deduction to parallel computation. (Federico Aschieri,
Agata Ciabattoni, and Francesco A. Genco.) In LICS 2017, pages 1–12, 2017.

2. Classical proofs as parallel programs. (Federico Aschieri, Agata Ciabattoni, and
Francesco A. Genco.) In GandALF 2018, pages 43–57, 2018.

3. From intermediate logics to parallel λ-calculi via Curry–Howard correspondences.
(Federico Aschieri, Agata Ciabattoni, and Francesco A. Genco.) Unpublished, 2018.

4. A parallel λ-calculus for graph-based communication. (Federico Aschieri, Agata
Ciabattoni, and Francesco A. Genco.) Submitted for publication, 2018.

5. Embedding formalisms: hypersequents and two-level systems of rules. (Agata
Ciabattoni and Francesco A. Genco.) In Advances in Modal Logic, volume 11, pages
197–216. College Publications, 2016.

6. Hypersequents and systems of rules: Embeddings and applications. (Agata Cia-
battoni and Francesco A. Genco.) ACM Transactions on Computational Logic
(TOCL), 19(2):11:1–11:27, 2018.

6

CHAPTER 2
Logics, calculi and computations

We present now the logics and calculi to which we refer throughout the dissertation, we
establish the relative notation, and we briefly mention the historical reasons that led to
the introduction of these systems. Moreover, we present and discuss the background of
the problems addressed by the dissertation.

In particular, in Section 2.1 we present intuitionistic logic, classical logic and some
intermediate logics which are relevant for the present work. We define here the language of
these logics and provide some insights in their semantics. In Section 2.2 we present sequent
calculus and the generalization of this calculus to multisets of sequents: hypersequent
calculus. In Section 2.3 we present and discuss sequent calculi with systems of rules;
another, more recent, generalization of sequent calculi. Section 2.4 is devoted to natural
deduction calculi and to the Curry–Howard, or proofs-as-programs, correspondence.
We first present natural deduction calculus and then, in Section 2.4.1, simply typed
λ-calculus and the Curry–Howard correspondence for intuitionistic logic. In Section 2.4.2
we discuss some prominent Curry–Howard correspondences for classical logic. Finally,
in Section 2.4.3 we discuss Avron’s thesis on the possibility of providing concurrent
computational interpretations of the intermediate logics that can be formalized as
hypersequent calculi. In doing this, we also discuss some related attempts to define
suitable natural deduction calculi for intermediate logics.

2.1 Intuitionistic and intermediate logics

The alphabet of propositional intuitionistic logic (IL) consist of an enumerable set of
propositional variables {p1, p2, . . .} and the logical connectives →,∧,∨,⊥. The language
of IL is inductively defined as follows:

• pi ∈ {p1, p2, . . .} and ⊥ are formulae;

7

2. Logics, calculi and computations

• if A and B are formulae, then A→ B , A ∧B , A ∨B are formulae as well.

Notation. We assume that the connectives → and ∧ associate to the right. Moreover,
as usual, we define ¬A as A→ ⊥, and the true proposition > as ⊥ → ⊥ and we adopt
the convention that the empty conjunction, namely the expression A1∧ . . .∧An for n = 0,
denotes >.

Unless stated otherwise, we generally use the upper-case Latin letters A,B,C,D,E and
F for formulae, upper-case Greek letters for multisets of formulae, and, in particular, we
use Π for those multisets of formulae that contain at most one element.

Intuitionistic logic

The first formal definition of predicative intuitionistic logic [Hey30] is in the form of an
axiomatic system, or Hilbert system. An axiomatization of intuitionistic logic in this
style contains the rule

A A→ B
B

(MP)

and the following axiom schemata:

⊥ → A A→ (B → A) (A→ (B → C))→ ((A→ B)→ (A→ C))
A ∧B → A A ∧B → B A→ (B → A ∧B)

A→ A ∨B B → A ∨B (A→ C)→ ((B → C)→ (A ∨B → C))

A proof in this system is a list of formulae which are either (i) instances of an axiom, or
(ii) obtained applying (MP) to elements occurring earlier in the list. To prove a formula
A, we need to construct a proof that contains A.

Notation. We often use the notion of instance of an axiom or rule schema. Such an
instance is obtained, as usual, by replacing uniformly all metavariables for formulae with
formulae of the language.

The logic IL can then be defined as the set of all formulae that are provable in this system.
The conceptual meaning of intuitionistic connectives, though, is best captured by an
informal interpretation provided in 1934 by Arend Heyting and later known as Brouwer-
Heyting-Kolmogorov (BHK) interpretation. One version of the BHK interpretation for
propositional connectives is the following:

• there is no proof of ⊥

• a proof of A ∧B is a pair containing a proof of A and a proof of B

• a proof of A ∨B is either a proof of A or a proof of B

• a proof of A→ B is a construction that transforms any proof of A into a proof of B

The BHK interpretation provides an informal description of the meaning of the connec-
tives of intuitionistic logic in terms of proofs and constructions. Just looking at this

8

2.1. Intuitionistic and intermediate logics

interpretation we can quite distinctly perceive its procedural flavor, and we will see in
Section 2.4 that BHK can indeed be used as a series of guidelines for constructing proofs
and for interpreting such proofs as algorithms. In Section 2.4 we will present a proof
system closer to this interpretations of intuitionistic connectives.

Intuitionistic logic can also be characterized by a frame semantics, or relational semantics;
see for instance Chapter 2 of [CZ97]. This semantics enables us to define relational
models consisting of a frame (W,R) – where W is a set and R is a partial order over W –
and a valuation function which associates each propositional variable with a subset of W .
Conditions for the connectives are provided in such a way that we can lift each valuation
to compound formulae and thus check weather a formula is true in a model. We can then
define IL as the set of formulae which are true in all models.

Classical logic

If we add the axiom EM = A ∨ ¬A to the axiomatic system for intuitionistic logic
we obtain an axiomatization for classical logic (CL). This axiom is known as the law
of the excluded middle and, intuitively, narrows down the possibilities of semantical
interpretation of each formula to two cases: the formula is either true or false. This
intuition is clearly reflected in the semantics of classical logic: a classical valuation v is a
function that maps formulae into the set {0, 1} of truth values in such a way that

v(A ∨B) = max (v(A), v(B))
v(A ∧B) = min (v(A), v(B))

v(A→ B) =
{

0 if v(A) = 1 and v(B) = 0
1 otherwise

v(¬A) =
{

0 if v(A) = 1
1 if v(A) = 0

If a formula is true – namely, has value 1 – with respect to all valuations, then it is a
theorem of classical logic.

Gödel–Dummet logic and other intermediate logics

An intermediate logic is any consistent logic whose theorems are at least all theorems
of intuitionistic logic and at most all theorems of classical logic. Intermediate logics, as
classical logic, will be formally defined by extending proof systems for intuitionistic logic.

Both intuitionistic logic and classical logic, technically, are intermediate logics, but a
more interesting exemplar belonging to this class – and a central one for this dissertation
– is Gödel–Dummett logic (GL). This logic is going to be analyzed from a computational
perspective in Chapter 4 and is among the simplest and more studied intermediate logics.
The semantics originally defining it was introduced by Gödel in [Göd32] to prove that
the connectives of intuitionistic logic cannot be described by finite matrices. To this
aim, Gödel defined a sequence of increasingly strong intermediate logics, nowadays called

9

2. Logics, calculi and computations

k-valued Gödel logics (Gk). Fixed a natural number k, the k-valued Gödel logic is
semantically characterised by the matrix

v(A ∨B) = min (v(A), v(B))
v(A ∧B) = max (v(A), v(B))

v(A→ B) =
{

0 if v(A) ≥ v(B)
v(B) if v(A) < v(B)

v(¬A) =
{
k if v(A) < k
0 if v(A) = k

for functions v mapping formulae into the set {1, . . . , k} of truth values. If a formula has
value 1 for all valuations, then it is a theorem of the k-valued Gödel logic.

Later Dummett generalized Gödel’s idea to infinite matrices taking k = ω, and officially
introduced Gödel–Dummett logic under the name of LC [Dum59].

Axiomatically, Gödel–Dummett logic can be characterized as an extension of intuitionistic
logic by the linearity axiom Lin = (A→ B) ∨ (B → A). For the present work, we will
adopt this definition.

Other intermediate logics can be defined in reference to the frame semantics of intu-
itionistic logic, as for example BCk and BWk. The former is the logic of intuitionistic
frames with cardinality at most k. In other terms the theorems of BCk are the formulae
which are valid in all relational models based on a frame with at most k nodes. The
logic BWk, on the other hand, contains the formulae which are valid on all intuitionistic
frames with width at most k; where the width of a frame is the cardinality of a maximal
set of pairwise unrelated nodes.

2.2 Sequents and hypersequents

Sequents have been introduced in the context of Gentzen’s proof of the consistency of
arithmetic as a means to understand purely logical deductions. A sequent [Gen35] is an
object of the form

Γ⇒ Π

where Γ is a possibly empty multiset of formulae in the language of intuitionistic logic.
We adopt the restriction here that Π contains at most one formula.

In the context of intuitionistic logic, a sequent Γ ⇒ Π is interpreted as the formula∧
Γ→ A where

∧
Γ is the conjunction of elements of Γ and A is either the unique element

of Π or ⊥ if Π contains no elements.

A proof calculus is a set of rules for constructing derivations: formal objects witnessing
the fact that a formula is a theorem of a logic. We define now the notion of local proof
calculus, which will be enough to introduce both sequent calculi and hypersequent calculi.

10

2.2. Sequents and hypersequents

Definition 2.2.1 (Local proof calculus). For any class O of objects, a local proof calculus
C for constructing derivations of objects O is a set of rules of the form o1 . . . on

o where
o, o1 . . . on ∈ O. A derivation of o ∈ O is then inductively defined as follows:

• if, for some n ≥ 0
o1 . . . on

o ∈ C

and D1, . . . ,Dn are derivations of o1, . . . , on respectively, then

D1 . . .Dn
o

is a derivation of o.

The rules of the sequent calculus LI [Gen35] for intuitionistic logic are shown in Table 2.1.
Rules are presented, as usual, as rule schemata and we omit the inference line of rules
without premises. Following standard practice, when unambiguous, we do not explicitly
distinguish between a rule and a rule schema.

A⇒ A ⊥ ⇒ Π Γ, A⇒ Π Γ, B ⇒ Π
Γ, A ∨B ⇒ Π (∨l)

{
Γ⇒ Ai

Γ⇒ A1 ∨A2
(∨r)

}
i∈{1,2}

Γ⇒ Π
A,Γ⇒ Π (IW)

Γ, A,B ⇒ Π
Γ, A ∧B ⇒ Π (∧l) Γ⇒ A Γ⇒ B

Γ⇒ A ∧B (∧r) A,A,Γ⇒ Π
A,Γ⇒ Π (IC)

Γ⇒ A Γ, B ⇒ Π
Γ, A→ B ⇒ Π (→ l) Γ, A⇒ B

Γ⇒ A→ B
(→ r)

Γ⇒ A A,∆⇒ Π
Γ,∆⇒ Π (cut)

Table 2.1: The sequent calculus LI.

A formula A is a theorem of intuitionistic logic if and only if there exists a derivation of
⇒ A in LI, see for example [TS96].

The main technical result that Gentzen showed about LI – which is also the main technical
tool that he used to prove the consistency of arithmetic – is the cut-elimination theorem.
This theorem states that we can constructively remove all (cut) rule applications from any
proof in the calculus. For the systems considered here, this implies the subformula property:
every derivable formula can be proved by a derivation that only contains subformulae of
the formula itself. A proof that only contains subformulae of its conclusion is also called
an analytic proof, in the sense that the proof proceeds by analysis of the statement to be
proved and does not involve external concepts which are not already mentioned in the
statement itself.

The field of application of sequent calculi is certainly not restricted to the study of
intuitionistic logic: they are versatile objects which have been employed to define calculi
for several logics. Nonetheless, they lack the expressive power required by certain tasks.
For instance, if we want to define modular analytic calculi, for some classes of logics,

11

2. Logics, calculi and computations

sequents are not expressive enough. For this reason various generalization of sequent
calculi have been introduced and hypersequents are one of these. Hypersequents are a
rather simple generalization of sequents which have proved very well suited for capturing
a large class of intermediate logics.

A hypersequent [Avr87, Avr91] is a multiset of sequents. Hypersequents are usually
represented as objects of the form

Γ1 ⇒ Π1 | . . . | Γn ⇒ Πn

where Γ1 ⇒ Π1, . . . ,Γn ⇒ Πn are sequents and are called the components of the
hypersequent.

The interpretation of a hypersequent Γ1 ⇒ Π1 | . . . | Γn ⇒ Πn will be the formula
(
∧

Γ1 ⇒ A1) ∨ . . . ∨ (
∧

Γn ⇒ An) where
∧

Γi is the conjunction of elements of Γi and Ai
is either the unique element of Πi or ⊥ if Πi contains no elements.

Notation. We generally use the letters G and H to denote possibly empty hypersequents.

The rules of the hypersequent calculus HI for intuitionistic logic are shown in Table 2.2.

A⇒ A ⊥ ⇒ Π
G | Γ, A⇒ Π G | Γ, B ⇒ Π

G | Γ, A ∨B ⇒ Π (∨l)
{

G | Γ⇒ Ai

G | Γ⇒ A1 ∨A2
(∨r)

}
i∈{1,2}

G | Γ, A,B ⇒ Π
G | Γ, A ∧B ⇒ Π (∧l)

G | Γ⇒ A G | Γ⇒ B

G | Γ⇒ A ∧B (∧r)
G | Γ⇒ Π
G | A,Γ⇒ Π (IW)

G | Γ⇒ A G | Γ, B ⇒ Π
G | Γ, A→ B ⇒ Π (→ l)

G | Γ, A⇒ B

G | Γ⇒ A→ B
(→ r)

G | A,A,Γ⇒ Π
G | A,Γ⇒ Π (IC)

G | Γ⇒ A G | A,∆⇒ Π
G | Γ,∆⇒ Π (cut) G

G | Γ⇒ Π (EW)
G | Γ⇒ Π | Γ⇒ Π

G | Γ⇒ Π (EC)

Table 2.2: The hypersequent calculus HI.

Sequent and hypersequent rules can be divided into logical rules and structural rules.
If a logical connective is shown in the schema of a rule, then we call such rule logical;
otherwise, we call the rule structural.

Note that the added structure of HI with respect to the sequent calculus LI [Gen35] for
intuitionistic logic is in fact redundant since a hypersequent Γ1 ⇒ Π1 | . . . | Γk ⇒ Πk is
derivable in HI if and only if Γi ⇒ Πi is derivable in LI for some i ∈ {1, . . . , k}. Indeed,
any sequent calculus can be trivially viewed as a hypersequent calculus. The added
expressive power of the latter is due to the possibility of defining new rules which act
simultaneously on several components of one or more hypersequents.

12

2.2. Sequents and hypersequents

Example 2.2.1. By adding to HI the following version of the structural rule introduced
in [Avr91]

G | Φ,Γ1 ⇒ Π1 G | Ψ,Γ2 ⇒ Π2
G | Ψ,Γ1 ⇒ Π1 | Φ,Γ2 ⇒ Π2

(com)

we obtain a cut-free calculus for Gödel–Dummett logic (GL), which can be defined
extending intuitionistic logic by the linearity axiom Lin: (A → B) ∨ (B → A). For
example, a derivation of Lin using (com) is the following

B ⇒ B A⇒ A
A⇒ B | B ⇒ A

(com)

A⇒ B |⇒ B → A

⇒ A→ B |⇒ B → A

⇒ A→ B |⇒ (A→ B) ∨ (B → A)
⇒ (A→ B) ∨ (B → A) |⇒ (A→ B) ∨ (B → A)

⇒ (A→ B) ∨ (B → A)

As the usual interpretation of the symbol | is disjunctive, the hypersequent calculus can
naturally capture properties that can be expressed in a disjunctive form, such as certain
Hilbert axioms and algebraic equations, see [CGT08].

Definition 2.2.2. Given a hypersequent rule (r) with premises G | H1 . . . G | Hn

and conclusion G | H, we call active components the components of the hypersequents
H1, . . . ,Hn, H and context components the components of G.

Notice that each hypersequent rule considered in this section and in Chapter 3 have (i) a
shared external context, namely the same context G for all premises, and (ii), except for
(EC), at most one active component for each premise. Note that (i) is not a restriction
and, in absence of eigenvariable conditions, neither is (ii) because in a hypersequent
calculus containing (EC) and (EW), any rule is equivalent to one that satisfies these
conditions.

Notation. Given a sequent or hypersequent calculus C, we denote by `C o that there
is a derivation of o in C and by `c.f.C o that there is a derivation of o in C that does not
contain applications of (cut). Moreover, given a set R of rules we denote by C + R the
calculus obtained by adding the elements of R to C.

As usual, by the height of a sequent or hypersequent derivation we mean the maximal
number of rule applications occurring on any of its branches plus 1.

A method is introduced in [CGT08] to transform propositional Hilbert axioms in the
language of full Lambek calculus into equivalent hypersequent rules.

The method is based on the following classification of intuitionistic formulae: N0 and P0
are the set of atomic formulae and

13

2. Logics, calculi and computations

axiom hypersequent rule logic

A ∨ ¬A
G | Γ,Σ⇒ ∆

G | Γ⇒| Σ⇒ ∆
CL

(A→ B) ∨ (B → A)
G | Γ, B ⇒ ∆ G | Σ, A⇒ Θ
G | Γ, A⇒ ∆ | Σ, B ⇒ Θ

GL

k−1∨
i=0

(Ai → Ai+1) ∨ (¬Ak) {G | Γj+1,∆j ⇒ Πj}j∈{0,...,k−1}

G | Γ0,∆0 ⇒ Π0 | . . . | Γk−1,∆k−1 ⇒ Πk−1 | Γk ⇒
Gk

k−1∨
i=1

(Ai → Ai+1) ∨ (Ak → A1) {G | Γj+1,∆j ⇒ Πj}j∈{1,...,k−1} G | Γ1,∆k ⇒ Πk

G | Γ1,∆1 ⇒ Π1 | . . . | Γk,∆k ⇒ Πk

Ck
1

k∨
i=0

(Ai →
k∨

i 6=j=0
Aj)

{G | Γi,Γj ⇒ ∆i}i,j∈{0,...,k}, i 6=j
G | Γ0 ⇒ ∆0 | . . . | Γk ⇒ ∆k

BWk

A0 ∨
k∨
i=1

(
i−1∧
j=0

Aj → Ai)
{G | Γi,Γj ⇒ ∆i}i∈{0,...,k−1}, i<j≤k

G | Γ0 ⇒ ∆0 | . . . | Γk−1 ⇒ ∆k−1 | Γk ⇒
BCk

Table 2.3: Hypersequent rules and corresponding axioms.

Pn+1 ::= ⊥ | > | Nn | Pn+1 ∧ Pn+1 | Pn+1 ∨ Pn+1
Nn+1 ::= ⊥ | > | Pn | Nn+1 ∧Nn+1 | Pn+1 → Nn+1

We recall that a connective is said to be positive when its left logical rule is invertible
and negative when its right logical rule is invertible [And92]. Thus, the classes Pn and
Nn contain axioms with outermost connective positive and negative, respectively, since
in HI (∨l), (→ r), (∧l) and (∧r) are invertible rules. Notice that ∧ is both positive and
negative because both rules for this connective are invertible in HI.

As shown in [CGT08] all axioms in the class P3 can be algorithmically transformed into
equivalent structural hypersequent rules that are analytic, namely that preserve cut-
elimination when added to the calculus HI. For instance the rule (com) in Example 2.2.1
can be automatically extracted from the linearity axiom Lin.

2.3 Systems of rules
Systems of rules were introduced in [Neg16] to define analytic labelled sequent calculi for
logics that can be characterized imposing certain restrictions to the frame semantics [CZ97]

1See [LE82a].

14

2.3. Systems of rules

for the modal logic K. In general, labelled calculi allow us to represent features of the
relational models inside the machinery of the sequent calculus and thus enable us to define
proof calculi based on certain frame conditions. Using systems of labelled rules we enlarge
the class of frame conditions, and hence of logics, that we can capture by a labelled
calculus. In particular, the frame conditions that we can capture by systems of labelled
sequent rules are those that can be described by generalized geometric implications, a class
of first-order formulae that goes beyond the fragment of geometric implications [Neg05]
and that includes all frame properties that correspond to formulae in the Sahlqvist
fragment. The class GA0 of geometric implications is defined as containing formulae of
the following form:

GA0 ≡ ∀x(
∧
P → ∃y1

∧
P1 ∨ . . . ∨ ∃ym

∧
Pm)

where x, y1, . . . , ym are tuples of first order variables,
∧
P is a finite conjunction of atomic

formulae, the variables in yi for any i do not occur free in
∧
P , and

∧
Pj is a conjunction

of atomic formulae for any j. The first level of the hierarchy of generalized geometric
implications is the class GA1 and it is defined as containing formulae of the following
form:

GA1 ≡ ∀x(
∧
P → ∃y1

∧
GA0 ∨ . . . ∨ ∃ym

∧
GA0)

where x, y1, . . . , ym are tuples of first order variables,
∧
P is a finite conjunction of atomic

formulae, the variables in yi for any i do not occur free in
∧
P , and

∧
GA0 is a finite

conjunction of geometric implications. The nth level of the hierarchy is defined replacing
the conjunctions of formulae GA0 in the previous definition by conjunctions of formulae
GAi for i < n.

From a proof-theoretical viewpoint, the system of rules formalism combines the bookkeep-
ing machinery of sequent calculi with a generalized version of the discharging mechanism
of natural deduction. More precisely, a system of rules is a set of rules that can only
be applied in a certain order and possibly share metavariables for formulae or sets of
formulae. Consider for example the following system of sequent rules:

Σ,Γ1 ⇒ Π1
Γ1 ⇒ Π1

†
....

Γ⇒ Π

Σ⇒
†

....
Γ⇒ Π

Γ⇒ Π
?

Here the rules marked by † can only be applied above the premises of the rule marked by
? and must share the metavariable Σ. The rules marked by † are unsound by themselves,
but the application of ? discharges their occurrences and yield a sound derivation of
Γ⇒ Π. The non-locality of systems of rules is twofold: variable sharing constitutes the
horizontal dependence between rules occurring in different branches, while rule discharge
represents the vertical dependence of the system hierarchy.

In general, a system of rules is a set of possibly labelled sequent rules that are bound to
be applied in a predetermined order and that may share schematic variables or labels.

15

2. Logics, calculi and computations

Analyticity of systems of rules when added to a sequent or labelled sequent calculus
for classical or intuitionistic logic was proved in [Neg16] for systems acting on atomic
formulae or relational atoms.

We consider here a proper restriction of systems of rules: two-level system of rules. As
explained in Section 3.3.1, the systems in this class correspond to the formulae contained
in a superset of the propositional fragment of the class GA1. Formally, two-level system
of rules are defined as follows.

Definition 2.3.1. A two-level system of rules (2-system for short) is a set of sequent
rules {(r1), . . . , (rk), (rbot)} that can only be applied according to the following schema:

D1....
Γ⇒ Π . . .

Dk....
Γ⇒ Π

Γ⇒ Π (rbot)

where each derivation Di, for 1 ≤ i ≤ k, may contain several applications of

Σ1,Γ′ ⇒ Π′ . . . Σn,Γ′ ⇒ Π′

Σ0,Γ′ ⇒ Π′
(ri)

that act on the same multisets of formulae Σ0,Σ1, . . . ,Σn.

The rule (rbot) is called bottom rule, while (r1), . . . , (rk) top rules.

Example 2.3.1. The 2-system Sys(com∗) in [Neg16] for the linearity axiom Lin (cf.
Example 2.2.1) is the following (A and B are metavariables for formulae):

A,B,Γ1 ⇒ Π1
B,Γ1 ⇒ Π1

(com∗1)
....

Γ⇒ Π

A,B,Γ2 ⇒ Π2
A,Γ2 ⇒ Π2

(com∗2)
....

Γ⇒ Π
Γ⇒ Π (com∗bot)

The derivation of Lin by this rule is the following

B ⇒ B
B,A⇒ B

A⇒ B
(com∗1)

⇒ A→ B
⇒ (A→ B) ∨ (B → A)

A⇒ A
A,B ⇒ A

B ⇒ A
(com∗2)

⇒ B → A
⇒ (A→ B) ∨ (B → A)

⇒ (A→ B) ∨ (B → A)
(com∗bot)

Notice the similarity with the hypersequent derivation in Example 2.2.1. The same
sequents appear in the proof and the rules (com∗1) and (com∗2) here have exactly the same
rôle as the rule (com) in the hypersequent derivation.

The analyticity of LI + Sys(com∗) is shown in [Neg16] for atomic A and B.

16

2.4. Natural deduction and the Curry–Howard correspondence

Definition 2.3.1 allows us to apply each rule (ri) in Di several times. Even though this
might seem redundant, it is not, as we show in the following example.
Example 2.3.2. A cut-free derivation in LI + Sys(com∗) (see Example 2.3.1) of the
formula ((A→ B) ∧ (A→ B)) ∨ ((B → A) ∧ (B → A)) requires two applications of each
of the top rules (com∗1) and (com∗2):

B ⇒ B
A,B ⇒ B

A⇒ B
(com∗1)

⇒ A→ B

B ⇒ B
A,B ⇒ B

A⇒ B
(com∗1)

⇒ A→ B
⇒ (A→ B) ∧ (A→ B)

⇒ ((A→ B) ∧ (A→ B)) ∨ ((B → A) ∧ (B → A))

A⇒ A
B,A⇒ A

B ⇒ A
(com∗2)

⇒ B → A

A⇒ A
B,A⇒ A

B ⇒ A
(com∗2)

⇒ B → A
⇒ (B → A) ∧ (B → A)

⇒ ((A→ B) ∧ (A→ B)) ∨ ((B → A) ∧ (B → A))
⇒ ((A→ B) ∧ (A→ B)) ∨ ((B → A) ∧ (B → A))

2.4 Natural deduction and the Curry–Howard
correspondence

Natural deduction has been introduced by Gentzen immediately before sequent calcu-
lus in order to provide a formalization of the practice of proving mathematical state-
ments [Gen35]. A natural deduction derivation starts from assumptions, which are
formulae temporarily assumed to be true, and proceeds by very simple inference steps
that introduce or eliminate logical connectives. Some rules, moreover, can cancel certain
assumptions. For example, if assuming A we can prove B:

A....
B

then we can infer A→ B from B and cancel the assumption A:
[A]....
B

A→ B

The effect that the implication introduction rule has on the assumption A is clearly
non-local and is called discharge.

We define now the notion of natural deduction calculus that we will use.

Definition 2.4.1 (Natural deduction calculus). A natural deduction calculus C is a set
of inference rules of the form

[S1]....
A1 . . .

[Sn]....
An

A
where S1, . . . ,Sn are possibly empty sets of formulae.

A natural deduction derivation of a formula A can then be inductively defined as follows:

17

2. Logics, calculi and computations

• A is a derivation of A with open assumption A;

• if
[S1]....
A1 . . .

[Sn]....
An

A

∈ R

and D1, . . . ,Dn are derivations of A1, . . . , An with open assumptions T1, . . . , Tn
respectively, then

D1 . . . Dn
A

is a derivation of A with open assumptions
⋃n
i=1(Ti \ Si).

The natural deduction calculus NI for intuitionistic logic is defined by the rules in
Table 2.4.

⊥
P

with P atomic and P 6= ⊥ A B
A ∧B

A ∧B
A

A ∧B
B

[A]....
B

A→ B

A→ B A
B

A
A ∨B

B
A ∨B A ∨B

[A]....
C

[B]....
C

C

Table 2.4: Natural deduction calculus NI.

The table contains two kinds of rules for each binary connective: introduction rules and
elimination rules. We say that a rule introduces the connective which is displayed in
its conclusion and eliminates the connective which is displayed in one of its premises.
The premise of an elimination rule in which the connective is displayed is called the
major premise, all other premises of such a rule are called minor premises. The rule for
eliminating ⊥ will be called ex falso quodlibet. Notice that the introduction rule of each
connective exactly corresponds to the relative description in the BHK interpretation.

As shown in [Pra71], A is a theorem of LI if and only if there exists an NI derivation
of A with no open assumptions. On the other hand, an NI derivation of A with open
assumptions A1, . . . , An can be mapped to an LI derivation of the sequent A1, . . . , An ⇒
A, see [TS96, Section 3.3].

As in the case of sequent and hypersequent calculi, also for natural deduction calculi
there are procedures for transforming a generic proof into an analytic one [Pra71]. These
procedures are usually called normalization procedures and the resulting natural deduction
proofs normal form proofs or, simply, normal proofs.

Notation. Given any natural deduction calculus C, we denote by Γ `C A that there
exists a derivation of A in C with assumptions Γ. Moreover, given a rule or set of rules

18

2.4. Natural deduction and the Curry–Howard correspondence

R, we denote by C + R the calculus obtained by adding the rule R or the elements of the
set R to C.

As usual, by the height of a natural deduction derivation we mean the maximal number
of rule applications occurring on any of its branches plus 1.

The requirement that P should be atomic in the ex falso quodlibet rule of Table 2.4 is
imposed because it simplifies the normalization proofs. We show now that it does not
influence the derivability relation defined by the calculus. Indeed we can always derive
the general version of the ex falso quodlibet rule by constructing a derivation of any
formula assuming only ⊥.

Proposition 2.4.1 (Ex falso, quodlibet indeed). For any formula A, there is a derivation
of A in NI whose only assumption is ⊥.

Proof. By induction on the number of occurrences of connectives in A. If A is a
propositional variable, we use the rule for ⊥. If A = ⊥ the derivation is A itself.

We reason then on the shape of A.

• A = B → C. By induction hypothesis there is an NI derivation D
C

with only ⊥ as

assumption. We can then obtain the derivation
D
C

B → C
.

• A = B ∧C. By induction hypothesis there are NI derivations D1
B

and D2
C

with only

⊥ as assumption. We can then obtain the derivation
D1
B

D2
C

B ∧ C
.

• A = B ∨C. By induction hypothesis there are NI derivations D1
B

and D2
C

with only

⊥ as assumption. We can then obtain either of the derivations
D1
B

B ∨ C
and

D2
C

B ∨ C
.

2.4.1 Simply typed λ-calculus

The Curry–Howard correspondence formalizes a deep connection between logical systems
and functional programming as formalized by λ-calculus. Howard showed that each
intuitionistic natural deduction proof of a formula T can be associated with a λ-calculus
term t in such a way that the structure of t exactly corresponds to the structure of the
proof [How80]. If we consider t as a program, moreover, the formula T specifies the
behavior of t in terms of input and output. We say then that T is the type of t and we
formally denoted their relation by writing t : T .

19

2. Logics, calculi and computations

xA : A t : ⊥
t efqP : P with P atomic and P 6= ⊥

t : A u : B
〈t, u〉 : A ∧B

t : A ∧B
tπ0 : A

t : A ∧B
tπ1 : B

[xA : A]....
t : B

λxAt : A→ B

t : A→ B u : A
tu : B

where t and u are simply typed λ-terms
Table 2.5: Type assignments for the simply typed λ-calculus.

The typed fragment of λ-calculus including all λ-terms that correspond to some intu-
itionistic theorem is usually called simply typed λ-calculus, see for example [GLT89].
Constructing a proof of T amounts then to writing a simply typed λ-calculus program t
that behaves as specified by T . The connection between intuitionistic natural deduction
and simply typed λ-calculus extends further though, indeed the reduction of a natural
deduction proof to its normal form corresponds to the evaluation of the associated
program.

Table 2.5 contains the type assignment rules for λ-terms. The rules for the types are
exactly the rules shown in Table 2.4 for assumptions, →, ∧ and ⊥. We denote by NI→∧⊥
the natural deduction calculus only containing these rules.

Also in NI→∧⊥ the general version of the ex falso quodlibet rule is derivable.

Proposition 2.4.2 (Ex falso, quodlibet indeed). For any formula A that does not contain
∨, there is a derivation of A in NI→∧⊥ whose only assumption is ⊥.

Proof. The proof of Proposition 2.4.1 trivially specializes to NI→∧⊥ for the fragment of
intuitionistic logic without disjunction.

We fix basic notation, definitions and terminology of simply typed λ-calculus [GLT89]
that will also apply to the extensions of λ-calculus introduced in Chapters 4, 6, and 5.
We denote by t, u, v . . . the terms which have been typed by the typing rules in Table 2.5
and we call them proof terms. The proof terms of simply typed λ-calculus may contain
intuitionistic variables xA0 , xA1 , xA2 . . . of type A for every formula A. These variables are
denoted as usual by the metavariables xA, yA, zA . . . possibly with indices. Whenever
the type is not relevant, it will be dropped and we shall simply write x, y, z . . . Free and
bound variables of a proof term are defined as usual. We assume the standard renaming
rules and α-equivalences that avoid the capture of variables during reductions.

Notation. By 〈t1, t2, . . . , tn〉 we denote the term 〈t1, 〈t2, . . . 〈tn−1, tn〉 . . . 〉〉 and by
〈t1, t2, . . . , tn〉πi, for i = 1, . . . , n, the term 〈t1, t2, . . . , tn〉π1 . . . π1π0 containing the pro-
jections that select the (i+ 1)th element of the sequence. We define 〈t1, . . . , tn〉 for n = 0
to be λx⊥ x⊥ : > and we denote the latter as ∗ : >.

20

2.4. Natural deduction and the Curry–Howard correspondence

The typing rules of simply typed λ-calculus, stripped of λ-terms, are identical to the
corresponding inference rules of Gentzen’s natural deduction system NI for intuitionistic
logic. If Γ = x1 : A1, . . . , xn : An and all free variables of a proof term t : A are in
x1, . . . , xn, from the logical point of view, t represents an intutionistic natural deduction
proof of A from the hypotheses A1, . . . , An. We can then write Γ ` t : A.

The connection between the Curry–Howard correspondence and the BHK interpretation is
strikingly close. Indeed, we are simply formalizing the concept of pair by the corresponding
programming construct and the informal notion of construction by the notion of function,
or program, captured by λ-calculus. The introduction rules directly correspond to the
operations specified by the BHK interpretation and the elimination rules follow naturally
from them.

As already mentioned, the evaluation of λ-terms can be seen as a procedure for normalizing
NI→∧⊥ derivations. For example, λ-calculus β-reduction (λxA u)t 7→ u[t/x] corresponds to
the following proof transformation:

[xA : A]....
u : B

λxA u : A→ B

....
t : A

(λxA u)t : B

7→

....
t : A....

u[t/x] : B

From a proof-theoretical perspective, this transformation is employed to avoid the use
of the formula A → B, which might be more complex than necessary and violate the
subformula property. The derivation on the left, the one to be reduced, is often called a
redex. The inference step used to derive A→ B, on the other hand, is called a detour ; it
can indeed be considered as an unnecessary deviation from a more direct way of deriving
B. The remaining reductions are those for pairs and projections:

....
u : A

....
t : B

〈u, t〉 : A ∧B
〈u, t〉π0 : A

7→
....

u : A

....
u : A

....
t : B

〈u, t〉 : A ∧B
〈u, t〉π1 : B

7→
....

t : B

Definition 2.4.2 (Normal forms and normalizable terms). As usual, we call redexes the
terms occurring to the left of 7→s – where the subscript s, if occurs, refers to the relevant
system – in the reduction Tables 4.2 and 4.4 in Chapter 4, Table 5.2 in Chapter 5, and
Table 6.2 in Chapter 6.

We adopt, for any reduction arrow 7→s, the reduction schema: C[t] 7→s C[u] whenever
t 7→s u and for any context C. Moreover, we denote by 7→∗s the reflexive and transitive
closure of the one-step reduction 7→s.

A term t is called a normal form or, simply, normal, if there is no t′ such that t 7→s t
′.

A sequence, finite or infinite, of proof terms u1, u2, . . . , un, . . . is said to be a reduction of
t, if t = u1, and for all i, ui 7→s ui+1. A proof term u is normalizable if there is a finite
reduction of u whose last term is a normal form.

21

2. Logics, calculi and computations

An essential feature that the reductions of a typed calculus should posses is subject
reduction or, in other terms, the preservation of types. Such property tells us that the
reductions do not change the type of the term and hence that they are coherent with
the logical system. We are now going to show this result for simply typed λ-calculus,
but first we also add the ∨ type assignment rules for the injection and case distinction
constructs, since we will need them in Chapter 6. The type assignment rules for ∨ are

u : A
ι0(u) : A ∨B

u : B
ι1(u) : A ∨B u : A ∨B

[xA : A]....
w1 : C

[yB : B]....
w2 : C

u [xA.w1, y
B.w2] : C

The corresponding reduction rules are

ιi(t)[x0.u0, x1.u1] 7→ ui[t/xi] and t[x0.u0, x1.u1]ξ 7→ t[x0.u0ξ, x1.u1ξ]

where ξ is a term or πi for i ∈ {0, 1} or [y0.v0, y1.v1].

We can now prove subject reduction for simply typed λ-calculus with disjunction.

Theorem 2.4.3 (Subject Reduction). If t : A and t 7→ u, then u : A and all the free
variables of u appear among those of t.

Proof. 1. (λxA u)t 7→ u[t/x]. Suppose that (λxA u)t : B. Since t : A and x : A, the
term u[t/x] is well defined and, due to the assumptions of the → introduction type
assignment rule, u[t/x] : B. Finally, all free variables of t are free in (λxu)t as well;
and it is easy to prove that the only bound variable of (λxu)t which is free in u is
x, but x does not occur in u[t/x].

2. 〈u0, u1〉πi 7→ ui, for i = 0, 1. Suppose that 〈u0, u1〉 : A0 ∧A1. By the assumptions
of the ∧ introduction type assignment rule, ui : Ai. Moreover, the free variables of
ui are a subset of those of 〈u0, u1〉πi.

3. ιi(t)[xA0
0 .u0, x

A1
1 .u1] 7→ ui[t/xi]. Suppose that ιi(t)[x0.u0, x1.u1] : C. By the as-

sumptions of the disjunction type assignment rules, t : Ai and ui : C. Hence
ui[t/xi] is a well defined term of type C. Finally, all free variables of t are free
in ιi(t)[xA0

0 .u0, x
A1
1 .u1] as well; and the only bound variable of ιi(t)[xA0

0 .u0, x
A1
1 .u1]

which is free in ui is xi, but xi does not occur in ui[t/xi].

4. t[x0.u0, x1.u1]ξ 7→ t[x0.u0ξ, x1.u1ξ]. Suppose that t[x0.u0, x1.u1]ξ : A and that
t[x0.u0, x1.u1] : B. We have three cases:

• ξ is a term. Then ξ : C for some C and B = C → A, and uiξ : A since
ui : C → A.

• ξ = πi. Then B = C0 ∧ C1 for some formulae C0, C1 such that A = Ci, and
uiξ : Ci since ui : C0 ∧ C1.

22

2.4. Natural deduction and the Curry–Howard correspondence

• ξ = [y0.v0, y1.v1]. Then both t[x0.u0, x1.u1]ξ and uiξ have the same type A.

Hence, in all cases, t[x0.u0ξ, x1.u1ξ] : A. Moreover, all free variables of t[x0.u0ξ, x1.u1ξ]
are free in t[x0.u0, x1.u1]ξ as well.

2.4.2 Beyond simply typed λ-calculus: : the interpretation of
classical logic

If we consider the work by Curry and Howard on intuitionistic logic, a natural question
arises: can we present similar results for other logics? And if so, do other logics correspond
to other notions of computation? Indeed, simply typed λ-calculus directly represents
a quite elegant, but also rather simple, model of computation: we cannot represent
backtracking or jumps, we cannot include anomalies and mechanisms to handle them,
side effects are not allowed, and, more importantly for us, we can only write sequential
algorithms. Griffin was the first to answer this question, and he did it by extending
Curry–Howard correspondence to classical logic.

Griffin’s computational interpretation of classical logic is the typed version of idealized
Scheme ISt [Gri90]. ISt is a typed version of Felleisen’s λc, see for example [FFKD86],
which extends λ-calculus by an abort operator A and an operator C implementing call
with current continuation (call/cc). Such programming technique consists in providing
functions with a continuation while calling them. Intuitively, such continuation is an
abstract representation of the current state of the program.

The operational semantics of these operators is the following:

E [A(s)] 7→ s

E [C(s)] 7→ s λz A(E [z])

The A operator just aborts the computation, represented here by the context E [], and
passes the control to its argument, the process s. The C operator passes the control to
its argument s as well, but also provides it with a functional abstraction λz A(E [z]) of
the context of the computation. Such functional abstraction plays the rôle of the current
continuation.

Griffin introduces A and C by the following typing rules:

s : ⊥
A(s) : F efq s : ¬¬F

C(s) : F
¬¬e

His motivating argument for such type assignments is the following. Since E [C(s)] 7→
s λz A(E [z]), the terms E [C(s)] and s λz A(E [z]) must have the same type, say G. Now
that we know that G is the type of the application of s to λz A(E [z]) we can reconstruct
the type of s itself. Indeed, A(E [z]) : G because A(E [z]) 7→ E [z] : G. Hence we have that
λz A(E [z]) has type F → G for any type F of z and thus that s : (F → G)→ G. Finally,

23

2. Logics, calculi and computations

if z : F then the occurrence of [] in E [] must have type F and therefore C(s) : F as
well. Nevertheless, there is no reason yet for G to be ⊥. We have a problem, though,
if we construct a term of the form C(λxu) where x does not occur in u. The problem
with such term is that it can be assigned a type. In fact, it can be assigned any type!
Indeed, the type of such term is the same as the type of x, which can be arbitrarily
chosen since x does not occur in u. Hence, for the sake of consistency, Griffin allows only
type assignments in which G is ⊥, thus obtaining a type assignment rule corresponding
to the double negation elimination ((F → ⊥)→ ⊥)→ F .

The reduction rule for the C operator corresponds to the following proof transformation:

....
s : ¬¬F
C(s) : F....
E [C(s)] : ⊥

7→
s : ¬¬F

[z : F]....
E [z] : ⊥

A(E [z]) : ⊥
λz A(E [z]) : ¬F

sλz A(E [z]) : ⊥

This transformation is admissible only when the type of E [] is ⊥, otherwise it would not
be possible to obtain a term of type ¬F abstracting E []. Notice that the introduction of
A does not have any logical meaning and is simply needed to match the term reduction.

A second milestone in the history of computational interpretations of classical logic is
Parigot’s λµ-calculus [Par92]. Such calculus is based on a multiple-conclusion natural
deduction formalism called free deduction. Such system generalizes natural deduction style
rules to multisets of formulae. For example the free deduction implication introduction
rule, expressed in our notation, is

[A]....
∆, B

∆, A→ B

we just add a context ∆ to the usual rule. In order to keep track of context and active
formulae we can use labels: we adopt the convention that we can apply introduction and
elimination rules only to unlabeled formulae and we introduce suitable rules to add or
remove labels.

If we project this idea onto λ-terms, we have λµ. When we label a formula by a name β,
we also name the term β (below left); when we remove a label β form a formula, we bind
that name in the term using a µ operator (below right).

t : A,∆
[β]t : Aβ,∆

t : Aβ,∆
µβ t : A,∆

Now, names and µ give us a complete map of the history of a formula: µβ means that
the formula is about to be used in a rule application, [β] means that the formula have
just been produced by a rule application.

24

2.4. Natural deduction and the Curry–Howard correspondence

This solves the normalization issues that the multiple conclusion setting raises. For exam-
ple, while removing an implication redex we might not find the implication introduction
just above its elimination because the implication, just before being eliminated, was part
of the context (bottom part of the derivation below left). But this is not a problem: we
just need to find the rule that put the implication in the context and move the redex
above that rule (below right).

....
w : A→ B,∆′

[β]w : (A→ B)β,∆′....
u : (A→ B)β,∆
µβ.u : A→ B,∆

....
v : A,Σ

(µβ.u) v : B,∆,Σ

7→

....
w : A→ B,∆′

....
v : A,Σ

w v : B,∆′,Σ
[β]w v : (B)β,∆′,Σ....

u[[β](wv)/[β]w] : (B)β,∆,Σ
µβ.u[[β](wv)/[β]w] : B,∆,Σ

The jump of the implication elimination rule exactly corresponds to the jump of the
argument v of the term µβ u in (µβ.u) v 7→ µβ.u[[β](wv)/[β]w].

From a programming perspective, this kind of jumps corresponds to some extent to a
goto instruction. Moreover, the behavior of control operators, such as call/cc, can be
simulated using it.

The last computational interpretation of classical logic that we will consider here is de
Groote’s λexn [dG95], which shares with λCl the natural deduction calculus NCl. It is
therefore particularly interesting for us.

The calculus λexn provides a type system for a pair of operators for raising and handling
exceptions. Exceptions are anomalous conditions occurring during a computation that
hinder the normal execution of the program and thus require special processing. Errors
are a typical example. When such anomalous conditions occur, an exception is raised
and the required information about the anomaly is sent to a program that processes it
or, technically, handles the exception. The calculus λexn contains the operators

(raise y s) and let y : ¬A in u handle (y x) ⇒ t end

for raising and handling exceptions, respectively. When an error, represented by a term
of type ⊥, occurs, the λexn term can raise the exception above on the left containing the
information s. If the exception occurs as u inside the term above on the right, then the
content s of the exception is used by t to handle the exception, as in the reduction

let y : ¬A in (raise y s) handle (y x) ⇒ t end 7→ t[s/x]

A term (raise y s) in λexn is typed by the ex falso quodlibet rule: a proof of ⊥ is interpreted
as a program incurring in an error, and using that occurrence of ⊥ to derive another
formula is interpreted as raising an exception for such error:

u : ⊥
(raiseu) : B

25

2. Logics, calculi and computations

The operator for handling exceptions on the other hand, is typed by the rule for the
excluded middle axiom ¬A ∨A that is also used for λCl:

[y : ¬A]....
v : B

[x : A]....
t : B

let y : ¬A in v handle (y x) ⇒ t end : B

A term typed by this rule has the following computational meaning: if the term v raises
an exception, the term t is supposed to handle it. If we have the configuration below on
the left inside a proof term, the exception (raise y s) is handled, as the reduction shows,
by substituting the content s of such exception for the variable x in the term t:

[y : ¬A]

....
s : A

y s : ⊥
(raise y s) : B

[x : A]....
t : B

let y : ¬A in (raise y s) handle (y x) ⇒ t end : B

7→

....
s : A....
t : B

The calculus λexn contains a more general version of this reduction, but this is enough
here to understand the basic ideas on which such calculus is based. From a proof-
theoretical point of view, this is an elimination of the excluded middle instances whose
¬A assumptions are only used with a proof of A to derive ⊥. Indeed, if there is a proof
of A, we can simply use it to derive the assumption A needed to prove B in the right
branch of the excluded middle rule.

By introducing the calculus λCl in Section 4.1.1 we provide a computational interpretation
in terms of parallel computation of the logical system of λexn. From a logical point of
view, a crucial difference between the two systems lies in the fact that the normalization
procedure of λCl, unlike that of λexn, yields normal proof terms that enjoy the subformula
property.

2.4.3 Avron’s thesis and natural deduction calculi for intermediate
logics

The connection between concurrent computation and hypersequent calculi was first
noted by Avron. His 1991 thesis states, in particular, that it should be possible to use
hypersequent calculi “as bases for parallel λ-calculi” [Avr91]. As discussed in Section 2.4.1,
the most established way to associate a λ-calculus to a proof calculus is by a Curry–
Howard correspondence for a natural deduction calculus. The absence of explicit structural
elements makes it possible indeed to use formulae as types of λ-terms, rather than complex
objects such as sequents. Hence, in order to confirm Avron’s thesis, some work has been
devoted in finding a way to represent hypersequent proofs as natural deduction proofs.

Prominent examples of natural deduction calculi inspired by hypersequent calculi
are [BCF00] and [BP15]. The formalisms adopted in both papers rely on quite heavy

26

2.4. Natural deduction and the Curry–Howard correspondence

structural generalizations of the natural deduction formalism. Both are indeed based
on the idea of joining together natural deduction derivations by mechanisms or explicit
operators similar to the structural connective | of hypersequents.

If we follow Avron’s intuition [Avr91] it seems natural to try to introduce a parallelism
operator directly between natural deduction derivations. A typical hypersequent deriva-
tion seems indeed to be composed of different parallel sequent proofs. For example we
could say that the hypersequent derivation

B ⇒ B C,A⇒ A

A⇒ B | C,B ⇒ A
(com) C ⇒ C A,B ⇒ A

A⇒ C | C,B ⇒ A
(com)

A⇒ B ∧ C | C,B ⇒ A

A⇒ B ∧ C | C ∧B ⇒ A

A⇒ B ∧ C |⇒ C ∧B → A

⇒ A→ B ∧ C |⇒ C ∧B → A

⇒ (A→ B ∧ C) ∨ (C ∧B → A) |⇒ C ∧B → A

⇒ (A→ B ∧ C) ∨ (C ∧B → A) |⇒ (A→ B ∧ C) ∨ (C ∧B → A)
⇒ (A→ B ∧ C) ∨ (C ∧B → A)

consist of the two parallel proofs

A⇒ B A⇒ C
A⇒ B ∧ C
A⇒ B ∧ C
A⇒ B ∧ C
⇒ A→ B ∧ C

⇒ (A→ B ∧ C) ∨ (C ∧B → A)

and

C,B ⇒ A C,B ⇒ A

C,B ⇒ A

C ∧B ⇒ A
⇒ C ∧B → A
⇒ C ∧B → A

⇒ (A→ B ∧ C) ∨ (C ∧B → A)

The applications of the (com) rule are then used to exchange occurrences of A for
occurrences of B or C. This intuition is exploited in Chapter 3 to show the equivalence
of hypersequents and 2-systems. Some trivial inference step is employed in the two
derivations above, but they are clearly equivalent to the following sequent derivations:

A⇒ B A⇒ C
A⇒ B ∧ C

⇒ A→ (B ∧ C)
⇒ (A→ B ∧ C) ∨ (C ∧B → A)

C,B ⇒ A

C ∧B ⇒ A
⇒ C ∧B → A

⇒ (A→ B ∧ C) ∨ (C ∧B → A)

Following these considerations, and since the correspondence between natural deduction
and sequent calculus is well established, it is perfectly natural to define hyper natural
deductions introducing an operator that joins different natural deduction derivations.
This is the direction taken by the approaches of [BCF00] and [BP15]. It turns out, though,
that there is no need to explicitly introduce such an operator. The formalism of systems
of rules shows very clearly that it is possible to rely only on non-local dependencies to
establish a connection between different derivations. In particular, if we impose conditions
which connect the rules that execute the exchange of formulae, there is no need for new

27

2. Logics, calculi and computations

structural elements. For sequents, the result is
B ⇒ B
A⇒ B

∗ C ⇒ C
A⇒ C

∗∗

A⇒ B ∧ C
⇒ A→ (B ∧ C)

⇒ (A→ B ∧ C) ∨ (C ∧B → A)

C,A⇒ A

C,B ⇒ A
∗

C ∧B ⇒ A
⇒ C ∧B → A

⇒ (A→ B ∧ C) ∨ (C ∧B → A)

A,B ⇒ A

C,B ⇒ A
∗∗

C ∧B ⇒ A
⇒ C ∧B → A

⇒ (A→ B ∧ C) ∨ (C ∧B → A)

We duplicate here the derivation on the right in order to apply the two rules marked by
∗ and the two rules marked by ∗∗. Instead of an application of the hypersequent rule
(com) such as

B ⇒ B C,A⇒ A

A⇒ B | C,B ⇒ A
(com)

we have now a pair of related sequent rule applications:

B ⇒ B
A⇒ B

∗ C,A⇒ A

C,B ⇒ A
∗

In natural deduction it is even simpler since the result

[A]1

B
∗ [A]1

C
∗∗

B ∧ C
A→ (B ∧ C)

1

(A→ B ∧ C) ∨ (C ∧B → A)

[C ∧B]2

B
A
∗

C ∧B → A
2

(A→ B ∧ C) ∨ (C ∧B → A)

[C ∧B]3

C
A
∗∗

C ∧B → A
3

(A→ B ∧ C) ∨ (C ∧B → A)

directly corresponds to a completely traditional natural deduction derivation using some
instances of the Lin axiom as assumptions:

(A→ B) ∨ (B → A)
(A→ C) ∨ (C → A)

[A→ B] [A]1

B

[A→ C] [A]1

C

B ∧ C
A→ (B ∧ C)

1

α

[C → A]
[C ∧ B]3

C

A

C ∧ B → A
3

α

α

[B → A]
[C ∧ B]2

B

A

C ∧ B → A
2

α

(A→ B ∧ C) ∨ (C ∧ B → A)

where α = (A→ B ∧ C) ∨ (C ∧B → A).

28

CHAPTER 3
From hypersequent calculi to

natural deduction

In order to define Curry–Howard correspondences for intermediate logics that are nat-
urally characterized by hypersequent calculi, we first establish a connection between
hypersequents and natural deduction. We achieve this by defining a formal correspondence
between the hypersequent formalism and a formalism which extends sequent calculus
by non-local mechanisms similar to natural deduction assumption discharge: systems of
rules. The strong similarity between systems of rules and natural deduction will then
enable us to automatically define natural deduction calculi corresponding to hypersequent
calculi and to transfer the intuitions coming from the study of hypersequents to the study
of the obtained natural deduction calculi.

Formally, we show that the calculi in a rather simple fragment of systems of rules are
equivalent to hypersequent calculi and can be directly used to define simple and modular
natural deduction calculi retaining the parallel structure of hypersequents for a large class
of intermediate logics. The calculi are obtained by extending NI by new rules. Similarly
to sequent rules belonging to systems, these rules can discharge other rule applications,
or higher-level rules according to the terminology of [SH14]. Such natural deduction rules
are the base of the Curry–Howard correspondences presented in Chapters 4, 5, and 6.

A possible connection between hypersequents and systems of rules is hinted in [Neg16].
We formalize and prove this intuition. Focusing on propositional intermediate logics, we
define a bi-directional embedding between hypersequents and a subclass of non-labelled
systems of rules (2-systems) in which the vertical non-locality is restricted to at most
two sequent rules. The embeddings show that these two seemingly different extensions of
the sequent calculus have the same expressive power.

The embedding of 2-systems into hypersequents provides furthermore very general
analyticity results for 2-system calculi. Analyticity results are shown in [Neg16] for

29

3. From hypersequent calculi to natural deduction

systems of rules sharing only first-order variables or atomic formulae, and while this
restriction does not yield any loss of generality for labelled sequents, it does for systems
of rules directly corresponding to Hilbert axioms. The embedding also enables us to
introduce novel cut-free 2-systems.

The present chapter is based on [CG16] and [CG18], and structured as follows. The
translations between systems of rules and hypersequent rules are presented in Section 3.1;
Section 3.2 contains the embeddings between derivations: Section 3.2.1 the direction
from system of rules to hypersequent derivations and Section 3.2.2 the inverse direction.
Section 3.3, finally, shows the applications of the embedding, which include the definition
of new natural deduction calculi for a large class of intermediate logics. The latter result
will be the base of the work presented in the subsequent chapters.

3.1 From 2-systems to hypersequent rules and back
We show how to rewrite a 2-system Sys into the corresponding hypersequent rule HrSys;
vice versa, from a hypersequent rule Hr we construct the corresponding 2-system SysHr.
The transformation of derivations from HI+Hr into LI + SysHr (and from LI+ Sys into
HI + HrSys) is shown in Section 3.2.

From 2-systems to hypersequent rules

Given a 2-system Sys of the form

D1....
Γ⇒ Π . . .

Dk....
Γ⇒ Π

Γ⇒ Π (rbot)

where each derivation Di, for 1 ≤ i ≤ k, may contain several applications of the rule

A1
i , . . . , A

li
i ,Γi ⇒ Πi . . . B1

i , . . . , B
mi
i ,Γi ⇒ Πi

C1
i , . . . , C

ni
i ,Γi ⇒ Πi

(ri)

the corresponding hypersequent rule HrSys is as follows:

M1 . . . Mk

G | C1
1 , . . . , C

n1
1 ,Γ1 ⇒ Π1 | . . . | C1

k , . . . , C
nk
k ,Γk ⇒ Πk

where Mi, for 1 ≤ i ≤ k, is the multiset of premises

G | A1
i , . . . , A

li
i ,Γi ⇒ Πi . . . G | B1

i , . . . , B
mi
i ,Γi ⇒ Πi

Example 3.1.1. From Negri’s 2-system in Example 2.3.1 we obtain the rule acting on
formulae A,B

G | A,B,Γ1 ⇒ Π1 G | A,B,Γ2 ⇒ Π2
G | B,Γ1 ⇒ Π1 | A,Γ2 ⇒ Π2

(com∗)

30

3.2. Embedding the two formalisms

From hypersequent rules to 2-systems

Given any hypersequent rule Hr of the form

M1 . . . Mk

G | Θ1
1, . . . , Θn1

1 ,Γ1 ⇒ Π1 | . . . | Θ1
k, . . . , Θnk

k ,Γk ⇒ Πk

where the sets Mi, for 1 ≤ i ≤ k, constitute a partition of the set of premises of Hr and
each Mi contains the premises

G | S1
i . . . G | Smi

i

where S1
i , . . . , S

mi
i are sequents. The corresponding 2-system SysHr is

D1....
Γ⇒ Π . . .

Dk....
Γ⇒ Π

Γ⇒ Π (rbot)

where the derivation Di, for 1 ≤ i ≤ k, may contain several applications of the rule

S1
i . . . Smi

i

Θ1
i , . . . , Θni

i ,Γi ⇒ Πi

(ri)

Definition 3.1.1. We say that the premises of Hr contained in Mi, for 1 ≤ i < k, are
linked to the component Θ1

i , . . . ,Θ
n1
i ,Γi ⇒ Πi of the conclusion.

Example 3.1.2. The rewriting Sys(com) of the rule (com) in Example 2.2.1 is

Σ,Γ1 ⇒ Π1
∆,Γ1 ⇒ Π1

(com1)
....

Γ⇒ Π

∆,Γ2 ⇒ Π2
Σ,Γ2 ⇒ Π2

(com2)
....

Γ⇒ Π
Γ⇒ Π (combot)

3.2 Embedding the two formalisms
We introduce algorithms for transforming 2-system derivations into hypersequent deriva-
tions and vice versa.

3.2.1 From 2-systems to hypersequent derivations

Consider any set SR of 2-systems and set HR of hypersequent rules s.t. if Sys ∈ SR then
HrSys ∈ HR. Starting from a derivation D in LI + SR we construct a derivation D′ in
HI+HR of the same end-sequent. The construction proceeds by a stepwise translation of
the rules in D: the rules of LI are translated into rules of HI – possibly using (EW); the
top rules of 2-systems in SR are translated into applications of the corresponding rules

31

3. From hypersequent calculi to natural deduction

in HR – and additional (EW), if needed; and the relative bottom rules are translated
into applications of (EC). To keep track of the various translation steps, we mark the
derivation D. We start by marking and translating the leaves of D. The rules with marked
premises are then translated one by one and the marks are moved to the conclusions of
the rules. The process is repeated until we reach and translate the root of D. The correct
termination of the procedure is guaranteed when D satisfies the following conditions:

1. two applications of a top rule belonging to the same 2-system instance never occur
on the same path of the derivation,

2. for each pair of 2-system instances, no top rule of one of the two instances occurs
below any top rule of the other instance (see Definition 3.2.1 as used in Lemma 3.2.3)

Section 3.2.1 shows that each 2-system derivation can be transformed into one satisfying
them.

The algorithm

Input: a derivation D in LI + SR. Output: a derivation D′ of the same sequent in
HI + HR.

Translating axioms. The leaves of D are marked and copied as leaves of D′.

Translating rules. Rules are translated one by one in the following order: first the
one-premise logical and structural rules applied to marked sequents, then the two-premise
logical rules and bottom rules with all premises marked, and finally all the top rules of
one 2-system instance1. After having translated each rule – or all top rules of a 2-system
instance – we remove the marks from the premises of the translated rules and mark their
conclusions.

When we translate the top rules of a 2-system we apply the corresponding hypersequent
rule once for each possible combination of different top rules of such system. For instance,
if a 2-system contains two applications (r1)′ and (r1)′′ of one top rule, and one application
(r2) of another top rule, we will have one hypersequent rule application translating the
pair ((r1)′, (r2)), and one hypersequent rule application translating the pair ((r1)′′, (r2)).

Since the LI rules are particular instances of HI rules, we only show how to translate
2-systems. Hence, consider a 2-system Sys ∈ SR applied in D with the following instances
of

1Condition 1 above guarantees that all top rules of a 2-system instance can be translated by one
hypersequent rule.

32

3.2. Embedding the two formalisms

1. top rules:
S1

1 . . .

....
Sm1

1
∆1,Γ1 ⇒ Π1

(r1)
. . .

....
S1
k . . .

....
Smk
k

∆k,Γk ⇒ Πk
(rk)

where S1
1 , . . . , S

m1
1 , . . . , S1

k , . . . , S
mk
k are marked sequents and each top rule (r1), . . . , (rk)

is possibly applied more than once.
By the definition of the algorithm, we have hypersequent derivations of

G | S1
1 . . . G | Sm1

1 . . . G | S1
k . . . G | Smk

k

for each application of the top rules. We apply HrSys as follows

M1 . . . Mk

G | ∆1,Γ1 ⇒ Π1 | . . . | ∆k,Γk ⇒ Πk

for each possible combination of k applications of the top rules (r1), . . . , (rk) –
possibly duplicating the hypersequent derivations previously obtained. We move
the marks to the conclusions of (r1), . . . , (rk).
Notice that we always have hypersequents containing suitable active components
and matching context components. Indeed, given that we translate into a hyperse-
quent rule application each possible combination of top rules, at each translation
step (above the bottom rule) we have exactly one hypersequent for each possible
combination of marked sequents.

2. bottom rule:
Γ⇒ Π

....
Γ⇒ Π

Γ⇒ Π (rbot)

Without loss of generality we can assume that the top rules of the considered 2-
system have been applied above the premises of (rbot) – as otherwise the application
of the 2-system is redundant. Hence we have a derivation in HI + HR of G | Γ⇒
Π | . . . | Γ ⇒ Π. The desired derivation of G | Γ ⇒ Π is obtained by repeatedly
applying (EC). We move the marks to the conclusion of (rbot).

Theorem 3.2.1. For any set HR of hypersequent rules and set SR of 2-systems s.t. if
Sys ∈ SR then HrSys ∈ HR, if `LI+SR Γ⇒ Π then `HI+HR Γ⇒ Π.

Proof. Apply the above algorithm to the LI + SR derivation D of Γ⇒ Π to obtain D′.
The algorithm terminates because the number of rule applications in a derivation is finite.
We show that the algorithm does not stop before translating the root of D. The proof
is by induction on the number u of 2-system instances whose top rules are still to be
translated. If u = 0 all remaining rules can be translated as soon as the premises are
marked. Assume u = n+ 1. As we will show in Lemma 3.2.3, see also Definition 3.2.1,

33

3. From hypersequent calculi to natural deduction

there is at least a 2-system instance S whose top rules are still untranslated and do
not occur below any untranslated top rule. Hence the rule applications that have to be
translated before the top rules of S do not belong to any 2-system and can be translated
as soon as their premises are marked. After translating these rules, we can translate the
top rules of S and obtain u = n.

Example 3.2.1. The following derivation in the calculus LI + Sys(com) for Gödel logic
(see Example 3.1.2)

B ⇒ B
A⇒ B

(com1)′

⇒ A→ B

B ⇒ B
A⇒ B

(com1)′′

⇒ A→ B
⇒ (A→ B) ∧ (A→ B)

⇒ ((A→ B) ∧ (A→ B)) ∨ (B → A)

A⇒ A
B ⇒ A

(com2)

⇒ B → A
⇒ ((A→ B) ∧ (A→ B)) ∨ (B → A)

⇒ ((A→ B) ∧ (A→ B)) ∨ (B → A)
(combot)

is translated into the HI + (com) derivation (see Example 2.2.1)

B ⇒ B A⇒ A
A⇒ B | B ⇒ A

(com)′

A⇒ B |⇒ B → A

⇒ A→ B |⇒ B → A

B ⇒ B A⇒ A
A⇒ B | B ⇒ A

(com)′′

A⇒ B |⇒ B → A

⇒ A→ B |⇒ B → A

⇒ (A→ B) ∧ (A→ B) |⇒ B → A

⇒ (A→ B) ∧ (A→ B) |⇒ ((A→ B) ∧ (A→ B)) ∨ (B → A)
⇒ ((A→ B) ∧ (A→ B)) ∨ (B → A) |⇒ ((A→ B) ∧ (A→ B)) ∨ (B → A)

⇒ ((A→ B) ∧ (A→ B)) ∨ (B → A) (EC)

where (com)′ translates the pair of top rule applications ((com1)′, (com2)), while (com)′′
translates the pair ((com1)′′, (com2)).

Normal forms of 2-systems derivations

We introduce the normal forms of 2-system derivations required by the algorithm of Sec-
tion 3.2.1 and we show how to obtain them. The definition of 2-systems (Definition 2.3.1)
is indeed decidedly liberal. It allows unrestricted nesting of 2-systems and does not limit
in any way the application of the top rule (ri) inside Di. Such freedom matches naturally
the general idea of a system of rules, but complicates the structure of derivations and the
algorithm for transforming 2-system derivations into hypersequent derivations. We show
below that we can consider, without loss of generality, derivations of a simplified form.

Lemma 3.2.2. Any 2-system derivation can be transformed into one with the following
property: two applications of a top rule (t) belonging to the same 2-system instance never
occur on the same path of the derivation.

34

3.2. Embedding the two formalisms

Proof. Consider any 2-system derivation in which two applications of (t) occur along the
same path:

....
Σ1,Γ⇒ Π . . .

....
Σ1,Γ′ ⇒ Π′ . . .

....
Σn,Γ′ ⇒ Π′

∆,Γ′ ⇒ Π′
(t)

.... D
Σi,Γ⇒ Π . . .

....
Σn,Γ⇒ Π

∆,Γ⇒ Π (t)

We use (IW) and (IC) to transform it into

....
Σ1,Γ⇒ Π . . .

....
Σi,Γ′ ⇒ Π′

Σi,∆,Γ′ ⇒ Π′
(IW)

.... D
′

Σi,Σi,Γ⇒ Π
Σi,Γ⇒ Π (IC)

. . .

....
Σn,Γ⇒ Π

∆,Γ⇒ Π (t)

where for each sequent Γ′′ ⇒ Π′′ in D there is a sequent Σi,Γ′′ ⇒ Π′′ in D′.

Derivations using 2-systems can be further simplified. Indeed the lemma below shows
that we can restrict our attention to derivations with a limited nesting of 2-systems. We
use the notion of entanglement to formalize a violation of this limitation.

Definition 3.2.1. Two 2-system instances S1 and S2 are entangled if some top rules of
S1 occur above some top rules of S2 and some of the former occur below some of the
latter.

Consider, for instance, the following derivation schema containing two 2-system instances a
and b with bottom rules BOT(a) and BOT(b) and top rules a1, a2 and b1, b2, respectively:

BOT(b)

b2

F

BOT(a)

a2

b1

E
b1

a1

D

We use D, E and F to denote derivations. The entanglement here occurs because b1 is
applied once below a1 and once above a2.

35

3. From hypersequent calculi to natural deduction

Notice that a pair of 2-systems can be entangled only if their bottom rules occur one
above the other. Thus, all rules of one of them necessarily occur above one premise of
the bottom rule of the other.

Example 3.2.2. To disentangle a and b, we make two copies b′ and b′′ of b that are
going to contain the rules formerly belonging to b:

BOT(b′′)

b′′2

F

BOT(b′)

b′2

F

BOT(a)

a2

b′1

E
b′′1

a1
D

The 2-system instances are now disentangled: no top rule of b′ occurs below any top rule
of a and no top rule of b′′ occurs above any top rule of a.

Such transformation is an example of the basic step employed in the following lemma.

Lemma 3.2.3. Any 2-system derivation P can be transformed into a 2-system derivation
P ′ of the same end-sequent in which there is no pair of entangled 2-system instances.

Proof. First we introduce a transformation of derivations (e-reduction) that reduces the
number of top rule applications involved in entanglements. Then we provide a strategy
to obtain the desired derivation P ′ using such transformation, and we prove termination.

E-reduction: given a 2-system instance S with bottom rule (BS) entangled with 2-system
instances S1, . . . ,Sn:

D1....
Γ⇒ Π . . .

Dn....
Γ⇒ Π

Γ⇒ Π (BS)

we make two copies S ′ and S ′′ of S with bottom rules (BS′) respectively (BS′′):

D′1....
Γ⇒ Π

D2....
Γ⇒ Π . . .

Dm....
Γ⇒ Π

Γ⇒ Π (BS′)

D2....
Γ⇒ Π . . .

Dn....
Γ⇒ Π

Γ⇒ Π (BS′′)

in such a way that:

36

3.2. Embedding the two formalisms

• if a top rule in D1 belonging to S occurs above a top rule of one among S1, . . . ,Sn,
then its copy in D′1 belongs to S ′,

• if a top rule in D1 belonging to S occurs below a top rule of one among S1, . . . ,Sn,
then its copy in D′1 belongs to S ′′.

Notice that in the obtained derivation no top rule of S ′ occurs below any top rule of
S1, . . . ,Sn, and no top rule of S ′′ occurs above any top rule of S1, . . . ,Sn. Moreover, also
due to Lemma 3.2.2:

(∗) neither S ′ and S ′′ nor two copies of the same 2-system instance in D2, . . . ,Dn can be
entangled or have top rules along the same path of the derivation.

The idea of a strategy to apply e-reductions that leads to the required derivation P ′ is the
following. We start reducing one of the 2-system instances with lowermost bottom rule.
Whenever we apply an e-reduction we collect all entangled copies of the same 2-system
instance in the same class of instances. We continue the disentanglement focusing on a
single class and reducing all its elements before we move on to another class. Notice that
the number of classes never increases and is bounded by the number of 2-system instances
in the original derivation. If we, moreover, fix a class and regard as more complex the
2-system instances which are entangled with more different instances, then the strategy
guarantees that the elements of the class are disentangled one by one without duplicating
other maximally complex elements of the same class.

To formalize this strategy, we introduce some auxiliary notions. We define the equivalence
relation ∼ as the transitive and symmetric closure of the binary relation that holds
between a 2-system instance and any of its copies generated by an e-reduction – notice
that e-reductions do not only copy S but also the 2-system instances in D2, . . . ,Dn.
Given any 2-system derivation P, let us denote by EP the set of all entangled 2-system
instances in P, and by EP/∼ the quotient set of EP w.r.t. the equivalence relation ∼.
Moreover, we denote by S low the 2-system instance in EP which has the lowest and
leftmost bottom rule in P. Finally, we compute the entanglement number (e-number
for short) of a 2-system instance S as follows: for each derivation D of a premise of
the bottom rule of S we count the number of equivalence classes containing 2-system
instances that have top rules in D and are entangled with S, then we sum all the resulting
numbers up to obtain the e-number of S.

We prove now the statement of the lemma by induction on the lexicographical ordered of
the triples (κ, µ, ν) where, fixed a derivation P,

• κ is the cardinality of EP/∼, i.e. the number of classes of entangled 2-system
instances,

• µ is the maximum e-number of the elements of [S low]∼ ∈ EP/∼,

• ν is the number of elements of [S low]∼ ∈ EP/∼ with e-number µ.

37

3. From hypersequent calculi to natural deduction

Base case. If either κ, µ or ν are equal to 0, then no 2-system instance is entangled.
Otherwise, first, EP/∼ would contain at least one element, and e ≥ 1. Second, [S low]∼ ∈
EP/∼ would not be empty and both µ and ν would be greater than 0.

Inductive step. Given any 2-system derivation P with complexity (κ, µ, ν) ≥ (1, 1, 1)
we transform it into a 2-system derivation P ′ with complexity smaller than (κ, µ, ν). We
obtain P ′ applying an arbitrary e-reduction to an uppermost element S ∈ [S low]∼ ∈ EP/∼
with e-number µ.

First notice that we never increase κ. Moreover, if ν > 1 we reduce ν without increasing
µ and if ν = 1 and µ > 1 we reduce µ. Indeed, after the e-reduction all top rules of S that
were involved in an entanglement with the elements of some class [S ′]∼ ∈ EP/∼ above the
same premise of (BS), are no more involved in such entanglement. This holds because,
due to (∗) and the definition of ∼, the top rules of elements contained in [S ′]∼ ∈ EP/∼
cannot occur along the same path of the derivation. In general we never increase neither
µ nor ν, because if we duplicate a 2-system instance during an e-reduction, either it did
not belong to [S low]∼ ∈ EP/∼ and hence the copies do not belong to [S low]∼ ∈ EP

′
/∼, or

it did not have maximal entanglement number w.r.t. the class [S low]∼ ∈ EP/∼, because
we always e-reduce a topmost 2-system instance among those with maximal e-number in
[S low]∼. Finally, we change the considered class [S low]∼ only when it is empty, because
our e-reduction strategy chooses S low only if [S low]∼ is a singleton. If ν = 1 and µ = 1 we
reduce κ. Indeed, we replace the unique element of [S low]∼ with non-entangled 2-system
instances and [S low]∼ does not belong to EP ′/∼.

3.2.2 From hypersequent to 2-system derivations

Given any set HR of hypersequent rules and set SR of 2-systems s.t. if Hr ∈ HR then
SysHr ∈ SR. Starting from a derivation in HI+HR we construct a derivation in LI+ SR
of the same end-sequent.

The algorithm

Input: a derivation D of a sequent Γ⇒ Π in HI+HR. Output: a derivation D′ of Γ⇒ Π
in LI + SR.

Intuitively, if an HI rule corresponds to an LI rule, then we translate the applications of
the former in D with applications of the latter in D′.

We cannot directly translate the applications of the HI rules (EW) and (EC) because
they do not correspond to any LI rule. We avoid to translate them by only considering
derivations D in which (i) all applications of (EC) occur immediately above the root,
and (ii) all applications of (EW) occur where immediately needed, namely where they
introduce context components required by other rule applications. As we will show each
hypersequent derivation of a sequent can be transformed into an equivalent one of this
form.

38

3.2. Embedding the two formalisms

Since the rules in HR are non-local, we need to translate them in two steps. Thus, we
consider the uppermost application of (EC) in D and we construct a partial derivation for
each component of its premise. Such a derivation contains applications of LI rules and of
the top rules of the 2-systems in SR without any applicability condition, see Lemma 3.2.4.
The desired derivation D′ is then obtained by suitably applying to these partial derivations
the bottom rules corresponding to the employed top rules (Theorem 3.2.5).

Definition 3.2.2. A partial derivation in LI + SR is a derivation in LI extended with
the top rules of SR (without their applicability conditions relative to a bottom rule
application).

We show an example of the first part of the translation to guide the reader’s intuition
through the proofs that follow.

Example 3.2.3. Consider the HI + (com) derivation

C ⇒ C
A,C ⇒ C B ⇒ B

A,B ⇒ C | C ⇒ B
(com)′

C ⇒ C
C,B ⇒ C A⇒ A

A,B ⇒ C | C ⇒ A
(com)′′

A,B ⇒ C | C ⇒ B ∧A (∧r)

A ∧B ⇒ C | C ⇒ B ∧A
A ∧B ⇒ C |⇒ C → B ∧A
⇒ A ∧B → C |⇒ C → B ∧A

⇒ A ∧B → C |⇒ (A ∧B → C) ∨ (C → B ∧A)
⇒ (A ∧B → C) ∨ (C → B ∧A) |⇒ (A ∧B → C) ∨ (C → B ∧A)

⇒ (A ∧B → C) ∨ (C → B ∧A) (EC)

and observe that it satisfies property (i) and, trivially, property (ii). The partial
derivations in LI + Sys(com) (see Example 3.1.2) of the components of the uppermost
application of (EC) in the above proof are:

C ⇒ C
A,C ⇒ C

A,B ⇒ C
(com1)′

C ⇒ C
C,B ⇒ C

A,B ⇒ C
(com1)′′

A,B ⇒ C
dummy

A ∧B ⇒ C
⇒ A ∧B → C

⇒ (A ∧B → C) ∨ (C → B ∧A)

A⇒ A
C ⇒ A

(com2)′′ B ⇒ B
C ⇒ B

(com2)′

C ⇒ B ∧A (∧r)
⇒ C → B ∧A

⇒ (A ∧B → C) ∨ (C → B ∧A)

where (com1)′ and (com2)′ translate (com)′ while (com1)′′ and (com2)′′ translate (com)′′.
Notice that in order to handle the context component duplication relative to (∧r), we
apply a dummy bottom rule.

The partial derivations obtained have the same structure as the hypersequent derivations
of the corresponding components (see ancestor tree in Definition 3.2.6).

39

3. From hypersequent calculi to natural deduction

We use the following two definitions to formalize the properties of derivations needed to
handle (EW) and (EC).

Definition 3.2.3. For any one-premise rule (r) we call a queue of (r) any sequence of
consecutive applications of (r) that is neither immediately preceded nor immediately
followed by applications of (r).

Definition 3.2.4. We say that an HI + HR derivation is in structured form iff all (EC)
applications occur in a queue immediately above the root, and all (EW) applications
occur in subderivations of the form

G1 | S1 (EW)....
G | S1

(EW)
. . .

Gn | Sn (EW)....
G | Sn

(EW)

G | S0
(r)

where (r) is any rule with more than one premise and each component of G is contained
in at least one of the hypersequents G1, . . . , Gn.

A derivation in structured form can be divided into a part containing only (EC) applica-
tions and a part containing the applications of any other rule. We introduce notation for
the hypersequent separating the two parts.

Definition 3.2.5. If D is a derivation in structured form, we denote by ĤD the premise
of the uppermost application of (EC) in D.

Definition 3.2.6. Given a HI+HR derivation. A hypersequent component S′ is a parent
of a hypersequent component S, denoted as p(S, S′), if one of the following conditions
holds:

• S is active in the conclusion of an application of some Hr ∈ HR, and S′ is the
active component of a premise linked to S, see Definition 3.1.1;

• S is active in the conclusion of an application of a rule of HI, and S′ is the active
component of a premise of such application;

• S is a context component in the conclusion of any rule application, and S′ is the
corresponding context component in a premise of such application.

We say that a hypersequent component S′ is an ancestor of a hypersequent component
S, and we write a(S, S′), if the pair (S, S′) is in the transitive closure of the relation
p(,). The ancestor tree of a hypersequent component S is the tree whose nodes are
all hypersequent components related to S by a(,) and whose edges are defined by the
relation p(,) between such nodes.

40

3.2. Embedding the two formalisms

We prove below that from any HI + HR derivation D of a sequent we can construct a
partial derivation for each component of ĤD having the same structure as the ancestor
tree of that component, namely consisting of the translation of the rules in the ancestor
tree, with the exception of (EW).

Remark 3.1.

• In an HI + HR derivation that does not use (EC), the ancestor tree of each
hypersequent is a sequent derivation.

• If S is the active component of an application of (EW), then there is no S′ such
that p(S, S′).

Lemma 3.2.4. Let HR be a set of hypersequent rules and SR of 2-systems s.t. if Hr ∈ HR
then SysHr ∈ SR. Given any HI+HR derivation D in structured form, for each component
S of ĤD we can construct a partial derivation in LI + SR having the same structure as
the ancestor tree of S in D.

Proof. Let H be a hypersequent in D derived without using (EC). We construct a partial
derivation in LI + SR with the required property for each of its components. The proof
proceeds by induction on the height l of the derivation of H by translating each rule of
HI + HR, with the exception of (EW), into the corresponding sequent rule in LI + SR.

Base case. If l = 1, which means that H is an axiom, then the partial derivation in
LI + SR simply contains H.

Inductive step. We consider the last rule (r) 6= (EW) applied in the subderivation D′
of H, and we distinguish the two cases: (i) (r) is a one-premise rule and (ii) (r) has more
premises; for the latter case, since D′ is in structured form, we deal also with possible
queues of (EW) above its premises.

1. Assume that the derivation ending in a one-premise rule (r) ∈ HI is

D....
G | S
G | S′

(r)

By induction hypothesis there is a partial derivation of S having the same structure
as the ancestor tree of S. The partial derivation of S′ is simply obtained by applying
(r).
The case in which (r) is a one-premise rule belonging to HR is a special case of (ii)
for which there is no need to consider queues of (EW).

41

3. From hypersequent calculi to natural deduction

2. Assume that (r) = (Hr) ∈ HR and that the derivation D′, of height n, is the
following

D1
1....

G | S1
1 . . .

Dm1
1....

G | Sm1
1 . . .

D1
k....

G | S1
k . . .

Dmk
k....

G | Smk
k

G | ∆1,Γ1 ⇒ Π1 | . . . | ∆k,Γk ⇒ Πk
(Hr)

where the premises G | Sij of (Hr) are possibly inferred by a queue of (EW). When
this is the case, we consider the uppermost hypersequents in the queues. More
precisely, we consider the following derivations, each of which has height strictly
less than n:

D1
1....

G1
1 | S1

1 . . .

Dm1
1....

Gm1
1 | Sm1

1 . . .

D1
k....

G1
k | S1

k . . .

Dmk
k....

Gmk
k | Smk

k

where, for 1 ≤ y ≤ k and 1 ≤ x ≤ my, the hypersequent Gxy is G if there is no
(EW) application immediately above G | Sxy ; otherwise, Gxy | Sxy is the premise of
the uppermost (EW) application in the queue immediately above G | Sxy .
Since D, and hence D′, is in structured form, each component of G must occur
in at least one of the hypersequents G1

1, . . . , G
m1
1 , . . . , G1

k, . . . , G
mk
k . We obtain

partial derivations for ∆1,Γ1 ⇒ Π1, . . . ,∆k,Γk ⇒ Πk applying the top rules of the
2-system SysHr as follows

S1
1 . . . Sm1

1
∆1,Γ1 ⇒ Π1

(r1)
. . .

S1
k . . . Smk

k

∆k,Γk ⇒ Πk
(rk)

Indeed, by induction hypothesis, we have a partial derivation for each Sxy . In case
a component S of G occurs in more than one premise, we have different partial
derivations and we apply a dummy bottom rule

S . . . S
S

to obtain one partial derivation from them.

The obtained partial derivations clearly satisfy the following property: with the exception
of (EW) and of dummy bottom rules, a rule application occurs in the ancestor tree of a
hypersequent component in D iff its translation occurs in the partial derivation of such
component.

The next step of the translation consists in applying a bottom rule for each group of
top rules translating one hypersequent rule application. If we applied dummy bottom
rules inside the partial derivations, we might be forced to apply a single bottom rule for

42

3.2. Embedding the two formalisms

more than one of such groups – thus creating what will be called a mixed system. In
Theorem 3.2.5 we prove that we can always restructure the derivation and obtain the
desired exact match between groups of top rules and bottom rules. We first show an
example that clarifies the main ideas exploited in the following proof.

Example 3.2.4. Consider the partial derivations obtained in Example 3.2.3, if we apply
a bottom rule to them we obtain the following derivation:

C ⇒ C
A,C ⇒ C

A,B ⇒ C
(com1)′

C ⇒ C
C,B ⇒ C

A,B ⇒ C
(com1)′′

A,B ⇒ C
dummy

A ∧B ⇒ C
⇒ A ∧B → C

⇒ (A ∧B → C) ∨ (C → B ∧A)

A⇒ A
C ⇒ A

(com2)′′ B ⇒ B
C ⇒ B

(com2)′

C ⇒ B ∧A (→ r)
⇒ C → B ∧A

⇒ (A ∧B → C) ∨ (C → B ∧A)
⇒ (A ∧B → C) ∨ (C → B ∧A) (combot)

where (combot) is the bottom rule both for (com1)′ and (com2)′ and for (com1)′′ and
(com2)′′. We call this a mixed system.

We can abstract this derivation as

BOT(com′, com′′)

5

com′2com′′2

©

com′′1com′1

where we represent by BOT(com′, com′′) the bottom rule of com′ and com′′, by © the
forks in the derivation tree corresponding to dummy bottom rules, and by 5 the forks
corresponding to non-dummy rules.

Given that the removal of premises from the © forks is a logically sound operation, we
transform the structure of the derivation as follows:

BOT(com′)

BOT(com′′)

5

com′2com′′2

©

com′′1

©

com′1

43

3. From hypersequent calculi to natural deduction

Now the group of top rules translating com′ and the one translating com′′ have different
bottom rules. The derivation resulting from this is the following

C ⇒ C
A,C ⇒ C

A,B ⇒ C
(com1)′

A ∧B ⇒ C
⇒ A ∧B → C

⇒ α

C ⇒ C
C,B ⇒ C

A,B ⇒ C
(com1)′′

A ∧B ⇒ C
⇒ A ∧B → C

⇒ α

A⇒ A
C ⇒ A

(com2)′′ B ⇒ B
C ⇒ B

(com2)′

C ⇒ B ∧A
⇒ C → B ∧A

⇒ α
⇒ α (combot)′′

⇒ α (combot)′

where α is the formula (A ∧B → C) ∨ (C → B ∧A).

Theorem 3.2.5. For any set HR of hypersequent rules and set SR of 2-systems s.t. if
Hr ∈ HR then SysHr ∈ SR, if `HI+HR Γ⇒ Π then `LI+SR Γ⇒ Π and if `c.f.HI+HR Γ⇒ Π
then `c.f.LI+SR Γ⇒ Π.

Proof. Let D be a HI + HR derivation of Γ ⇒ Π. By the results in Section 3.2.2 we
can assume that D is in structured form. By applying the procedure of Lemma 3.2.4 to
the premise ĤD of the uppermost application of (EC) in D we obtain a set of partial
derivations {Di}i∈I whose rules translate those occurring in the ancestor trees of each
component of ĤD.

We show that we can suitably apply the bottom rules of 2-systems in SR to the roots of
{Di}i∈I in order to obtain the required LI + SR derivation of Γ⇒ Π. First, we group all
top rule applications in {Di}i∈I according to the application of Hr ∈ HR that these rules
translate. For each such group we apply one bottom rule below the partial derivations in
which the top rules of the group occur. As shown in Example 3.2.4, due to the duplication
of context sequents in hypersequent rules which we handle using dummy bottom rules,
we may need to apply a single bottom rule below groups of top rules translating different
hypersequent rules. In particular, if we consider the algorithm, it is easy to see that this
can only happen when

(i) two hypersequent rule applications (h′) and (h′′) occur above different premises of
a rule application (r);

(ii) S0 is an active component and S1, . . . , Sn are context components occurring in the
conclusion of (r);

(iii) both (h′) and (h′′) have active components including different ancestors of some Si
for 0 ≤ i ≤ n.

Indeed, if (h′) and (h′′) occur one above the other, since each premise of a hypersequent
rule contains one active component, the two groups of partial derivations containing
the top rules translating (h′) and (h′′) share only one partial derivation, and hence no

44

3.2. Embedding the two formalisms

mixed system is produced because we can just apply one bottom rule below the other.
Moreover, if one between (h′) and (h′′) have no active component which is an ancestor of
some Si, then the two groups of partial derivations containing the top rules translating
(h′) and (h′′) share no partial derivation and no mixed system is produced.

If (i)–(iii) hold, the top rules translating (h′) and (h′′) occur above different premises
of a non-dummy rule with conclusion S0 – just like the two applications of (com2) in
Example 3.2.4 – and of some dummy bottom rules with conclusions S1, . . . , Sn – just like
the two applications of (com1) in Example 3.2.4. When we apply a bottom rule for such
a group of top rules we obtain a mixed system, namely a 2-system that contains top rules
translating different hypersequent rule applications.

We show that we can replace each mixed system by regular 2-systems. First notice that
the following facts are always true:

1. if we remove all premises but one from a dummy bottom rule in a partial derivation
we still obtain a partial derivation of the same sequent;

2. every time a pair of top rules translating different hypersequent rule applications
occur in the same mixed system above different premises of a non-dummy rule, all
other pairs of top rules translating these two hypersequent rule applications occur
above different premises of dummy bottom rules.

While the truth of 1 is simply due to the shape of dummy bottom rules, that of 2 is
evident if we carefully consider the hypersequent derivation configurations that lead to
the creation of a mixed system. Indeed, as for 2, the partial derivation translating the
ancestor tree of S0 mentioned in (i) contains the non-dummy rule mentioned in 2, and
the translations of the ancestor trees of S1, . . . , Sn contain the dummy bottom rules
mentioned in 2. Moreover, such non-dummy rules cannot be more than one, since every
premise of (r) contains only one active component.

From 1 it follows that if two top rules occur above different premises of a dummy bottom
rule, we can remove one of them from the partial derivation containing the other. If we
do so, we say that we split the dummy bottom rule.

Consider now a mixed system

D1....
Γ⇒ ∆ . . .

Dk....
Γ⇒ ∆

Γ⇒ ∆

where the derivation Di, for 1 ≤ i ≤ k, contains the rule applications (r1
i), . . . , (rni). We

adopt the convention that the rules with same superscript index translate the same
hypersequent rule.

45

3. From hypersequent calculi to natural deduction

To replace such mixed system with regular 2-systems we proceed as follows. First we
replace the mixed system with a 2-system for the group of top rules with superscript 1:

D′1....
Γ⇒ ∆ . . .

D′k....
Γ⇒ ∆

Γ⇒ ∆ (b1)

where D′1, . . . ,D′k only contain the rules (r1
1), . . . , (r1

k) and those top rules that cannot be
removed from the partial derivations by splitting dummy bottom rules – if we need to
choose, we pick the top rules with minimum superscript index. After this, we introduce
further bottom rules as follows

D′1....
Γ⇒ ∆

D′′2....
Γ⇒ ∆ . . .

D′′k....
Γ⇒ ∆

Γ⇒ ∆ (b2)
. . .

D′′1....
Γ⇒ ∆ . . .

D′′k−1....
Γ⇒ ∆

D′k....
Γ⇒ ∆

Γ⇒ ∆ (b2)

Γ⇒ ∆ (b1)

where the bottom rules (b2) are only introduced below the branches D′1, . . . ,D′k containing
some of the rules (r2

1), . . . , (r2
k), and the derivations D′′1 , . . . ,D′′k are copies of D1, . . . ,Dk

only containing (r2
1), . . . , (r2

k) and those top rules that cannot be removed by splitting
dummy bottom rules. We keep duplicating the derivation in such way until either we
do not need any more bottom rules or we introduced bottom rules for all superscript
indices 1, . . . , n. Given that we can add bottom rules for all groups of top rules in the
mixed system, in order to be sure that the result does not contain any mixed system we
only need to show that we never add a top rule application above the wrong premise of
its bottom rule. For the sake of contradiction suppose that we do. We add a top rule
application (rip) above a wrong premise of its bottom rule only if we just introduced
a new bottom rule (bj), for i < j ≤ n, and we cannot remove (rip) – by splitting a
dummy bottom rule – from the derivation containing a top rule (rjp) that we need in the
branch that we are considering. But if we cannot remove (rip) from the partial derivation
containing (rjp), by 2 we can remove any (rjq) from any partial derivation containing any
(riq), as long as q 6= p. Given that the bottom rule (bi) occurs below (bj), it follows that
there is no top rule (rjq) above the considered premise of the bottom rule (bi). Hence
we can infer that (rjp) is not needed and we do not need to add (rip) in the first place,
contrarily to the assumptions.

Notice that the procedure does not require all groups of top rules to have exactly
k elements. If, for example, the group with superscript index i contains l top rule
applications for l < k, then the bottom rules for i will have l premises. This does not
influence any other group of top rules.

Thus, we eventually obtain an LI + SR derivation of Γ→ Π.

46

3.2. Embedding the two formalisms

Normal forms of hypersequent derivations

In the previous algorithm we only considered hypersequent derivations in structured
form, namely in which (EC) applications occur immediately above the root and (EW)
applications occur where needed. Here we show how to transform each hypersequent
derivation into a derivation in structured form.

Definition 3.2.7. The external contraction rank (ec-rank) of an application E of (EC)
in a derivation is the number of applications of rules other than (EC) between E and the
root of the derivation.

Lemma 3.2.6. Each HI + HR derivation D can be transformed into a derivation of the
same end-hypersequent in which all (EC) applications have ec-rank 0.

Proof. Proceed by double induction on the lexicographically ordered pair (µ, ν), where
µ is the maximum ec-rank of any (EC) application in D, and ν is the number of (EC)
applications in D with maximum ec-rank.

Base case. If µ = 0 the claim trivially holds.

Inductive step. Assume that D has maximum ec-rank µ and that there are ν applica-
tions of the rule (EC) with ec-rank µ. We show how to transform D into a derivation D′
having either maximum ec-rank µ′ < µ or ec-rank µ and number of (EC) applications
with maximum ec-rank ν ′ < ν.

Consider an (EC) application with ec-rank µ in D and the queue of (EC) containing
it. There cannot be any applications of (EC) above this queue because the ec-rank of
its elements is maximal. We distinguish cases according to the rule (r) applied to the
conclusion of the last element of such queue.

Assume that (r) has one premise. If (r) = (EW), we apply (EW) – with the same active
component – before the queue. If (r) 6= (EW), we apply (r) immediately before the
queue, possibly followed by applications of (EC).

Notation. Given a hypersequent H we denote by (H)u the hypersequent H | . . . | H
containing u copies of H (u ≥ 0).

Let (r) be any external context-sharing rule with more than one premise and consider
any subderivation of D of the form

D1....
G | G′1 | (C1)m1

...
(EC)

G | C1
(EC)

. . .

Dn....
G | G′n | (Cn)mn

...
(EC)

G | Cn
(EC)

G | H (r)

47

3. From hypersequent calculi to natural deduction

where G′i, for 1 ≤ i ≤ n, only contains components in G and the derivations D1, . . . ,Dn
contain no application of (EC). We can transform D into a derivation D′ in which all
applications of (EC) occurring above the hypersequent G | H are either immediately
above it or immediately above another application of (EC); their ec-rank is reduced by 1
because (r) does not occur below them anymore.

We first prove that (∗) the hypersequent G | G′′ | (H)q, where G′′ = G′1 | . . . | G′n and
q = (

∑n
i=1(mi − 1)) + 1 is derivable from

G | G′1 | (S1)m1 , . . . , G | G′n | (Sn)mn

using only (EW) and (r). The hypersequent G | H then follows from G | G′′ | (H)q
by (EC) as all the components of G′′ occur also in G. The obtained derivation D′ has
maximum ec-rank µ′ < µ, or the occurrences of (EC) with ec-rank µ occurring in it are
ν ′ < ν.

It remains to prove claim (∗). We have a derivation of any element of the set

Q = {G | G′′ | (H)0 | (S1)x1 | . . . | (Sn)xn :
n∑
i=1

xi = (
n∑
i=1

(mi − 1)) + 1}

from the hypersequents G | G′1 | (S1)m1 , . . . , G | G′n | (Sn)mn using only (EW). Indeed
for any hypersequent in Q and for 1 ≤ i ≤ n, there is at least one xi ≥ mi, because
otherwise

∑n
i=1 xi < (

∑n
i=1(mi−1))+1. The claim (∗) therefore follows by Lemma 3.2.7

below being G | G′′ | (H)q the only element of the set

Q′ = {G | G′′ | (H)q | (S1)x1 | . . . | (Sn)xn :
n∑
i=1

xi = 0}

for q = (
∑n
i=1(mi − 1)) + 1.

The following is the central lemma of the previous proof.

Lemma 3.2.7. For any application of a hypersequent rule
G | S1 . . . G | Sn

G | H (r)

and natural number d ≥ 0, consider the set of hypersequents

Ld = {G | (H)c | (S1)x1 | . . . | (Sn)xn :
n∑
i=1

xi = d}

where G,H are hypersequents, S1, . . . , Sn sequents, and c is a natural number. For any
natural number e, s.t. 0 ≤ e ≤ d, each element of the set

L(d−e) = {G | (H)c+e | (S1)x′1 | . . . | (Sn)x′n :
n∑
i=1

x′i = d− e}

is derivable from hypersequents in Ld by repeatedly applying the rule (r).

Proof. By induction on e.

48

3.2. Embedding the two formalisms

Base case. If e = 0, then Ld = Ld−e.

Inductive step. Assume that e > 0 and that the claim holds for all e′ < e. By
induction hypothesis there exists a derivation from the hypersequents in Ld for each
element of the set

L(d−(e−1)) = {G | (H)c+(e−1) | (S1)x′′1 | . . . | (Sn)x′′n :
n∑
i=1

x′′i = d− (e− 1)}

that only consists of applications of (r). Any hypersequent

G | (H)c+e | (S1)x′1 | . . . | (Sn)x′n

in L(d−e) can be derived from elements of L(d−(e−1)) as follows:

G | (H)c+(e−1) | H ′1 . . . G | (H)c+(e−1) | H ′n
G | (H)c+e | (S1)x′1 | . . . | (Sn)x′n

(r)

where, for 1 ≤ i ≤ n, H ′i = (S1)y1 | . . . | (Sn)yn is such that if j 6= i then yj = x′j and if
j = i then x′j + 1; i.e., the components S1, . . . , Sn /∈ G occur in the ith premise as many
times as in the conclusion, except for Si which occurs one more time.

All premises of this rule application are hypersequents in L(d−(e−1)), indeed

(x′1 + 1) + x′2 + . . .+ x′n = . . . = x′1 + . . .+ x′n−1 + (x′n + 1) = (
n∑
i=1

x′i) + 1

and
(
n∑
i=1

x′i) + 1 = (d− e) + 1 = d− (e− 1)

Given that only the rule (r) is used to derive the elements of Ld−(e−1) from the elements
of Ld, also the elements of L(d−e) can be derived from those of Ld by applying only
(r).

Lemma 3.2.8. Any HI+HR derivation of a sequent can be transformed into a derivation
in structured form.

Proof. Let D be a hypersequent derivation of a sequent S in HI + HR. By Lemma 3.2.6
we can assume that all applications of (EC) in D occur in a queue immediately above
S. Consider an application of (EW), with premise G and conclusion G | S, which is not
as in Definition 3.2.4. First notice that G | S cannot be the root of D. We show how
to shift this application of (EW) below other rule applications until the statement is
satisfied for such application. Three cases can arise:

1. S is the active component in the premise of an application of a rule (r). The
conclusion of (r) is simply obtained by applying (EW) to G possibly multiple times.

49

3. From hypersequent calculi to natural deduction

2. S is a context component in the premise of an application of a one-premise rule (r).
The (EW) is simply shifted below (r).

3. S occurs actively inside the queues of (EW) above all the premises of an application
of a rule (r). We remove all the applications of (EW) with active component S in
the queues and apply (r) with one context component less, followed by (EW).

The termination of the procedure follows from the fact that D is finite and that 1–
3 always reduce the number of rules different from (EW) occurring below the (EW)
applications.

3.3 Applications of the embeddings

We just provided constructive transformations from hypersequent derivations to 2-system
derivations and back. These transformations show that the two seemingly different proof
frameworks have the same expressive power, but the embeddings are not only interesting
for their conceptual outcomes, they also enable us to prove further technical results both
concerning 2-systems and hypersequents.

3.3.1 Applications for 2-systems

The benefits of the embeddings with respect to 2-systems include: (i) new cut-free
2-systems, (ii) analyticity proofs, and (iii) locality of derivations using the hypersequent
notation.

The points (i) and (ii) rely on the method in [CGT08] to transform propositional Hilbert
axioms in the language of full Lambek calculus into suitable hypersequent rules, see
Section 2.3.

Ad (i): the method in [Neg16] rewrites generalized geometric formulae in the class GA1,
see Section 2.1, into analytic 2-systems. As observed in [Neg16], formulae in GA1 need
not contain quantifier alternations; indeed there are purely propositional axioms that
are in GA1 but not in GA0. Notice that the propositional axioms in GA1 are strictly
contained in the class P3 of [CGT08]. For the strictness of the inclusion, consider the
excluded middle law EM = ¬A ∨ ¬¬A. If we define, as usual, ¬A as A→ ⊥, this axiom
belongs to P3 but not to GA1. While the method in [Neg16] does not apply to ¬A∨¬¬A,
we can define a 2-system by translating the hypersequent rule corresponding to the axiom
(below left) into the equivalent 2-system (below right):

G | Σ,Σ′ ⇒
G | Σ⇒| Σ′ ⇒

Σ⇒....
Γ⇒ Π

Σ,Σ′ ⇒
Σ′ ⇒....

Γ⇒ Π
Γ⇒ Π

50

3.3. Applications of the embeddings

Ad (ii): The analiticity proof in [Neg16] relies on the fact that the obtained 2-systems
manipulate atomic formulae only; this is the case for labelled 2-systems capturing frame
conditions, but it does not hold anymore when translating propositional axiom schemata.
In spite of this, for any 2-system obtained applying the method in [Neg16] to a GA1
propositional Hilbert axiom, we obtain an analytic 2-system if we translate it into a
hypersequent rule, apply the completion procedure of [CGT08], and translate the result
back into a 2-system.

Example 3.3.1. We show the transformation of a 2-system into an analytic 2-system.
Consider the excluded middle law EM = A ∨ ¬A ∈ GA1. The method in [Neg16]
transforms it into the 2-system below on the left, which is translated into the hypersequent
rule below on the right by the procedure in Section 3.1:

A,Γ1 ⇒ ∆1
Γ1 ⇒ ∆1....
Γ⇒ ∆

⊥,Γ2 ⇒ ∆2
A,Γ2 ⇒ ∆2....

Γ⇒ ∆
Γ⇒ ∆

G | A,Γ1 ⇒ ∆1 G | ⊥,Γ2 ⇒ ∆2
G | Γ1 ⇒ ∆1 | A,Γ2 ⇒ ∆2

Using the results in [CGT08] we can complete the latter rule and obtain the analytic
hypersequent rule below on the left, whose translation leads to the 2-system below on
the right:

G | Σ,Γ1 ⇒ Π1
G | Γ1 ⇒ Π1 | Σ,Γ2 ⇒ Π2

Σ,Γ1 ⇒ Π1
Γ1 ⇒ Π1....
Γ⇒ Π

Σ,Γ2 ⇒ Π2....
Γ⇒ Π

Γ⇒ Π

The analiticity of LI extended with the obtained system of rules follows from Theo-
rem 3.2.5.

3.3.2 Applications for hypersequent calculi

We show below how to use the embeddings to reformulate hypersequent calculi as natural
deduction systems. This is a gain in terms of structural simplicity, since the basic objects
of natural deduction derivations are formulae, as opposed to hypersequents.

Such reformulation will be exploited in Chapters 4, 5, and 6. as a basis for defining type
systems for concurrent λ-calculi and show the connection, suggested in [Avr91], between
intermediate logics captured by cut-free hypersequent systems and parallel λ-calculi.

Our reformulation of hypersequent calculi as natural deduction systems is modular and
simply obtained by adding to Gentzen’s NI higher-level rules simulating hypersequent
rules acting on several components. The transformation from hypersequent derivations
into 2-systems enables this reformulation since 2-systems derivations are close to natural
deduction derivations.

51

3. From hypersequent calculi to natural deduction

To present the transformation in a simple way, henceforth we consider hypersequent rules
of the following form:

M1 . . . Mk

G | Σ1
1, . . . ,Σ1

n1 ,Γ1 ⇒ Π1 | . . . | Σk
1, . . . ,Σk

nk
,Γk ⇒ Πk

(Hr)

where G and all variables for multisets of formulae are schematic, for any 1 ≤ i ≤ k, Mi

is a (possibly empty) set of hypersequents of the form G | ∆i
j ,Γi ⇒ Πi, for some j, with

∆i
j = Σp

q for some 1 ≤ p ≤ k and 1 ≤ q ≤ np, and with Γi and Πi non-empty.

These rules are obtained by applying the algorithm in [CGT08] to P3 formulae (cf. the
grammar in Section 3.3.1) of the following form2:

((A1
1 ∧ . . . ∧A1

n1
)→ (B1

1 ∨ . . . ∨B1
m1

)) ∨ . . . ∨ ((Ak1 ∧ . . . ∧Aknk
)→ (Bk1 ∨ . . . ∨Bkmk

))

where Aij and Bi
j are schematic variables and (Bi

1∨. . .∨Bi
mi

) is ⊥ ifmi = 0. Henceforth we
will refer to this formula as the axiom associated to the rule (Hr). As shown in [CGT08],
HI extended with (Hr) is equivalent to HI extended with its associated axiom – that is,
the relative derivability relations coincide.

Example 3.3.2. Examples of P3 formulae are the linearity axiom Lin = (A→ B)∨(B →
A), see Example 2.2.1, the law of excluded middle EM, and the axioms (Bck) =
A0 ∨ (A0 → A1) ∨ . . . ∨ (A0 ∧ . . . ∧Ak−1 → Ak) that, for k ≥ 1, axiomatize intermediate
logics characterised by relational models with k worlds. Also the formulae in [LE82b] for
implicational logics and the disjunctive tautologies in [DK00] are of this form.

Since we want to translate hypersequent calculi into natural deduction calculi and we can
use the embedding in Section 3.1 to transform a hypersequent rule into a 2-system, the
only missing link is a translation from 2-systems to natural deduction rules. Nonetheless,
in order to directly translate systems of rules into natural deduction rules with a similar
structure, we need to generalize our notion of natural deduction calculus. In particular,
we need a natural deduction rule to be able to discharge not only formulae, but also other
rule applications. In our calculus we will have the usual rules, that can be unconditionally
applied, but we will also have conditional rules, that can only be applied if some other
rule discharges their applications later on. Using conditional rules and rule discharge, we
will be able to simulate the non-local conditions of 2-systems. Natural deduction rules
that can discharge other rule applications have been studied by Schroeder-Heister under
the name of higher-level rules [SH14].

Before considering the general problem of translating 2-systems into natural deduction
rules, we present an example.

Example 3.3.3. The hypersequent rule for the linearity axiom Lin = (B → A)∨(A→ B)
below on the left is translated into the 2-system at the center. This 2-system is translated

2In the general case, P3 formulae correspond to hypersequent rules similar to Hr in shape but with
more than one ∆i

j in each premise.

52

3.3. Applications of the embeddings

into the natural deduction rule below on the right:

G | A,Γ1 ⇒ Π1 G | B,Γ2 ⇒ Π2
G | B,Γ1 ⇒ Π1 | A,Γ2 ⇒ Π2

A,Γ1 ⇒ Π1
B,Γ1 ⇒ Π1....

Γ⇒ Π

B,Γ2 ⇒ Π2
A,Γ2 ⇒ Π2....

Γ⇒ Π
Γ⇒ Π

A
B....
C

B
A....
C

C

Using this rule, Lin can be derived as follows

[A]1
B

∗

A→ B
1

(A→ B) ∨ (B → A)

[B]2
A

∗

B → A
2

(A→ B) ∨ (B → A)
(A→ B) ∨ (B → A)

∗

where we signal rule application discharge by ∗.

The addition to NI of the resulting natural deduction rule yields the calculus NG for
Gödel–Dummett logic discussed in Chapter 4.

In general, a hypersequent rule of the form (Hr) above is transformed by the embedding
in Section 3.1 into the following 2-system:

M1
Σ1

1, . . . ,Σ1
n1 ,Γ1 ⇒ Π1

Tr1
....

Γ⇒ Π . . .

Mk

Σk
1, . . . ,Σk

nk
,Γk ⇒ Πk

Trk
....

Γ⇒ Π
Γ⇒ Π

which is translated into a natural deduction rule Nr of the following form:

A1
1 . . . A1

n1

[B1
1]....

A1 . . .

[B1
m1]....
A1

A1....
A . . .

Ak1 . . . Aknk

[Bk
1]....

Ak . . .

[Bk
mk

]....
Ak

Ak....
A

A

(3.1)

where Aij corresponds to Σi
j and Bi

j corresponds to ⊥ if Mi = ∅ and to ∆i
j if Mi is a

non-empty set of hypersequents of the form G | ∆i
j ,Γi ⇒ Πi.

As we have seen in Example 3.3.3 and as we will see in Example 3.3.4, it is possible to
simplify the form of an inference discharged by a higher-level rule when there is only one
schematic variable Bi

j in that inference.

The higher-level natural deduction calculi that we use in the present work can be
formalized by generalizing the definition of natural deduction calculus in Section 2.4 as
follows.

53

3. From hypersequent calculi to natural deduction

Definition 3.3.1. A higher-level natural deduction calculus is a pair (Ru,Rc) where Ru
is a set of unconditional inference rules and Rc is a set of conditional inference rules. Any
inference rule in Ru ∪ Rc has the form

[S1]....
A1 . . .

[Sn]....
An

A

where S1, . . . ,Sn are possibly empty sets containing formulae and rule applications.

A natural deduction derivation of a formula A can then be inductively defined as follows:

• A is a derivation of A with open assumption A;

• if
[S1]....
A1 . . .

[Sn]....
An

A

∈ Ru

and D1, . . . ,Dn are derivations of A1, . . . , An with open assumptions T1, . . . , Tn,
respectively, then

D1 . . . Dn
A

is a derivation of A with open assumptions
⋃n
i=1(Ti \ Si).

• if
[S1]....
A1 . . .

[Sn]....
An

A

∈ Rc

and D1, . . . ,Dn are derivations of A1, . . . , An with open assumptions T1, . . . , Tn,
respectively, then

D1 . . . Dn
A

is a derivation of A with open assumptions
{
A1 . . . An

A

}
∪ (
⋃n
i=1(Ti \ Si)).

Intuitively, the open assumptions of a higher-level natural deduction derivation might
contain rule applications. Moreover, we distinguish between unconditional rules Ru and
conditional rules Rc. An unconditional rule discharges the open assumptions S1, . . . ,Sn
and do not add any new open assumption to the derivation. The only difference between
Ru rules and usual natural deduction rules is that among the open assumptions discharged
by an Ru rule there could be some rule applications. When we apply an Rc conditional

54

3.3. Applications of the embeddings

rule, on the other hand, we also add the rule itself as a new open assumption. For
instance, the conditional rule applications

Aj1 . . . Ajnj

[Bj
1]....

Aj . . .

[Bj
mj

]
....
Aj

Aj

with 1 ≤ j ≤ k in the rule schema (3.1) above are listed among the open assumptions
until some higher-level rule discharges them.

Example 3.3.4. The hypersequent rule below left for the law of excluded middle
EM = A ∨ ¬A – see Example 3.3.1 for the corresponding 2-system – translates into the
natural deduction rule below right:

G | Σ,Γ1 ⇒ Π1
G | Γ1 ⇒ Π1 | Σ,Γ2 ⇒ Π2

A
⊥....
B

[A]....
B

B

We can derive EM using this rule as follows

[A]1
⊥

∗

¬A
1

A ∨ ¬A
[A]∗

A ∨ ¬A
A ∨ ¬A

∗

We show now that a hypersequent rule (Hr) and the corresponding natural deduction
rule Nr are equivalent, i.e. that `HI+Hr A if and only if `NI+Nr A.

Theorem 3.3.1. HI extended with any hypersequent rule (Hr) is equivalent to NI
extended with its translated rule Nr.

Proof. We show that if `HI+Hr A then `NI+Nr A. Indeed a derivation of the axiom rα
associated to (Hr) is as follows:

[A1
1 ∧ . . . ∧A1

n1
]1

A1
1 . . .

[A1
1 ∧ . . . ∧A1

n1
]1

A1
n1

[B1
1]2

B1
1 ∨ . . . ∨B1

m1
. . .

[B1
m1

]2

B1
1 ∨ . . . ∨B1

m1

B1
1 ∨ . . . ∨B1

m1

2 ∗

(A1
1 ∧ . . . ∧A1

n1
)→ (B1

1 ∨ . . . ∨B1
m1

)
1

rα . . .

....
rα

rα
∗

All hypotheses are derived as shown for the leftmost. The rest of the premises of the
bottom-most inference are derived similarly using the implications

(A2
1 ∧ . . . ∧A2

n2)→ (B2
1 ∨ . . . ∨B2

m2) , . . . , (Ak1 ∧ . . . ∧Aknk
)→ (Bk

1 ∨ . . . ∨Bk
mk

)

55

3. From hypersequent calculi to natural deduction

The claim follows by the equivalence between rα and (Hr) shown in [CGT08].
To show that if `NI+Nr A then `HI+Hr A, we derive the rule Nr using the rules of NI
and rα. We can then easily exploit the equivalence between HI and NI. Intuitively, we
use conjunction and implication elimination to simulate the inferences discharged by Nr –
top left part of the following derivation. Then we nest one disjunction elimination ∨e
for each disjunctive subformula of the axiom in order to discharge the implications used
above, discharge the formulae Bi

j , and derive A,A1, . . . , Ak:

α

[(A1
1 ∧ . . . ∧A1

n1)→ (B1
1 ∨ . . . ∨B1

m1)]1
A1

1

A1
2

....
A1

3 ∧ . . . ∧A1
n1

A1
2 ∧ . . . ∧A1

n1

A1
1 ∧ . . . ∧A1

n1

B1
1 ∨ . . . ∨B1

m1

[B1
1]2....
A1

....
A1

A1
∨e2

....
A

....
A

A ∨e1

The open hypotheses here are the formulae A1
1, . . . , A

1
n1 , . . . , A

k
1, . . . , A

k
nk
, which are

exactly the hypotheses of Nr. The claim follows by the equivalence between rα and (Hr)
shown in [CGT08].

Table 3.1 displays the translation into natural deduction rules of the hypersequent rules
that are shown in Table 2.3.

A natural deduction calculus for classical logic based on the first rule presented here is
introduced in Section 4.1, where we also provide a computational interpretation and a
normalization proof for such calculus. In Section 4.2 we introduce a calculus for Gödel–
Dummett logic based on the second rule of Table 3.1. Also for this calculus we provide a
computational interpretation and a normalization proof. The rules for Gk and Ck, on the
other hand, can be captured by the framework introduced in Chapter 6, which provide
computational interpretations and normalization results for all the natural deduction
calculi falling in their scope. Finally, a computational interpretation and normalization
result for BCk can be obtained as a corollary from a very easy generalization of the
framework in Chapter 6, see Remark 6.4.

56

3.3. Applications of the embeddings

hypersequent rule natural deduction rule logic

G | Γ,Σ⇒ ∆
G | Γ⇒| Σ⇒ ∆

A
⊥....
B

[A]....
B

B

CL

G | Γ, B ⇒ ∆ G | Σ, A⇒ Θ
G | Γ, A⇒ ∆ | Σ, B ⇒ Θ

A
B....
C

B
A....
C

C

GL

{G | Γj+1,∆j ⇒ Πj}j∈{0,...,k−1}

G | Γ0,∆0 ⇒ Π0 | . . . | Γk−1,∆k−1 ⇒ Πk−1 | Γk ⇒

A0
A1....
B . . .

Ak−1
Ak....
B

Ak
⊥....
B

B

Gk

{G | Γj+1,∆j ⇒ Πj}j∈{1,...,k−1} G | Γ1,∆k ⇒ Πk

G | Γ1,∆1 ⇒ Π1 | . . . | Γk,∆k ⇒ Πk

A1
A2....
B . . .

Ak−1
Ak....
B

Ak
A1....
B

B

Ck

{G | Γi,Γj ⇒ ∆i}i,j∈{0,...,k}, i 6=j
G | Γ0 ⇒ ∆0 | . . . | Γk ⇒ ∆k

see Table 3.2 BWk

{G | Γi,Γj ⇒ ∆i}i∈{0,...,k−1}, i<j≤k

G | Γ0 ⇒ ∆0 | . . . | Γk−1 ⇒ ∆k−1 | Γk ⇒
see Table 3.2 BCk

Table 3.1: Hypersequent and corresponding natural deduction rules.

57

3. From hypersequent calculi to natural deduction

A0

[A0, A1]....
B0

B0....
B . . .

A0

[A0, Ak]....
B0

B0....
B . . .

Ak

[Ak, A0]....
Bk

Bk....
B . . .

Ak

[Ak, Ak−1]....
Bk

Bk....
B

B
BWk

A0

[A0, A1]....
B0

B0....
B . . .

A0

[A0, Ak]....
B0

B0....
B . . .

Ak−1

[Ak−1, Ak]....
Bk−1

Bk−1....
B

Ak Bk
Bk....
B

B
BCk

Table 3.2: Natural deduction rules for BWk and BCk.

58

CHAPTER 4
Classical logic and

Gödel–Dummett logic

In Chapter 3 we have seen how we can strip the hypersequent formalism of all its
proof-theoretical structure in favor of non-local conditions granting exactly the same
expressive power. The translation from hypersequents to 2-systems enables us to dispense
with the hypersequent symbol |. The translation from 2-systems to natural deduction
frees us also from the remaining sequent structure. It leaves us with intuitionistic
proofs constructed using only simple inferences and related by non-local conditions,
as discussed in Section 2.4.3 and shown at page 28. Intuitionistic natural deduction
proofs are not only simple from a structural perspective, they can also be very naturally
interpreted as computer programs through the Curry–Howard correspondence [How80].
Thus, the translations presented in the previous chapter gives us the right framework to
try to confirm Avron’s thesis on the concurrent nature of hypersequent proofs [Avr91] by
providing computational interpretations for the intermediate logics that can be captured
by hypersequent calculi.

If we apply the translations presented in Chapter 3 to suitable hypersequent calculi we
obtain natural deduction calculi which are defined extending the intuitionistic natural
deduction NI by non-local conditions acting across different subderivations, as detailed
in Section 3.3.2. Since there is a very robust computational interpretation of NI, which
forms the purely intuitionistic backbone of our calculi, we only need an interpretation of
the non-local conditions in terms of information exchange and we have all we need to
define concurrent λ-calculi. This is what we will do in the present chapter, starting from
a calculus for classical logic featuring a very simple communication mechanism and then
presenting the calculus for Gödel–Dummett logic, which from a computational point of
view can be seen as a generalization of the first one.

From a technical point of view, in the present chapter we will introduce concurrent

59

4. Classical logic and Gödel–Dummett logic

λ-calculi based on the proof systems for propositional classical logic (λCl) and Gödel–
Dummett logic (λG) obtained by the translation in Section 3.3.2, see Table 3.1. The
channels of both calculi connect two processes, but while in λCl the direction of the
channel is fixed, in λG the channels can be used to transmit messages in both directions.
We show, moreover, normalization results for both calculi and prove that the normal
form proof terms enjoy the subformula property. Thus we provide the first computational
interpretations of classical and Gödel–Dummett logic in terms of concurrent computation.

The present chapter is based on results and ideas published in [ACG17] and [ACG18].
These results are refined and extended here. We present λCl in Section 4.1. Its type system
and reduction rules are described in Section 4.1.1, we show that each normal λCl-term
enjoys the subformula property in Section 4.1.2, in Section 4.1.3 we prove a normalization
result for λCl, and in Section 4.1.4 we present results and examples concerning the
expressiveness of λCl. Section 4.2 is about λG. We present the natural deduction system
in Section 4.2.1 and discuss its reductions in Section 4.2.2. In Section 4.2.3 we introduce
the calculus, in Section 4.2.4 we show that normal λG-terms enjoy the subformula property,
and in Section 4.2.5 we prove a normalization result for λG. We study the expressive
power of λG in Section 4.2.6. In Section 4.3 we compare λCl and λG with each other and
with related calculi.

4.1 One-way communication: λCl

We present the simplest of the concurrent calculi studied here: λCl. The calculus λCl
is an extension of λ-calculus by the ‖a operator, a parallelism operator and binder
for communication variables a. These communication variables behave as higher-order
communication channels and enable parallel processes to transmit sub-processes. The
elementary communication structure of such calculus is the simplest kind of communica-
tion network, namely a unidirectional link between two processes:

Figure 4.1: Representation of a λCl channel.

This means that if a processes u contains the negative channel variable a : ¬A and a
process v contains its dual a : A, and they occur in a term u ‖a v, then u can transmit
to v the argument of the variable a : ¬A. Since an argument of a : ¬A has type A and
the reception point inside the term v is a : A, the transmission does not violate the type
assignment.

60

4.1. One-way communication: λCl

The type assignment rule for the ‖a operator is

[a¬A : ¬A]....
u : B

[aA : A]....
v : B

u ‖a v : B (EM)

and is based on the excluded middle law EM = ¬A∨A. If the channel variables a and a
have dual types ¬A and A respectively, when we introduce the operator ‖a, we can bind
all their occurrences. This corresponds to discharging the assumptions ¬A and A of the
logical derivation. From a proof theoretical point of view, the rule corresponds to a proof
by case distinction on the truth of A: if we can prove B both assuming A and assuming
¬A, then we can infer B discharging the assumptions A and ¬A.

The calculus λCl is a concurrent computational interpretation of classical logic. As
mentioned in Section 2.4.2, we provide here a different computational interpretation of
the logical system adopted for λexn. A major proof-theoretical difference between λexn
and λCl lies in the fact that λexn normal proof terms do not necessarily correspond to
analytic proofs, while λCl normal proof terms do.

4.1.1 The type system of λCl and its reduction rules

Considering first the natural deduction from a purely proof theoretical perspective, we
show that NI + (EM) for

(EM) =
[¬A]....
B

[A]....
B

B

is sound and complete with respect to classical logic.

Notice that this is equivalent to the higher-level rule
A
⊥....
B

[A]....
B

B

defined in Section 3.3.2. Since we are using this rule here to type terms of the form
u ‖a v, (EM) has the benefit of displaying a more direct correspondence with the types
of a : ¬A in u and a : A in v, see for example Table 4.1. The proof-theoretical gain of
the higher-level version, on the other hand, is that it is a purely structural rule – namely,
a rule that makes no reference to any logical connective – and hence admits a simpler
formulation of the subformula property, see communication kind in Definition 4.1.9. Even
though the soundness and completeness of LI extended by the higher-level rule above
with respect to CL are guaranteed by Theorem 3.3.1, we prove these results here directly
for LI + (EM).

61

4. Classical logic and Gödel–Dummett logic

Theorem 4.1.1 (Soundness and completeness). For any set Γ of formulae and formula
A, Γ `NI+(EM) A if and only if Γ `CL A.

Proof. The calculus NI is strongly equivalent to any Hilbert calculus for intuitionistic
logic – see for example Chapter 2 of [TS96] – and we can define classical logic as the
extension of intuitionistic logic by the axiom schema EM. Hence for the left to right
direction, we show that we can simulate any instance of the rule (EM) using instances of
the EM axiom in NI as follows:

¬A ∨A

[¬A]1....
C

[A]1....
C

C
1

While for the right to left direction, we show that we can derive any instance of the EM
axiom as follows:

[¬A]1
¬A ∨A

[A]1
¬A ∨A

¬A ∨A

We exploit the definability of A ∨ B in classical logic as (A → ⊥) → (B → ⊥) → ⊥
and treat ∨ as a defined connective. See Definition 4.1.16 and Proposition 4.1.12 in
Section 4.1.5 for the details.

Definition 4.1.1 (Natural deduction calculus NCl). The natural deduction calculus NCl
extends NI→∧⊥ by the (EM) rule.

We have now all the elements to introduce λCl, a typed concurrent λ-calculus for Classical
logic. The calculus λCl extends simply typed λ-calculus [How80] by a parallel operator
that provides a computational interpretation for the rule (EM).

Definition 4.1.2 (Terms of λCl). The terms of λCl are defined by the rules for simply
typed λ-calculus in Table 2.5 and by the rules in Table 4.1.

The parallelism operator supporting communication is introduced by the rule (EM) while
the contraction rule (contr) is used to define parallel terms that do not communicate,
see Definition 4.1.3. From a proof-theoretical perspective, (EM) combines the behavior
of the hypersequent rule (EC) and of the hypersequent rule for A ∨ ¬A in Table 2.3. On
the other hand, (contr) corresponds to an application of the rule (EC) alone.

We provide the essential notation, definitions and terminology. Proof terms may con-
tain variables xA0 , xA1 , xA2 , . . . of type A for every formula A. For clarity, the variables
introduced by the (EM) rule will be often denoted with letters a, b, c, . . . but they are

62

4.1. One-way communication: λCl

[a¬A : ¬A]....
u : B

[aA : A]....
v : B

u ‖a v : B (EM)

u : A v : A
u ‖ v : A (contr)

where all the occurrences of a in u and v are respectively of the form a¬A and aA

Table 4.1: Type assignments for λCl.

not in a syntactic category apart. A variable xA that occurs in a term of the form λxAu
is called λ-variable and a variable a that occurs in a term u ‖a v is called channel or
communication variable and represents a private communication channel between the
parallel processes u and v. We adopt the convention that variables a¬A and aA will be
respectively denoted as a and a, where unambiguous.

Free and bound variables of a term are defined as usual. For the new term u ‖a v, all free
occurrences of a in u and v are bound in u ‖a v. We assume the standard renaming rules
and α-equivalences that are used to avoid the capture of variables in the reductions.

We write Γ ` t : A if Γ = x1 : A1, . . . , xn : An and all free variables of a proof term t : A
are in x1, . . . , xn. From the logical point of view, t represents a natural deduction of A
from the hypotheses A1, . . . , An. If the symbol ‖ does not occur in t, then t is a simply
typed λ-term representing an intuitionistic deduction.

The reduction rules of λCl are presented in Table 4.2. They consist of the usual simply
typed λ-calculus reductions, instances of ∨ permutations adapted to the ‖ operator, and
new communication reductions: basic cross reductions, simplification reductions and cross
reductions.

Since we are dealing with a Curry–Howard correspondence, every reduction rule of λCl
corresponds to a reduction for the natural deduction calculus NI→∧⊥ + (EM).

The main reductions for the (EM) rule are basic cross reductions and cross reductions,
and are formally introduced in Table 4.2. Before discussing their computational aspects,
we explain them from a proof-theoretical point of view. Basic cross reductions correspond
to the following transformation of natural deduction derivations

[¬A]
δ
A

⊥....
C

[A]....
C

C

7→c

δ
A....
C

where no assumption of δ is discharged below ⊥ but above C – we address the general
case below by using cross reductions. Intuitively, the displayed instance of (EM) might
be hiding some redex that should be reduced. The reduction precisely exposes this

63

4. Classical logic and Gödel–Dummett logic

intuitionistic potential redex and we are thus able to reduce it. More instances of ¬A and
A might occur in the respective branches. This, in combination with the contraction rule
(see Table 4.1), gives rise to races and broadcasting, as explained in the computational
interpretation below. Cross reductions correspond to

[¬A]1
[Γ]
δ
A

⊥....
C

[A]1....
C

C
1

7→c

[¬
∧

Γ]2
[Γ]∧

Γ
⊥....
C

[A]1....
C

C
1

[
∧

Γ]2

Γ
δ
A....
C

C
2

As in the previous case, in the derivation on the right we use δ to prove all occurrences
of the assumptions A, but now we also need to discharge the assumptions Γ open in δ
in the rightmost branch but discharged in the derivation on the left below ⊥ and above
C. This is achieved by a new (EM) rule application 2 to the conjunction

∧
Γ of such

assumptions. Accordingly, we use the inference ¬
∧

Γ
∧

Γ
⊥

in the leftmost branch. We
keep the original instance 1 of (EM) in order to discharge remaining occurrences of ¬A
on which the derivation of C from ⊥ might still depend. Thus, the central branch of the
resulting proof is just a duplicate. This reduction eliminates one occurrence of ¬A and
can be reiterated to remove all occurrences of ¬A discharged by rules like 1 applied in
the derivation. The cost paid to obtain this is the multiplication of some branches of the
derivation, but simplification reductions of the form

δ
C

[A]1....
C

C
1
7→c

δ
C

where no occurrence of ¬A is discharged by 1 in δ, can be later used to eliminate the
unnecessary duplicates.

Before discussing the computational content of the calculus we introduce a few more
definitions.

Definition 4.1.3 (Simple parallel term). A simple parallel term is a λCl-term t1 ‖ . . . ‖ tn,
where each ti, for 1 ≤ i ≤ n, is a simply typed λ-term.

We define as usual the notion of context C[] as the part of a proof term that surrounds a
hole, represented by some fixed variable. In the expression C[u] we denote a particular
occurrence of a subterm u in the whole term C[u]. Contexts will be used to define
communication reduction rules. A context will represent a process and the context hole
will contain the channel application that is going to be used to communicate.

Definition 4.1.4 (Context). A context C[] is a λCl-term with some fixed variable []
occurring exactly once.

64

4.1. One-way communication: λCl

For any λCl-term u with the same type as [], C[u] denotes the term obtained replacing
[] with u in C[], without renaming bound variables.

Definition 4.1.5 (Simple and Simple Parallel Context).

• A simple context is a context which is a simply typed λ-term.

• A simple parallel context is a context which is a simple parallel term.

As an example, the expression C[] := λx z ([]) is a simple context and the term λx z (x z)
can be written as C[xz].

Definition 4.1.6 (Multiple substitution). Let u be a proof term, x = xA1
1 , . . . , xAn

n a se-
quence of variables and v : A1∧. . .∧An. The substitution uv/x := u[v π1/x

A1
1 . . . v πn/x

An
n]

replaces each variable xAi
i of any term u with the ith projection of v.

We now discuss the classes of computational reductions that will be formally introduced
in Table 4.2.

Intuitionistic reductions These are the usual computational rules for the simply
typed λ-calculus, see Section 2.4.1, representing the operations of applying a function
and taking a component of a pair [GLT89]. From the logical point of view, they are the
standard Prawitz reductions [Pra71] for NI→∧⊥.

Basic cross reductions We can trigger a basic cross reduction for a term C[a u] ‖a D
only when the free variables of u are also free in C[a u]. The term u might represent
executable code or data and directly replace all occurrences of the channel endpoint a in
D. We can only transmit a term u that does not contain a, because otherwise moving it
to the right of the ‖a operator would result in an unsound reduction. In case there is
only one sender and one receiver, the reduction is

C[a u] ‖a D 7→c D[u/a]

In general, C[a u] has the shape

C1 ‖ . . . ‖ Ci[a u] ‖ . . . ‖ Cn

where more than one process might have a message to send. In this case, the reduction
requires a race among the processes Cj that contain some message a uj . These processes,
indeed, compete for the possibility to transmit their message to D. The sender Ci[a u] is
selected non-deterministically and communicates its message to D:

(C1 ‖ . . . ‖ Ci[a u] ‖ . . . ‖ Cn) ‖a D 7→c D[u/a]

Since the receiving term D exhausts all its channels a : A to receive u, we remove all
processes containing a : ¬A and obtain a term without instances of the channel a. We

65

4. Classical logic and Gödel–Dummett logic

also point out that D is an arbitrary term, so it may well be a sequence of parallel process
D1 ‖ . . . ‖ Dm. In this case

D[u/a] = D1[u/a] ‖ . . . ‖ Dm[u/a]

and Ci[a u] broadcasts its message u to all the process D1, . . . ,Dm.

Simplification reductions These reductions enable us to eliminate useless commu-
nication channels and to remove unnecessary duplicates generated by cross reductions
and permutation reductions. Suppose, for example, that the process u in u ‖a v does not
contain occurrences of the channel a while the process v does. This intuitively means
that v is waiting to communicate with u, but the communication is impossible. If this
is the case, we simply apply the reduction u ‖a v 7→c u in order to remove the useless
channel a and keep only the process u which does not need it.

Cross reductions These reductions model λCl communication mechanism between
parallel processes in its full generality. In order to apply a cross reduction to a term

(. . . ‖ C[a u] ‖ . . .) ‖a D

several conditions have to be met. These conditions are both natural and needed for
the termination of computations. First, we require that the type of a violates the
subformula property – which is formalized by the notion of communication complexity,
see Definition 4.1.9 below. We use here the violation of the subformula property as
a criterion for terminating the computation since, as shown by the reduction (4.1) at
page 70, unrestricted cross reductions might result in reduction loops. We also require
(. . . ‖ C[a u] ‖ . . .) to be a normal simple parallel term. The normality of the term
guarantees that the communication is unavoidable because the rest of the computation
has finished. Finally, we require the variable a to be rightmost because, as for basic
cross reductions, if the term u contained a, it could not be moved to the right of the ‖a
operator.

Assuming that all the conditions above are satisfied, we can now start to explain the
cross reduction

(. . . ‖ C[a u] ‖ . . .) ‖a D 7→c (C[b 〈y〉] ‖a D) ‖b D[ub/y/a]

Here, we have a term u to be transmitted to the right in order to replace all occurrences
of a in D:

66

4.1. One-way communication: λCl

If u did not depend on the computational environment C[] we could use a basic cross
reduction and send u as it is. In general, though, this is not possible. The problem is
that the free variables y of u which are bound in C[a u] by some λ cannot be permitted
to become free; otherwise, the connection between the binders λy and the occurrences of
the variables y would be lost and they could be no more replaced by actual values when
the inputs for the λy are available. For example, we could have u = v y and

C[a u] = w (λy a (v y))

and the transformation

(. . . ‖ w (λy a (v y)) ‖ . . .) ‖a D 7→c (. . . ‖ w (λy a (v y)) ‖ . . .) ‖a D[v y/a]

would be computationally wrong since the term v y will have no access to the actual
values of the variables y when they will become available to λy a (v y). Hence, we need
to restore the access of u to its original computational environment and we do it by a
new channel b:

The correct reduction for the previous example would then be

(. . . ‖ w (λy a (v y)) ‖ . . .) ‖a D 7→c ((w (λy by)) ‖a D) ‖b D[v b/a]

where the channel b can be used to transmit the values of y from the process w (λy by)
to the process D[v b/a] when they are available. In general, in the resulting term
(C[b 〈y〉] ‖a D) ‖b D[ub/y/a] the substitution b/y guarantees that when the values of y
will be available in C[b 〈y〉], they will be sent to u through b.

In the result of the cross reduction the process D is cloned because C[a u] might have
other messages to transmit through a. Thus a behaves as a replicated input, as for
example in [CP10a], replicated input is coded by the bang operator of linear logic:

x〈y〉.Q | !x(z).P 7→ Q |P [y/z] | !x(z).P

These problems are typical of process migration, and can be solved by the concepts
of code mobility [FPV98] and closure [Lan64]. Informally, code mobility is defined as
the capability to dynamically change the bindings between code fragments and the
locations where they are executed. Indeed, in order to be executed, a piece of code needs

67

4. Classical logic and Gödel–Dummett logic

a computational environment and its resources, like data, program counters or global
variables. In our case the context C[] is the computational environment or closure of the
process u and the variables y are the resources it needs. Now, moving a process outside
its environment always requires extreme care: the bindings between a process and the
environment resources must be preserved. This is the task of the migration mechanisms,
which allow a migrating process to resume correctly its execution in the new location.
Our migration mechanism creates a new communication channel b between the programs
that have been exchanged.

Example 4.1.1 (A concrete cross reduction). If we add a type for natural numbers and
a constant for addition in our calculus we can construct the concrete term c (λy a(λx (y+
(2 + x)))) ‖a a 3 where a and c are channel variables. Suppose moreover that this term
occurs in an environment E . If we apply a cross reduction, we transmit the message
(λx (y + (2 + x)))[b/y] = λx (b+ (2 + x)) through the channel a

E [c (λy a(λx (y+(2+x)))) ‖a a 3] 7→c E [(c (λy by) ‖a a 3) ‖b (λx (b+(2+x))) 3]

another reduction then simplifies the resulting term into

7→c E [c (λy by) ‖b (λx (b+ (2 + x))) 3]

The new communication channel b has been introduced here because the message λx (y+
(2 + x)) still depends on the binder λy. Now we can normalize the process on the right
without waiting for the value of y and we have

7→c E [c (λy by) ‖b b+ 5]

Suppose then that a communication from a process in E replaces c with the term λxx1
and yields E ′[(λxx1)(λy by) ‖b b+5]. The following series of reductions is then triggered:

E ′[(λxx1)(λy by) ‖b b+ 5] 7→∗c E ′[b1 ‖b b+ 5]

Finally, we can transmit the value 1 of y through b and conclude the computation:

E ′[b1 ‖b b+ 5] 7→c E ′[1 + 5] 7→∗c E ′[6]

Parallel operator permutations The only permutations for ‖ that are not adapta-
tions of the standard ∨-permutation are

(u ‖a v) ‖b w 7→c (u ‖b w) ‖a (v ‖b w) and w ‖b (u ‖a v) 7→c (w ‖b u) ‖a (w ‖b v)

These address the scope extrusion issue of private channels. For instance, let us consider
the term

(v ‖a C[b a]) ‖b w

Here the process C[b a] wishes to send the channel a to w along the channel b, but this is
not possible since the channel a is private. This issue is solved in π-calculus using the

68

4.1. One-way communication: λCl

congruence νa(P |Q) |R ≡ νa(P |Q |R), provided that a does not occur in R, condition
that can always be satisfied by α-conversion. Our logical system requires a different
solution, which is not just permuting w inward but also duplicating it:

(v ‖a C[b a]) ‖b w 7→c (v ‖b w) ‖a (C[b a] ‖b w)

After this reduction C[b a] can send a to w. If b does not occur in v, we have a further
simplification step:

(v ‖b w) ‖a (C[b a] ‖b w) 7→c v ‖a (C[b a] ‖b w)

obtaining associativity of composition as in π-calculus. However, if b occurs in v, this
last reduction step is not possible and we keep both copies of w. It is indeed natural to
allow both v and C[b a] to communicate with w.

Example 4.1.2 (‖a in λCl and | in π-calculus). A private channel u ‖a v is rendered
in the π-calculus [Mil92, SW03] by the restriction operator ν, as νa (u | v). Recall that
π-calculus term u | v represents two processes that run in parallel. The corresponding
λCl-term is u ‖ v containing the parallelism operator ‖ that does not support any
communication channel.

We provide now the last definitions needed to formally define the reduction rules of λCl.
We start with the notion of strong subformula. This is key to define the communication
complexity, Definition 4.1.9 below, which is in turn essential to define the conditions of
the communication reductions of λCl.

Definition 4.1.7 (Prime formulae and factors [Kri90]). A formula is said to be prime if
it is not a conjunction. Every formula is a conjunction of prime formulae, called prime
factors.

Definition 4.1.8 (Strong subformula). B is said to be a strong subformula of a formula
A, if B is a proper subformula of some prime proper subformula of A.

Note that here prime formulae are either atomic formulae or arrow formulae, so a strong
subformula of A must be actually a proper subformula of an arrow proper subformula of
A. The following characterization of the strong subformula relation will be often used.

Proposition 4.1.2 (Characterization of strong subformulae). If B is a strong subformula
of A:

• if A = A1 ∧ . . . ∧ An, with n > 0 and A1, . . . , An are prime, then B is a proper
subformula of one among A1, . . . , An;

• if A = C → D, then B is a proper subformula of a prime factor of C or D.

Proof.

69

4. Classical logic and Gödel–Dummett logic

• Suppose A = A1 ∧ . . . ∧ An, with n > 0 and A1, . . . , An are prime. Any prime
proper subformula of A is a subformula of one among A1, . . . , An, so B must be a
proper subformula of one among A1, . . . , An.

• Suppose A = C → D. Any prime proper subformula X of A is first of all a
subformula of C or D. Assume now C = C1∧ . . .∧Cn and D = D1∧ . . .∧Dm, with
C1, . . . , Cn, D1, . . . , Dm prime. Since X is prime, it must be a subformula of one
among C1, . . . , Cn, D1, . . . , Dm and since B is a proper subformula of X , it must
be a proper subformula of one among C1, . . . , Cn, D1, . . . , Dm.

Unrestricted cross reductions do not always terminate. Consider, for example, the
following loop

λyB a¬B y ‖a xB→¬B aB 7→c (λy b y ‖a x a) ‖b x b 7→c λy b y ‖b x b (4.1)

To avoid such situations we need conditions on the application of cross reductions. As
shown below, our conditions are based on the complexity of the channel a of a term
u ‖a v, and are determined using logic. We consider the type B such that a occurs with
type ¬B in u and thus with type B in v, the type A of the term u ‖a v, and the types of
its free variables xA1

1 , . . . , xAn
n . The subformula property tells us that, no matter what

our notion of computation will turn out to be, when the computation is done, no object
whose type is more complex than the types of the inputs and the output should appear.
If the prime factors of the types B are not subformulae of A1, . . . , An, A, then these
prime factors should be taken into account in the complexity measure we are looking for.
This leads to the following definition.

Definition 4.1.9 (Communication complexity). Let u ‖a v : A a proof term with free
variables xA1

1 , . . . , xAn
n . Assume that a : ¬B occurs in u and a : B occurs in v.

• B is the communication kind of a.

• The communication complexity of a is the maximum among 0 and the number of
symbols of the prime factors of B that are neither proper subformulae of A nor
strong subformulae of any A1, . . . , An.

We recall the notion of stack, corresponding to Krivine stack [Kri09] and known as
continuation because it embodies a series of tasks that wait to be carried out. A stack
represents, from the logical perspective, a series of elimination rules; from the λ-calculus
perspective, a series of either operations or arguments.

Definition 4.1.10 (Stack). A stack is a possibly empty sequence σ = σ1σ2 . . . σn such
that for every 1 ≤ i ≤ n, exactly one of the following holds: either σi = t, with t proof
term or σi = πj , with j ∈ {0, 1}. Now on we will denote the empty sequence with ε and

70

4.1. One-way communication: λCl

Intuitionistic reductions
(λxA u)t 7→c u[t/xA] 〈u0, u1〉πi 7→c ui, for i = 0, 1

Parallel Operator Permutations
w(u ‖a v) 7→c wu ‖a wv if a does not occur free in w

(u ‖a v)ξ 7→c uξ ‖a vξ if ξ is a one-element stack and a does not occur free in ξ
w(u ‖ v) 7→c wu ‖ wv (u ‖ v)ξ 7→c uξ ‖ vξ λxA (u ‖a v) 7→c λx

A u ‖a λxA v
〈u ‖a v, w〉 7→c 〈u,w〉 ‖a 〈v, w〉 〈w, u ‖a v〉 7→c 〈w, u〉 ‖a 〈w, v〉 λxA (u ‖ v) 7→c λx

A u ‖ λxA v
〈u ‖ v, w〉 7→c 〈u,w〉 ‖ 〈v, w〉 〈w, u ‖ v〉 7→c 〈w, u〉 ‖ 〈w, v〉

(u ‖a v) ‖b w 7→c (u ‖b w) ‖a (v ‖b w)
if the communication complexity of b is greater than 0

w ‖b (u ‖a v) 7→c (w ‖b u) ‖a (w ‖b v)
if the communication complexity of b is greater than 0

(u ‖ v) ‖b w 7→c (u ‖b w) ‖ (v ‖b w)
if the communication complexity of b is greater than 0

w ‖b (u ‖ v) 7→c (w ‖b u) ‖ (w ‖b v)
if the communication complexity of b is greater than 0

Communication Reductions

Basic cross reductions C[a u] ‖a D 7→c D[u/a]
where a : ¬A, a : A, C[] is a context; the free variables of u are also free in C[a u]; a does not
occur in u; and the communication complexity of a is greater than 0.

Simplification reductions u ‖a v 7→c u if a does not occur in u
u ‖a v 7→c v if a does not occur in v

Cross reductions

(. . . ‖ C[a u] ‖ . . .) ‖a D 7→c (C[b 〈y〉] ‖a D) ‖b D[ub/y/a]

where a : ¬A, a : A; (. . . ‖ C[a u] ‖ . . .) is a normal simple parallel term; C[] is a simple context;
y is the non-empty sequence of free variables of u bound in C[a u]; B is the conjunction of the
types of the variables in y and b/y is a multiple substitution of these variables; a is rightmost in
C[a u]; b is fresh; b : ¬B, b : B; the communication complexity of a is greater than 0.

Table 4.2: Reduction rules for λCl

with ξ, ξ′, ξ1, ξ2, . . . the stacks of length 1. If t is a proof term, as usual t σ denotes the
term (((t ξ1) ξ2) . . . ξn).

We discuss now the last details of the reduction rules of λCl in Table 4.2.

To trigger a cross reduction for u ‖a v we require that the communication complexity of a
is greater than 0. As this is a warning that the subformula property does not hold, we are
using a logical property as a computational criterion for determining when a computation
should start and stop. In λ-calculi the subformula property fares pretty well as a stopping
criterion. In a sense, it detects all the essential operations that really have to be done.
For example, in simply typed λ-calculus, a closed term that has the subformula property
must be a value, that is, of the form λxu, or 〈u, v〉. Indeed a closed term which is a not

71

4. Classical logic and Gödel–Dummett logic

a value, must be of the form hσ, for some stack σ (see Definition 4.1.10), where h is a
redex (λy u)t or 〈u, v〉πi; but (λy u) and 〈u, v〉 would have a more complex type than the
type of the whole term, contradicting the subformula property. To see the subformula
property at work for λCl, consider again the term λyB a¬B y ‖a xB→¬B aB : ¬B in the
reduction 4.1. Since all prime factors of the communication kind B of a are proper
subformulae of the type ¬B of the term, the communication complexity of a is 0 and the
cross reduction is not fired, thus avoiding the loop in 4.1.

We show now that the reductions of the calculus are sound proof transformations.

Theorem 4.1.3 (Subject reduction). If t : A and t 7→c u, then u : A and all the free
variables of u appear among those of t.

Proof. See Theorem 2.4.3 for the case of intuitionistic reductions. We prove here the
claim for cross reductions and for permutations since the case of simplification reductions
is trivial and that of basic cross reductions is just a simpler version of that for cross
reductions.

1. (. . . ‖ C[a v] ‖ . . .) ‖a D 7→c (C[b 〈y〉] ‖a D) ‖b D[v b/y/a]. Since 〈y〉 : B and
b : ¬B, then b 〈y〉 : ⊥ and C[b 〈y〉] can be assigned the correct type. Since the types
of v b/y and a are the same, the term D[v b/y/a] is correctly defined. Finally, since
a is rightmost in C[a v] and y is the sequence of the free variables of t which are
bound in C[a v], by Definition 4.1.6, all free variables of v b/y in D[v b/y/a] are also
free in C[a v]. Hence, no new free variable is created during the reduction.

2. (u ‖a v)w 7→ uw ‖a vw, if a does not occur free in w. All free variables of (u ‖a v)w
are also free variables of uw ‖a vw.

3. w(u ‖a v) 7→ wu ‖a wv, if a does not occur free in w. All free variables of wu ‖a wv
are also free variables of w(u ‖a v).

4. w1 ‖a w2 efqP 7→ w1 efqP ‖a w2 efqP , where P is atomic. The term w1 efqP ‖a
w2 efqP has the same free variables as w1 ‖a w2 efqP .

5. (u ‖a v)πi 7→ uπi ‖a vπi, for i = 0, 1. The free variables of (u ‖a v)πi and of
uπi ‖a vπi are the same.

6. λx (u ‖a v) 7→ λxu ‖a λx v. The term λx (u ‖a v) and λxu ‖a λx v have the same
free variables.

7. 〈u ‖a v, w〉 7→ 〈u,w〉 ‖a 〈v, w〉, if a does not occur free in w. The free variables of
the terms 〈u ‖a v, w〉 and 〈u,w〉 ‖a 〈v, w〉 are the same.

8. 〈w, u ‖a v〉 7→ 〈w, u〉 ‖a 〈w, v〉, if a does not occur free in w.
The case is symmetric to the previous one.

72

4.1. One-way communication: λCl

9. (u ‖a v) ‖b w 7→ (u ‖b w) ‖a (v ‖b w), if the communication complexity of b is
greater than 0. The free variables of (u ‖a v) ‖b w and (u ‖b w) ‖a (v ‖b w) are the
same.

10. w ‖b (u ‖a v) 7→ (w ‖b u) ‖a (w ‖b v), if the communication complexity of b is
greater than 0. The free variables of the terms w ‖b (u ‖a v) and (w ‖b u) ‖a (w ‖b v)
are the same.

11. u ‖a v 7→ u, if a does not occur in u. The free variables of u are a subset of the free
variables of u ‖a v.

12. u ‖a v 7→ v, if a does not occur in v.
This case is symmetric to the previous one.

Remark 4.1 (Non-determinism and non-confluence). Since the simplification and com-
munication reductions of λCl are highly non-deterministic, the calculus λCl is not confluent.
Before triggering a communication, we need to choose a channel application to use. Al-
though some constraints apply, we might still be able to choose among different channel
applications and different choices might lead to different outcomes. Consider for example
the term

t = ((a (λxA∧A→A λyA∧A yπ0)) efqA∧A→A ‖ (a (λzA∧A→Az)) efqA∧A→A) ‖a a (λyA∧A yπ1)

where a : ¬((A ∧ A → A) → (A ∧ A → A)) and a : (A ∧ A → A) → (A ∧ A → A). If
we start by applying a basic cross reduction on the leftmost occurrence of a , this term
reduces as follows

t 7→c (λxA∧A→A λyA∧A yπ0)(λyA∧A yπ1) 7→c λyA∧A yπ0

If we start instead applying a basic cross reduction to the rightmost occurrence of a , the
original term reduces as follows

t 7→c (λzA∧A→Az)(λyA∧A yπ1) 7→c λyA∧A yπ1

From a logical viewpoint, both reductions yield a normal proof of the formula A∧A→ A,
but the first one is obtained by the rule A0 ∧A1

A0
and the second one by the rule A0 ∧A1

A1
.

Similarly, the choice of which term to eliminate by a simplification reduction might be
relevant with respect to the result of the normalization. Consider for example the term

s = (λx¬A∧B 〈x¬A∧B π1, x
¬A∧B π0〉) ‖a

(λy¬A∧B 〈y¬A∧B π1, b
¬A〉 ‖b λz¬A∧B (z¬A∧B π0 b

A) efqB∧¬A)

We have two ways to apply a cimplification reduction to it:

s 7→c λx¬A∧B 〈x¬A∧B π1, x
¬A∧B π0〉

73

4. Classical logic and Gödel–Dummett logic

and
s 7→c λy¬A∧B 〈y¬A∧B π1, b

¬A〉 ‖b λz¬A∧B (z¬A∧B π0 b
A) efqB∧¬A

Both applications are legitimate and the two results differ considerably. In the first case we
obtain a simply typed λ-term corresponding to an intuitionistic proof of ¬A∧B → B∧¬A,
while in the second we obtain a normal λCl term corresponding to a classical proof of the
same formula.

4.1.2 Subformula property

We start by defining the concepts of parallel form and normal form.

Definition 4.1.11 (Parallel form). A parallel form is defined inductively as follows: a
simply typed λ-term is a parallel form; if u and v are parallel forms, then both u ‖a v
and u ‖ v are parallel forms.

Definition 4.1.12 (Normal forms). We define NFc to be the set of normal λCl-terms as
defined in Definition 2.4.2.

The following property of simply typed λ-terms is crucial for our normalization proof.
It ensures that every bound hypothesis appearing in a normal intuitionistic proof is a
strong subformula of one of the premises or a proper subformula of the conclusion. This
implies that the types of the new channels generated by cross reductions are smaller than
the local premises.

Proposition 4.1.4 (Bound hypothesis property). Suppose that t ∈ NFc is a simply
typed λ-term, xA1

1 , . . . , xAn
n ` t : A and z : B is a variable occurring bound in t. Then one

of the following holds: (1) B is a proper subformula of a prime factor of A or (2) B is a
strong subformula of one among A1, . . . , An.

Proof. By induction on t.

• t = xAi
i , with 1 ≤ i ≤ n. Since by hypothesis z must occur bound in t, this case is

impossible.

• t = λxTu, with A = T → U . If z = xT , since A is a prime factor of itself, we are
done. If z 6= xT , then z occurs bound in u and by induction hypothesis applied to
u : U , we have two possibilities: i) B is a proper subformula of a prime factor of
U and thus a proper subformula of a prime factor – A itself – of A; ii) B already
satisfies 2., and we are done, or B is a strong subformula of T , and thus it satisfies
1.

• t = 〈u1, u2〉, with A = T1 ∧ T2. Then z occurs bound in u or v and, by induction
hypothesis applied to u1 : T1 and u2 : T2, we have two possibilities: i) B is a proper
subformula of a prime factor of T1 or T2, and thus B is a proper subformula of a
prime factor of A as well; ii) B satisfies 2. and we are done.

74

4.1. One-way communication: λCl

• t = u efqP , with A = P . Then z occurs bound in u. Since ⊥ has no proper
subformula, by induction hypothesis applied to u : ⊥, we have that B satisfies 2.
and we are done.

• t = xAi
i ξ1 . . . ξm, where m > 0 and each ξj is either a term or a projection πk. Since

z occurs bound in t, it occurs bound in some term ξj : T , where T is a proper
subformula of Ai. By induction hypothesis applied to ξj , we have two possibilities:
i) B is a proper subformula of a prime factor of T and, by Definition 4.1.8, B is a
strong subformula of Ai. ii) B satisfies 2. and we are done.

Each occurrence of a hypothesis in a normal intuitionistic proof is followed by an
elimination rule, if the hypothesis is neither ⊥ nor a subformula of the conclusion nor a
proper subformula of some other premise.

Proposition 4.1.5 (The state of a variable). Let t ∈ NFc be a simply typed λ-term and
xA1

1 , . . . , xAn
n , zB ` t : A One of the following holds:

1. Every occurrence of zB in t is of the form zB ξ for some proof term or projection ξ.

2. B = ⊥ or B is a subformula of A or a proper subformula of one among A1, . . . , An.

Proof. By induction on t.

• t = xAi
i , with 1 ≤ i ≤ n. Trivial.

• t = zB. This means that B = A, and we are done.

• t = λxTu, with A = T → U . By induction hypothesis applied to u : U , we have
two possibilities: i) every occurrence of zB in u is of the form zB ξ, and we are
done; ii) B = ⊥ or B is a subformula of U , and hence of A, or a proper subformula
of one among the formulae A1, . . . , An, and we are done again.

• t = 〈u1, u2〉, with A = T1 ∧ T2. By induction hypothesis applied to u1 : T1 and
u2 : T2, we have two possibilities: i) every occurrence of zB in u1 and u2 is of the
form zB ξ, and we are done; ii) B = ⊥ or B is a subformula of T1 or T2, and hence
of A, or a proper subformula of one among the formulae A1, . . . , An, and we are
done again.

• t = u efqP , with A = P . By induction hypothesis applied to u : ⊥, we have two
possibilities: i) every occurrence of zB in u is of the form zB ξ, and we are done; ii)
B = ⊥ or a proper subformula of one among A1, . . . , An, and we are done again.

75

4. Classical logic and Gödel–Dummett logic

• t = xAi
i ξ1 . . . ξm, where m > 0 and each ξj is either a term or a projection πk.

Suppose there is an i such that in the term ξj : Tj not every occurrence of zB in u
is of the form zB ξ. If B = ⊥, we are done. If not, then by induction hypothesis B
is a subformula of Tj or a proper subformula of one among A1, . . . , An. Since Tj is
a proper subformula of Ai, in both cases B is a proper subformula of one among
A1, . . . , An.

• t = zB ξ1 . . . ξm, where m > 0 and each ξi is either a term or a projection πj .
Suppose there is an i such that in the term ξi : Ti not every occurrence of zB in u
is of the form zB ξ. If B = ⊥, we are done. If not, then by induction hypothesis B
is a subformula of Ti or a proper subformula of one among A1, . . . , An. But the
former case is not possible, since Ti is a proper subformula of B, hence the latter
holds.

We prove now that the subformula property holds for normal λCl-terms. This intuitively
means that the proofs do not contain concepts which are not already contained in their
assumptions or conclusion and that the programs do not use sub-procedures whose type
is more complex than the type of their inputs and output.

The following statement has two parts, a stronger statement for communication variables,
and a slightly weaker one for other terms. The reason why we can use a stronger notion
of subformula property for communication variables is that, if we want the weaker version
to hold for generic subterms, we need to simplify the type of communication variables
even more.

Theorem 4.1.6 (Subformula property). Suppose that xA1
1 , . . . , xAn

n ` t : A and t ∈ NFc.
Then:

1. For each communication variable a occurring bound in t and with communication
kind B, the prime factors of B are proper subformulae of A1, . . . , An, A.

2. For each subterm t of type B that is not a bound communication variable, B is
either a subformula or a conjunction of subformulae of A1, . . . , An, A.

Proof. By Proposition 4.1.7 if we remove the subscripts t = t1 ‖ t2 ‖ . . . ‖ tp and each ti,
for 1 ≤ i ≤ p, is a simply typed λ-term.

By induction on t.

• t = xAi
i , with 1 ≤ i ≤ n. Trivial.

76

4.1. One-way communication: λCl

• t = λxTu, with A = T → U . By Proposition 4.1.7, t is a simply typed λ-term, so
t contains no bound communication variable. Moreover, by induction hypothesis
applied to u : U , the type of any subterm of u which is not a bound communication
variable is either a subformula or a conjunction of subformulae of the formulae
T,A1, . . . , An, U and hence of the formulae A1, . . . , An, A.

• t = 〈u1, u2〉, with A = T1 ∧ T2. By Proposition 4.1.7, t is a simply typed λ-term, so
t contains no bound communication variable. Moreover, by induction hypothesis
applied to u1 : T1 and u2 : T2, the type of any subterm of u which is not a bound
communication variable is either a subformula or a conjunction of subformulae of
the formulae A1, . . . , An, T1, T2 and hence of the formulae A1, . . . , An, A.

• t = u1 ‖b u2. Let C be the communication kind of b, we first show that the
communication complexity of b is 0. We reason by contradiction and assume that
it is greater than 0. u1, u2 are either simple parallel terms or of the form v1 ‖c v2.
The second case is not possible, otherwise a permutation reduction could be applied
to t ∈ NFc. Thus u1, u2 are simple parallel terms. Since the communication
complexity of b is greater than 0, the types of the occurrences of b in u1, u2 are not
subformulae of A1, . . . , An, A. By Proposition 4.1.5, all occurrences of b in u1, u2
are of the form bw for some term w. Hence, we can write

t = (. . . ‖ C[b t] ‖ . . .) ‖b D

where C[] is a simple context, (. . . ‖ C[b t] ‖ . . .) is a normal simple parallel term,
D is a normal term, and b is rightmost in C[b t]. Hence a cross reduction of t can
be performed, which contradicts the fact that t ∈ NFc. Since we have established
that the communication complexity of b is 0, the prime factors of C must be
proper subformulae of A1, . . . , An, A. Now, by induction hypothesis applied to
u1 : A, u2 : A, for each communication variable aF occurring bound in t, the prime
factors of F are proper subformulae of the formulae A1, . . . , An, A or subformulae
of C and thus of the formulae A1, . . . , An, A; moreover, the type of any subterm of
u1, u2 which is not a communication variable is either a subformula or a conjunction
of subformulae of the formulae A1, . . . , An, C and thus of A1, . . . , An, A.

• t = xAi
i ξ1 . . . ξm, where m > 0 and each ξj : Tj is either a term or a projection πk

and Tj is a subformula of Ai. By Proposition 4.1.7, t is a simply typed λ-term, so t
contains no bound communication variable. By induction hypothesis applied to
each ξj : Tj , the type of any subterm of t which is not a bound communication
variable is either a subformula or a conjunction of subformulae of the formulae
A1, . . . , An, T1, . . . , Tm and thus of the formulae A1, . . . , An, A.

• t = u efqP , with A = P . Then u = xAi
i ξ1 . . . ξm, where m > 0 and each ξj is either

a term or a projection πk. Hence, ⊥ is a subformula of Ai. Finally, by the proof of
the previous case, we obtain the thesis for t.

77

4. Classical logic and Gödel–Dummett logic

4.1.3 The normalization theorem

We prove that every proof term of λCl reduces in a finite number of steps to a normal
form. By subject reduction this implies the normalization for NI→∧⊥ + (EM) proofs.

We shall define a reduction strategy for terms of λCl: a recipe for selecting, in any given
term, the subterm to which apply one of our basic reductions. We remark that the
permutations between communications have been adopted to simplify the normalization
proof, but at the same time, they undermine strong normalization, because they enable
silly loops, like in cut-elimination for sequent calculi.

The idea behind our normalization strategy is to employ a suitable complexity measure
for terms u ‖a v and, each time a reduction has to be performed, to choose the term of
maximal complexity. Since cross reductions can be applied as long as there is a violation
of the subformula property, the natural approach is to define the complexity measure as
a function of some fixed set of formulae, representing the formulae that can be safely
used without violating the subformula property.

Proposition 4.1.7 (Parallel form property). If t ∈ NFc is a λCl-term, then it is in
parallel form.

Proof. By induction on t.

• t is a variable x. Trivial.

• t = λx v. Since t is normal, v cannot be of the form u1 ‖a u2, otherwise one could
apply the permutation

t = λxA u1 ‖a u2 7→c λx
A u1 ‖a λxA u2

and t would not be in normal form. Hence, by induction hypothesis v must be a
simply typed λ-term.

• t = 〈v1, v2〉. Since t is normal, neither v1 nor v2 can be of the form u1 ‖a u2,
otherwise one could apply one of the permutations

〈u1 ‖a u2, w〉 7→c 〈u1, w〉 ‖a 〈u2, w〉

〈w, u1 ‖a u2〉 7→c 〈w, u1〉 ‖a 〈w, u2〉

and t would not be in normal form. Hence, by induction hypothesis v1 and v2 must
be simply typed λ-terms.

• t = v1 v2. Since t is normal, neither v1 nor v2 can be of the form u1 ‖a u2, otherwise
one could apply one of the permutations

w (u1 ‖a u2) 7→c wu1 ‖a wu2

78

4.1. One-way communication: λCl

(u1 ‖a u2)w 7→c u1w ‖a u2w

and t would not be in normal form. Hence, by induction hypothesis v1 and v2 must
be simply typed λ-terms.

• t = v efqP . Since t is normal, v cannot be of the form u1 ‖a u2, otherwise one could
apply the permutation

u1 ‖a u2 efqP 7→c u1 efqP ‖a u2 efqP

and t would not be in normal form. Hence, by induction hypothesis u1 and u2 must
be simply typed λ-terms.

• t = uπi. Since t is normal, v cannot be of the form u1 ‖a u2, otherwise one could
apply the permutation

(u1 ‖a u2)πi 7→c u1πi ‖a u2πi

and t would not be in normal form. Hence, by induction hypothesis u must be a
simply typed λ-term, which is the thesis.

• t = u1 ‖a u2. By induction hypothesis the thesis holds for ui where 1 ≤ i ≤ 2 and
hence trivially for t.

Definition 4.1.13 (Complexity of parallel terms). Let A be a finite set of formulae.
The A-complexity of u ‖a v is the sequence (c, d, l, o) of natural numbers, where:

1. if the communication kind of a is C, then c is the maximum among 0 and the
number of symbols of the prime factors of C that are not subformulae of some
formula in A;

2. d is the number of occurrences of ‖e and ‖ in u, v for any variable e;

3. l is the sum of the maximal lengths of the intuitionistic reductions of u, v;

4. o is the number of occurrences of a in u, v.

The A-communication-complexity of u ‖a v is c.

The following normalization algorithm represents the constructive content of the proofs of
Proposition 4.1.8 and Theorem 4.1.10. Essentially, the master reduction strategy consists
in iterating the basic reduction relation �c defined in Definition 4.1.14 below, whose
goal is to permute the smallest redex u ‖a v of maximal complexity until u, v are simple
parallel terms, see Definition 4.1.3, then normalize them and apply cross reductions.

79

4. Classical logic and Gödel–Dummett logic

Definition 4.1.14 (Side reduction strategy). Let t : A be a term with free variables
xA1

1 , . . . , xAn
n and A be the set of the proper subformulae of A and the strong subformulae

of the formulae A1, . . . , An. Let u ‖a v be the smallest subterm of t, if any, among those of
maximal A-complexity and let (c, d, l, o) be its A-complexity. We write t �c t

′ whenever
t′ has been obtained from t by applying to u ‖a v:

1. if d > 0, one of the permutation reductions that move ‖a inside u or v, like
u ‖a (v1 ‖b v2) 7→c (u ‖a v1) ‖b (u ‖a v2)

2. if d = 0 and l > 0, intuitionistic reductions normalizing all terms u1, . . . , um;

3. if d = l = 0 and c > 0, a cross reduction, or basic cross reduction, possibly followed
by applications of the simplification reductions w1 ‖c w2 7→c wi for i ∈ {1, 2} to the
whole term;

4. if d = l = c = 0, a simplification reduction u ‖a v 7→c u or u ‖a v 7→c v.

Definition 4.1.15 (Master reduction strategy). We define a normalization algorithm
N (t) taking as input a typed term t and producing a term t′ such that t 7→∗c t′. Assume
that the free variables of t are xA1

1 , . . . , xAn
n and let A be the set of the proper subformulae

of A and the strong subformulae of the formulae A1, . . . , An. The algorithm behaves as
follows.

1. If t is not in parallel form, then, using permutation reductions, t is reduced to a t′
which is in parallel form and N (t′) is recursively executed.

2. If t is a simply typed λ-term, it is normalized and returned. If t = u1 ‖a u2 is not
a redex, then let N (ui) = u′i for 1 ≤ i ≤ 2. If u′1 ‖a u′2 is normal, it is returned.
Otherwise, N (u′1 ‖a u′2) is recursively executed.

3. If t is a redex, we select the smallest subterm w of t having maximalA-communication-
complexity r. A sequence of terms is produced w �c w1 �c w2 �c . . . �c wn such
that wn has A-communication-complexity strictly smaller than r. We substitute
wn for w in t obtaining t′ and recursively execute N (t′).

We observe that in the step 2 of the algorithm N , by construction u1 ‖a u2 is not a redex.
After u1, u2 are normalized respectively to u′1, u′2, it can still be the case that u′1 ‖a u′2 is
not normal, because some free variables of u1, u2 may disappear during the normalization,
causing a new violation of the subformula property that transforms u′1 ‖a u′2 into a redex,
even though u1 ‖a u2 was not.

The first step of the normalization consists in reducing the term in parallel form.

Proposition 4.1.8. Let t : A be any term. Then t 7→∗c t′, where t′ is a parallel form.

80

4.1. One-way communication: λCl

Proof. By induction on t. For the present proof, we write u ⇒∗ u′′ to indicate that
u 7→c u′ and u′ can be denoted as u′′ omitting parentheses and the subscript of ‖
operators.

• t is a variable x. Trivial.

• t = λxu. By induction hypothesis,

u⇒∗ u1 ‖ u2 ‖ . . . ‖ un

and each term ui, for 1 ≤ i ≤ n, is a simply typed λ-term. Applying n− 1 times
the permutations we obtain

t⇒∗ λxu1 ‖ λxu2 ‖ . . . ‖ λxun

which is the thesis.

• t = u v. By induction hypothesis,

u⇒∗ u1 ‖ u2 ‖ . . . ‖ un

v ⇒∗ v1 ‖ v2 ‖ . . . ‖ vm

and each term ui and vi, for 1 ≤ i ≤ n,m, is a simply typed λ-term. Applying
(n− 1) + (m− 1) times the permutations we obtain

t⇒∗ (u1 ‖ u2 ‖ . . . ‖ un) v
⇒∗ u1 v ‖ u2 v ‖ . . . ‖ un v
⇒∗ u1 v1 ‖ u1 v2 ‖ . . . ‖ u1 vm ‖ . . .

. . . ‖ un v1 ‖ un v2 ‖ . . . ‖ un vm

• t = 〈u, v〉. By induction hypothesis,

u⇒∗ u1 ‖ u2 ‖ . . . ‖ un

v ⇒∗ v1 ‖ v2 ‖ . . . ‖ vm

and each term ui and vi, for 1 ≤ i ≤ n,m, is a simply typed λ-term. Applying
(n− 1) + (m− 1) times the permutations we obtain

t⇒∗ 〈u1 ‖ u2 ‖ . . . ‖ un, v〉
⇒∗ 〈u1, v〉 ‖ 〈u2, v〉 ‖ . . . ‖ 〈un, v〉
⇒∗ 〈u1, v1〉 ‖ 〈u1, v2〉 ‖ . . . ‖ 〈u1, vm〉 ‖ . . .

. . . ‖ 〈un, v1〉 ‖ 〈un, v2〉 ‖ . . .

. . . ‖ 〈un, vm〉

81

4. Classical logic and Gödel–Dummett logic

• t = uπi. By induction hypothesis,

u⇒∗ u1 ‖ u2 ‖ . . . ‖ un

and each term ui, for 1 ≤ i ≤ n, is a simply typed λ-term. Applying n− 1 times
the permutations we obtain

t⇒∗ u1 πi ‖ u2 πi ‖ . . . ‖ un πi.

• t = u efqP . By induction hypothesis,

u⇒∗ u1 ‖ u2 ‖ . . . ‖ un

and each term ui, for 1 ≤ i ≤ n, is a simply typed λ-term. Applying n− 1 times
the permutations we obtain

t⇒∗ u1 efqP ‖ u2 efqP ‖ . . . ‖ un efqP

We now prove that any term in parallel form can be normalized using the algorithm N .

Lemma 4.1.9. Let t : A be a term in parallel form which is not simply typed and. Let A
contain all proper subformulae of A and be closed under subformulae. Assume that r > 0
is the maximum A-communication-complexity of the subterms of t. Assume that the free
variables xA1

1 , . . . , xAn
n of t are such that for every i, either each strong subformula of

Ai is in A, or each proper prime subformula of Ai is in A or has at most r symbols.
Suppose moreover that no subterm u1 ‖a u2 with A-communication-complexity r contains
a subterm of the same A-communication-complexity. Then there exists t′ such that t �∗c t′
and the maximal among the A-communication-complexity of the subterms of t′ is strictly
smaller than r.

Proof. We prove the lemma by lexicographic induction on the pair (ρ, k) where k
is the number of subterms of t with maximal A-complexity ρ among those with A-
communication-complexity r.

Let u1 ‖a u2 be the smallest subterm of t having A-complexity ρ. Four cases can occur.

(a) ρ = (r, d, l, o), with d > 0. We first show that the term u1 ‖a u2 is a redex. Now, the
free variables of u1 ‖a u2 are among xA1

1 , . . . , xAn
n , aB1

1 , . . . , a
Bp
p and the communication

kind of a is D. Hence, suppose by contradiction that all the prime factors of D are
proper subformulae of A or strong subformulae of one among A1, . . . , An, B1, . . . , Bp.
Given that r > 0 there is a prime factor P of D such that P has r symbols and does
not belong to A. The possible cases are two: (i) P is a proper subformula of a prime
proper subformula A′i of Ai such that A′i /∈ A; (ii) P , by Proposition 4.1.2, is a proper
subformula of a prime factor of Bi. If (i), then the number of symbols of A′i is less than

82

4.1. One-way communication: λCl

or equal to r, so P cannot be a proper subfomula of A′i, which is a contradiction. If
(ii), then, since by hypothesis aBi

i is bound in t, there is a prime factor of Bi having a
number of symbols greater than r, hence we conclude that there is a subterm w1 ‖b w2
of t having A-complexity greater than ρ, which is absurd.

Now, since d > 0, we may assume that for some 1 ≤ i ≤ 2, ui = w1 ‖b w2. Suppose
i = 2. The term u1 ‖a (w1 ‖b w2) is then a redex of t and by replacing it with (∗):
(u1 ‖a w1) ‖b (u1 ‖a w2) we obtain from t a term t′ such that t �c t′ according to
Definition 4.1.14. We must verify that we can apply to t′ the main induction hypothesis.
Indeed, the reduction t �c t′ duplicates all the subterms of u1, but all of their A-
complexities are smaller than r, because u1 ‖a u2 by choice is the smallest subterm of
t having maximal A-complexity ρ. The terms (u1 ‖a wi) for 1 ≤ i ≤ 2 have smaller
A-complexity than ρ, because they have numbers of occurrences of the symbol ‖ strictly
smaller than in u1 ‖a u2. Moreover, the terms in t′ with (∗) as a subterm have, by
hypothesis, A-communication-complexity smaller than r and hence A-complexity smaller
than ρ. Assuming that the communication kind of b is F , the prime factors of F that are
not in A must have fewer symbols than the prime factors of D that are not in A, again
because u1 ‖a u2 by choice is the smallest subterm of t having maximal A-complexity ρ;
hence, the A-complexity of (∗) is smaller than ρ. Hence the number of subterms of t′
with A-complexity ρ is strictly smaller than k. By induction hypothesis, t′ �∗c t′′, where
t′′ satisfies the thesis.

(b) ρ = (r, d, l, o), with d = 0 and l > 0. Since d = 0, u1, u2 are simple parallel
terms – and thus strongly normalizable [GLT89] – so we may assume that for 1 ≤ i ≤ 2,
ui 7→∗c u′i ∈ NFc by a sequence intuitionistic reduction rules. By replacing in t the
subterm u1 ‖a u2 with u′1 ‖a u′2, we obtain a term t′ such that t �c t′ according
to Definition 4.1.14. Moreover, the terms in t′ with u′1 ‖a u′2 as a subterm have, by
hypothesis, A-communication-complexity smaller than r and hence A-complexity is
smaller than ρ. By induction hypothesis, t′ �∗c t′′, where t′′ satisfies the thesis.

(c) ρ = (r, d, l, o), with d = l = 0. Since d = 0, u1, u2 are simply typed λ-terms. Since
l = 0, u1, u2 are in normal form and thus satisfy conditions 1. and 2. of Proposition 4.1.4.
We need to check that u1 ‖a u2 is a redex, in particular that the communication
complexity of a is greater than 0. Assume that the free variables of u1 ‖a u2 are among
xA1

1 , . . . , xAn
n , aB1

1 , . . . , a
Bp
p and that the communication kind of a is D. As we argued

above, we obtain that not all the prime factors of D are proper subformulae of A or
strong subformulae of one among A1, . . . , An, B1, . . . , Bp. By Definition 4.1.9, u1 ‖a u2 is
a redex.

We now prove that every occurrence of a in u1, u2 is of the form a ξ for some term or
projection ξ. First of all, a occurs with arrow type in all u1, u2. Moreover, u1 : A, u2 : A,
since t : A and t is a parallel form; hence, the types of the occurrences of a in u1, u2 cannot
be subformulae of A, otherwise r = 0, and cannot be proper subformulae of one among
A1, . . . , An, B1, . . . , Bp, otherwise the prime factors of D would be strong subformulae of
one among A1, . . . , An, B1, . . . , Bp and thus we are done. Thus by Proposition 4.1.5 we

83

4. Classical logic and Gödel–Dummett logic

are done. Two cases can occur.

• a does not occur in ui for 1 ≤ i ≤ 2. By performing a simplification reduction, we
replace in t the term u1 ‖a u2 with ui and obtain a term t′ such that t �c t

′ according
to Definition 4.1.14. After the replacement, the number of subterms having maximal
A-complexity ρ in t′ is strictly smaller than the number of such subterms in t. By
induction hypothesis, t′ �∗c t′′, where t′′ satisfies the thesis.

• a occurs in all the subterms u1, u2. Let u1 = (. . . ‖ C[a w] ‖ . . .) where a : ¬D, (. . . ‖
C[a w] ‖ . . .) is a normal simple parallel term, C[] is a simple context, and the displayed
occurrence of a is rightmost in C[a w]. By applying a cross reduction to C[a w] ‖a u2
we obtain either the term u2[w/a] or the term (∗∗) (C[b 〈y〉] ‖a u2) ‖b u2[w b/y/a] where
b : ¬B, y is the sequence of the free variables of wz which are bound in C[a w] and a
does not occur in w. In the former case, the term has A-complexity strictly smaller
than ρ and we are done. In the latter case, since u1, u2 satisfy conditions 1. and 2. of
Proposition 4.1.4, the types Y1, . . . , Yk of the variables y are proper subformulae of A
or strong subformulae of the formulae A1, . . . , An, B1, . . . , Bp. Hence, the types among
Y1, . . . , Yk which are not in A are strictly smaller than all the prime factors of the formulae
B1, . . . , Bp. Since the communication kind of b consists of the formulae Y1 ∧ . . . ∧ Yk, by
Definition 4.1.13 the A-complexity of the term (∗∗) above is strictly smaller than the
A-complexity ρ of u1 ‖a u2.

Now, since C[a w], u2 normal simple parallel terms, C[b 〈y〉] is normal too and contain fewer
occurrences of a than C[a w] does; hence, the A-complexity of the term C[b 〈y〉] ‖a u2
is strictly smaller than the A-complexity ρ of u1 ‖a u2. Let now t′ be the term obtained
from t by replacing the term C[a w] ‖a u2 with (∗∗). By construction t �c t

′. Moreover,
the terms in t′ with (∗∗) as a subterm have, by hypothesis, A-communication-complexity
smaller than r and hence A-complexity smaller than ρ. Hence, we can apply the main
induction hypothesis to t′ and obtain by induction hypothesis, t′ �∗c t′′, where t′′ satisfies
the thesis.

(d) ρ = (r, d, l, o), with d = l = o = 0. Since o = 0, u1 ‖a u2 is a redex. Let us say a
does not occur in ui for 1 ≤ i ≤ 2. By performing a simplification reduction, we replace
u1 ‖a u2 with ui according to Definition 4.1.14. Hence, by induction hypothesis, t′ �∗c t′′,
where t′′ satisfies the thesis.

Theorem 4.1.10. Let t : A be a λCl-term. Then t 7→∗c t′ : A, where t′ is a normal
parallel form.

Proof. By Proposition 4.1.8, we can assume that t : A is in parallel form. Assume now
that the free variables of t are xA1

1 , . . . , xAn
n and let A be the set of the proper subformulae

of A and the strong subformulae of the formulae A1, . . . , An. We prove the theorem by
lexicographic induction on the quadruple (|A|, r, k, s) where |A| is the cardinality of A, r
is the maximal A-communication-complexity of the subterms of t, k is the number of
subterms of t having maximal A-communication-complexity r and s is the size of t. If t

84

4.1. One-way communication: λCl

is a simply typed λ-term, it has a normal form [GLT89] and we are done; so we assume t
is not. There are two main cases.

• First case: t is not a redex. Let t = u1 ‖a u2 and let C be the communication kind of
a. Then, the communication complexity of a is 0 and by Definition 4.1.9 every prime
factor of C belongs to A. Let the types of the occurrences of a in ui for 1 ≤ i ≤ 2 be Bi,
with Bi = ¬C or Bi = C. Let now Ai be the set of the proper subformulae of A and the
strong subformulae of A1, . . . , An, Bi. By Proposition 4.1.2, every strong subformula of
Bi is a proper subformula of a prime factor of C, and this prime factor is in A. Hence,
Ai ⊆ A.

If Ai = A, the maximal Ai-communication-complexity of the terms of ui is less than or
equal to r and the number of terms with maximal Ai-communication-complexity is less
than or equal to k; since the size of ui is strictly smaller than that of t, by induction
hypothesis ui 7→∗c u′i, where u′i is a normal parallel form.

If Ai ⊂ A, again by induction hypothesis ui 7→∗c u′i, where u′i is a normal parallel form.

Let now t′ = u′1 ‖a u′2, so that t 7→∗c t′. If t′ is normal, we are done. Otherwise, since
u′j for 1 ≤ j ≤ 2 are normal, the only possible redex remaining in t′ is the whole term
itself, i.e., u′1 ‖a u′2: this happens only if the free variables of t′ are fewer than those
of t; w.l.o.g., assume they are xA1

1 , . . . , xAi
i , with i < n. Let B be the set of the proper

subformulae of A and the strong subformulae of the formulae A1, . . . , Ai. Since t′ is a
redex, the communication complexity of a is greater than 0; by Definition 4.1.9, a prime
factor of C is not in B, so we have B ⊂ A. By I.H., t′ 7→∗c t′′, where t′′ is a parallel normal
form.

• Second case: t is a redex. Let u1 ‖a u2 be the smallest subterm of t having A-
communication-complexity r. The free variables of u1 ‖a u2 satisfy the hypotheses of
Lemma 4.1.9 either because have type Ai and A contains all the strong subformulae
of Ai, or because the prime proper subformulae of their type have at most r symbols,
by maximality of r. By Lemma 4.1.9 u1 ‖a u2 �∗c w where the maximal among the
A-communication-complexity of the subterms of w is strictly smaller than r. Let t′ be
the term obtained replacing w for u1 ‖a u2 in t. We apply the I.H. and obtain t′ 7→∗c t′′
with t′′ in parallel normal form.

4.1.4 On the expressive power of λCl

We discuss now the expressive power of λCl and its computational capabilities. First, we
establish the relation of λCl with the simply typed λ-calculus and Parigot’s λµ [Par92].

Proposition 4.1.11. λCl is strictly more expressive than simply typed λ-calculus. More-
over, λCl cannot be simulated by propositional λµ-calculus.

Proof. The simply typed λ-calculus can be trivially embedded into λCl. The converse does
not hold, as λCl can encode the parallel OR, which is a term O : Bool→ Bool→ Bool
such that Offff 7→∗c ff, Outt 7→∗c tt, Ottu 7→∗c tt for every term u. A consequence of

85

4. Classical logic and Gödel–Dummett logic

Berry’s sequentiality theorem [Bar84], is that there is no parallel OR in simply typed
λ-calculus. O can instead be defined in Boudol’s parallel λ-calculus [Bou89]. Assuming
to add the boolean type in our calculus, that a : Bool ∧ S → ⊥, and that a : Bool ∧ S,
“if _ then_ else_” is as usual, the λCl-term for such parallel OR is

O := λxBool λyBool(if x then tt else a 〈ff, s〉 efqBool ‖a if y then tt else a π0)

for any flag term s : S, introduced to control the communication complexity of a and
make it reducible by communications in all circumstances. Now, Ou tt reduces to tt by

(if u then tt else a 〈ff, s〉 efqBool) ‖a (if tt then tt else a π0)

7→∗c (if u then tt else a 〈ff, s〉 efqBool) ‖a tt 7→c tt

And symmetrically O ttu 7→∗c tt. On the other hand, O ff ff reduces to ff by

(if ff then ff else a 〈ff, s〉 efqBool) ‖a (if ff then ff else a π0)

7→∗c a 〈ff, s〉 efqBool ‖a a π0 7→c 〈ff, s〉π0 7→c ff

The claim about λµ follows by Ong’s embedding of propositional λµ in the simply typed
λ-calculus, see Lemma 6.3.7 of [SU98]. Indeed the translation u of a λµ-term u is such
that s t = s t and x = x for any variable x, if there were a typed λµ-term O for parallel
OR, then

Ox tt = Ox tt 7→∗c tt = tt

O ttx = O ttx 7→∗c tt = tt

O ff ff = O ff ff 7→∗c ff = ff

and O would be a parallel OR in simply typed λ-calculus, which is impossible.

Example 4.1.3 (Cross reductions for program efficiency). We show how to use
cross reductions to communicate processes that are still waiting for some arguments.
Consider the process M ‖a (Q ‖b P). The process Q contains a channel b to send a
message (gray pentagon) to P (below left), but the message is missing a part (gray
square) which is computed by M and sent to Q by a. In a system without a closure
handling mechanism, the whole interaction needs to wait until M can communicate to Q
(below right).

86

4.1. One-way communication: λCl

The cross reduction handles precisely this kind of missing arguments. It enables Q to send
immediately the message through the channel a and establishes a new communication
channel c on the fly (below left) which redirects the missing term, when ready, to the
new location of the message inside P (below right).

We can now partially evaluate P , which in the best case will not even need the gray
square.

Both reductions terminate then with

the former, sending the whole message (gray pentagon and square) by b; the latter, redi-
recting the missing part of the message (gray square) by the new channel c. For a concrete
example assume that

M 7→∗c (a (λxT→⊥ x t)) efqS Q = (a(λyT b 〈s, y〉)) efqS P = bπ0

where s : S and t : T are closed terms, the complexity of S is much higher than that
of T , b : S ∧ T, b : ¬(S ∧ T), a : (T → ⊥) → ⊥ and a : ¬((T → ⊥) → ⊥). Without a
special mechanism for sending open terms, Q must wait for M to normalize. Afterwards
M sends λxT→⊥ x t by a to Q:

M ‖a (Q ‖b P)
since a is not in P

7→∗c (M ‖a Q) ‖b P 7→∗c ((a (λxT→⊥ x t)) efqS ‖a Q) ‖b P
7→c ((λxT→⊥ x t)(λyT b 〈s, y〉)) efqS ‖b P 7→c ((λyT b 〈s, y〉)t) efqS ‖b P
7→c (b 〈s, t〉) efqS ‖b bπ0 7→c 〈s, t〉π0 7→c s

Clearly P does not need t at all. Even though it waited for the pair 〈s, t〉, P only uses
the term s.
Our normalization instead enables Q to directly send 〈s, y〉 to P by executing a cross
reduction:

M ‖a (Q ‖b P) = M ‖a ((a(λyT b 〈s, y〉)) efqS ‖b bπ0)
7→∗c M ‖a (((a(λyT c y)) efqS ‖b P) ‖c 〈s, c〉π0)

where the channel c handles the redirection of the data yT in case it is available later. In
our case P already contains all it needs to terminate its computation, indeed

7→c M ‖a (((a(λyT c y)) efqS ‖b P) ‖c s) 7→∗c s

87

4. Classical logic and Gödel–Dummett logic

since s does not contain communications anymore. Notice that the time-consuming
normalization of the term M does not even need to be finished at this point.

4.1.5 Classical disjunction

We present now the formal definition of disjunction and disjunction rules in NCl and we
define the corresponding computational constructs in λCl.

Definition 4.1.16 (Definition of ∨ in CL). For any formula A, we define the translation
A∨c inductively as follows:

• for any propositional variable p, p∨c = p

• ⊥∨c = ⊥

• (B → C)∨c = B∨c → C∨c

• (B ∧ C)∨c = B∨c ∧ C∨c

• (B ∨ C)∨c = (B∨c → ⊥)→ (C∨c → ⊥)→ ⊥

For any set of formulae Γ, we denote by Γ∨c the set {A∨c : A ∈ Γ}.

We show now the completeness of NCl with respect to the ∨c translation of the theorems
of classical logic.

Proposition 4.1.12. For any set Γ of formulae and formula A, if Γ `CL A, then
Γ∨c `NCl A

∨c.

Proof. By Theorem 4.1.1, there is a derivation D of A in NI + (EM). The proof is by
induction on the height l of D.

If D has height 0, then it is A and our NCl proof is just A∨c.

We reason now by cases on the last rule applied in D:

•

D =
D1
C

B → C

with assumptions Γ. By induction hypothesis there exists a derivation

E
C∨c

in NCl with assumptions Γ∨c and possibly B∨c. We construct the derivation

E
C∨c

B∨c → C∨c

88

4.1. One-way communication: λCl

possibly discharging B∨c and obtain the required derivation of A∨c in NCl since
(B → C)∨c = B∨c → C∨c.

•

D =
D1

B → C
D2
B

C

By induction hypothesis there exist derivations

E1
(B → C)∨c

E2
B∨c

in NCl whose assumptions are contained in Γ∨c. Since (B → C)∨c = B∨c → C∨c

the required derivation is
E1

B∨c → C∨c
E2
B∨c

C∨c

•

D =
D1
B

D2
C

B ∧ C
By induction hypothesis there exist derivations

E1
B∨c

E2
C∨c

in NCl whose assumptions are contained in Γ∨c. Since (B ∧ C)∨c = B∨c ∧ C∨c the
required derivation is

E1
B∨c

E2
C∨c

B∨c ∧ C∨c

•

D =
D

B1 ∧B2
Bi

By induction hypothesis there exists a derivation

E
(B1 ∧B2)∨c

in NCl whose assumptions are Γ∨c. Since (B1 ∧ B2)∨c = B∨c1 ∧ B∨c2 the required
derivation is

E
B∨c1 ∧B∨c2

B∨ci

•

D =
D
⊥
P

89

4. Classical logic and Gödel–Dummett logic

for some atomic formula P 6= ⊥. By induction hypothesis there exists a derivation

E
⊥∨c

in NCl whose assumptions are Γ∨c. Since ⊥∨c = ⊥ and P∨c = P the required
derivation is

E
⊥∨c
P∨c

•

D =
D
Bi

B1 ∨B2

By induction hypothesis there exists a derivation

E
B∨ci

in NCl whose assumptions are Γ∨c. Since (B1 ∨ B2)∨c = (B∨c1 → ⊥) → (B∨c2 →
⊥)→ ⊥ the required derivation is

[B∨ci → ⊥]
E
B∨ci

⊥
(B∨c2 → ⊥)→ ⊥

2

(B∨c1 → ⊥)→ (B∨c2 → ⊥)→ ⊥
1

where B∨ci → ⊥ is discharged by 1 if i = 1 and by 2 of i = 2.

•

D =
D0

B1 ∨B2
D1
C
D2
C

C

By induction hypothesis there exist derivations

E0
(B1 ∨B2)∨c

E1
C∨c

E2
C∨c

in NCl where the assumptions of E0 are included in Γ∨c, and the assumptions of Ei
for i ∈ {1, 2} are included in Γ∨c plus possibly B∨ci . Since (B1 ∨B2)∨c = (B∨c1 →
⊥)→ (B∨c2 → ⊥)→ ⊥ the required derivation is

E0
(B∨c1 → ⊥)→ (B∨c2 → ⊥)→ ⊥ [¬B∨c1]1

(B∨c2 → ⊥)→ ⊥ [¬B∨c2]2
⊥
C∨c

E2
C∨c

C∨c
(EM)2 E1

C∨c

C∨c
(EM)1

90

4.2. Adding the symmetry: λG

where each (EM)i discharges the displayed occurrences of ¬B∨ci and the occurrences
of B∨ci in Ei. By Proposition 2.4.2, we know that the derivation of C∨c from ⊥
denoted as ⊥

C∨c
always exists. Such derivation has exactly the assumptions of E0.

The natural deduction rules for disjunction correspond to the computational constructs
of case distinction and injection. Since disjunction can be defined in NCl, we can define
this constructs in λCl.

For the sake of simplicity we denote here by w efqT , for any term w : ⊥ and complex
type T , the term sw where s : ⊥ → T is constructed λ-abstracting the term obtained
from the derivation in Proposition 2.4.2.

The λCl-terms ι0(u), ι1(u) and t[x0.v0, x1.v1] such that for i ∈ {0, 1} we have ιi(u)[x0.v0, x1.v1] 7→c
vi[u/xi] are defined as follows: Let A ∨B := (A→ ⊥)→ (B → ⊥)→ ⊥

ι0(u) := λxA→⊥λyB→⊥ xu : A ∨B ι1(u) := λxA→⊥λyB→⊥ y u : A ∨B
t [x0.v0, x1.v1] := ((t a b) efqF ‖a v0[a/x0]) ‖b v1[b/x1] : F

where a : A, a : A→ ⊥, b : B , b : B → ⊥, v0 : F, v1 : F, t : A ∨B. We can then verify,
for example, that

ι0(u) [x0.v0, x1.v1] := (((λxA→⊥λyB→⊥ xu) a b) efqF ‖a v0[a/x0]) ‖b v1[b/x1]

7→∗c ((a u) efqF ‖a v0[a/x0]) ‖b v1[b/x1] 7→c v0[u/x0] ‖b v1[b/x1] 7→c v0[u/x0]

4.2 Adding the symmetry: λG

There is more than one way to transmit a message through a channel. We present λG, a
typed concurrent extension of λ-calculus, the channels of which establish a symmetric
connection between two parallel processes. While many logical symmetries are proper to
classical logic, the axiom used to type communication channels in λCl imposes a very
precise direction to the communication: from the variable a : ¬A to the variable a : A.
There is no reduction that enables a : A to transmit to a : ¬A, only reductions enabling
it to receive from a : ¬A. The logical reason for this is that an argument of a : ¬A has
to be a term of type A, which is precisely the kind of term that can replace an occurrence
of a : A; while an argument of a : A cannot, in general, replace an application of a : ¬A.

If we want a single channel endpoint to be able, in general, both to send and receive
messages without type violations, we need an axiom schema that identifies the type of
the argument of each communication channel with the type of the output of the other
channel. The simplest solution to the equation is Lin = (A → B) ∨ (B → A): any
argument of aA→B can be used to replace the result of an application of aB→A, and

91

4. Classical logic and Gödel–Dummett logic

vice versa. Extending NI by the axiom Lin, we obtain the natural deduction NG for
Gödel–Dummett logic GL.

Hence the parallelism operator of λG implements a symmetric channel connecting two
processes:

Figure 4.2: Representation of a λG channel.

The calculus NG is of interest also from a purely proof-theoretical point of view. Indeed,
it solves the problem of finding an analytic natural deduction for GL in a novel and
quite simple way. Other attempts in this direction [BCF00, BP15] are discussed in
Section 2.4.3.

4.2.1 Natural deduction

From a logical point of view, the rule

[A→ B]....
C

[B → A]....
C

C
(Lin)

is equivalent to the higher-level rule

A
B....
C

B
A....
C

C

defined in Section 3.3.2. We choose this version of the rule for the reasons already
discussed in Section 4.1.1 with regard to the rule (EM) of λCl. The soundness and
completeness of LI extended by this rule with respect to GL follows from Theorem 3.3.1.
Nonetheless, a direct proof that LI + (Lin) is sound and complete with respect to GL
follows.

Theorem 4.2.1 (Soundness and completeness). For any set Π of formulae and formula
A, Π `NI+(Lin) A if and only if Π `GL A.

Proof. The calculus NI is strongly equivalent to any Hilbert calculus for intuitionistic
logic – see for example Chapter 2 of [TS96]. Moreover, we can capture GL extending
such systems by the axiom schema Lin

92

4.2. Adding the symmetry: λG

Hence for the left to right direction, we show that we can simulate any instance of the
rule (Lin) using instances of the Lin axiom in NI as follows:

(A→ B) ∨ (B → A)

[A→ B]1....
C

[B → A]1....
C

C
1

While for the right to left direction, we show that we can derive any instance of the Lin
axiom as follows:

[A→ B]1

(A→ B) ∨ (B → A)
[B → A]1

(A→ B) ∨ (B → A)
(A→ B) ∨ (B → A)

1

We exploit the definability of A ∨ B as ((B → A) → A) ∧ ((A → B) → B) in GL,
see [Dum59], and treat ∨ as a defined connective. We provide all details in Definition 4.2.9
and Proposition 4.2.9 in Section 4.2.7.

Definition 4.2.1 (Natural deduction calculus NG). The natural deduction calculus NG
extends NI→∧⊥ by the (Lin) rule.

4.2.2 Reduction rules

We present now the reduction rules for NG. As usual, a normal deduction in NG should
have two essential features: every intuitionistic Prawitz-style reduction should have been
carried out and the subformula property should hold. Due to the (Lin) rule, the former
is not always enough to guarantee the latter. Here we present the main ideas behind
the normalization procedure for NG and the needed reduction rules. The computational
interpretation of the rules will be carried out through the λG calculus in Section 4.2.3.

The normalization procedure is similar to the procedure for λCl. The mains steps are the
following:

• We permute down all applications of (Lin).

Obtained a deduction in parallel form, we interleave the following two steps.

• We apply the standard intuitionistic reductions [Pra71] to the parallel branches of
the derivation.

93

4. Classical logic and Gödel–Dummett logic

Thus we normalize each single intuitionistic derivation, and this can be done in parallel.
The resulting derivation, however, need not satisfy yet the subformula property. Intu-
itively, the problem is that communications may discharge hypotheses that have nothing
to do with their conclusion.

• We apply cross reductions to replace the (Lin) applications that violate the subfor-
mula property.

Using these reductions, we eliminate the detours that appear in configurations like the
one below on the left. To remove them, a tentative idea could be to simultaneously move
the deduction D1 to the right and D2 to the left thus obtaining the derivation below
right:

D1
A [A→ B]

B....
C

D2
B [B → A]

A....
C

C

D2
B....
C

D1
A....
C

C

but the unrestricted transformation above cannot work; indeed D1 might contain the
hypothesis A → B and hence it cannot be moved on the right. Even worse, D1 may
depend on hypotheses that are locally opened, but discharged below B but above C.
Again, it is not possible to move D1 on the right as naively thought, otherwise new global
hypotheses would be created.

As in the case of λCl, cross reductions solve this problem. Let us highlight Γ and ∆, the
hypotheses of D1 and D2 that are respectively discharged below B and A but above the
application of (Lin). Assume moreover, that A→ B does not occur in D1 and B → A
does not occur in D2 as hypotheses discharged by (Lin). A cross reduction transforms
the deduction below left into the deduction below right if (Lin) in the original proof
discharges in each branch exactly one occurrence of the hypotheses, and Γ and ∆ are
formulae

Γ
D1
A [A→ B]

B....
C

∆
D2
B [B → A]

A....
C

C

∆ [∆→ Γ]
Γ
D1
A....
C

Γ [Γ→ ∆]
∆
D2
B....
C

C

94

4.2. Adding the symmetry: λG

and into the following deduction, in the general case

Γ
D1
A [A→ B]

B
1

....
C

∆
Γ

3

D1
A....
C

C
1

Γ
∆

3

D2
B....
C

∆
D2
B [B → A]

A
2

....
C

C
2

C
3

where the notation X
Y

means that we derive each occurrence of element D of Y as follows:

X∧
X
∧i [

∧
X →

∧
Y]∧

Y

D
∧e

where
∧
X and

∧
Y are the conjunctions of the elements of X and Y respectively, X∧

X
∧i

is the obvious derivation by conjunction introductions,
∧
X →

∧
Y is discharged by (Lin)

and
∧
Y

D
∧e is the obvious derivation of D by conjunction eliminations.

Mindless applications of the cross reductions might produce reduction loops, see for
instance Example 4.2.1. To avoid them we will allow cross reductions to be performed
only when the proof is not analytic.

4.2.3 The λG-calculus

We introduce λG, a parallel λ-calculus for GL. λG extends simply typed λ-calculus with
a parallel operator that interprets the inference for the linearity axiom Lin. We describe
λG-terms and their computational behavior, proving as main result of the section the
subject reduction theorem, stating that the reduction rules preserve the type.

[aA→B : A→ B]....
u : C

[aB→A : B → A]....
v : C

u ‖a v : C

u : A v : A
u ‖ v : A (contr)

Table 4.3: Type assignment for λG.

Definition 4.2.2 (Terms of λG). The terms of λG are defined by the rules for simply
typed λ-calculus in Table 2.5 and by the rules in Table 4.3.

95

4. Classical logic and Gödel–Dummett logic

The calculus λG is isomorphic to NG. Parallelism is introduced by the rule for the
linearity axiom Lin.

Proof terms may contain variables xA0 , xA1 , xA2 , . . . of type A for every formula A. ;
these variables are denoted as xA, yA, zA, . . . , aA, bA, cA, . . . For clarity, the variables
introduced by the (Lin) rule will be often denoted with letters a, b, c, . . . but they are
not in a syntactic category apart. A variable xA that occurs in a term of the form λxAu
is called λ-variable and a variable a that occurs in a term u ‖a v is called communication
variable and represents a private communication channel between the parallel processes
u and v.

The free and bound variables of a proof term are defined as usual and for the new term
u ‖a v, all the free occurrences of a in u and v are bound in u ‖a v.

If Γ = x1 : A1, . . . , xn : An and the list x1, . . . , xn includes all the free variables of a proof
term t : A, we shall write Γ ` t : A. From the logical point of view, t represents a natural
deduction of A from the hypotheses A1, . . . , An. If the symbol ‖ does not occur in it,
then t is a simply typed λ-term representing an intuitionistic deduction.

In order to determine how complex the communication channel a of a term u ‖a v is, we
use logic as we did for λCl. First, we consider the types B,C such that a occurs with
type B → C in u and thus with type C → B in v. Then, assume that u ‖a v has type A
and its free variables are xA1

1 , . . . , xAn
n . The subformula property tells us that, when the

computation is over, the type of any object will not be more complex than the types of
the inputs and of the output. Hence, if the prime factors of the types B and C are not
subformulae of A1, . . . , An, A, then these prime factors should be taken into account in
the complexity measure we are looking for. The relative definition is the following.

Definition 4.2.3 (Communication complexity). Let u ‖a v : A a proof term with free
variables xA1

1 , . . . , xAn
n . Assume that aB→C occurs in u and thus aC→B in v.

• The pair B,C is called the communication kind of a.

• The communication complexity of a is the maximum among 0 and the numbers of
symbols of the prime factors of B or C that are neither proper subformulae of A
nor strong subformulae of one among A1, . . . , An.

We explain now the basic reduction rules for the proof terms of λG, which are given in
Table 4.4.

Basic cross reductions As in λCl these reductions can be triggered only when the
free variables of the transmitted term u are free in the original environment C[a u]. As
usual, basic cross reductions implement a simple transmission of data or executable code,
but the calculus λG features two versions of this reduction because the message can be
communicated from left to right:

C[aA→B u] ‖a D[aB→A v] 7→g C[aA→B u] ‖a D[u]

96

4.2. Adding the symmetry: λG

or from right to left:

D[aA→B v] ‖a C[aB→A u] 7→g C[u] ‖a C[aB→A u]

Cross reductions As in λCl, these reductions address the problem of transmitting
function closures, see [EBPJ11]. The solution provided by λG as well is that function
closures are transmitted in two steps: first, the function code, then, when it is available,
the evaluation environment. As a result, we can communicate open λG-terms which are
closed in their original environment. The process of handling and transmitting function
closures is typed by a new instance of (Lin).

The conditions of a cross reduction are equivalent to those employed for λCl and are
similarly motivated. Notice that also λG requires a termination criterion for the compu-
tation because, as shown in Example 4.2.1, unrestricted cross reductions do not always
terminate.

Let us consider now the reduction itself:

C[aA→B u] ‖a D[aB→A v] 7→g (D[ub
C→D〈z〉/y] ‖a C[aA→B u]) ‖b (C[vb

D→C〈y〉/z] ‖a D[aB→A v])

where y is the sequence of the free variables of u which are bound in C[a u], z is the
sequence of the free variables of v which are bound in D[a v], and C and D are the
conjunctions of the types of the variables in z and y, respectively.

Unlike in λCl cross reductions, the communication here is symmetric: the term u is
transmitted to the right in order to replace a v and the term v is transmitted to the
left in order to replace a u. The free variables y of u which are bound in C[a u] and the
variables z of v which are bound by D[a v] are handled in a symmetric way by the new
communication channel b.

If we represent the configuration of the term before the reduction as follows:

After the reduction we obtain the term

97

4. Classical logic and Gödel–Dummett logic

In which b reconnects the messages u and v to their original environments by the
substitutions b〈z〉/y and b〈y〉/z respectively. Thus, when available, y will be sent to
u and z to v through the channel b. Note that in the result of the cross reduction the
processes C[a u] and D[a v] are cloned, because their code fragments can be needed again.

Example 4.2.1. Let y and z be bound variables occurring in the normal terms C[a y]
and D[a z]. Without the condition on the communication complexity c of a, a loop could
be generated:

C[a y] ‖a D[a z] 7→g (D[yb〈z〉/y] ‖a C[a y]) ‖b (C[zb〈y〉/z] ‖a D[a z])

= (D[b z] ‖a C[a y]) ‖b (C[b y] ‖a D[a z]) 7→∗g D[b z] ‖b C[b y]

In Section 4.2.5 we show that no loop occurs if c > 0.

Permutation reductions Just like those of λCl, these reductions regulate the interac-
tion between parallel operators and the other computational constructs. The permutations
between the parallel operators and the other operators are used to obtain a parallel form,
see Proposition 4.2.3, which is completely analogous to the parallel form of λCl.

Everything works as expected: the reductions steps in Table 4.4 preserve the type at the
level of proof terms, namely they correspond to logically sound proof transformations.

Theorem 4.2.2 (Subject reduction). If t : A and t 7→g u, then u : A and all the free
variables of u appear among those of t.

Proof. See Theorem 2.4.3 and 4.1.3 for intuitionistic reductions and permutations. Simpli-
fication reductions just require a trivial argument and basic cross reductions a simplified
version of the argument for cross reductions. As for cross reductions, suppose that

C[aA→B u] ‖a D[aB→A v]
7→g

(D[ub
D→C〈z〉/y] ‖a C[aA→B u]) ‖b (C[vb

C→D〈y〉/z] ‖a D[aB→A v])

Since 〈y〉 : C := C0 ∧ . . . ∧ Cn and 〈z〉 : D := D0 ∧ . . . ∧Dm, bD→C〈z〉 and bC→D〈y〉 are
correct terms. Therefore ubD→C〈z〉/y and vbC→D〈y〉/z, by Definition 4.1.6, are correct as
well. The assumptions are that y = yC0

0 , . . . , yCn
n is the sequence of the free variables of

u which are bound in C[aA→Bu], z = zD0
0 , . . . , zDm

m is the sequence of the free variables

98

4.2. Adding the symmetry: λG

Intuitionistic reductions
(λxA u)t 7→ u[t/xA] 〈u0, u1〉πi 7→ ui, for i = 0, 1

Parallel Operator Permutations
w(u ‖a v) 7→g wu ‖a wv if a does not occur free in w

(u ‖a v)ξ 7→g uξ ‖a vξ if ξ is a one-element stack and a does not occur free in ξ
w(u ‖ v) 7→g wu ‖ wv (u ‖ v)ξ 7→g uξ ‖ vξ λxA (u ‖a v) 7→g λx

A u ‖a λxA v
〈u ‖a v, w〉 7→g 〈u,w〉 ‖a 〈v, w〉 〈w, u ‖a v〉 7→g 〈w, u〉 ‖a 〈w, v〉 λxA (u ‖ v) 7→g λx

A u ‖ λxA v
〈u ‖ v, w〉 7→g 〈u,w〉 ‖ 〈v, w〉 〈w, u ‖ v〉 7→g 〈w, u〉 ‖ 〈w, v〉

(u ‖a v) ‖b w 7→g (u ‖b w) ‖a (v ‖b w)
if the communication complexity of b is greater than 0

w ‖b (u ‖a v) 7→g (w ‖b u) ‖a (w ‖b v)
if the communication complexity of b is greater than 0

(u ‖ v) ‖b w 7→g (u ‖b w) ‖ (v ‖b w)
if the communication complexity of b is greater than 0

w ‖b (u ‖ v) 7→g (w ‖b u) ‖ (w ‖b v)
if the communication complexity of b is greater than 0

Communication reductions

Basic cross reductions C[aA→B u] ‖a D[aB→A v] 7→g C[aA→B u] ‖a D[u]
D[aA→B v] ‖a C[aB→A u] 7→g C[u] ‖a C[aB→A u]

where C[a u],D[a v] are normal simply typed λ-terms and C,D simple contexts; the free variables
of u are also free in C[a u]; the displayed occurrences of a are the rightmost both in C[a u] and in
D[a v]; and the communication complexity of a is greater than 0

Simplification reductions u ‖a v 7→g u if a does not occur in u
u ‖a v 7→g v if a does not occur in v

Cross reductions

C[aA→B u] ‖a D[aB→A v] 7→g (D[ubC→D〈z〉/y] ‖a C[aA→B u]) ‖b (C[vbD→C〈y〉/z] ‖a D[aB→A v])

where C[a u],D[a v] are normal simply typed λ-terms and C,D simple contexts; y is the sequence
of the free variables of u which are bound in C[a u]; z is the sequence of the free variables of v
which are bound in D[a v]; C and D are the conjunctions of the types of the variables in z and y,
respectively; the displayed occurrences of a are the rightmost both in C[a u] and in D[a v]; b is
fresh; and the communication complexity of a is greater than 0

Table 4.4: Reduction Rules for λG

of v which are bound in D[aB→Av], a does not occur neither in u nor in v and b is fresh.
Therefore, by construction all the variables z are bound in D[ubD→C〈z〉/y] and all the
variables y are bound in C[vbC→D〈y〉/z]. Hence, no new free variable is created.

Definition 4.2.4 (Normal forms). We define NFg to be the set of normal λG-terms as
defined in Definition 2.4.2.

99

4. Classical logic and Gödel–Dummett logic

Definition 4.2.5 (Parallel form). A parallel form is defined inductively as follows: a
simply typed λ-term is a parallel form; if u and v are parallel forms, then both u ‖a v
and u ‖ v are parallel forms.

4.2.4 The subformula property

We show that normal λG-terms satisfy the subformula property (Theorem 4.2.4). This,
in turn, implies that our Curry–Howard correspondence for λG is meaningful from the
logical perspective and produces analytic NG proofs.

Proposition 4.2.3 (Parallel normal form property). If t ∈ NFg is a λG-term, then it is
in parallel form.

Proof. Easy structural induction on t using the permutation reductions. See 4.1.7.

We prove the subformula property for normal λG-terms.

Theorem 4.2.4 (Subformula property). Suppose

xA1
1 , . . . , xAn

n ` t : A and t ∈ NFg. Then :

1. For each communication variable a occurring bound in t and with communication
kind B,C, the prime factors of B and C are proper subformulae of A1, . . . , An, A.

2. The type of any subterm of t which is not a bound communication variable is either
a subformula or a conjunction of subformulae of the formulae A1, . . . , An, A.

Proof. We proceed by induction on t. By Proposition 4.2.3 t = t1 ‖a1 t2 ‖a2 . . . ‖an tn+1
and each ti, for 1 ≤ i ≤ n + 1, is a simply typed λ-term. We only show the case
t = u1 ‖b u2 since the rest is already shown in the proof of Theorem 4.1.6. Let C,D be
the communication kind of b, we first show that the communication complexity of b is 0.
We reason by contradiction and assume that it is greater than 0. u1 and u2 are either
simply typed λ-terms or of the form v ‖c w. The second case is not possible, otherwise a
permutation reduction could be applied to t ∈ NFg. Thus u1 and u2 are simply typed
λ-terms. Since the communication complexity of b is greater than 0, the types C → D
and D → C are not subformulae of A1, . . . , An, A. By Proposition 4.1.5, every occurrence
of bC→D in u1 is of the form bC→Dv and every occurrence of bD→C in u2 is of the form
bD→Cw. Hence, we can write

u1 = C[bC→Dv] u2 = D[bD→Cw]

where C,D are simple contexts and b is rightmost. Hence a cross reduction of t can
be performed, which contradicts the fact that t ∈ NFg. Since we have established that
the communication complexity of b is 0, the prime factors of C and D must be proper
subformulae of A1, . . . , An, A. Now, by induction hypothesis applied to u1 : A and u2 : A,

100

4.2. Adding the symmetry: λG

for each communication variable aF→G occurring bound in t, the prime factors of F and
G are proper subformulae of the formulae A1, . . . , An, A,C → D,D → C and thus of the
formulae A1, . . . , An, A; moreover, the type of any subterm of u1 or u2 which is not a
communication variable is either a subformula or a conjunction of subformulae of the
formulae A1, . . . , An, C → D,D → C and thus of A1, . . . , An, A.

4.2.5 The normalization theorem

Our goal is to prove the normalization theorem for λG: every proof term of λG reduces
in a finite number of steps to a normal form. By subject reduction, this implies that NG
proofs normalize.

The normalization strategy and the measures employed in the following normalization
proof are comparable to those employed in the normalization proof for λCl, with due
distinction. Nonetheless, the cross reduction rules for the two calculi present substantial
differences and hence require specific arguments, see for example point (c) of Lemma 4.2.6.

The complexity measure that we employ for u ‖a v λG-terms is similar to that employed
for λCl in Section 4.1.3 and the proof is very similar as well.

Definition 4.2.6 (Complexity of parallel terms). Let A be a finite set of formulae. The
A-complexity of the term u ‖a v is the sequence (c, d, l, o) of natural numbers, where:

1. if the communication kind of a is B,C, then c is the maximum among 0 and the
number of symbols of the prime factors of B or C that are not subformulae of some
formula in A;

2. d is the number of occurrences of ‖ in u and v;

3. l is the sum of the lengths of the intuitionistic reductions of u and v to reach
intuitionistic normal form;

4. o is the number of occurrences of a in u and v.

As for λCl, the master reduction strategy consists in iterating the basic reduction relation
�g defined below, whose goal is to permute the smallest redex u ‖a v of maximal
complexity until u and v are simply typed λ-terms, then normalize them and finally
apply the cross reductions.

Definition 4.2.7 (Side reduction strategy). Let t : A be a term with free variables
xA1

1 , . . . , xAn
n and A be the set of the proper subformulae of A and the strong subformulae

of the formulae A1, . . . , An. Let u ‖a v the smallest subterm of t, if any, among those of
maximal A-complexity and let (c, d, l, o) its A-complexity. We write

t �g t
′

whenever t′ has been obtained from t by applying to u ‖a v:

101

4. Classical logic and Gödel–Dummett logic

1. a permutation reduction

(u1 ‖b u2) ‖a v 7→g (u1 ‖a v) ‖b (u2 ‖a v)

u ‖a (v1 ‖b v2) 7→g (u ‖a v1) ‖b (u ‖a v2)

if d > 0 and u = u1 ‖b u2 or v = v1 ‖b v2;

2. a sequence of intuitionistic reductions normalizing both u and v, if d = 0 and l > 0;

3. a cross reduction, or basic cross reduction, if d = l = 0 and c > 0, immediately
followed by intuitionistic reductions normalizing the newly generated simply typed λ-
terms and, if possible, by applications of the simplification reductions u1 ‖b v1 7→g u1
and u1 ‖b v1 7→g v1 to the whole term.

4. a simplification reduction u ‖a v 7→g u and u ‖a v 7→g v if d = l = c = 0.

Definition 4.2.8 (Master reduction strategy). We define a normalization algorithm N (t)
taking as input a typed term t and producing a term t′ such that t 7→∗g t′. Assume that
the free variables of t are xA1

1 , . . . , xAn
n and let A be the set of the proper subformulae of

A and the strong subformulae of the formulae A1, . . . , An. The algorithm performs the
following operations.

1. If t is not in parallel form, then, using permutation reductions, t is reduced to a t′
which is in parallel form and N (t′) is recursively executed.

2. If t is a simply typed λ-term, it is normalized and returned. If t = u ‖a v is not
a redex, then let N (u) = u′ and N (v) = v′. If u′ ‖a v′ is normal, it is returned.
Otherwise, N (u′ ‖a v′) is recursively executed.

3. If t is a redex, we select the smallest subterm w of t having maximalA-communication-
complexity r. A sequence of terms is produced

w �g w1 �g w2 �g . . . �g wn

such that wn has A-communication-complexity strictly smaller than r. We substi-
tute wn for w in t obtaining t′ and recursively execute N (t′).

The first step of the normalization algorithm N consists in showing that any term can
be reduced to a parallel form.

Proposition 4.2.5. Let t : A be any term. Then t 7→∗g t′, where t′ is a parallel form.

Proof. Easy structural induction on t. See Proposition 4.1.8.

We now prove that any term in parallel form can be normalized by the algorithm N .

102

4.2. Adding the symmetry: λG

Lemma 4.2.6. Let t : A be a term in parallel form which is not a simply typed λ-term
and A containing all proper subformulae of A and closed under subformulae. Assume that
r > 0 is the maximum A-communication-complexity of the subterms of t. Assume that
the free variables xA1

1 , . . . , xAn
n of t are such that for every i, either each strong subformula

of Ai is in A, or each proper prime subformula of Ai is in A or has at most r symbols.
Suppose moreover that no subterm u ‖a v with A-communication-complexity r contains a
subterm of the same A-communication-complexity. Then there exists t′ such that t �∗g t′
and the maximal among the A-communication-complexity of the subterms of t′ is strictly
smaller than r.

Proof. We prove the lemma by lexicographic induction on the pair

(ρ, k)

where k is the number of subterms of t with maximal A-complexity ρ among those with
A-communication-complexity r.

Let u ‖a v be the smallest subterm of t having A-complexity ρ. Four cases can occur.

(a) ρ = (r, d, l, o), with d > 0. We first show that the term u ‖a v is a redex. Now, the free
variables of u ‖a v are among xA1

1 , . . . , xAn
n , aB1→C1

1 , . . . , aBm→Cm
m and the communication

kind of a is C,D.

Hence, suppose by contradiction that all the prime factors of C and D are proper
subformulae of A or strong subformulae of one among A1, . . . , An, B1 → C1, . . . , Bm →
Cm. Given that r > 0 there is a prime factor P of C or D such that P has r symbols
and does not belong to A. The possible cases are two: (i) P is a proper subformula of
a prime proper subformula A′i of Ai such that A′i /∈ A; (ii) P , by Proposition 4.1.2, is
a proper subformula of a prime factor of Bi or Ci. If (i), then the number of symbols
of A′i is less than or equal to r, so P cannot be a proper subfomula of A′i, which is a
contradiction. If (ii), then, since by hypothesis aBi→Ci

i is bound in t, there is a prime
factor of Bi or Ci having a number of symbols greater than r, hence we conclude that
there is a subterm w1 ‖ai w2 of t having A-complexity greater than ρ, which is absurd.

Now, since d > 0, we may assume u = w1 ‖b w2 (the case v = w1 ‖b w2 is symmetric).
The term

(w1 ‖b w2) ‖a v

is then a redex of t and by replacing it with

(w1 ‖a v) ‖b (w2 ‖a v) (4.2)

we obtain from t a term t′ such that t �g t
′ according to Definition 4.2.7. We must verify

that we can apply to t′ the main induction hypothesis. Indeed, the reduction t �g t
′

duplicates all the subterms of v, but all of their A-complexities are smaller than r, because
u ‖a v by choice is the smallest subterm of t having maximal A-complexity ρ. The two
terms w1 ‖a v and w2 ‖a v have smaller A-complexity than ρ, because they have numbers

103

4. Classical logic and Gödel–Dummett logic

of occurrences of the symbol ‖ strictly smaller than in u ‖a v. Moreover, the terms in t′
with (4.2) as a subterm have, by hypothesis, A-communication-complexity smaller than
r and hence A-complexity smaller than ρ. Assuming that the communication kind of b
is F,G, the prime factors of F and G that are not in A must have fewer symbols than
the prime factors of C and D that are not in A, again because u ‖a v by choice is the
smallest subterm of t having maximal A-complexity ρ; hence, the A-complexity of (4.2)
is smaller than ρ. Therefore the number of subterms of t′ with A-complexity ρ is strictly
smaller than k. By induction hypothesis, t′ �∗g t′′, where t′′ satisfies the thesis.

(b) ρ = (r, d, l, o), with d = 0 and l > 0. Since d = 0, u and v are simply typed
λ-terms – and thus strongly normalizable [GLT89] – so we may assume u 7→∗g u′ ∈ NFg
and v 7→∗g v′ ∈ NFg by a sequence intuitionistic reduction rules. By replacing in t
the subterm u ‖a v with u′ ‖a v′, we obtain a term t′ such that t �g t

′ according to
Definition 4.2.7. Moreover, the terms in t′ with u′ ‖a v′ as a subterm have, by hypothesis,
A-communication-complexity smaller than r and hence A-complexity is smaller than ρ.
By induction hypothesis, t′ �∗g t′′, where t′′ satisfies the thesis.

(c) ρ = (r, d, l, o), with d = l = 0. Since d = 0, u and v are simply typed λ-terms.
Since l = 0, u and v are in normal form and thus satisfy conditions 1. and 2. of
Proposition 4.1.4. We need to check that u ‖a v is a redex, in particular that the
communication complexity of a is greater than 0. Assume that the free variables of
u ‖a v are among xA1

1 , . . . , xAn
n , aB1→C1

1 , . . . , aBm→Cm
m and that the communication kind

of a is C,D. As we argued above, we obtain that not all the prime factors of C and
D are proper subformulae of A or strong subformulae of one among A1, . . . , An, B1 →
C1, . . . , Bm → Cm. By Definition 4.2.3, u ‖a v is a redex.

We now prove that every occurrence of a in u and v is of the form a ξ for some term or
projection ξ. First of all, a occurs with arrow type both in u and v. Moreover, u : A
and v : A, since t : A and t is a parallel form; hence, the types C → D and D → C
cannot be subformulae of A, otherwise r = 0, and cannot be proper subformulae of one
among A1, . . . , An, B1 → C1, . . . , Bn → Cn, otherwise the prime factors of C,D would
be strong subformulae of one among A1, . . . , An, B1 → C1, . . . , Bm → Cm. Thus by
Proposition 4.1.5 we are done. Two cases can occur.

• a does not occur in u or v: to fix ideas, let us say it does not occur in u. By
performing a simplification reduction, we replace in t the term u ‖a v with u
and obtain a term t′ such that t �g t

′ according to Definition 4.2.7. After the
replacement, the number of subterms having maximal A-complexity ρ in t′ is strictly
smaller than the number of such subterms in t. By induction hypothesis, t′ �∗g t′′,
where t′′ satisfies the thesis.

• a occurs in u and in v. Let u = C[aw1 σ] and v = D[aw2 τ] where the displayed
occurrences of a are the rightmost in u and v and σ, τ are the stacks of all
terms or projections a is applied to. By applying a basic cross reduction to
C[aw1 σ] ‖a D[aw2 τ] we obtain either the term C[aw1σ] ‖a D[w1τ] or the term

104

4.2. Adding the symmetry: λG

C[w2σ] ‖a D[aw2τ] and in both cases we obtain a term with A-complexity ρ′ =
(r, d, l, o′) where o′ < o.
If we apply a cross reduction, we obtain the term (∗)

(D[wb〈z〉/y
1 τ] ‖a C[aw1σ]) ‖b (C[wb〈y〉/z

2 σ] ‖a D[aw2τ])

where y is the sequence of the free variables of w1 which are bound in C[aw1 σ]
and z is the sequence of the free variables of w2 which are bound in D[aw2 τ]
and a does not occur neither in w1 nor in w2. Since u, v satisfy conditions 1.
and 2. of Proposition 4.1.4 the types Y1, . . . , Yi and Z1, . . . , Zj of respectively the
variables y and z are proper subformulae of A or strong subformulae of the formulae
A1, . . . , An, B1 → C1, . . . , Bm → Cm. Hence, the types among Y1, . . . , Yi, Z1, . . . , Zj
which are not in A are strictly smaller than all the prime factors of the formulae
B1, C1, . . . , Bm, Cm. Since the communication kind of b is Y1∧ . . .∧Yi, Z1∧ . . .∧Zj ,
by Definition 4.2.6 either the A-complexity of the term (∗) above is strictly smaller
than the A-complexity ρ of u ‖a v, or the communication kind of b is >. In the
latter case we apply a simplification reduction u1 ‖b v1 7→g u1 or u1 ‖b v1 7→g v1
and obtain a term with A-complexity strictly smaller than ρ.
In the former case, let w′1, w′2 be simply typed λ-terms such that

w
b〈z〉/y
1 τ 7→∗g w′1 ∈ NFg and wb〈y〉/z

2 σ 7→∗g w′2 ∈ NFg

By hypothesis, a does not occur in w1, w2, σ, τ and thus neither in w′1 nor in
w′2. Moreover, by the assumptions on σ and τ and since C[aw1 σ] and D[aw2 τ]
are normal simply typed λ-terms, C[w′2] and D[w′1] are normal too and contain
respectively one fewer occurrence of a than the former terms. Hence, the A-
complexity of the terms

D[w′1] ‖a C[aw1σ] and C[w′2] ‖a D[aw2τ]

is strictly smaller than the A-complexity ρ of u ‖a v. Let now t′ be the term
obtained from t by replacing the term C[aw1 σ] ‖a D[aw2 τ] with

(D[w′1] ‖a C[aw1σ]) ‖b (C[w′2] ‖a D[aw2τ]) (4.3)

By construction t �g t
′. Moreover, the terms in t′ with (4.3) as a subterm have, by

hypothesis, A-communication-complexity smaller than r and hence A-complexity
is smaller than ρ. Hence, we can apply the main induction hypothesis to t′ and
obtain by induction hypothesis, t′ �∗g t′′, where t′′ satisfies the thesis.

(d) ρ = (r, d, l, o), with d = l = o = 0. Since o = 0, u ‖a v is a redex. To fix ideas, let us
say a does not occur in u. By performing a simplification reduction, we replace u ‖a v
with u so that u ‖a v �g u according to Definition 4.2.7. Hence, by induction hypothesis,
t′ �∗g t′′, where t′′ satisfies the thesis.

105

4. Classical logic and Gödel–Dummett logic

Proposition 4.2.7. Let t : A be any term in parallel form. Then t 7→∗g t′, where t′ is a
parallel normal form.

Proof. Assume that the free variables of t are xA1
1 , . . . , xAn

n and let A be the set of the
proper subformulae of A and the strong subformulae of the formulae A1, . . . , An. We
prove the theorem by lexicographic induction on the quadruple

(|A|, r, k, s)

where |A| is the cardinality of A, r is the maximal A-communication-complexity of
the subterms of t, k is the number of subterms of t having maximal A-communication-
complexity r and s is the size of t. If t is a simply typed λ-term, it has a normal form
[GLT89] and we are done; so we assume t is not. There are two main cases.

First case: t is not a redex. Let t = u ‖a v and let B,C be the communication kind of
a. Then, the communication complexity of a is 0 and by Definition 4.2.3 every prime
factor of B or C belongs to A. Let A′ be the set of the proper subformulae of A and the
strong subformulae of the formulae A1, . . . , An, B → C; let A′′ be the set of the proper
subformulae of A and the strong subformulae of the formulae A1, . . . , An, C → B. By
Proposition 4.1.2, every strong subformula of B → C or C → B is a proper subformula
of a prime factor of B or C, and this prime factor is in A. Hence, A′ ⊆ A and A′′ ⊆ A.

If A′ = A, then the maximal A′-communication-complexity of the terms of u is less than
or equal to r and the number of terms having maximal A′-communication-complexity is
less than or equal to k; since the size of u is strictly smaller than that of t, by induction
hypothesis u 7→∗g u′, where u′ is a normal parallel form.

If A′ ⊂ A, again by induction hypothesis u 7→∗g u′, where u′ is a normal parallel form.

The very same argument on A′′ shows that v 7→∗g v′, where v′ is a normal parallel form.

Let now t′ = u′ ‖a v′, so that t 7→∗g t′. If t′ is normal, we are done. If t′ is not normal,
since u′ and v′ are normal, the only possible redex remaining in t′ is the whole term
itself, i.e., u′ ‖a v′: that happens only if the free variables of t′ are fewer than those of
t; w.l.o.g., assume they are xA1

1 , . . . , xAi
i , with i < n. Let B be the set of the proper

subformulae of A and the strong subformulae of the formulae A1, . . . , Ai. Since t′ is a
redex, the communication complexity of a is greater than 0; by Definition 4.2.3, a prime
factor of B or C is not in B, so we have B ⊂ A. By induction hypothesis, t′ 7→∗g t′′, where
t′′ is a parallel normal form.

Second case: t is a redex. Let u ‖a v be the smallest subterm of t having A-communication-
complexity r. The free variables of u ‖a v satisfy the hypotheses of Lemma 4.2.6 either
because have type Ai and A contains all the strong subformulae of Ai, or because the
prime proper subformulae of their type have at most r symbols, by maximality of r. By
Lemma 4.2.6 u ‖a v �∗g w where the maximal among the A-communication-complexity
of the subterms of w is strictly smaller than r. Let t′ be the term obtained replacing w

106

4.2. Adding the symmetry: λG

for u ‖a v in t. We can now apply the induction hypothesis and obtain t′ 7→∗g t′′ with t′′
in parallel normal form.

The normalization for λG, and thus for NG, easily follows.

Theorem 4.2.8. Suppose that t : A is a proof term of GL. Then t 7→∗g t′ : A, where t′
is a normal parallel form.

4.2.6 The expressive power of λG

We show now that λG is more expressive than simply typed λ-calculus and then we
present some examples of λG programs.

Example 4.2.2 (Parallel OR). Berry’s sequentiality theorem (see [GLT89]) implies
that there is no λ-term O : Bool → Bool → Bool such that Offff 7→g ff, Outt 7→g tt,
Ottu 7→g tt, where u is an arbitrary normal term, and thus possibly a variable.

The λG-term for such parallel OR is (as usual the term “if u then s else t” reduces to s if
u = tt, and to t if u = ff):

O := λxBool λyBool (if x then (λz λk z) else (λz λk k))tt(ax)

‖a (if y then (λz λk z) else (λz λk k))tt(ay)

where the communication kind of a is Bool, Bool. Now

Ou tt 7→∗g(if u then (λz λk z) else (λz λk k))tt(au)
‖a (if tt then (λz λk z) else (λz λk k))tt(att)

7→∗g(if u then (λz λk z) else (λz λk k))tt(au) ‖a tt 7→g tt

And symmetrically O ttu 7→∗g tt. On the other hand

O ff ff 7→∗g (λz λk k)tt(aff) ‖a (λz λk k)tt(aff)
7→∗g (aff) ‖a (aff)
7→∗g (ff ‖a (aff)) ‖b (ff ‖a (aff)) 7→∗g ff

In the following example of computation in λG, similar to one shown in [CP10a], we
simulate the communication needed to conclude an online sale.

Example 4.2.3 (Buyer and vendor). We model the following transaction: a buyer
tells a vendor a product name prod : String, the vendor computes the value price : N of
prod and sends it to the buyer, the buyer sends back the credit card number card : String
which is used to pay.
We introduce the following functions: cost : String → N with input a product name
prod and output its cost price; pay_for : N → String with input a price and output a

107

4. Classical logic and Gödel–Dummett logic

credit card number card; use : String→ N that obtains money using as input a credit
card number card : String. The buyer and the vendor are the contexts B and V of type
Bool. Notice that the terms representing buyer and vendor exchange their position at
each cross reduction. For a of kind String,N, the program is:

B[a(pay_for(a(prod)))] ‖a V[use(a(cost(a 0)))]
7→∗g V[use(a(cost(prod)))] ‖a B[a(pay_for(a(prod)))]
7→g V[use(a(price))] ‖a B[a(pay_for(a(prod)))]
7→∗g B[a(pay_for(price))] ‖a V[use(a(price))]
7→g B[a(card)] ‖a V[use(a(price))] 7→∗g V[use(card)] ‖a B[a(card)]

Finally 7→g V[use(card)]: the buyer has performed its duty and the vendor uses the card
number to obtain the due payment.

4.2.7 Disjunction in Gödel–Dummett logic

We formally define disjunction and disjunction rules in NG and the corresponding
computational constructs of λG. We employ here the same method used in Section 4.1.5
for NCl and λCl, the main difference being the following definition of ∨.

Definition 4.2.9 (Definition of ∨ in GL). For any formula A, we define the translation
A∨g inductively as follows:

• for any propositional variable p, p∨g = p

• ⊥∨g = ⊥

• (B → C)∨g = B∨g → C∨g

• (B ∧ C)∨g = B∨g ∧ C∨g

• (B ∨ C)∨g = ((B∨g → A∨g)→ A∨g) ∧ ((A∨g → B∨g)→ B∨g)

For any set of formulae Γ, we denote by Γ∨g the set {A∨g : A ∈ Γ}.

We show the completeness of NG with respect to the translation of GL theorems by
∨g. The proof proceeds as that of Proposition 4.1.12 for NCl, but the cases concerning
the disjunction rules differ due to the differences between ∨g and the translation ∨c of
Definition 4.1.16.

Proposition 4.2.9. For any set Γ of formulae and formula A, if Γ `GL A, then
Γ∨g `NG A

∨g.

Proof. By Theorem 4.2.1, there is a derivation D of A from Γ in NI + (Lin). The proof
is by induction on the height l of D.

If D has height 0, then it is A and our NG proof is just A∨g.

We reason now by cases on the last rule applied in D:

108

4.2. Adding the symmetry: λG

•

D =
D1
C

B → C

with assumptions Γ. By induction hypothesis there exists a derivation

E
C∨g

in NG with assumptions Γ∨g and possibly B∨g. We construct the derivation

E
C∨g

B∨g → C∨g

possibly discharging B∨g and obtain the required derivation of A∨g in NG since
(B → C)∨g = B∨g → C∨g.

•

D =
D1

B → C
D2
B

C

By induction hypothesis there exist derivations

E1
(B → C)∨g

E2
B∨g

in NG whose assumptions are contained in Γ∨g. Since (B → C)∨g = B∨g → C∨g

the required derivation is
E1

B∨g → C∨g
E2
B∨g

C∨g

•

D =
D1
B

D2
C

B ∧ C
By induction hypothesis there exist derivations

E1
B∨g

E2
C∨g

in NG whose assumptions are contained in Γ∨g. Since (B ∧ C)∨g = B∨g ∧ C∨g the
required derivation is

E1
B∨g

E2
C∨g

B∨g ∧ C∨g

•

D =
D

B1 ∧B2
Bi

109

4. Classical logic and Gödel–Dummett logic

By induction hypothesis there exists a derivation
E

(B1 ∧B2)∨g

in NG whose assumptions are Γ∨g. Since (B1 ∧ B2)∨g = B∨g1 ∧ B
∨g
2 the required

derivation is
E

B∨g1 ∧B
∨g
2

B∨gi

•
D =

D
⊥
P

for some atomic formula P 6= ⊥. By induction hypothesis there exists a derivation
E
⊥∨g

in NG whose assumptions are Γ∨g. Since ⊥∨g = ⊥ and P∨g = P the required
derivation is

E
⊥∨g
P∨g

•

D =
D
Bi

B1 ∨B2
By induction hypothesis there exists a derivation

E
B∨gi

in NG whose assumptions are Γ∨g. Since

(B1 ∨B2)∨g = ((B∨g2 → B∨g1)→ B∨g1) ∧ ((B∨g1 → B∨g2)→ B∨g2)

the required derivation is for i = 1:

E
B∨g1

(B∨g2 → B∨g1)→ B∨g1

[B∨g1 → B∨g2]1
E
B∨g1

B∨g2

(B∨g1 → B∨g2)→ B∨g2

1

((B∨g2 → B∨g1)→ B∨g1) ∧ ((B∨g1 → B∨g2)→ B∨g2)

and for i = 2:

[B∨g2 → B∨g1]1
E
B∨g2

B∨g1

(B∨g2 → B∨g1)→ B∨g1

1

E
B∨g2

(B∨g1 → B∨g2)→ B∨g2

((B∨g2 → B∨g1)→ B∨g1) ∧ ((B∨g1 → B∨g2)→ B∨g2)

110

4.2. Adding the symmetry: λG

•

D =
D0

B1 ∨B2
D1
C
D2
C

C
By induction hypothesis there exist derivations

E0
(B1 ∨B2)∨g

E1
C∨g

E2
C∨g

in NG where the assumptions of E0 are included in Γ∨g, and the assumptions of
each Ei for i ∈ {1, 2} are included in Γ∨g plus possibly B∨gi . Since

(B1 ∨B2)∨g = ((B∨g2 → B∨g1)→ B∨g1) ∧ ((B∨g1 → B∨g2)→ B∨g2)

the required derivation is
E0

((B∨g2 → B∨g1)→ B∨g1) ∧ ((B∨g1 → B∨g2)→ B∨g2)
(B∨g2 → B∨g1)→ B∨g1 [B∨g2 → B∨g1]1

B∨g1
E1
C∨g

. . .
B∨g2
E2
C∨g

C∨g
(Lin)1

where by
. . .
B∨g1
E1

we denote the derivation obtained from E1 deriving as shown all

occurrences of the assumption B∨g1 . The derivations of the occurrences of B∨g2 in
E2 are symmetrically constructed possibly using [B∨g1 → B∨g2]1.

We define now the computational constructs of case distinction and injection in λG.

We can define the λG-terms ι0(u), ι1(u) and t[x0.v0, x1.v1] such that for i ∈ {0, 1} we
have

ιi(u)[x0.v0, x1.v1] 7→g vi[u/xi]
as follows. Let A ∨B := ((B → A)→ A) ∧ ((A→ B)→ B)

ι0(u) := 〈λxB→A u, λyA→B yu〉 : A ∨B ι1(u) := 〈λyB→A yu, λxA→B u〉 : A ∨B

t [x0.v0, x1.v1] := v0[t π0 a
B→A/x0] ‖a v1[t π1 a

A→B/x1] : F
where x and y do not occur in u, a is a fresh channel, v0 : F , v1 : F , and t : A ∨B. For
instance we can verify that

ι0(u) [x0.v0, x1.v1] :=
v0[〈λxB→A u, λyA→B yu〉π0 a/x0] ‖a v1[〈λxB→A u, λyA→B yu〉π1 a/x1]

7→∗g v0[(λxB→A u) a/x0] ‖a v1[(λyA→B yu) a/x1]
7→g v0[u/x0] ‖a v1[a u/x1] 7→g v0[u/x0]

111

4. Classical logic and Gödel–Dummett logic

4.3 Comparison between λCl, λG and related calculi

The most widespread formalisms to represent concurrent computation is π-calculus.
The main difference between π-calculus and the calculi λCl and λG is in the purpose
of the systems: while π-calculus [Mil92, SW03] is a formalism for modeling concurrent
systems, the calculi λCl and λG are concurrent functional languages. Nonetheless, there
are relevant connections as well.

The first similarity between these calculi and π-calculus lies in the channel restrictions:
the a occurring in u ‖a v and the a in a π-calculus term νa(P | Q) have the same rôle:
designating a private communication channel between two parallel processes. In λCl
moreover, the result of communicating a closed process or data is similar to the result of
asynchronous π-calculus [HT91] communications a (x) | a(y).Q 7→ Q[x/y].

The main difference between the communication mechanism of π-calculus and that of our
concurrent λ-calculi is that the former only supports the transmission of data or channel
names, while the latter supports higher-order communication. The communication
mechanism of λCl and λG, moreover, is very general and can handle not only closed
and open processes, but also processes that are closed in their original environment, but
become open after the communication. Such λ-calculi, in other terms, have mechanisms
for handling the transmission of function closures, which is a well known problem in
the study of code mobility, see for instance [EBPJ11]. While extensions of π-calculus
with higher-order communication have been defined [San93], no natural logic-based type
systems for such an extension exist.

The number of recipients of a communication is another difference between π-calculus
and λCl. While in π-calculus only one process can receive each message, in λCl we can
have broadcast communications: C[a u] ‖a (D1 ‖ . . . ‖ Dm) 7→c D1[u/a] ‖ . . . ‖ Dm[u/a].

As for restrictions on the connections of processes by communication channels, π-calculus
has none but λCl and λG have rather strict symmetry conditions. Similar conditions are
adopted in typed versions of π-calculus, see [TCP13, Wad12].

Finally, in pure π-calculus both sender and recipient of a communication might be
selected non-deterministically. Since the communication of λCl is a broadcasting to
all recipients, only the sender can be non-deterministically selected: in applying the
reduction (C1[a t1] ‖ . . . ‖ Cn[a tn]) ‖a D 7→c D[ti/a], for instance, we can choose any
Ci[a ti] for i ∈ {1, . . . , n}. In λG we have no non-deterministic choice in this respect.

Several untyped [Bou89] and typed λ-calculi [Wad12, TCP13] have been introduced
extending λ-calculus by primitives for π-calculus-style communications [CP10b]. Since
the expressive power of these calculi is closer to that of λ‖, introduced in Chapter 5, we
refer the reader to Section 5.7.

As for a comparison of the two calculi presented in this chapter, the main difference
between them is that λCl cannot encode a dialogue between two processes – if a process
u receives a message from a process v, then v cannot send a message to u – but the

112

4.3. Comparison between λCl, λG and related calculi

bidirectional channels of λG enable such exchanges. The communication reductions of
λCl, on the other hand, are simpler than those of λG precisely because the communication
variables that can receive messages cannot send messages. A consequence of this is, for
example, that we can implement broadcasting communications in λCl while we cannot
implement them in λG.

Finally, the type system of λCl is the same as that of λexn, which we discuss in Sec-
tion 2.4.2. Nevertheless, firstly, the computational interpretation provided by λexn is not
in terms of concurrent computation but in terms of exception handling and, secondly, the
normalization of λexn does not imply that normal terms enjoy the subformula property.
In particular, it seems that λexn is missing some reduction rules corresponding to the
communications of terms that depend on their computational environment.

113

CHAPTER 5
A typed parallel λ-calculus based

on disjunctive tautologies

As we have seen in Chapter 4, λCl and λG only have channels connecting pairs of processes:

λCl λG

It is certainly possible to construct complex networks using several channels of this kind.
However, types can only regulate the behavior of single channels in the presented systems.
As a consequence, the behavior of complex networks, made of groups of channels, cannot
be logically described. It is clear then that having complex channels – namely, individual
channels that connect several processes and ultimately represent a whole network – is of
crucial importance both for programming and for modeling concurrent systems. As we
will see, different axioms corresponding to hypersequent rules can type different complex
network topologies as, for example, those shown in Figure 5.1. Hence, by using a class of
axioms to define our type systems we can obtain a more fine grained control over the
interactions among the processes in a term.

In this chapter we introduce the calculus λ‖ which extends in this direction the computa-
tional capabilities of λCl and λG and presents excellent computational properties. On
the other hand, in Chapter 6 we will define the family of calculi λ‖L, which generalizes
λCl and λG from a theoretical perspective and confirms Avron’s thesis.

The calculus λ‖ is a typed parallel λ-calculus. Its type system is based on a rather general
class Ax of disjunctive classical tautologies. The calculus λ‖ is intended as a language to
encode parallel algorithms. The channels of λ‖ can model arbitrary network topologies.
Furthermore, we present an algorithm to extract typing rules from graph-specified
communication topologies in such a way that the typed terms can only communicate

115

5. A typed parallel λ-calculus based on disjunctive tautologies

.

Figure 5.1: λ‖ multi-party channels.

according to the topology. The usefulness of the direct implementation of network
topologies in the context of parallel programming is also witnessed by the development
of systems designed with this aim. The tool Grace [HL13] (Graph-based Communication
in Eden) for the language Eden [LOP05], for instance, enables programmers to declare
and encode network topologies as graphs and provides special constructs to generate the
actual process networks: the processes are created and the communication channels are
installed.

From a technical point of view, λ‖ presents two strong simplifications with respect to
λCl and λG. First, it only features mini cross reductions – corresponding to basic cross
reductions – and hence it only allows the communication of terms that do not depend on
their environment. Second, λ‖-terms contain at most one parallel operator that binds
communication variables. These simplifications strongly reduce the non-determinism of
the calculus and hence have the crucial effect of enabling us to prove that the evaluation
of λ‖-terms terminates regardless of the employed strategy. Nevertheless, they do not
constitute a loss in terms of expressive power as long as parallel algorithms are concerned.
Indeed, in order to encode such algorithms we need to be able to represent the parallel
structure of the problem, to control the interactions between the processes, and thus to
predict the outcome of the computation. In λ‖ these requirements are met because we
can encode as a term any communication topology that can be represented as a directed
graph, and we can type it using one application of a rule (A) for some A ∈ Ax. Typing
the whole network by a unique rule, in turn, give us a very fine-grained control over the
order of the communications among its nodes.

In order to formally define the type system for λ‖, we build on ideas presented in [Avr91,
DK00] and we consider the class of classical disjunctive tautologies of the form

∨m
i=0(Ai →

Bi) where each Ai and Bi is a conjunction of propositional atoms. On the one hand, all
formulae in such class can be transformed into hypersequent rules [Avr91] – see Table 2.3
for some examples – on the other hand, the disjunctive tautologies that are interpreted
as synchronization schemata in [DK00] belong to this class. As already mentioned and
as we will show in Section 5.4, there is a restriction on these formulae that defines a
class Ax of very simple axiom schemata that suffices to encode all network topologies
that can be represented as reflexive directed graphs. An axiom encoding such a graph
will correspond in turn to a typing rule that allows the terms to communicate only by
channels represented in the graph. We define the type system of λ‖ as containing a type
assignment rule for each axiom in Ax. We can then extract type assignment rules from

116

5.1. The type system of λ‖

graphs in such a way that the communications inside a term typed by such a rule must
comply with the network represented by the corresponding graph.
Consider, for instance, the type assignment rules corresponding to the axiom schemata
(A → A ∧ ⊥) ∨ (B → B ∧ A) and (A → A ∧ B) ∨ (B → B ∧ C) ∨ (C → C ∧ A) which
are intuitionistically equivalent to the axiom schemata EM and C3 – see Table 2.3 –
respectively:

[a : A→ A ∧ ⊥]....
u : C

[a : B → B ∧A]....
v : C

a(u ‖ v) : C (EM′)

[a : A→ A ∧B]....
t : D

[a : B → B ∧ C]....
u : D

[a : C → C ∧A]....
v : D

a(t ‖ u ‖ v) : D
(C′3)

These rules establish the communication channels connecting the processes u, v and t, u, v
respectively. Notice that since parallelism operators that bind communication variables
are no more binary, we adopt the notation a(. . . ‖ . . . ‖ . . .) instead of . . . ‖a The
(EM′) rule above, for example, types a communication topology in which the process v
can receive a message of type A from the process u:

a(C[a s] ‖ D[a t]) 7→p a(C[a s] ‖ D[〈t, s〉])

The rule (C′3) above, on the other hand, corresponds to a topology in which t can receive
a message from u, u from v and v from t. This reductions bear a resemblance to the
cross reductions of λCl or λG, but there are some relevant differences. First of all, as
already mentioned, we only transmit terms that do not depend on their computational
environment and thus we never introduce a new communication channel to restore
violated dependencies. Second, the received message neither replaces all occurrences of
the receiving channel a, as in λCl, nor erases the argument of the receiving channel, as
in λG. And finally, even if more than one process contains a channel occurrence that
could act as receiver, only one process receives messages during a single communication
reduction. As λCl and λG, on the other hand, also λ‖ is strictly more expressive than
simply typed λ-calculus.

The present chapter is based on [ACG19b], and structured as follows. We present a type
system and reduction rules for λ‖ in Sections 5.1 and 5.2 respectively. In Section 5.4 we
describe a method for automatically extracting λ‖ typing rules from any graph-based
communication, and in Section 5.5 we show the strong normalization proof. In Section 5.6
we showcase the computational capabilities of λ‖ by presenting λ‖-terms implementing
parallel OR, a parallel algorithm for computing π, and the parallel version of the Floyd–
Warshall algorithm to compute the shortest path between two nodes in a graph. In
Section 5.7 we compare λ‖ with similar systems.

5.1 The type system of λ‖

We consider the class Ax of axiom schemata

(A1 → A1 ∧B1) ∨ . . . ∨ (Am → Am ∧Bm)

117

5. A typed parallel λ-calculus based on disjunctive tautologies

t1 : A . . . tn : A
t1 ‖ . . . ‖ tn : A

(contr)

where t1, . . . , tn are simply typed λ-terms

[aA1→A1∧B1 : A1 → A1 ∧B1]....
u1 ‖ . . . ‖ un : B . . .

[aAm→Am∧Bm : Am → Am ∧Bm]....
up ‖ . . . ‖ uq : B

A
a((u1 ‖ . . . ‖ un) ‖ . . . ‖ (up ‖ . . . ‖ uq)) : B

(A)

where (A1 → A1 ∧B1) ∨ . . . ∨ (Am → Am ∧Bm) is an instance of A ∈ Ax
Table 5.1: Type assignments for λ‖

where A1, . . . , Am are pairwise different propositional variables and B1, . . . , Bm are
either ⊥ or conjunctions of distinct propositional variables among A1, . . . , Am. Formally,
Ai 6= Aj for i 6= j; and for any i ∈ {1, . . . ,m}, either Bi = ⊥ or Bi = Ak1 ∧ . . . ∧ Akp

with Aki
6= Akj

for i 6= j.

Remark 5.1. Each disjunct Ai → Ai∧Bi is logically equivalent to Ai → Bi. Nevertheless,
we keep the second, logically redundant, occurrence of Ai in order to type a memory
mechanism for input channels, as we will see in Section 5.2.

Example 5.1.1. The axioms EM = A ∨ ¬A, Ck = (A1 → A2) ∨ . . . ∨ (An → A1),
Lin = (A→ B) ∨ (B → A), and Gk = (A1 → A2) ∨ . . . ∨ (An−1 → An) ∨ ¬An for n ≥ 2,
are intuitionistically equivalent to axioms in Ax.

Definition 5.1.1 (Terms of λ‖). The terms of λ‖ are defined by the rules for simply
typed λ-calculus in Table 2.5 and by the rules in Table 5.1.

As in the previous chapter, the variables are denoted as xA, yA, zA, . . . , aA, bA, cA
omitting the type when irrelevant. The variables introduced by the (A) rule will be often
denoted with letters a, b, c, . . . but do not constitute a separate class. A variable a that
occurs in a term A

a(u1 ‖ . . . ‖ um) is called channel or communication variable and
represents a private communication channel between the parallel processes. The term
A
a(u1 ‖ . . . ‖ um) will be denoted by a(u1 ‖ . . . ‖ um) when A is clear from the context or
irrelevant. All the free occurrences of a in u1, . . . , um are bound in a(u1 ‖ . . . ‖ um). All
conventions stated for the simply typed λ-calculus apply to λ‖ too.

The rule (contr) is essential for representing parallel terms that cannot communicate
between themselves but can still communicate with other processes. From a logical
perspective the rule is redundant, but sound.

From a computational perspective the rules (A) produce terms of the shape Aa(v1 ‖
. . . ‖ vm) that put in parallel terms v1, . . . , vm, which are called the processes of
A
a(v1 ‖ . . . ‖ vm); each term vi in turn has the shape u1 ‖ . . . ‖ uk, where u1, . . . , uk
are simply typed λ-terms and called the threads of vi. Processes can communicate

118

5.2. Communications in λ‖

with each other through the channel a, whereas threads represent parallel independent
subprograms than cannot interact with each other. Informally, in order to establish
a communication channel connecting two terms vi and vj , we require that aAi→Ai∧Bi

occurs in vi, aAj→Aj∧Bj occurs in vj and Ai is one of the conjuncts forming Bj . On
one hand, the argument w of a channel application aAi→Ai∧Bi w will be interpreted as a
message of type Ai that must be transmitted; on the other hand, the channel application
aAj→Aj∧Bj t will receive several messages of type Bj and containing w that will replace
the whole channel application aAj→Aj∧Bj t upon reception. Thus, in general each channel
application may send and receive messages. In order to formalize exactly the relation
between a process vi and all the processes vj such that vi can send messages to vj , it
is necessary to look at the structure of the axiom schema A, because its instances may
lose information about its general shape. For this purpose, we introduce the concept of
outlink.

Definition 5.1.2 (Outlinks). Let Aa(v1 ‖ . . . ‖ vm) be a term, where

A = (A1 → A1 ∧B1) ∨ . . . ∨ (Am → Am ∧Bm)

For any i, j ∈ {1, . . . ,m} and i 6= j, we say that the term vi is outlinked to the term vj
if Bj = Ak1 ∧ . . . ∧Ai ∧ . . . ∧Akp .

The direction of the communication and the direction of → are reversed, because the
type of the messages, which are arguments of channel occurrences aAi→Ai∧Bi , must be
contained in the type of the applications of the receiving channel aAj→Aj∧(Ak1∧...∧Ai∧...∧Akp

).

Each rule (A), stripped from the λ‖-terms, is equivalent to an instance of the axiom A,
which explain the rule’s name.

Proposition 5.1.1. The rule (A) is equivalent to the axiom A := (A1 → A1 ∧ B1) ∨
. . . ∨ (Am → Am ∧ Bm), that is for any formula P and set of formulae Γ, Γ ` P in
NI→∧⊥ + (A) if and only if P is provable from Γ in IL extended by A.

Proof. (⇐) In NI→∧⊥ with disjunction rules, we can easily derive A from each assumption
Ai → Ai ∧Bi. We can then use the rule (A) to discharge all hypotheses Ai → Ai ∧Bi
and prove A. (⇒) (A) can be easily simulated applying one disjunction elimination rule
for each ∨ in A.

5.2 Communications in λ‖

We present the reduction rules of λ‖ that implement the actual communications. com-
munications can transmit as messages arbitrary simply typed λ-terms, provided their
free variables are not bound in the surrounding context. As shown in Section 5.6, this
communication mechanism is enough to code interesting parallel programs.

119

5. A typed parallel λ-calculus based on disjunctive tautologies

Intuitionistic reductions The usual computational rules for the simply typed λ-
calculus represent the operations of applying a function to an argument and extracting
a component of a pair [GLT89]. From the logical point of view, they are the standard
Prawitz reductions [Pra71] for the natural deduction calculus NI→∧⊥ for IL.

Mini cross reductions Their goal is to implement communication, namely to transmit
programs, in the form of simply typed λ-terms. Since λ‖-terms may contain more than
one occurrence of a channel application, the first choice to make is which occurrence
should contain the next output message. For example, here we have two communicating
processes, each one consists of two threads:

(∗) a((a r ‖ a(x(a s))) ‖ (a u ‖ a(y(aw))))

where r, s, u, w are simply typed λ-terms not containing a. The first process a r ‖ a(x(a s)
contains three occurrences of the channel a. Let us focus on its second thread a(x(a s)).
The channel application a(x(a s)) cannot transmit the message x(a s), because the channel
a might be used with a different type in the second process, so type preservation after
reduction would fail. Therefore the only possibility here is to choose the second channel
application a s as the one containing the output message, in this case s. In general, to
make sure that the message does not contain the channel a, it is enough to choose as
application occurrence that contains the output message the rightmost occurrence of the
channel a in the whole process. Hence, in any process, the rightmost thread that contains
the channel contains the message.

The second choice is which occurrence of a channel application should receive the current
message. For example, in the term (∗) above the second process a u ‖ a(y(aw)) contains
three occurrences of a. Since a channel can both send and receive, and in particular,
usually, first sends and then receives, we are led to choose again the rightmost occurrence
of a channel application as the receiving one. Nonetheless, since the threads of a single
process do not communicate with each other, it is best to let all of them receive the
message in correspondence of their locally rightmost channel application. Thus in the
example, both a u and aw will receive messages.

The third choice is what to do with the arguments of a receiving channel. After a few
programming examples, like the Floyd–Warshall algorithm of Section 5.6, it is natural to
convince oneself that it is better to keep the arguments, a feature that we call memory.
In the previous term, if a u and aw receive s, they will be replaced respectively, with
〈u, s〉 and 〈w, s〉.

Continuing our example and summing up, we will have the following reduction:

(∗) 7→p a((a r ‖ a(x(a s))) ‖ (〈u, s〉 ‖ a(y〈w, s〉)))

As we can see, the message s in correspondence of the rightmost occurrence of a in
a(x(a s)) is transmitted by the first process to the rightmost application of a in each one
of the two threads a u and a(y(aw)) of the second process.

120

5.2. Communications in λ‖

The fourth choice to make is which processes should receive messages and which processes
should send them. As anticipated in the previous section, we are guided by the typing.
Let us consider for instance the term

a(x (aA→A∧B s) ‖ y (aB→B∧A t))

where s and t are specific simply typed λ-terms, x : A ∧B → C and y : B ∧A→ C. A
mini cross reduction rule corresponding to this typing rule admits communication in two
directions, from left to right and from right to left, because looking at the types, the
second process can receive messages from the first and viceversa. The reduction rule for
the left to right direction, for instance, is

a(x (aA→A∧B s) ‖ y (aB→B∧A t)) 7→p a(x (aA→A∧B s) ‖ y 〈t, s〉)

whereas from right to left is

a(x (aA→A∧B s) ‖ y (aB→B∧A t)) 7→p a(x 〈s, t〉 ‖ y (aB→B∧A t))

We can thus see that our reduction rules are naturally non-deterministic. When writing
actual code (Section 5.6), however, we shall fix an intuitive reduction strategy that will
choose deterministically at each step which process should receive the next batch of
messages. This way programmers can predict the behavior of their parallel code.

The fifth, and last, choice to make is what to do with the threads or processes that do
not contain any communication channel. The idea is that whenever a term contains no
channel occurrence, it has already reached a result, as it does not need to interact with
the context further. Hence at the end of the computation we may wish to select out some
of the processes that have reached their own results and consider them all together the
global result of the computation. Thus we introduce the simplification reduction (see
Table 5.2).

To precisely define communication reductions, we need to introduce two kinds of contexts:
one for terms that can communicate, one for terms which are in parallel but cannot
communicate.

Definition 5.2.1 (Simple Parallel Term). A simple parallel term is a λ‖-term t1 ‖
. . . ‖ tn, where each ti, for 1 ≤ i ≤ n, is a simply typed λ-term.

Definition 5.2.2. A context C[] is a λ‖-term with some fixed variable [] occurring
exactly once.

• A simple context is a context which is a simply typed λ-term.

• A simple parallel context is a context which is a simple parallel term.

For any λ‖-term u of the same type of [], C[u] denotes the term obtained replacing []
with u in C[], without renaming bound variables.

121

5. A typed parallel λ-calculus based on disjunctive tautologies

Intuitionistic Reductions (λxA u)t 7→p u[t/xA] 〈u0, u1〉πi 7→p ui, for i = 0, 1

Communication Reductions

Mini cross reductions

A
a(. . . ‖ C1[aw1] ‖ . . . ‖ (. . . ‖ D1[a v1] ‖ . . . ‖ Dn[a vn] ‖ . . .) ‖ . . . ‖ Cp[awp] ‖ . . .)

7→p
A
a(. . . ‖ C1[aw1] ‖ . . . ‖ (. . . ‖ D1[〈v1, w1, . . . , wp〉] ‖ . . . ‖ Dn[〈vn, w1, . . . , wp〉] ‖ . . .) ‖ . . . ‖ Cp[awp] ‖ . . .)

where C1[aw1], . . . , Cp[awp] are all the processes outlinked to the process (. . . ‖ D1[a v1] ‖ . . . ‖ Dn[a vn] ‖
. . .); each Dj is a simple context and each Cj is a simple parallel context; the displayed occurrences of a
are rightmost in each Dj [a vj] and in each Cj [awj]; finally, the free variables of each wj are free in Cj [awj].

Simplification reductions
A
a((u1 ‖ . . . ‖ un) ‖ . . . ‖ (um ‖ . . . ‖ up)) 7→p ui1 ‖ . . . ‖ uiq

whenever ui1 , . . . , uiq do not contain a and 1 ≤ i1 < . . . < iq ≤ p.

Table 5.2: Reduction Rules for λ‖.

The reduction rules of λ‖ are presented in Table 5.2. As usual, we adopt the reduction
schema: C[t] 7→p C[u] whenever t 7→p u and for any context C. With 7→∗p we shall denote
the reflexive and transitive closure of the one-step reduction 7→p.
We explain now the general case of the mini cross reduction. The rule identifies a single
process as the receiver and, as consequence, possibly several processes as senders. Once
the receiving process is fixed, the senders are determined by the axiom schema A that
the type of the communication channel occurring in the receiving process instantiates.
In particular, in the term

(?) A
a(. . .‖ C1[aw1] ‖ . . .‖ (. . . ‖ D1[a v1] ‖ . . .‖ Dn[a vn] ‖ . . .) ‖ . . .‖ Cp[awp] ‖ . . .)

the processes C1[aw1], . . . , Cp[awp] are the senders and the whole process

(. . . ‖ D1[a v1] ‖ . . .‖ Dn[a vn] ‖ . . .)

is the receiver; formally, C1[aw1], . . . , Cp[awp] are all the process outlinked (see Def-
inition 5.1.2) to (. . . ‖ D1[a v1] ‖ . . .‖ Dn[a vn] ‖ . . .). In this latter process, we have
highlighted the threads that actually contain the channel a: all of them will receive the
messages. Consistently with our choices, the displayed occurrences of a are rightmost in
each Dj [a vj] and in each Cj [awj] The processes containing w1, . . . , wp send them to all
the rightmost occurrences of a in the processes D1, . . . ,Dn: hence (?) 7→p

A
a(. . .‖C1[aw1] ‖ . . .‖(. . .‖D1[〈v1, w1, . . . , wp〉] ‖ . . .‖Dn[〈vn, w1, . . . , wp〉] ‖ . . .)‖ . . .‖Cp[awp] ‖ . . .)

provided that for each wj , its free variables are free in Cj [awj]: this condition is needed
to avoid that bound variables become free, violating the Subject Reduction. Whenever
wj is a closed term – executable code – the condition is automatically satisfied. As we
can see, the reduction retains all of the terms v1, . . . , vn occurring in D1, . . . ,Dn before
the communication.

122

5.2. Communications in λ‖

Notice that a process can receive a batch of messages only if all the processes outlinked
to it are ready to communicate. Which in turn implies that no incomplete batches of
messages are received: every transmission that a process receives will contain one message
from each process that can transmit to the first process. This is quite natural from
a logical point of view and greatly simplifies the communication reductions. From a
computational point of view, this behavior enforces a style of programming that we could
call receiver-oriented. In other terms, a sender does not actively send the message, it just
makes the message available. A receiver, on the other hand, can actively collect a batch
of messages when a complete one is made available from the relative senders.

Remark 5.2 (Using channels and consuming them). Unlike in π-calculus [Mil92, SW03],
in λ‖ the channel that sends the message is not consumed. The reason is precisely that
the mini cross reduction rule adopts the perspective of the receiver rather than that of
the senders. A process may wish to send the same message to multiple processes, not
only to the current receiver, so it is reasonable to let that possibility open and keep
the same output channel application active after the reduction. Therefore, a process
will stop sending the same message only when its output channel will be turned into an
input channel, that is, when the process will be selected as current receiver. Again, when
coding (Section 5.6), we shall introduce a discipline that regulates how processes send
messages to their potential receivers.

We show now that λ‖ computation steps preserve the type of terms.

Theorem 5.2.1 (Subject Reduction). If t : A and t 7→p u, then u : A and all the free
variables of u appear among those of t.

Proof. See Theorem 2.4.3 for the case of intuitionistic reductions. Since showing the
statement for simplification reductions is trivial, we only consider the case of mini cross
reductions.

Reductions of the form A
a((u1 ‖ . . . ‖ un) ‖ . . . ‖ (um ‖ . . . ‖ up)) 7→p ui1 ‖ . . . ‖ uiq

trivially preserve the type of terms since all processes uk must have the same type. It is
clear, moreover, that no new free variable is created.

Suppose then that we perform a mini cross reduction step as follows:

A
a(. . . ‖ C1[aw1] ‖ . . . ‖ (. . . ‖ D1[aAi→Ai∧Bi v1] ‖ . . . ‖ Dn[aAi→Ai∧Bi vn] ‖ . . .) ‖ . . . ‖ Cp[awp] ‖ . . .)

7→p
A
a(. . . ‖ C1[aw1] ‖ . . . ‖ (. . . ‖ D1[〈v1, w1, . . . , wp〉] ‖ . . . ‖ Dn[〈vn, w1, . . . , wp〉] ‖ . . .) ‖ . . . ‖ Cp[awp] ‖ . . .)

Since the type of the channel a is an instance (A1 → A1 ∧B1) ∨ . . . ∨ (Am → Am ∧Bm)
of the schema A = (A1 → A1 ∧B1)∨ . . .∨ (Am → Am ∧Bm) where Bi = Ak1 ∧ . . .∧Akp ,
and since w1 : Ak1 , . . . , wp : Akp , then the term (. . . ‖ D1[〈v1, w1, . . . , wp〉] ‖ . . . ‖
Dn[〈vn, w1, . . . , wp〉] ‖ . . .) is well defined and its type is the same as that of (. . . ‖
D1[aAi→Ai∧Bi v1] ‖ . . . ‖ Dn[aAi→Ai∧Bi vn] ‖ . . .). Hence the type of the term does not
change.

123

5. A typed parallel λ-calculus based on disjunctive tautologies

Since the displayed occurrences of a are rightmost in each Cj [awj] and thus a does not
occur in wj , no occurrence of a with type different from Ai → Ai∧Bi occurs in the terms
D1[〈v1, w1, . . . , wp〉], . . . ,Dn[〈vn, w1, . . . , wp〉]. Finally, the free variables of each wj are
free also in Cj [awj], and thus no new free variable is created by the reduction.

The termination of λ‖ programs is established in Section 5.5.

5.3 Properties of the communication in λ‖

Mini cross reductions do not have any communication mechanism for sending terms
outside their computational environment. Communications of this kind can be carried
out, for example, in λCl and λG, but not in λ‖. In particular, the configurations that
block communication in λ‖ are of the form C[au] where C[au] is a simply typed λ-term
and u contains some free variables which are bound in C[au]. We define here a class of
terms that do not contain these configurations and that reduce only into similar terms:
the class of communicative terms.

Definition 5.3.1. We say that a term t is communicative if it satisfies the following
conditions:

1. for any channel a, if a term au occurs in t, then no intuitionistic variable is free in u

2. all channel variables occurring in t are applied to some term

Condition 1. implies that t does not contain simply typed subterms C[au] where u
contains some free variables which are bound in C[au]. Condition 2. is needed in order to
prove that reductions do not transform a communicative term into a term which is not
communicative.

There are terms which are not communicative but still reduce into communicative terms.
An interesting example is the following term: a((λxλy y)(λz a(z))(λz z) ‖ a(λxx)) which
reduces to a(λz z ‖ a(λxx)) and then can be simplified into λz z. Not only this term is
not communicative, but it actually contains the configuration λz a(z) that blocks the
communications through a(z). The term a(λz z ‖ a(λxx)) into which the first reduces,
instead, is clearly communicative as we can see in the proof of Proposition 5.3.1 below.

We show now that the class of communicative terms is closed under reductions. In the
proof we use the following definitions.

Definition 5.3.2 (Disjoint occurrences). For any term u, two occurrences s and t of
subterms of u are disjoint if s does not occur in t and t does not occur in s.

Definition 5.3.3 (I-closed). A term u is i-closed if no intuitionistic variable is free in u.

124

5.3. Properties of the communication in λ‖

The intuitions behind the next proof are quite simple. All applied channels remain
applied also after reductions because no reduction can transform a channel application au
into a pair 〈a, . . .〉 or 〈. . . , a〉, into an abstraction λy a, and certainly does not transform
the term into a single variable occurrence a. There are three main reasons why channel
applications au in which u is i-closed remain terms of this kind during reduction: first,
reductions do not transform bound variables into free variables; second, the messages
which are transmitted inside a communicative term are all closed terms; and third, by
reducing an application we do not modify i-closed terms occurring in the body of the
applied term.

Proposition 5.3.1. If t is communicative and t 7→p t
′, then t′ is communicative.

Proof. We assume that t is communicative and we prove that t′ is communicative. We
reason by induction on the size of t and distinguish four cases corresponding to the
reduction applied to t.

• Suppose that the reduction is (λx v)w 7→p v[w/x]. If a non-applied channel occurs
in t′, then it either occurs in w or in v or in a subterm which is disjoint with respect
to v[w/x]. In all cases, the channel also occurs in t as a term which is not applied,
which contradicts the assumption that t is communicative.
We show now that for any subterm au of t′, u is i-closed. Consider any occurrence
au of a subterm of t′. If au and v[w/x] are disjoint in t′, then au and (λx v)w
are disjoint in t and hence u must be i-closed, otherwise t is not communicative.
Suppose then that au and v[w/x] are not disjoint. We have two cases.

1. au occurs in v[w/x]. Since either a occurs in w or in v, then au either occurs
in w or au = au′[w/x] occurs in v[w/x]. Since no term au′ such that x is free
in u′ can occur in v, u = u′[w/x] = u′ and au occurs in v. Hence, in both
cases au occurs also in t and u must be a i-closed term.

2. v[w/x] occurs in u. Let us denote by u′ the term from which we obtain
u by reducing (λx v)w 7→p v[w/x]. The term u′ must be i-closed because
otherwise t would not be communicative. Since, moreover, the reduction
(λx v)w 7→p v[w/x] does not generate any free variables in u′, we have that u
is a i-closed term as well and we are done.

• Suppose that the reduction is 〈v0, v1〉πi 7→p vi. If a non-applied channel occurs in
t′, then it either occurs in vi or in a subterm which is disjoint with respect to vi.
In both cases, it also occurs in t as a term which is not applied, which contradicts
the assumption that t is communicative.
We show now that for any subterm au of t′, u is i-closed. Consider now a generic
occurrence au of a subterm of t′. If au and vi are disjoint in t′, then au and 〈v0, v1〉
are disjoint in t and hence u must be i-closed, otherwise t is not communicative.
Suppose then that au and vi are not disjoint. We have two cases.

125

5. A typed parallel λ-calculus based on disjunctive tautologies

1. au occurs in vi. Hence au occurs also in t and u is i-closed because otherwise
t would not be communicative.

2. vi occurs in au. Since vi = au falls under the previous case, we only consider
the case in which vi occurs in u. Let us denote by u′ the term from which we
obtain u by reducing 〈v0, v1〉πi 7→p vi. The term u′ must be i-closed because
otherwise t would not be communicative. Since, moreover, the reduction
〈v0, v1〉πi 7→p vi does not generate any free variables in u′, we have that u is a
i-closed term as well and we are done.

• Suppose that the reduction is

t = a(. . . ‖ C1[aw1] ‖ . . . ‖ (. . . ‖ D1[a v1] ‖ . . . ‖ Dn[a vn] ‖ . . .) ‖ . . . ‖ Cp[awp] ‖ . . .)

7→p

a(. . . ‖ C1[aw1] ‖ . . . ‖ (. . . ‖ D1[〈v1, w1, . . . , wp〉] ‖ . . . ‖ Dn[〈vn, w1, . . . , wp〉] ‖ . . .) ‖ . . . ‖ Cp[awp] ‖ . . .)

If a non-applied channel occurs in t′, then it occurs in one of the terms w1, . . . , wp
or in a term vj for some j ∈ {1, . . . , n} or in a subterm which is disjoint with
respect to 〈vj , w1, . . . , wp〉 for any j ∈ {1, . . . , n}. In all cases, the channel also
occurs in t as a term which is not applied, which contradicts the assumption that t
is communicative.

We show now that for any subterm au of t′, u is i-closed. Consider now any
occurrence au of a subterm of any Dj [〈vj , w1, . . . , wp〉]. If au and 〈vj , w1, . . . , wp〉
are disjoint in t′, then au and a vj are disjoint in t and hence u must be i-closed,
otherwise t is not communicative. Suppose then that au and 〈vj , w1, . . . , wp〉 are
not disjoint. We have two cases.

1. au occurs in 〈vj , w1, . . . , wp〉. Hence au must occur in one of the terms
vj , w1, . . . , wp and therefore in t. Then the term u is i-closed, because otherwise
t would not be communicative.

2. 〈vj , w1, . . . , wp〉 occurs in au. Since 〈vj , w1, . . . , wp〉 6= au we know that
〈vj , w1, . . . , wp〉 occurs in u. Let us denote by u′ the term from which we
obtain u by replacing a vj with 〈v0, v1〉πi 7→p vi. The term u′ and the terms
vj , w1, . . . , wp must be i-closed because otherwise t would not be communica-
tive. Hence u is a i-closed term as well and we are done.

• Suppose that the reduction is

A
a((u1 ‖ . . . ‖ un) ‖ . . . ‖ (um ‖ . . . ‖ up)) 7→p ui1 ‖ . . . ‖ uiq

Since all simply typed λ-terms that occur in t′ also occur in t, t′ is communicative
because otherwise t would not be communicative.

126

5.4. From communication topologies to programs

In conclusion we have that, during the normalization of a closed communicative term,
all channels are either used as receivers in a communication, and hence consumed, or
discarded. Therefore, no communication deadlock can occur in a communicative term.

Corollary 5.3.1.1 (Closed communicative terms are communication-deadlock-free).
For any term t, if t is closed, communicative and normal, then t does not contain any
communication channel.

Proof. Suppose for the sake of contradiction that t is closed, communicative and normal,
but t contains a communication channel. Since t is closed and contains a communication
channel, t is of the form

A
a((u1 ‖ . . . ‖ un) ‖ . . . ‖ (um ‖ . . . ‖ up))

We have then two cases.

1. All terms u1, . . . , un, . . . , um, . . . , up contain communication channels. Since t is
communicative, all channels occurring in t are applied to i-closed terms. Therefore,
we can rewrite t asAa(. . . ‖ C1[aw1] ‖ . . . ‖ (. . . ‖ D1[a v1] ‖ . . . ‖ Dn[a vn] ‖ . . .) ‖
. . . ‖ Cp[awp] ‖ . . .) where C1[aw1], . . . , Cp[awp] are all the processes outlinked to
the process (. . . ‖ D1[a v1] ‖ . . . ‖ Dn[a vn] ‖ . . .); each Dj is a simple context and
each Cj is a simple parallel context; the displayed occurrences of a are rightmost
in each Dj [a vj] and in each Cj [awj]; and the free variables of each wj are free
in Cj [awj]. But this means that a mini cross reduction can be applied, which
contradicts the assumption that t is normal.

2. Some of the terms u1, . . . , un, . . . , um, . . . , up does not contain communication chan-
nels. This contradicts the assumption that t is normal since a simplification
reduction can be applied.

5.4 From communication topologies to programs
We present now a method for automatically extracting λ‖ typing rules from graph-specified
topologies. Namely, given a direct, reflexive graph G whose nodes and edges represent
respectively processes and communication channels, we describe how to transform it into
a formula A ∈ Ax corresponding to a typing rule (A) for λ‖-terms, see Table 5.3. We
will show that this typing rule encodes a topology which exactly mirrors the graph G:
two processes may comunicate if and only the corresponding graph nodes are connected
by an edge and the direction of communication follows the edge.

Before establishing the exact correspondence between directed graphs and λ‖ communi-
cation reductions, we show a simple example.

127

5. A typed parallel λ-calculus based on disjunctive tautologies

Given a directed reflexive graph G = (V,E), the axiom schema A encoding G is a
disjunction C1 ∨ . . . ∨ Ck such that k is the cardinality of V and for each n ∈ {1, . . . , k}:

• Cn = An → Ai1 ∧ . . . ∧ Aim , if the nth node in G has incoming edges from more
than one node among i1, . . . , im

• Cn = An → An ∧ ⊥, if the n-th node in G has only one incoming edge

Table 5.3: Procedure to extract an axiom A ∈ Ax from a directed reflexive graph G.

Example 5.4.1. Consider the graph

1 2

34

The axiom extracted by the procedure in Table 5.3 is the following

(A1 → A1 ∧A2 ∧A4) ∨ (A2 → A2 ∧A1) ∨ (A3 → A3 ∧A1 ∧A2) ∨ (A4 → A4 ∧ ⊥)

The relative typing rule is the following, where ui ∈ {u1, . . . , u4} stands for the i-th node
of the graph

[a : A1 → A1 ∧A2 ∧A4]....
u1 : F

[a : A2 → A2 ∧A1]....
u2 : F

[a : A3 → A3 ∧A1 ∧A2]....
u3 : F

[a : A4 → A4 ∧ ⊥]....
u4 : F

a(u1 ‖ u2 ‖ u3 ‖ u4) : F

As defined in Table 5.2 the mini cross reductions for the terms typed by this rule are

a(C1[a t1] ‖ C2[a t2] ‖ C3 ‖ C4[a t4]) C1 receives
7→p

a(C1[〈t1, t2, t4〉] ‖ C2[a t2] ‖ C3 ‖ C4[a t4])

a(C1[a t1] ‖ C2[a t2] ‖ C3 ‖ C4) C2 receives
7→p

a(C1[a t1] ‖ C2[〈t2, t1〉] ‖ C3 ‖ C4)

a(C1[a t1] ‖ C2[a t2] ‖ C3[a t3] ‖ C4) C3 receives
7→p

a(C1[a t1] ‖ C2[a t2] ‖ C3[〈t3, t1, t2〉] ‖ C4)

These reductions correspond to the edges of the graph: u1 and u2 can exchange messages
in both directions, both u1 and u2 can send messages to u3, which can only receive
messages but cannot transmit, and finally u4 can send messages to u1 but cannot
receive any message. Moreover, as discussed in Section 5.2, the occurrence of Ai in the
consequent of each implication provides us with a memorization mechanism for messages,
corresponding to the reflexive edges of the graph.

128

5.5. The strong normalization theorem

We prove now that the rule extracted from a graph constrains communications to happen
as indicated by the edges of the graph.

Proposition 5.4.1 (Topology correspondence). For any directed reflexive graph G and
term a(u1 ‖ . . . ‖ um) typed using the rule corresponding to the axiom extracted from G
by the procedure in Table 5.3, there exists a basic cross reduction for a(u1 ‖ . . . ‖ um) that
transmits a term w from ux to uy if and only if G contains an edge from x to y.

Proof. Suppose that G contains an edge from x to y. The procedure in Table 5.3 generates
an axiom containing a disjunct of the form Ay → Ay ∧ . . . ∧Ax ∧ . . . ∧Az and a disjunct
of the form Ax → (Ax ∧ . . .). We thus have a reduction of the form

a(. . . ‖ C1[aw1] ‖ . . . ‖ (D1[aAi→Ai∧Bi v1] ‖ . . . ‖ Dn[aAi→Ai∧Bi vn]) ‖ . . . ‖ Cp[awp] ‖ . . .) (5.1)
7→p a(. . . ‖ C1[aw1] ‖ . . . ‖ (. . . ‖ Di[〈v1, w1, . . . , wx, . . . , wp〉] ‖ . . .) ‖ . . . ‖ Cp[awp] ‖ . . .)

for ux = Cx[awx] = and uy = D1[aAi→Ai∧Bi v1] ‖ . . . ‖ Dn[aAi→Ai∧Bi vn]. Such reductions
allow the term wx to be transmitted from the term ux to the reduced form

(. . . ‖ Di[〈v1, w1, . . . , wx, . . . , wp〉] ‖ . . .)

of the term uy.

As for the other direction, due to the conditions of basic cross reductions in Table 5.2,
reductions of the form (5.1) for a term wx : Ax directly require that the axiom contains a
disjunct of the form Ax → (. . .) and a disjunct of the form Ay → (Ay∧ . . .∧Ax∧ . . .∧Az).
But the procedure in Table 5.3 produces such disjoints only if the graph G contains nodes
x, y and an edge from x to y.

5.5 The strong normalization theorem
We prove the strong normalization theorem for λ‖: any reduction of every λ‖-term ends
in a finite number of steps into a normal form. This means that the computation of
any typed λ‖-term always terminates independently of the chosen reduction strategy.
The strong normalization argument for λ‖ is new. We reduce the strong normalization
of λ‖ to the strong normalization of a non-deterministic reduction relation over simply
typed λ-terms. The idea is to simulate communication by non-determinism, a technique
inspired by [AZ16].

Definition 5.5.1 (Normal forms and strongly normalizable terms). A λ‖-term u of λ‖
is strongly normalizable if every reduction of u is finite. With SNp we denote the set of
the strongly normalizable terms of λ‖.

5.5.1 Non-deterministic reductions

The strong normalization problem for parallel λ-calculi is an intricate one. Decreasing
complexity measures are quite hard to come up with and indeed those introduced for

129

5. A typed parallel λ-calculus based on disjunctive tautologies

λCl and λG fail to show that fragments of λ‖ are strongly normalizing. Given a term
a(u1 ‖ . . . ‖ un), one would like to measure its complexity as a function of the complexities
of the terms ui, for example taking into account the number of channel occurrences
and the length of the longest reduction of λ-redexes in ui. However, when ui receives a
message its code may drastically change and both those numbers may increase. Moreover,
there is a potential circularity to address: channels send messages, so they may generate
new λ-calculus redexes in the receivers; in turn, λ-calculus redexes may duplicate channel
occurrences, generating even more communications and messages.

In order to break this circularity, the idea is to use a radically different complexity measure.
The complexity of a process ui should take into account all the possible messages that
ui may receive. Now, if ui = D[a t], then after receiving a message it becomes D[〈t, s〉],
where s is an arbitrary, from the point of view of ui, simply typed λ-term. We thus create
a reduction relation over simply typed λ-terms that simulates the reception “out of the
blue” of this kind of messages. Namely, we extend the reduction relation of λ-calculus
with the rule aT t, for every channel aT and simply typed λ-term t : T that does
not contain channels. In order to simulate the reception of an arbitrary batch w of
messages, the simply typed λ-term t : T will be instantiated as λx 〈x,w〉 in the proof
of Theorem 5.5.6. With this reductions, λ-terms not containing channels are the usual
deterministic ones.

Definition 5.5.2 (Deterministic simply typed λ-terms). A simply typed λ-term t is
called determistic, if t does not contain any channel occurrence.

Definition 5.5.3 (The non-deterministic reduction relation). The reduction relation
 over simply typed λ-terms is defined as extension of the relation 7→p as follows:

(λxA u) t u[t/xA]

〈u0, u1〉πi ui, for i = 0, 1

aT t, for every channel aT and deterministic simply typed λ-term t : T

and as usual we close by contexts: C[t] C[u] whenever t u and C[] is a simple context.
With ∗ we shall denote the reflexive and transitive closure of the one-step reduction .

The plan of our proof will be to prove the strong normalization of simply typed λ-
calculus with respect to the reduction (Corollary 5.5.5.1) and then derive the strong
normalization of λ‖ using as the source of the complexity measure (Theorem 5.5.5). We
shall prove the first result by the standard Tait-Girard reducibility technique (Definition
5.5.4).

In the following, we define SNN to be the set of strongly normalizing simply typed
λ-terms with respect to the non-deterministic reduction . The reduction tree of a
strongly normalizable term with respect to is no more finite, but still well-founded. It
is well-known that it is possible to assign to each node of a well-founded tree an ordinal
number, in such a way that it decreases passing from a node to any of its children. We

130

5.5. The strong normalization theorem

will call the ordinal size of a term t ∈ SNN the ordinal number assigned to the root of its
reduction tree and we denote it by h(t); thus, if t u, then h(t) > h(u). To fix ideas,
one may define h(t) := sup{h(u) + 1 | t 7→p u}.

5.5.2 Reducibility and properties of reducible terms

We define a notion of reducibility for simply typed λ-terms with respect to the reduction
 . As usual, we shall prove that every reducible term is strongly normalizable and
afterwards that all simply typed λ-terms are reducible. The difference with the usual
reducibility proof is that we shall first prove that deterministic simply typed λ-terms are
reducible (Theorem 5.5.3), which makes it possible to prove that channels are reducible
(Proposition 5.5.4) and finally that all terms are reducible (Theorem 5.5.5). This amounts
to prove twice the usual Adequacy Theorem, normally only proved as the final result.
We prove it here once as Theorem 5.5.3 and once as Theorem 5.5.5.

Definition 5.5.4 (Reducibility). Assume t : C is a simply typed λ-term. We define the
relation t rC (“t is reducible of type C”) by induction and by cases according to the
form of C:

1. t r P, with P atomic, if and only if t ∈ SNN

2. t rA ∧B if and only if t π0 rA and t π1 rB

3. t rA→ B if and only if for all u, if u rA, then tu rB

We prove that the set of reducible terms for a given formula C satisfies the usual properties
of a Girard reducibility candidate. Following [GLT89], neutral terms are terms that did
not reach a stable form but need further computation.

Definition 5.5.5 (Neutrality). A term is neutral if it is not of the form λxu or 〈u, t〉.

Definition 5.5.6 (Reducibility Candidates). Extending the approach of [GLT89], we
define four properties (CR1), (CR2), (CR3) of reducible terms t:

(CR1) If t rA, then t ∈ SNN.

(CR2) If t rA and t ∗ t′, then t′ rA.

(CR3) If t is neutral and for every t′, t t′ implies t′ rA, then t rA.

We show that every term t possesses the reducibility candidate properties. The arguments
for (CR1), (CR2), (CR3), are in many cases standard (see [GLT89]).

Proposition 5.5.1. Let t : C be a simply typed λ-term. Then t has the properties
(CR1), (CR2), (CR3).

131

5. A typed parallel λ-calculus based on disjunctive tautologies

Proof. By induction on C. The base case is when C is atomic. Then t rC means
t ∈ SNN. Therefore (CR1), (CR2), (CR3) are trivial. Assume that C = A→ B (the
case C = A ∧B is similar).

(CR1). Suppose t rA → B. By i.h. (CR3), for any intuitionistic variable x, we have
x rA. Therefore, t x rB, and by (CR1), t x ∈ SNN, and thus t ∈ SNN.

(CR2). Suppose t rA→ B and t t′. Let u rA: we have to show t′u rB. Since tu rB
and tu t′u, the i.h. leads to (CR2) that t′u rB.

(CR3). Assume t is neutral and t t′ implies t′ rA→ B. Suppose u rA; we have to
show that tu rB. We proceed by induction on h(u) since u ∈ SNN by i.h. (CR1). By
i.h. (CR3) holds for the type B. So assume tu z; it is enough to show that z rB. If
z = t′u, with t t′, then by hypothesis t′ rA→ B, so z rB. If z = tu′, with u u′, by
i.h. (CR2) u′ rA, and therefore z rB by the i.h. relative to the size of the reduction
tree of u′. There are no other cases since t is neutral.

The next task is to prove that all introduction rules of simply typed λ-calculus define a
reducible term from a list of reducible terms for all premises.

In some cases that is true by definition of reducibility; we list below some non-trivial but
standard cases we have to prove.

Proposition 5.5.2.

1. If for every t rA, u[t/x] rB, then λxu rA→ B.

2. If u rA and v rB, then 〈u, v〉 rA ∧B.

Proof.

1. We fix now a generic s such that s rA and we show that if for every t such that t rA,
u[t/x] rB holds, then the term resulting from (λxu)s after one step of reduction is
reducible. Since (CR3) implies that x rA, we have that u rB. Hence, since both
s rA and u rB, by (CR1) we can reason by induction on the lexicographical order
on the ordered pairs (h(u), h(s)) of the ordinal sizes of u and s. We consider the
possible forms of the term resulting from the reduction:

• u[s/x]. By assumption, since s rA, u[s/x] rB holds and hence we are done.
• (λxu′)s. Since for every t such that t rA it holds that u[t/x] rB and u[t/x] ∗
u′[t/x] , by (CR2) we have that u′[t/x] rB. Since u′[t/x] rB holds for any
t such that t rA and since h(u′) < h(u), the thesis follows by induction
hypothesis.

• (λxu)s′. By (CR2) and since s rA, we have that s′ rA. Since, by assumption,
for every t such that t rA, u[t/x] rB holds and since h(s′) < h(s), the thesis
follows by induction hypothesis.

132

5.5. The strong normalization theorem

In all cases, we obtain a reducible term. By (CR3) we can conclude that (λxu)s
is reducible as well. Since moreover, for any s such that s rA, (λxu)s rB we have
that λxu rA→ B.

2. Since u rA and v rB, and by (CR1), we can reason by induction on the lexico-
graphical order on the ordered pairs (h(u), h(v)) of the ordinal sizes of u and v. We
reason then by cases on the form of the term resulting from 〈u, v〉πi for i ∈ {0, 1}
after one step of reduction:

• u or v. By assumption both are reducible and hence we are done.
• 〈u′, v〉πi. By (CR2) and since u rA, the term u′ is reducible. Since h(u′) <
h(u), the thesis follows by induction hypothesis.

• 〈u, v′〉πi. By (CR2) and since v rB, the term v′ is reducible. Since h(v′) <
h(v), the thesis follows by induction hypothesis.

In all cases, we obtain a reducible term. By (CR3) we can conclude that 〈u, v〉πi
for i ∈ {0, 1} is reducible as well and hence 〈u, v〉 rA ∧B.

5.5.3 The mini adequacy theorem

We prove that simply typed λ-terms that do not contain channels are reducible.

Theorem 5.5.3 (Mini Adequacy Theorem). Suppose that w : A is a deterministic simply
typed λ-term, with intuitionistic free variables among x1 : A1, . . . , xn : An. For all terms
t1, . . . , tn such that

for i = 1, . . . , n, ti rAi we have w[t1/x1 · · · tn/xn] rA

Proof. This is proved exactly as Theorem 5.5.5 but without case 2., which concerns
channels.

Corollary 5.5.3.1 (Mini Strong Normalization of). Suppose t : A is a deterministic
simply typed λ term. Then t rA and t ∈ SNN.

Proof. Assume x1 : A1, . . . , xn : An are all the intuitionistic free variables of t and thus
all its free variables. By (CR3) and since intuitionistic variables cannot be reduced by
 , one has xi rAi, for i = 1, . . . , n. From Theorem 5.5.3, we derive that t rA. From
(CR1), we conclude that t ∈ SNN.

By the Mini Adequacy Theorem we can prove that channels are reducible.

Proposition 5.5.4 (Reducibility of non-Deterministic Channels). For every non-deterministic
channel a : T , a rT .

133

5. A typed parallel λ-calculus based on disjunctive tautologies

Proof. Since a is neutral, by (CR3) it is enough to show that for all u such that a u,
it holds that u rT . Indeed, let us consider any u such that a u; since u must be a
deterministic simply typed λ-term, by Corollary 5.5.3.1 u rT .

5.5.4 The adequacy theorem

We can finally prove that all simply typed λ-terms are reducible.

Theorem 5.5.5 (Adequacy Theorem). Suppose that w : A is any simply typed λ-term,
with intuitionistic free variables among x1 : A1, . . . , xn : An. For all terms t1, . . . , tn such
that

for i = 1, . . . , n, ti rAi we have w[t1/x1 · · · tn/xn] rA

Proof. Notation: for any term v and formula B, we denote

v[t1/x1 · · · tn/xn]

with v. We proceed by induction on the shape of w.

1. If w = xi : Ai, for some i, then A = Ai. So w = ti rAi = A.

2. If w = a : Ai, for some i and channel a, then A = Ai. By Proposition 5.5.4,
a = a rA.

3. If w = ut, then u : B → A and t : B. So w = u t rA, for u rB → A and t rB by
induction hypothesis.

4. If w = λxB u, then A = B → C. So, w = λxB u, since we may assume xB 6=
x1, . . . , xk. For every t rB, by induction hypothesis on u, u[t/x] rC. Therefore, by
Proposition 5.5.2, λxB u rB → C = A.

5. The cases of pairs and projections are straightforward.

Corollary 5.5.5.1 (Strong Normalization of). Suppose t : A is any simply typed
λ-term. Then t ∈ SNN.

Proof. Assume x1 : A1, . . . , xn : An are all the intuitionistic free variables of t. By (CR3)
and since intuitionistic variables cannot be reduced by , one has xi rAi. From Theorem
5.5.5, we derive that t rA. From (CR1), we conclude that t ∈ SNN.

134

5.6. Computing with λ‖

5.5.5 Strong normalization of λ‖

We are finally in a position to prove the strong normalization of λ‖.

Theorem 5.5.6 (Strong Normalization of λ‖). For any λ‖-term t, t ∈ SNp.

Proof. Assume t = a(u1 ‖ . . . ‖ um) and u1 = v1 ‖ . . . ‖ vn, . . ., um = vp ‖ . . . ‖ vq.
Define ρi, for i ∈ {1, . . . , q}, as the ordinal size h(vi) of vi with respect to the reduction
relation . We proceed by lexicographic induction on the sequence

ρ = (ρ1, . . . , ρq)

which we call the complexity of t. Let t′ be any term such that t 7→p t
′: to prove the

thesis, it is enough to show that t′ ∈ SNp. Let ρ′ the complexity of t′. We must consider
three cases.

1. t′ = a(u1 ‖ . . . ‖ u′k ‖ . . . ‖ um) and in turn

u′k = vi ‖ . . . ‖ v′r ‖ . . . ‖ vj

with vr 7→p vr′ by contraction of an intuitionistic redex. Then also vr v′r.
Therefore ρ′ is lexicographically strictly smaller than ρ and we conclude by induction
hypothesis that t′ ∈ SNp.

2. t′ = a(u1 ‖ . . . ‖ u′k ‖ . . . ‖ um) and

uk = . . . ‖ vi ‖ . . . ‖ vj ‖ . . . u′k = . . . ‖ v′i ‖ . . . ‖ v′j ‖ . . .
vi = D1[aw1], . . . vj = Dn[awn] v′i = D1[〈w1, w〉], . . . vj = Dn[〈wn, w〉]

where w is the sequence of messages transmitted by the cross reduction. Since we
have, for each l

Dl[awl] Dl[(λx 〈x,w〉)wl] Dl[〈wl, w〉]

we obtain vi ∗ v′i, . . . vj ∗ v′j . Therefore ρ′ is lexicographically strictly smaller
than ρ and we conclude by induction hypothesis that t′ ∈ SNp.

3. t′ = vi1 ‖ . . . ‖ vik . As vi1 , . . . , vik all belong to SNp, we easily obtain t′ ∈ SNp.

5.6 Computing with λ‖

We illustrate the expressive power of λ‖ with examples of programs. The first example
shows that we can formulate in λ‖ a term which behaves similarly to parallel OR, and
thus that λ‖ is more powerful than simply typed λ-calculus. The next two are parallel
programming examples featuring a numeric approximation of π and an algorithm for
computing shortest paths on graphs.

135

5. A typed parallel λ-calculus based on disjunctive tautologies

All λ‖-terms that we are going to construct will be reduced according to a fixed normal-
ization strategy, which we are going to define now: a recipe for selecting, in any given
term, the subterm to which apply one of our reductions. By strong normalization of λ‖,
we already know it will terminate.

Our normalization strategy follows the following rules, whose goal is to make parallel
programming with λ‖ as efficient and as deterministic as possible.

(a) Messages should be normalized before being sent. This property is fundamental for
efficient parallel computation. Indeed, for instance, a repeatedly forwarded message can
be duplicated many times inside a process network, because each process may keep a
copy of it; hence if the message is not normal, each process may have to normalize it all
over again, wasting resources.

(b) The senders and the receiver of the message should be normalized before the com-
munication. Indeed, the communication behavior depends on the syntactic shape of a
process: it is the rightmost occurrence of the channel in a λ‖-term to determine what
message is sent or received. Hence, a term might send a message while its normal form
another one. For example (λx y x (an))(am) would transmit m, while its normal form
y (am) (an) would transmit n. We want to avoid this kind of unpredictable behavior
and make clear what channel is supposed to be the active one, which sends or receives a
message.

(c) The reduction strategy should exploit parallelism as much as possible.

Informally, our normalization strategy consists in iterating the basic reduction relation
�p defined below, that takes a term t = a(u1 ‖ . . . ‖ um) and performs the following
operations:

1) We select all the threads of u1, . . . , um that will send or receive the next message and
we let them complete their internal computations. This way, we satisfy (a) and (b). We
also exploit parallelism as much as possible, and thus (c).

2) We let the selected threads transmit their message.

3) While executing 1) and 2); to avoid inactivity, we let the other threads perform some
other independent calculations that may be carried out in parallel. Hence we satisfy (c).

4) If the previous operations are not possible, we extract the results, if any.

Definition 5.6.1 (Reduction Strategy �p). Let t = a(u1 ‖ . . . ‖ um) be a λ‖-term. We
write t �p t

′ whenever t′ has been obtained from t by applying one of the following:

1. We select a receiver ui for the next communication. We normalize, among the
threads that contain a, those that are rightmost in ui or in a process outlinked to
ui. If now it is possible, we apply a mini cross reduction

a(u1 ‖ . . . ‖ ui ‖ . . . ‖ um) 7→p a(u1 ‖ . . . ‖ u′i ‖ . . . ‖ um)

followed by some intuitionistic reductions.

136

5.6. Computing with λ‖

2. Provided that by 1. it is impossible to have a reduction t 7→∗p t′ where t′ 6= t, we
apply, if possible, a simplification reduction. We then normalize the remaining
simply typed λ-terms.

We can reduce every λ‖-term in normal form just by iterating the reduction relation
�p. Indeed, if any communication is possible, by 1. we can select a suitable receiver and
apply a mini cross reduction. If no communication or intuitionistic reduction is possible
but a simplification is possible, 2. applies and we can simplify the term. Otherwise, we
can just normalize the simply typed λ-terms by 1. or 2.

This normalization strategy leaves some room for non-determinism: it prescribes when
a communication reduction should be fired, but does not select a process out of those
that can potentially receive messages, thus leaving a number of possible ways of actually
performing the communication. To limit this non-determinism, we underline exactly one
process and impose that only an underlined process C[aFi→Fi∧Gj t] can receive a message.
Immediately after the reception of the message, or if no message can be received, we
underline either the next process on the right, if any, or the first one from left otherwise.
Another source of non-determinism is due to simplification reductions

A
a((um1 ‖ . . . ‖ un1) ‖ . . . ‖ (ump ‖ . . . ‖ unp)) 7→p uj1 ‖ . . . ‖ ujq

In this case, we impose that uj1 ‖ . . . ‖ ujq results by selecting from each (umi ‖ . . . ‖ uni),
with 1 ≤ i ≤ p, the leftmost thread not containing a.

5.6.1 Parallel OR

Berry’s sequentiality theorem [Bar84] implies that there is no parallel OR, namely a
simply typed λ-term O : Bool → Bool → Bool such that O ff ff 7→∗p ff, Ou tt 7→∗p
tt, O ttu 7→∗p tt for every λ-term u, where tt, ff are the boolean constants. As a
consequence, there cannot be a λ-term O such that O[ff/x][ff/y] 7→∗p ff, O[u/x][tt/y] 7→∗p
tt, O[tt/x][u/y] 7→∗p tt for every λ-term u. A term with the above property can instead
be defined in λ‖. To implement this term we need to process the two inputs in parallel. If
both inputs evaluate to ff, though, at least one process needs to have all the information
in order to output the result ff. Hence a simple channel of the form

is enough. The procedure in Table 5.3 extracts from this graph the axiom EM′ = (A→
A ∧ ⊥) ∨ (B → B ∧A). We recall that the corresponding mini cross reduction is

a(C[aw] ‖ (D1[av1] ‖ . . . ‖ Dn[avn])) 7→p a(C[aw] ‖ (D1[〈v1, w〉] ‖ . . . ‖ Dn[〈vn, w〉]))

We add to λ‖ the boolean type, tt, ff and the usual “if _ then_ else_” construct [GLT89].
We define in λ‖

O := a(if x then tt else a ffπ0 ‖ if y then tt else a ∗ π1)

137

5. A typed parallel λ-calculus based on disjunctive tautologies

where we assume that a : Bool→ Bool ∧ ⊥ in the first process, that a : > → >∧ Bool in
the second one, and that ∗ : > = λx⊥ x : >. Now, on one hand

O[u/x][tt/y] =a(if u then tt else a ffπ0 ‖ if tt then tt else a ∗ π1)
7→∗p a(if u then tt else a ffπ0 ‖ tt) 7→p tt

and symmetrically O[tt/x][u/y] 7→∗p tt. On the other hand,

O[ff/x][ff/y] 7→∗p a(if ff then ff else a ffπ0 ‖ if ff then ff else a ∗ π1) 7→∗p

a(a ffπ0 ‖ a ∗ π1) 7→p a(a ffπ0 ‖ 〈∗, ff〉π1) 7→p 〈∗, ff〉π1 7→p ff

5.6.2 A parallel program for computing π

We implement in λ‖ a parallel program for computing an arbitrarily precise approximation
of π. As is well know π can be computed as the limit of the following summation

π = lim
l→∞

1
l

l∑
i=1

f(
i− 1

2
l

) where f(x) = 4
1 + x2

For any given l, instead of calculating sequentially the whole sum
∑l
i=1 f(i−1/2

l) and then
dividing it by l, it is more efficient to distribute different parts of the sum to p parallel
processes. When the processes terminate, they can send the results m1, . . . ,mp, as shown
below, to a process which computes the final result 1

l (m1 + . . .+mp), see also [Loo11].

l/p∑
i=1

f(i−
1
2
l)

2(l/p)∑
i=l/p+1

f(i−
1
2
l)

3(l/p)∑
i=2(l/p)+1

f(i−
1
2
l)

. . .

l∑
i=(p−1)(l/p)+1

f(i−
1
2
l)

1
l (m1 + . . .+mp)

mp

m1

m2
m3

Figure 5.2

The graph in Figure 5.2, in which we omit reflexive edges, is encoded by the axiom
A = (A1 → A1∧⊥)∨ . . .∨ (Ap → Ap∧⊥)∨B → (B∧A1∧ . . .∧Ap) (cf. the procedure in
Table 5.3). To write the program, we add to λ‖ types and constants for rational numbers,
together with function constants

fk l 7→∗p
(kl/p)∑

i=(k−1)l/p+1
f(
i− 1

2
l

) and sum 〈n1, . . . , ni〉 l 7→∗p
1
l
(n1 + . . .+ ni)

138

5.6. Computing with λ‖

computing respectively the p partial sums and the final result. The λ‖-term that takes
as input the length of the summation to be carried out and yields the corresponding
approximation of π is:

a(a(f1 l)π0 ‖ . . . ‖ a(fp l)π0 ‖ sum (a (λx⊥ x)π1) l)

By instantiating A1, . . . ,Ap in the extracted A with the type Q of rational numbers, we
type all displayed occurrences of a in the first p threads by Q→ Q ∧ ⊥, and the last by
> → (> ∧ Q ∧ . . . ∧ Q). Given any multiple n of p, we have

(a(a(f1 l)π0 ‖ . . . ‖ a(fp l)π0 ‖ sum (a (λx⊥ x)π1) l))[n/l]

= a(a(f1 n)π0 ‖ . . . ‖ a(fp n)π0 ‖ sum (a (λx⊥ x)π1)n)

7→p a(a(
(n/p)∑
i=1

f(
i− 1

2
l

))π0 ‖ . . . ‖ a(
n∑

i=(p−1)n/p+1
f(
i− 1

2
l

))π0 ‖ sum (a (λx⊥ x)π1)n)

7→∗p sum (〈
(n/p)∑
i=1

f(
i− 1

2
l

))), . . . ,
n∑

i=(p−1)n/p+1
f(
i− 1

2
l

))〉n 7→∗p
1
n

n∑
i=1

f(
i− 1

2
n

)

Notice that a single λ‖-term cannot iterate the procedure for increasing values of l.
Indeed, each λ‖-term has a fixed communication topology.

The λ‖-terms in the next two examples implement the corresponding algorithms in [Loo11].

5.6.3 A parallel Floyd–Warshall algorithm

We define a λ‖-term that implements a parallel version of the Floyd–Warshall algorithm,
a well known procedure for computing shortest paths in graphs. The algorithm takes as
input an oriented graph and outputs a matrix containing the length of the shortest path
between each pair of nodes.

Formally, the input graph is coded as a matrix I(0) and the nodes of the graphs are
labeled as 1, . . . , n. Then the sequential Floyd–Warshall algorithm computes a sequence
of matrixes I(1), . . . , I(n), representing closer and closer approximations of the desired
output matrix. In particular, the entry (i, j) of I(k) is the length of the shortest path
connecting i and j such that every node of the path, except for the endpoints, is among
the nodes 1, 2, . . . k. Now, each matrix I(k) can be easily computed from I(k − 1). The
idea is that passing through the node k might be better than passing only through the
first k − 1 nodes, or not. Therefore in order to compute I(k + 1) from I(k), one only
needs to evaluate the right-hand side of the following equation:

Ii,j(k) = min(Ii,j(k − 1), Ii,k(k − 1) + Ik,j(k − 1)) (5.2)

Indeed, Ii,j(k− 1) represents the shortest path between i, j passing only through the first
k − 1 nodes, while Ii,k(k − 1) + Ik,j(k − 1) computes the shortest path between i, j that
passes through k and the first k − 1 nodes.

139

5. A typed parallel λ-calculus based on disjunctive tautologies

To speed-up this computation, we can execute it in parallel. For each row of the matrix,
we create a different parallel process. Each parallel process will compute the corresponding
row. Let us say that the i-th process has to compute the i-th row Ii(k). What information
does ith-process need? Actually, only two rows: Ii(k−1) and Ik(k−1). Therefore at each
round k the process-i only lacks the row Ik(k − 1) to perform its computation. This row
can be communicated to process-i by the process-k, which is in charge to compute that
row. These considerations lead to a well-known parallel version of the Floyd–Warshall
algorithm.

The ring Floyd–Warshall algorithm

1. Take the input n × n-matrix I(0) and distribute the i-th row Ii(0) to process-i.
Organize the n processes in a ring structure such as the following, see [Loo11], omitting
reflexive edges:

(∗)

. . .
I1()

I2()

I3()

I4()
I5()

I6()

I7()

2. For k = 1 to n, starting from process-k, let all the processes forward the row Ik(k − 1)
to their successors in the ring, until the process k + 1 receives again the same row. After
the row has circulated, let the processes compute in parallel the rows of the matrix I(k).

3. Let I(n) be the output.

The idea of the ring Floyd–Warshall Algorithm is that, at any stage k, communicating
the required row Ik(k − 1) through the ring structure requires comparatively little
time compared to computing each row of the matrix, therefore the overhead of the
communication is compensated by the speed-up in the matrix computation.

A λ‖ program for the Floyd–Warshall algorithm

In order to write a λ‖ program that computes the Ring Floyd–Warshall Algorithm, we
add integers to λ‖, as usual, and we denote with A the function type corresponding to the
rows of the matrixes I(k) computed by the algorithm. The expression Ix(y) represents
the function computing the xth line of the matrix at the yth stage of the algorithm. We
assume that the value of Ix(y) also contains information about the line number x and
the stage number y. Finally, we add the constant f : A ∧ A ∧ S → A for the function
such that:

140

5.6. Computing with λ‖

• with input 〈Ii(k − 1), Ik(k − 1), δ〉 outputs 〈Ii(k), δ〉

• for any other pair 〈Iz(l), Im(n), δ〉, outputs 〈Iz(l), δ〉

The first line implements the calculations needed for equation (5.2). The second line
comes into play at the end of each iteration of the algorithm, when the process that
receives twice the same row just discards it and starts sending its own row, thus beginning
the next iteration of the algorithm. The third argument δ : S of f is a dummy term such
that S is not a subformula of A and it is just introduced to activate the communication.

As handful notation, for any three terms u, v, s we define (u, v)1s as u(vs), and (u, v)n+1s
for n > 0 as u(v((u, v)ns)). Moreover, for any two terms u, s we define (u, πi)1s as u(s πi),
and (u, πi)n+1s for n > 0 as u(((u, πi)ns)πi). Intuitively, the notation (u, v)ns represents
what we obtain if we take a term s and then apply alternately v and u to the term
resulting from the last operation. We stop only when we have n applications of u and n
applications of v. We obtain, ultimately, a term of the form u(v(u(v(. . . u(vs) . . .)))) in
which and u and v occur n times each. The notation (u, πi)ns is analogous, but instead
of applying v we apply the projection πi.
We are now ready to define the n processes that are run in parallel during the execution
of the ring Floyd–Warshall algorithm:
Process p1:

((f, a)n 〈I1(0), δ〉)π0 ‖ ((a, π1)n+1 〈0, I1(0), δ〉)π0π0 ‖ ((a, π1)1 〈0, 〈I1(0), δ〉〉)π0π0

Process pi, with 1 < i < n:
((f, a)n+1 〈Ii(0), δ〉)π0 ‖ ((a, π1)n+2 〈0, 〈Ii(0), δ〉〉)π0π0

‖ (a ((f, a)i 〈Ii(0), δ〉))π0π0 ‖ ((a, π1)i 〈0, 〈Ii(0), δ〉〉)π0π0

Process pn:
((f, a)n+1 〈Ii(0), δ〉)π0 ‖ ((a, π1)n+1 〈0, 〈Ii(0), δ〉〉)π0π0

‖ (a ((f, a)i 〈Ii(0), δ〉))π0π0 ‖ ((a, π1)i 〈0, 〈Ii(0), δ〉〉)π0π0

For an intuitive reading of the parts of the terms above, consider the notation (f, a)m t.
This notation represents a term of the form f(a(. . . f(at) . . .)). Only one operation can
be immediately performed with a term like this: using the innermost application of a.
Thus we can either transmit t through a and then consume the application at to receive
a message, or we can just consume at to receive a message. The received message will
be the argument of the innermost f . The value that f computes, in turn, will be the
argument of the next communication channel. Therefore, terms of this form alternate
two phases: one in which they can send and receive, and one in which they apply f to the
received message. Most of the times the rightmost communication channel of a process
pi is not contained in the terms of the form (f, a)m t. In this case, the terms (f, a)m t use
their innermost channel application only to receive a message. Afterwards, as usual, they
apply f to the received message. The terms (a, π1)m t have the form a((. . . a(tπ1) . . .)π1).
These terms project, send and receive; and then start over. The projections are used to
select only certain messages from the tuple of received messages. The selected messages
are not used, but just forwarded to another process.

141

5. A typed parallel λ-calculus based on disjunctive tautologies

The global intuition is that each process pi, with i > 1, is a parallel composition of four
threads: the first and the third have the task of computing the rows Ii(k), while the
second and the fourth have the task of sending and forwarding rows. The process p1
behaves in the same way, but has three threads: the first computes the rows I1(k), the
second receives and forwards rows, while the thirds sends its own row.

The term implementing the ring Floyd–Warshall algorithm is defined as

a(p1 ‖ . . . ‖ pn)

The axiom extracted from the ring structure (∗) above by the procedure in Table 5.3 is

A = (A1 → A1 ∧An) ∨ (A2 → A2 ∧A1) ∨ . . . ∨ (An−1 → An−1 ∧An−2) ∨ (An → An ∧An−1)

We can thus let A1 = . . . = An = (A ∧ S) in A and type all displayed occurrences of a
by (A ∧ S)→ (A ∧ S) ∧ (A ∧ S).

Let us consider an example of execution. As the dummy terms δ only influence the
activation of the communications without changing the rest of the computation – and
especially without changing the result – for the sake of simplicity we omit both them
and the associated projections. In the general case, the terms are simplified into
Process p′1:

(f, a)n I1(0) ‖ ((a, π1)n+1 〈0, I1(0)〉)π0 ‖ ((a, π1)1 〈0, I1(0)〉)π0

Process p′i, with 1 < i < n:

(f, a)n+1 Ii(0) ‖ ((a, π1)n+2 〈0, Ii(0)〉)π0 ‖ (a (f, a)i Ii(0))π0 ‖ ((a, π1)i 〈0, Ii(0)〉)π0

Process p′n:

(f, a)n+1 Ii(0) ‖ ((a, π1)n+1 〈0, Ii(0)〉)π0 ‖ (a ((f, a)i Ii(0)))π0 ‖ ((a, π1)i 〈0, Ii(0)〉)π0

The simplified three-process instance a(p′1 ‖ p′2 ‖ p′3) is

a

((
f(a(f(a(f(aI1(0)))))) ‖ (a((a((a((a(〈0, I1(0)〉π1))π1))π1))π1))π0

‖ (a(〈0, I1(0)〉π1))π0
)

‖
(
f(a(f(a(f(a(f(aI2(0)))))))) ‖ (a((a((a((a((a(〈0, I2(0)〉π1))π1))π1))π1))π1))π0

‖ (a(f(a(f(aI2(0))))))π0 ‖ (a((a(〈0, I2(0)〉π1))π1))π0
)

‖
(
f(a(f(a(f(a(f(aI3(0)))))))) ‖ (a((a((a((a(〈0, I3(0)〉π1))π1))π1))π1))π0

‖ (a(f(a(f(a(f(aI3(0))))))))π0 ‖ (a((a((a(〈0, I3(0)〉π1))π1))π1))π0
))

According to our normalization strategy we will normalize the threads sending messages
right before they communicate. Afterwards, we normalize the rightmost threads receiving
the messages. All other intuitionistic reductions are performed in-between communica-
tions. Finally, we make sure to contract all intuitionistic redexes before the beginning of
a new iteration of the algorithm.

142

5.6. Computing with λ‖

We start underlining the second process to mean that it is under focus and hence will
receive the first communication:

7→∗p a

((
f(a(f(a(f(aI1(0)))))) ‖ (a((a((a((aI1(0))π1))π1))π1))π0 ‖ (aI1(0))π0

)
‖
(
f(a(f(a(f(a(f(aI2(0)))))))) ‖ (a((a((a((a((aI2(0))π1))π1))π1))π1))π0

‖ (a(f(a(f(aI2(0))))))π0 ‖ (a((aI2(0))π1))π0
)

‖
(
f(a(f(a(f(a(f(aI3(0)))))))) ‖ (a((a((a((a〈0, I3(0)〉)π1))π1))π1))π0

‖ (a(f(a(f(a(f(aI3(0))))))))π0 ‖ (a((a((a〈0, I3(0)〉)π1))π1))π0
))

We then transmit the value I1(0), (we display its relevant occurrences between ? ?) from
the first process to the second process and we move the focus to the next term:

a

((
f(a(f(a(f(aI1(0)))))) ‖ (a((a((a((aI1(0))π1))π1))π1))π0 ‖ (?aI1(0)?)π0

)
‖
(
f(a(f(a(f(a(f〈I2(0),? I1(0)?〉)))))) ‖ (a((a((a((a(〈I2(0),? I1(0)?〉π1))π1))π1))π1))π0

‖ (a(f(a(f〈I2(0),? I1(0)?〉))))π0 ‖ (a(〈I2(0),? I1(0)?〉π1))π0
)

‖
(
f(a(f(a(f(a(f(aI3(0)))))))) ‖ (a((a((a((a(〈0, I3(0)〉π1))π1))π1))π1))π0

‖ (a(f(a(f(a(f(aI3(0))))))))π0 ‖ (a((a((a(〈0, I3(0)〉π1))π1))π1))π0
))

Notice that I2(0) is not destroyed by the communication but saved using the memorization
mechanism. This term is needed, indeed, by the function f in order to compute I2(1).
We normalize the receiver of the previous communication and keep normalizing the other
redexes in parallel, thus the rightmost thread of the second process become ready to
forward the value I1(0) to the third thread:

7→∗p a

((
f(a(f(a(f(aI1(0)))))) ‖ (a((a((a((aI1(0))π1))π1))π1))π0 ‖ (a(I1(0))

)
)π0

‖
(
f(a(f(a(f(a(f〈I2(0), I1(0)〉)))))) ‖ (a((a((a((aI1(0))π1))π1))π1))π0

‖ (a(f(a(f〈I2(0), I1(0)〉))))π0 ‖ (?aI1(0)?)π0
)

‖
(
f(a(f(a(f(a(f(aI3(0)))))))) ‖ (a((a((a((aI3(0))π1))π1))π1))π0

‖ (a(f(a(f(a(f(aI3(0))))))))π0 ‖ (a((a((aI3(0))π1))π1))π0
))

The third thread receives I1(0) and the procedure continues the computation:

7→p . . .

At the end of the first of the three cycles, the second process, under focus, receives I1(0)
again:

7→∗p a

((
f(a(f(aI1(1)))) ‖ (a((a((?aI1(0)?)π1))π1))π0 ‖ 〈I1(0), I1(0)〉π0

)
‖
(
f(a(f(a(f〈I2(1), ?I1(0)? 〉))))) ‖ (a((a((a(〈I1(0), ?I1(0)? 〉π1)π1))π1))π0

‖ (a(f〈I2(1), ?I1(0)? 〉)))π0 ‖ 〈I1(0), ?I1(0)? 〉π0
)

‖
(
f(a(f(a(f(aI3(1)))))) ‖ (a((a((a(I1(0)))π1))π1))π0 ‖ (a(f(a(f(aI3(1))))))π0

‖ (a((aI1(0))π1))π0
))

The reception of I1(0) exhausts all forwarding channels of the second process – those in
the rightmost thread – and triggers the communication of the value I2(1) just computed,

143

5. A typed parallel λ-calculus based on disjunctive tautologies

thus starting the second cycle:
7→∗p a

((
f(a(f(aI1(1)))) ‖ (a((a((aI1(0))π1))π1))π0 ‖ (〈I1(0), I1(0)〉)π0

)
‖
(
f(a(f(aI2(1)))) ‖ (a((a((aI1(0))π1))π1))π0 ‖ (?aI2(1)?)π0 ‖ 〈I1(0), I1(0)〉π0

)
‖
(
f(a(f(a(f(aI3(1)))))) ‖ (a((a((a(I1(0)))π1))π1))π0

‖ (a(f(a(f(aI3(1))))))π0 ‖ (a((aI1(0))π1))π0
))

7→p . . .

The reduction continues in the same fashion for two other cycles, until the third process
does not contain any occurrence of a anymore:

7→∗p a

((
f〈I1(2), I3(2)〉 ‖ (aI3(2))π0 ‖ 〈I1(0), I1(0)〉π0

)
‖
(
f〈I2(2), I3(2)〉 ‖ (aI3(2))π0 ‖ 〈I2(1), I2(1)〉π0 ‖ 〈I1(0), I1(0)〉π0

)
‖
(
f〈I3(2), I3(2)〉 ‖ 〈I2(1), I3(2)〉π0 ‖ 〈I3(2), I3(2)〉π0 ‖ 〈I2(1), I2(1)〉π0

))
We then compute all occurrences of f in parallel:

7→∗p a

((
I1(3) ‖ (aI3(2))π0 ‖ 〈I1(0), I1(0)〉π0

)
‖
(
I2(3) ‖ (aI3(2))π0 ‖ 〈I2(1), I2(1)〉π0 ‖ 〈I1(0), I1(0)〉π0

)
‖
(
I3(3) ‖ 〈I2(1), I3(2)〉π0 ‖ 〈I3(2), I3(2)〉π0 ‖ 〈I2(1), I2(1)〉π0

))
and keep only the leftmost threads

7→∗pI1(3) ‖ I2(3) ‖ I3(3)

See the appendix for the unabridged version of this reduction.

5.7 Related work
As in the case of λCl and λG, a comparison with π-calculus is possible, and due, for
λ‖ as well. The main similarities and differences between π-calculus and the calculi
λCl and λG can be mentioned also with respect to λ‖. In particular, the binder a() in
a((u1 ‖ . . . ‖ un) ‖ . . . ‖ (up ‖ . . . ‖ uq)) and νa in a π-calculus term νa(P | Q) have the
same rôle. On the other hand, while in π-calculus communication only applies to names,
communication in λ‖ is higher-order. Moreover, π-calculus is meant to model concurrent
systems and λ‖ is meant to encode parallel algorithms. Hence, concurrency in λ‖ is much
more limited than in π-calculus.

A formalism similar to λ‖ is presented in [Bou89]. This system is a concurrent extension
of λ-calculus that features communication mechanisms inspired by process calculi. The
obvious difference between [Bou89] and the present work is the use of logic, which plays
no rôle in the former but is essential for the latter.

As for typed concurrent extensions of λ-calculus, the type systems of most of them are
based on linear logic. We cite as prominent examples the functional languages presented
in [Wad12] and [TCP13]. Both of them are based on Curry–Howard correspondences
between proof systems for linear logic and extensions of λ-calculus by primitives for
π-calculus-style communications [CP10b]. In particular, the work in [Wad12] presents a

144

5.7. Related work

translation from a functional language extended by primitive operators for communication
into a process calculus with session types which corresponds to a sequent calculus for
classical linear logic. The system in [TCP13] is based on the interpretation presented
in [CP10b] of a sequent calculus for dual intuitionistic linear logic into π-calculus with
session types. This computational interpretation is then integrated in a functional
language. Both the type system and the programming language presented in in [TCP13]
have distinct functional and concurrent parts. Our calculi, by contrast, exploit natural
deduction systems for intermediate logics to type the terms of a parallel λ-calculus.
Unlike session types, the types based on intermediate logics that are used in our calculi
do not represent dynamic aspects of the communications.

A recent work [CMS18] presents a Curry–Howard correspondence between a fragment of
linear logic and a process-calculus-style formalism combining π-calculus and annotations
for communication choreographies. The proof system used as type system for this
language extends linear logic sequents with two structural connectives. One of them
composes sequents in parallel similarly to the | operator used in hypersequents; the
other one is used to encode relations between parallel sequents. The object constructed
using these structural connectives on sequents represents the topology of a network. The
deduction rules acting across different sequents correspond to the operators encoding
choreography annotations. The types used in λ‖ do not contain information about
the dynamical aspects of choreographies. Using these types we can only express static
properties of the communication topologies. It is not know, however, whether λ‖ can be
simulated by the calculus presented in [CMS18].

Finally, a conservative extension of classical linear logic is defined in [KMP19] by intro-
ducing a hypersequent-style connective | in a single sided sequent calculus. A proofs-
as-programs correspondence with π-calculus is then shown. While both in [KMP19]
and in the present work the structural connective | is computationally interpreted –
directly or indirectly – as a parallelism operator, the two works differ with respect to the
logical interpretation of this connective. In [KMP19], it corresponds to the linear logic
multiplicative conjunction ⊗, in the hypersequent calculi on which our work is based,
the structural connective | corresponds to disjunction.

145

CHAPTER 6
A computational interpretation of

intermediate logics

We define the framework λ‖L of logic-based concurrent λ-calculi. The aim of λ‖L is to
provide a computational interpretation of the intermediate logics that can be defined
extending intuitionistic logic by disjunctive tautologies of the form

Ai = (F1 → G1) ∨ . . . ∨ (Fm → Gm)

where for every Fi 6= >, Fi = Gj for some j and Fi is not repeated – the subscript L in
λ‖L precisely ranges over these intermediate logics.

While the calculus λ‖ presented in Chapter 5 is very well suited for encoding parallel
algorithms; technically, it does not fully correspond to the intermediate logics that we
can axiomatize by the considered disjunctive tautologies. Indeed, the restrictions on
the number of parallel operators binding communication variables and the absence of
general cross reductions constitute a proper limitation of the logical systems interpreted
by the calculus. Moreover, in many of the considered logics disjunction is not a definable
connective. Hence, we cannot base on NI→∧⊥ a computational interpretation of these
logics, but we need to explicitly add disjunction rules and thus base the relative λ-calculi
on the Curry–Howard correspondence for NI.

The λ‖L framework, as opposed to λ‖, enables us to define Curry–Howard correspondences
between typed concurrent λ-calculi and complete natural deduction calculi for the
considered intermediate logics. Furthermore, for normal λ‖L proof terms we are able to
show that the subformula property holds. Hence, by providing a general normalization
result for λ‖L we finally confirm, for a rather general setting, Avron’s 1991 thesis on
the relationship between concurrent computation and the intermediate logics that are
naturally formalized as hypersequents calculi – see Section 2.4 for a thorough discussion
of this thesis.

147

6. A computational interpretation of intermediate logics

In presenting λ‖L we also introduce a set of reduction rules whose conditions are solely
based on the shape of terms and do not rely on their types. The definition of such
a reduction system might also shed light on the long-standing problem of defining a
well-behaved untyped concurrent λ-calculus.

The content of the present chapter is based on [ACG19a]. In Section 6.1 we present
the type systems λ‖L and in Section 6.1.1 we present their reduction rules. We prove a
general normalization result in Section 6.2 and, finally, in Section 6.3 we prove that any
normal proof term of λ‖L enjoys the subformula property.

6.1 The type system of λ‖L and its reduction rules
We introduce modular natural deduction calculi extending NI and capturing the inter-
mediate logics obtained by extending intuitionistic logic by any set of Hilbert axioms of
the form

Ai = (F1 → G1) ∨ . . . ∨ (Fm → Gm) (6.1)

where for every Fi 6= >, Fi = Gj for some j and Fi is not repeated. Notice that the
method introduced in Section 3.3.2 enables us to automatically extract higher-level
natural deduction rules for the axioms in this shape from hypersequent rules. The
subscript L in λ‖L ranges over the intermediate logics that can be defined as extensions
of intuitionistic logic by axioms of the form Ai.

Definition 6.1.1 (Terms of λ‖L). The terms of λ‖L are defined by the rules in Table 6.1.

Remark 6.1. Notice that, according to the typing rules, channel variables can only
occur as applied variables. Thus, they cannot be considered as standalone terms, unlike
intuitionistic variables.

Proof terms may contain intuitionistic variables xA0 , xA1 , xA2 , . . . of type A for every
formula A; these variables are denoted as xA, yA, zA, . . . Proof terms also contain
channel variables aA0 , aA1 , aA2 , . . . of type A for every formula A; these variables will be
denoted as aA, bA, cA, . . . and represent a private communication channel between the
parallel processes.

The free and bound variables of a proof term are defined as usual and for the new term
a(u1 ‖ . . . ‖ um), all the free occurrences of a in u1, . . . , um are bound in a(u1 ‖ . . . ‖ um).

Remark 6.2. If Γ = y1 : A1, . . . , yn : An and all free variables of a proof term t : A are
in y1, . . . , yn, we write Γ ` t : A. From the logical point of view, t represents a natural
deduction derivation of A from the hypotheses A1, . . . , An if we interpret the applications
of the rule below on the left as applications of the rule below on the right

u : A
aA→B u : B

A→ B A
B

148

6.1. The type system of λ‖L and its reduction rules

xA : A for x intuitionistic variable t1 : A t2 : A
t1 ‖ t2 : A contr

u : A t : B
〈u, t〉 : A ∧B

u : A ∧B
uπ0 : A

u : A ∧B
uπ1 : B

[xA : A]....
u : B

λxAu : A→ B

t : A→ B u : A
tu : B

u : ⊥
u efqP : P with P atomic, P 6= ⊥.

u : A
ι0(u) : A ∨B

u : B
ι1(u) : A ∨B u : A ∨B

[xA : A]....
w1 : C

[yB : B]....
w2 : C

u [xA.w1, y
B.w2] : C

u : A
aA→B u : B

[aF1→G1 : F1 → G1]....
u1 : B . . .

[aFm→Gm : Fm → Gm]....
um : B

a(u1 ‖ . . . ‖ um) : B (Ai)

where (F1 → G1) ∨ . . . ∨ (Fm → Gm) is an instance of Ai and
all occurrences of a in ui for 1 ≤ i ≤ m must be of the form aFi→Gi

Table 6.1: Type assignments for λ‖L.

Equivalently, we can consider the rule (Ai) as a higher-level rule, see Section 3.3.2, and
the instances of the rule above on the left as the inferences discharged by (Ai).

If the symbol ‖ does not occur in it, then t is a simply typed λ-term representing an
intuitionistic deduction.

Definition 6.1.2 (Simple contexts). A simple context C[] is a simply typed λ-term with
some fixed variable [] occurring exactly once. For any proof term u of the same type of
[], C[u] denotes the term obtained replacing [] with u in C[], without renaming of bound
variables.

We generalize below the notion of stack to also include the case distinction and injection
operators which correspond to the disjunction rules.

Definition 6.1.3 (Stack). A stack is a possibly empty sequence σ = σ1σ2 . . . σn such
that for every 1 ≤ i ≤ n, exactly one of the following holds: either σi = t, with t proof
term or σi = πj with j ∈ {0, 1}, or σi = [x1.u1, x2.v2] or efqP for some atom P . Now on
we will denote the empty sequence with ε and with ξ, ξ′, ξ1, ξ2, . . . the stacks of length 1.
If t is a proof term, as usual t σ denotes the term (((t ξ1) ξ2) . . . ξn).

Definition 6.1.4 (Case-free). A stack σ = ξ1ξ2 . . . ξn is case-free if ξi is not of the form
[z1.w1, z2.w2] for any i ∈ {1, . . . , n}.

149

6. A computational interpretation of intermediate logics

Definition 6.1.5 (Parallel form). A parallel form is defined inductively as follows:
a simply typed λ-term is a parallel form; if u1, . . . , um are parallel forms, then both
a(u1 ‖ . . . ‖ um) and u1 ‖ . . . ‖ um are parallel forms.

6.1.1 Reduction rules of λ‖L

Although the type assignment rules of λ‖L and λ‖ are similar, their reduction rules
are very different. The reductions of λ‖L are based on the notion of value, which
captures the idea of a message that has to be transmitted because it has terminated its
internal computations but will generate new computation when it is plugged in a new
computational environment. This is exactly what we need in order to obtain an analytic
normal form. Indeed, if we use all channels that are applied to values, then we trigger
all cross reductions that generate redexes. Furthermore this is perfectly sensible from a
computational perspective: we trigger the communications that transmit messages with
operational content but we do not start a communication only to send empty objects like
variables.

Such an approach is very well-suited and quite effective, but still not enough for the
subformula property. Indeed, the type of a channel occurrence a t does not only depend
on its argument t, it globally depends on the term a(. . . ‖ . . . ‖ . . .) in which it is bound.
Hence when we reduce some occurrences of a channel because they are applied to values,
we need to make sure not to leave other occurrences of the same channel around: their
type as well is too complex even if they are not applied to values. There is an easy
solution to this problem: when we trigger a communication, we force the term to exhaust
all occurrences of the communicating channel. Formally, we distinguish between active
and non-active channels. If an occurrence of a channel is applied to a value, we activate
the whole channel; when a channel is active, all its occurrences transmit their messages.
Finally, a communication will only take place through an active channel.

Definition 6.1.6 (Active channels and active sessions). We assume that the set of
channel variables is partitioned into two disjoint classes: active channels and inactive
channels. A term a(u1 ‖ . . . ‖ um) is called an active session, whenever a is active.

Our notion of value is defined in order to cover all terms that might directly or indirectly
trigger new computation if transmitted to another process. Tuples have a special rôle in
the definition of values because they are often used in λ‖L as containers of messages. For
example, cross reductions introduce new tuples – see Table 6.2 for the definition of these
reductions and notice in particular the channel applications bi〈yi〉. Thus, if we considered
all tuples as values with computational content, we would not be able to show that, as
the normalization proceeds, communications transmit simpler and simpler values.

Definition 6.1.7 (Value). A value is a term of the form 〈t1, . . . , tn〉, where for some
1 ≤ i ≤ n, ti = λx s, ti = ιi(s), ti = t efqP , ti = t[x.u, y.v] or ti = aσ for an active channel
a.

150

6.1. The type system of λ‖L and its reduction rules

We codify now the idea that a channel can be activated whenever it is applied to at least
one value.

Definition 6.1.8 (Activable channel). We say that a is an activable channel in u if av
occurs in u for some value v.

Notice that there is no circularity between Definitions 6.1.6, 6.1.7 and 6.1.8. Indeed, the
classes of active and inactive channels simply constitute a partition of the syntactic class
of channels, the notion of value depends on this partition, and the notion of activable
channel depends on the notion of value. Nonetheless, the partition of the class of channels
into active and inactive is arbitrary and does not depend on the notions of value and
activable channel. The notion of value, in turn, does not depend on that of activable
channel.

The reduction rules for λ‖L-terms are shown in Table 6.2.

Activation reductions These reductions enable us to transform a non-active channel
which is applied to a value into an active channel. Only active channels can be used for
communications.

Basic cross reductions These reductions implement a simple communication of a
term t without dependencies with its original computational environment

a(C1 ‖ . . . ‖ Ci[aFi→Gi t] ‖ . . . ‖ Cj [aFj→Gj u] ‖ . . . ‖ Cm) 7→L

a(C1 ‖ . . . ‖ Ci[aFi→Gj t] ‖ . . . ‖ Cj [t] ‖ . . . ‖ Cm)

While the sender Ci[ait] is unchanged, Cj [aj u] receives the message and becomes Cj [t].
Here, unlike in λCl cross reductions, only one receiving channel can be used for each
communication. Indeed, if some occurrences of ai are nested, a communication using all
of them would break subject reduction.

Cross reductions In order to obtain normal form proofs that enjoy the subformula
property we cannot only transmit terms that do not have dependencies with their
computational environment; as in λCl and λG, we also need to transmit messages that
depend on the computational environment of the sender process. For example, a message
may contain free variables which are locally bound in the process and therefore cannot
be transmitted without special care, otherwise new free variables would be generated in
the whole term. For a concrete example consider the term

a(w (a (λxxt)) ‖ b(λz z(b(uz)π0) ‖ av(λy b〈s, y〉))) (6.2)

As explained for λCl, we would like to allow the active channel b to transmit before the
channel a, which might not be ready to transmit yet. There is no reason indeed to wait
for the transmission of the value t of y from the first to the third process before using

151

6. A computational interpretation of intermediate logics

Intuitionistic reductions (application, projection and injection)
(λxA u)t 7→L u[t/xA] 〈u0, u1〉πi 7→L ui for i ∈ {0, 1} ιi(t)[x0.u0, x1.u1] 7→L ui[t/xi]

Case distinction permutations
t[x0.u0, x1.u1]ξ 7→L t[x0.u0ξ, x1.u1ξ] if ξ is a one-element stack

Parallel operator permutations
a(u1 ‖ . . . ‖ um) ξ 7→L a(u1ξ ‖ . . . ‖ umξ), if ξ is a one-element stack and a does not occur free in ξ

wa(u1 ‖ . . . ‖ um) 7→L a(wu1 ‖ . . . ‖ wum), if a does not occur free in w
λxA

a(u1 ‖ . . . ‖ um) 7→L a(λxAu1 ‖ . . . ‖ λxAum)
ιi(a(u1 ‖ . . . ‖ um)) 7→L a(ιi(u1) ‖ . . . ‖ ιi(um))

〈a(u1 ‖ . . . ‖ um), w〉 7→L a(〈u1, w〉 ‖ . . . ‖ 〈um, w〉), if a does not occur free in w
〈w, a(u1 . . . ‖ um)〉 7→L a(〈w, u1〉 ‖ . . . ‖ 〈w, um〉), if a does not occur free in w

a(u1 ‖ . . . ‖ b(w1 ‖ . . . ‖ wn) . . . ‖ um) 7→L b(a(u1 ‖ . . . ‖ w1 . . . ‖ um) . . . ‖ a(u1 ‖ . . . ‖ wn . . . ‖ um))
if u1, . . . , um and b(w1 ‖ . . . ‖ wn) do not contain active sessions

Communication reductions

Activation reductions a(u1 ‖ . . . ‖ um) 7→L b(u1[b/a] ‖ . . . ‖ um[b/a])
where a is not active, b is a fresh active variable, and there is some occurrence of a in some ui of the
form aw, for a value w.

Basic cross reductions a(C1 ‖ . . . ‖ Ci[aFi→Gi t] ‖ . . . ‖ Cj [aFj→Gj u] ‖ . . . ‖ Cm)
7→L a(C1 ‖ . . . ‖ Ci[aFi→Gj t] ‖ . . . ‖ Cj [t] ‖ . . . ‖ Cm)

for Fi = Gj

a(C1 ‖ . . . ‖ Ci[aFi→Gi u] ‖ . . . ‖ Cj [aFj→Gj t] ‖ . . . ‖ Cm)
7→L a(C1 ‖ . . . ‖ Ci[t] ‖ . . . ‖ Cj [aFj→Gj t] ‖ . . . ‖ Cm) for Fj = Gi

where a is active, the displayed occurrence of a rightmost in the simply typed λ-terms Ci[aFi→Git] and
Cj [aFj→Gju], 1 ≤ i < j ≤ m, Ci, Cj are simple contexts and t is closed.

Simplification reductions a(u1 ‖ . . . ‖ um) 7→L uj1 ‖ . . . ‖ ujn for 1 ≤ j1 < . . . < jn ≤ m
if a does not occur in uj1 , . . . , ujn

Cross reductions

a(C1[aF1→G1 t1] ‖ . . . ‖ Cm[aFm→Gm tm]) 7→L b(s1 ‖ . . . ‖ sm)

where a is active, Cj [aFj→Gj tj] for 1 ≤ j ≤ m are simply typed λ-terms; the displayed aFj→Gj is
rightmost in each of them; b is fresh; for 1 ≤ i ≤ m, we define

si =

 a(C1[aF1→G1 t1] ‖ . . . ‖ Ci[t
b

Bi→Bj 〈yi〉/yj

j] ‖ . . . ‖ Cm[aFm→Gm tm]) if Gi 6= ⊥

a(C1[aF1→G1 t1] ‖ . . . ‖ Ci[bBi→⊥〈yi〉] ‖ . . . ‖ Cm[aFm→Gm tm]) if Gi = ⊥

where Fj = Gi in the axiom schema if Gi 6= ⊥; yz for 1 ≤ z ≤ m is the sequence of the free variables of
tz bound in Cz[aFz→Gz tz].

Table 6.2: Reduction Rules for λ‖L where Ai = (F1 → G1) ∨ . . . ∨ (Fm → Gm)

the channel b, provided that we have a way to transmit t to the second process when it

152

6.1. The type system of λ‖L and its reduction rules

becomes available. In order to do so, we can use the general version of the cross reduction.
From the logical point of view, this reduction enables us to show that the subformula
property holds for our natural deduction. From a computational point of view, cross
reductions implement communications with an additional mechanism for handling the
migration of open functions and their closures, just as in λCl and λG. The reduction has
this shape

a(C1[aF1→G1 t1] ‖ . . . ‖ Cm[aFm→Gm tm]) 7→L b(s1 ‖ . . . ‖ sm)

where for 1 ≤ i ≤ m

si =


a(C1[aF1→G1 t1] . . . ‖ Ci[t

bBi→Bj 〈yi〉/yj

j] ‖ . . . ‖ Cm[aFm→Gm tm]) if Gi 6= ⊥

a(C1[aG1→G1 t1] . . . ‖ Ci[bBi→⊥〈yi〉] ‖ . . . ‖ Cm[aFm→Gm tm]) if Gi = ⊥

In this reduction, each process Ck[aFk→Gk tk] transmits its message tk to the term
Cl[aFl→Gl tl] such that Fk = Gl, which is the designated receiver of the message. If
Gk = Fn, our sender Ck[aFk→Gk tk] will also receive a message tn from another process,
and will reduce to Ck[t

bBk→Bn 〈yk〉/yn
n]. If this is the case, the free variables yn of the

message tn are going to be replaced by the application of the fresh communication channel
bBk→Bn , which has the task to receive the values of yn when they will be forwarded.
If, on the other hand, Gk = ⊥ and the sender Ck[aFk→Gk tk] is not a receiver, then it
will reduce into Ck[bBk→⊥〈yk〉] since there is no incoming message. In both cases, the
applications b〈yk〉 will be used to forward the values of the variables yk if and when they
will be available. Technically, the redex reduces to the term b(s1 ‖ . . . ‖ sm) where sp for
p ∈ {1, . . . ,m} is a copy of the original redex and contains only one process of the form
Ck[t

bBk→Bn 〈yk〉/yn
n] or Ck[bBk→⊥〈yk〉] resulting from the communication. Intuitively, this

term b(s1 ‖ . . . ‖ sm) in its entirety encodes the results of all possible communications
by the channel a. The unnecessary duplicates will be reduced later on by reductions
of the form a(u1 ‖ . . . ‖ um) 7→L uj1 ‖ . . . ‖ ujn . Notice in particular that if some term
bBk→Bn〈yk〉 does not occur because the message tn does not have free variables yn in
Ck[tb

Bk→Bn 〈yk〉/yn
n], then a simplification reduction is possible. Intuitively this means that

the process Ck[tb
Bk→Bn 〈yk〉/yn
n] does not need the channel b and hence we can eliminate it

immediately. There will be no term then that needs the values of the variables yk to be
forwarded.
This general reduction is inevitably complex, but it can be used in a relatively simple
way in practice. As an example, let us consider again the term (6.2) above. One can
directly use the channel b to send the term 〈s, y〉 to the central term without waiting
for the channel a to transmit its message and fill y in b〈s, y〉 with t. Technically, the
reduction is

a(w (a (λxxt)) ‖ b(λz z(b(uz)π0) ‖ av(λy b〈s, y〉)))

7→p a(w (a(λxx t)) ‖ c(b(λz z(〈s, cz〉π0) ‖ av(λy b〈s, y〉)) ‖ b(λz z(b(uz)π0) ‖ av(λy u(cy)))))

7→p a(w (a(λxx t)) ‖ c(b(λz zs ‖ av(λy b〈s, y〉)) ‖ b(λz z(b(uz)π0) ‖ av(λy u(cy)))))

153

6. A computational interpretation of intermediate logics

7→∗p a(w (a(λxx t)) ‖ c(λz zs ‖ av(λy u(cy))))

7→p a(w (a(λxx t)) ‖ λz zs) 7→p λz zs

We only apply a cross reduction to a term a(u1 ‖ . . . ‖ um) when the channel a is active.
Ultimately, a channel can be activated only if one of its occurrences is directly applied to
a value or may receive a value to be transmitted sometimes in the future. Intuitively, an
active channel has or will have an argument that needs to be transmitted because it might
produce new computations in the receiving process. This activation condition would be
natural in a call-by-value reduction strategy, but here we are not transmitting messages
according to a call-by-value policy just for the sake of it. An activation condition is
indeed necessary, because unrestricted cross reductions do not always terminate. For
example, reducing

a(λyB aB→B y ‖ x(C→C)→B→B (λzC aC→Cz))

as follows generates a loop:

7→p b(a((λy b y ‖ x (λz az))) ‖ a((λy a y ‖ xλz bz)))

7→∗p b(λy b y ‖ xλz bz) 7→p . . .

For a proof-theoretic view, consider the application of (Ai) (below left), in which all Γi
for 1 ≤ i ≤ m are discharged between Gi and B. It reduces by cross reduction to the
derivation below right:

Γ1
α1
F1
G1....
B . . .

Γm
αm
Fm
Gm....
B

B
∗

7→L
δ1 . . . δm

B
∗∗

such that for 1 ≤ i ≤ m the derivation δi is

. . .
B . . .

Γi∧
Γi
∧i∧

Γj
αj ∧e
Gi....
B . . .

. . .
B

B
∗

in which αj is the derivation of the premise Fj = Gi associated by Ai to Gi and a double
inference line denotes a derivation of its conclusion using the named rule possibly many
times.

154

6.1. The type system of λ‖L and its reduction rules

Theorem 6.1.1 (Subject reduction). If t : A and t 7→L u, then u : A and all the free
variables of u appear among those of t.

Proof. See Theorem 2.4.3 for intuitionistic reductions. Since, as usual, the argument for
simplification reductions is trivial and that for basic cross reductions is just a simpler
version of that for cross reductions, we only consider the latter case. Consider the
reduction

a(C1[aF1→G1 t1] ‖ . . . ‖ Cm[aFm→Gm tm]) 7→L b(s1 ‖ . . . ‖ sm)

Suppose that Gi 6= ⊥ for 1 ≤ i ≤ m and hence si is

a(C1[aF1→G1 t1] ‖ . . . ‖ Ci[t
b

Bi→Bj 〈yi〉/yj

j] ‖ . . . ‖ Cm[aFm→Gm tm])

Assuming that 〈yi〉 : Bi, the terms bBi→Bj 〈yi〉 are correct. Hence the term t
bBi→Bj 〈yi〉/yj

j ,
by Definition 4.1.6, is correct as well. Now, some of the assumptions of the reduction
rule are that tb

Bi→Bj 〈yi〉/yj

j has the same type as aFi→Gi ti; that yi for 1 ≤ i ≤ m is
the sequence of the free variables of ti which are bound in Ci[aFi→Gi ti]. Hence, by
construction, all the variables yi are bound in each Ci[t

bBi→Bj 〈yi〉/yj

j]. Since, moreover, a
is rightmost in each Ci[aFi→Gi ti] and b is fresh, no new free variable is created.

Suppose, on the other hand, that Gi = ⊥ for 1 ≤ i ≤ m and hence si is

a(C1[aF1→G1 t1] ‖ . . . ‖ Ci[bBi→⊥〈yi〉] ‖ . . . ‖ Cm[aFm→Gm tm])

Assuming that 〈yi〉 : Bi, the term bBi→⊥〈yi〉 is a correct term of type ⊥. Now, since
Gi = ⊥, the term bBi→⊥〈yi〉 has the same type as aFi→Gi ti. Since yi for 1 ≤ i ≤ m is
the sequence of the free variables of ti which are bound in Ci[aFi→Gi ti] and since b is
fresh, no new free variable is created.

The argument for permutations is a trivial generalization of that for Theorem 4.1.3.

Definition 6.1.9 (Normal forms). We define NFL to be the set of normal λ‖L-terms as
defined in Definition 2.4.2.

Remark 6.3 (Ambient calculus and cross reductions). Ambient calculus by Cardelli
and Gordon, see e.g. [CG00], is a formalism in which processes are represented as ambients
in which the computation is carried out. Ambients’ structure is similar to the structure of
processes in process calculi, but instead of being able to communicate, ambients can enter,
exit, or dissolve the boundaries of other ambients. Even though the issues addressed by
ambient calculus seem close to those that motivate the introduction of cross reductions in
λ‖L, the operations of ambients are assumed not to break any computational dependence,
while cross reductions are precisely meant to handle changes of environment which violate
computational dependencies by restoring such dependencies.

155

6. A computational interpretation of intermediate logics

6.2 The normalization theorem

We prove the normalization theorem for λ‖L: every proof term of λ‖L reduces in a
finite number of steps to a normal form. By subject reduction, this implies that the
corresponding natural deduction proofs do normalize.

The idea behind our normalization strategy is quite intuitive. We start from any term
and reduce it in parallel form by Proposition 6.2.2. Then we cyclically interleave three
reduction phases. First, an intuitionistic phase, where we reduce all intuitionistic redexes.
Second, an activation phase, where we activate all sessions that can be activated. Third,
a communication phase, where we allow the active sessions to exchange all messages
and the processes to extract information from the received messages. Technically, we
perform all cross reductions combined with the generated projections and case distinction
permutations.

Proving termination of this strategy is by no means easy, as we have to rule out two
possible infinite loops.

1. Intuitionistic reductions can generate new activable channels that need to transmit
messages, while message exchanges can generate new intuitionistic reductions.

2. During the communication phase, new sessions may be generated after each cross
reduction and old sessions may be duplicated after each session permutation. The
trouble is that each of these sessions may need to send new messages, for instance
forwarding some message received from some other active session. Hence the
count of active sessions might increase forever and the communication phase never
terminate.

We avoid the first loop by exploiting the complexity of the exchanged messages. Since
messages are values, we shall define a notion of value complexity (Definition 6.2.4), which
will simultaneously ensure that: (i) after reducing an intuitionistic redex which is not
a projection or a case distinction permutation, the new active sessions only transmit
messages with value complexity smaller than the complexity of such redex; (ii) after
transmitting a message, all newly generated intuitionistic redexes do not have complexity
greater than the value complexity of such message. Proposition 6.2.6) will settle the
matter, but in turn requires a series of preparatory lemmas. Namely, we shall study in
Lemma 6.2.5 and Lemma 6.2.6 how arbitrary substitutions affect the value complexity of
a term; then we shall determine in Lemma 6.2.8 and Lemma 6.2.7 how case reductions
impact the value complexity.

We prove that the second loop is not possible by showing in Lemma 6.2.10 that the
transmission of messages, during the communication phase, cannot produce new active
sessions. Intuitively, the newly generated channels and the old duplicated ones are frozen,
in the sense that only the reduction of an intuitionistic redex can activate them and in

156

6.2. The normalization theorem

doing it will generate communication redexes with smaller complexity than the redex
itself.

For clarity, we define here a recursive normalization algorithm that represents the
constructive content of the normalization proof. The master reduction strategy consists
of three phases: one in which we reduce all possible intuitionistic redexes, one in which we
activate all possible sessions, and one during which we exploit the reduction relation �L
defined below, whose purpose is to permute an uppermost active session a(u1 ‖ . . . ‖ um)
until all ui for 1 ≤ i ≤ m are simply typed λ-terms and finally apply the cross reductions
followed by projections and case permutations.

Definition 6.2.1 (Side reduction strategy). Let t be a term and a(u1 ‖ . . . ‖ um) be an
active session occurring in t such that no active session occurs in u or v. We write

t �L t
′

whenever t′ has been obtained from t by applying one of the following to a(u1 ‖ . . . ‖ um):

1. a permutation reduction

a(u1 ‖ . . . ‖ b(w1 ‖ . . . ‖ wn) . . . ‖ um) 7→L

b(a(u1 ‖ . . . ‖ w1 . . . ‖ um) ‖ . . . ‖ a(u1 ‖ . . . ‖ wn . . . ‖ um))

if ui = b(w1 ‖ . . . ‖ wn) for some 1 ≤ i ≤ m ;

2. a cross reduction, if u1, . . . , um are intuitionistic terms, immediately followed by
the projections and case distinction permutations inside the newly generated simply
typed λ-terms;

3. a simplification reduction a(u1 ‖ . . . ‖ um) 7→L uj1 ‖ . . . ‖ ujn , for 1 ≤ j1 < . . . <
jn ≤ m, if a does not occur in uj1 , . . . , ujn

Definition 6.2.2 (Master reduction strategy). Let t be any term which is not in normal
form. We transform it into a term u in parallel form, then we execute the following
three-step recursive procedure.

1. Intuitionistic Phase. As long as u contains intuitionistic redexes, we apply intu-
itionistic reductions.

2. Activation Phase. As long as u contains activation redexes, we apply activation
reductions.

3. Communication Phase. As long as u contains active sessions, we apply the Side
Reduction Strategy (Definition 6.2.1) to u, then we go to step 1.

157

6. A computational interpretation of intermediate logics

We start by defining the value complexity of messages. Intuitively, it is a measure of
the complexity of the redexes that a message can generate after being transmitted. For
terms of the form λxu and ιi(u) – which are values in the usual sense – such complexity
is defined on the type of the term. For pairs 〈u, v〉 and case distinctions t[x.u, y.v] –
which we consider containers for what is usually taken to be a value – we recursively
pick the maximum among the value complexities of u and v. This is a crucial point. If
we chose the types as value complexities also for pairs and case distinctions, then our
normalization argument would completely break down when new channels are generated
during cross reductions: their type can be much more complex than the type of the
original channel and any hope of finding a decreasing measure would be shattered.

Definition 6.2.3 (Complexity of a type). The complexity of a type T is recursively
defined as follows:

• if T = ⊥ or T = P for a propositional variable P , then the complexity of T is 0;

• if T = A1 → A2, T = A1 ∧A2 or T = A1 ∨A2 and the complexity of Ai is ni, then
the complexity of T is n1 + n2 + 1.

Definition 6.2.4 (Value complexity). For any simply typed λ-term s : T , the value
complexity of s is defined as the first case that applies among the following:

• if s = λxu, s = ιi(u), then the value complexity of s is the complexity of its type T ;

• if s = 〈u, v〉, then the value complexity of s is the maximum among the value
complexities of u and v.

• if s = t[x.u, y.v]σ where σ is case-free, then the value complexity of s is the
maximum among the value complexities of uσ and vσ;

• otherwise, the value complexity of s is 0.

Recall that values are supposed to be those terms that can either generate an intuitionistic
redex when plugged into another term or become a term with that capability, like an
active channel acting as the endpoint of a transmission.

The value complexity of a term, as expected, never surpass the complexity of its type.

Proposition 6.2.1. Let u : T be any simply typed λ-term. Then the value complexity of
u is not greater than the complexity of T .

Proof. By induction on u. There are several cases, according to the shape of u.

• If u is of the form λxw, ιi(w), then the value complexity of u is indeed the complexity
of T .

158

6.2. The normalization theorem

• If u is of the form 〈v1, v2〉 then, by induction hypothesis, the value complexities
of v1 and v2 are at most the complexity of their respective types T1 and T2, and
hence at most the complexity of T = T1 ∧ T2, and we are done.

• If u is of the form v0[z1.v1, z2.v2] then, by induction hypothesis, the value complex-
ities of v1 and v2 are at most the complexity of T , and we are done.

• In all other cases, the value complexity of u is 0, which trivially satisfies the thesis.

The complexity of an intuitionistic redex tξ is defined as the value complexity of t.

Definition 6.2.5 (Complexity of the intuitionistic redexes). Let r be an intuitionistic
redex. The complexity of r is defined as follows:

• If r = (λxu)t, then the complexity of r is the type of λxu.

• If r = ιi(t)[x.u, y.v], then the complexity of r is the type of ιi(t).

• if r = 〈u, v〉πi then the complexity of r is the value complexity of 〈u, v〉.

• if r = t[x.u, y.v]ξ, then the complexity of r is the value complexity of t[x.u, y.v].

The value complexity is used to define the complexity of communication redexes. Intu-
itively, it is the value complexity of the most complex message ready to be transmitted.

Definition 6.2.6 (Complexity of the communication redexes).

• The complexity of a channel occurrence a〈t1, . . . , tn〉 of a channel a is the value
complexity of 〈t1, . . . , tn〉.

• The complexity of a communication redex a(u1 ‖ . . . ‖ um)is the maximum among
the complexities of the occurrences of a in u1, . . . , um.

• The complexity of a permutation redex
a(u1 ‖ . . . ‖ b(w1 ‖ . . . ‖ wn) . . . ‖ um) is 0.

As our normalization strategy suggests, application and injection redexes should be
treated differently from the others, because they generate the real computations.

Definition 6.2.7. We distinguish two groups of redexes:

1. Group 1: Application and injection redexes.

2. Group 2: Communication redexes, projection redexes and case distinction permuta-
tion redexes.

159

6. A computational interpretation of intermediate logics

The first step of the normalization proof consists in showing that any term can be reduced
to a parallel form.

Proposition 6.2.2 (Parallel form). Let t : A be any term. Then t 7→∗L t′, where t′ is a
parallel form.

Proof. By induction on t. As a shortcut, if a term u reduces to a term u′ that can be
denoted as u′′ omitting parentheses, we write u⇒∗ u′′.

• t is a variable x. Trivial.

• t = λxu. By induction hypothesis, u⇒∗ u1 ‖ u2 ‖ . . . ‖ un and each term ui, for
1 ≤ i ≤ n, is a simply typed λ-term. Applying several permutations we obtain

t⇒∗ λxu1 ‖ λxu2 ‖ . . . ‖ λxun

which is the thesis.

• t = u v. By induction hypothesis,

u⇒∗ u1 ‖ u2 ‖ . . . ‖ un

v ⇒∗ v1 ‖ v2 ‖ . . . ‖ vm
and each term ui and vi, for 1 ≤ i ≤ n,m, is a simply typed λ-term. Applying
several permutations we obtain

t⇒∗ (u1 ‖ u2 ‖ . . . ‖ un) v
⇒∗ u1 v ‖ u2 v ‖ . . . ‖ un v
⇒∗ u1 v1 ‖ u1 v2 ‖ . . . ‖ u1 vm ‖ . . .

. . . ‖ un v1 ‖ un v2 ‖ . . . ‖ un vm

• t = 〈u, v〉. By induction hypothesis,

u⇒∗ u1 ‖ u2 ‖ . . . ‖ un

v ⇒∗ v1 ‖ v2 ‖ . . . ‖ vm
and each term ui and vi, for 1 ≤ i ≤ n,m, is a simply typed λ-term. Applying
several permutations we obtain

t⇒∗ 〈u1 ‖ u2 ‖ . . . ‖ un, v〉
⇒∗ 〈u1, v〉 ‖ 〈u2, v〉 ‖ . . . ‖ 〈un, v〉
⇒∗ 〈u1, v1〉 ‖ 〈u1, v2〉 ‖ . . . ‖ 〈u1, vm〉 ‖ . . .

. . . ‖ 〈un, v1〉 ‖ 〈un, v2〉 ‖ . . .

. . . ‖ 〈un, vm〉

160

6.2. The normalization theorem

• t = uπi. By induction hypothesis,

u⇒∗ u1 ‖ u2 ‖ . . . ‖ un

and each term ui, for 1 ≤ i ≤ n, is a simply typed λ-term. Applying several
permutations we obtain

t⇒∗ u1 πi ‖ u2 πi ‖ . . . ‖ un πi.

• t = ιi(u). By induction hypothesis,

u⇒∗ u1 ‖ u2 ‖ . . . ‖ un

and each term ui, for 1 ≤ i ≤ n, is a simply typed λ-term. Applying several
permutations we obtain

t⇒∗ ιi(u1) ‖ ιi(u2) ‖ . . . ‖ ιi(un).

• t = s[x.u, y.v]. By induction hypothesis,

s⇒∗s1 ‖ s2 ‖ . . . ‖ sn
u⇒∗u1 ‖ u2 ‖ . . . ‖ um
v ⇒∗v1 ‖ v2 ‖ . . . ‖ vp

and each term si for 1 ≤ i ≤ n, uj for 1 ≤ j ≤ m, and vk for 1 ≤ k ≤ p is a simply
typed λ-term. Applying several permutations we obtain

t⇒∗s1[x.u, y.v] ‖ s2[x.u, y.v] ‖ . . . ‖ sn[x.u, y.v]
⇒∗s1[x.u1, y.v] ‖ s1[x.u2, y.v] ‖ . . . ‖ s1[x.um, y.v] ‖

s2[x.u1, y.v] ‖ s2[x.u2, y.v] ‖ . . . ‖ s2[x.um, y.v] ‖
. . . ‖ sn[x.u1, y.v] ‖ sn[x.u2, y.v] ‖ . . . ‖ sn[x.um, y.v]

⇒∗s1[x.u1, y.v1] ‖ s1[x.u1, y.v2] ‖ . . . ‖ s1[x.u1, y.vp] ‖
s1[x.u2, y.v1] ‖ s1[x.u2, y.v2] ‖ . . . ‖ s1[x.u2, y.vp] ‖
. . . ‖ s1[x.um, y.v1] ‖ s1[x.um, y.v2] ‖ . . . ‖ s1[x.um, y.vp]
s2[x.u1, y.v1] ‖ s2[x.u1, y.v2] ‖ . . . ‖ s2[x.u1, y.vp] ‖
s2[x.u2, y.v1] ‖ s2[x.u2, y.v2] ‖ . . . ‖ s2[x.u2, y.vp] ‖
. . . ‖ s2[x.um, y.v1] ‖ s2[x.um, y.v2] ‖ . . . ‖ s2[x.um, y.vp]
sn[x.u1, y.v1] ‖ sn[x.u1, y.v2] ‖ . . . ‖ sn[x.u1, y.vp] ‖
sn[x.u2, y.v1] ‖ sn[x.u2, y.v2] ‖ . . . ‖ sn[x.u2, y.vp] ‖
. . . ‖ sn[x.um, y.v1] ‖ sn[x.um, y.v2] ‖ . . . ‖ sn[x.um, y.vp].

161

6. A computational interpretation of intermediate logics

• t = u efqP . By induction hypothesis,

u⇒∗ u1 ‖ u2 ‖ . . . ‖ un

and each term ui, for 1 ≤ i ≤ n, is a simply typed λ-term. Applying several
permutations we obtain

t⇒∗ u1 efqP ‖ u2 efqP ‖ . . . ‖ un efqP

The following lemma shows that the activation phase of our reduction strategy is finite.

Lemma 6.2.3 (Activate!). Let t be any term in parallel form that does not contain
intuitionistic redexes and whose communication redexes have complexity at most τ . Then
there exists a finite sequence of activation reductions that results in a term t′ that contains
no redexes, except cross reduction redexes of complexity at most τ .

Proof. The proof is by induction on the number n of subterms of the form a(u1 ‖ . . . ‖ um)
of t which are not active sessions. If there are no activation redexes in t, the statement
trivially holds. Assume there is at least one activation redex r = a(v1 ‖ . . . ‖ vm). We
apply an activation reduction to r and obtain a term r′ with n− 1 subterms of the form
a(u1 ‖ . . . ‖ um) which are not active sessions. In order to apply the induction hypothesis
on r′, which immediately yields the thesis, we only need to verify that all communication
redexes of r′ have complexity at most τ .

For this purpose, let c be any channel variable which is bound in r′. Since r′ is obtained
from r just by renaming the non-active bound channel variable a to an active one b,
every occurrence of c in r′ is of the form (c t)[b/a] for some subterm c t of r. Thus
c t[b/a] = c[b/a]〈t1[b/a], . . . , tn[b/a]〉, where each ti is not a pair. It is enough to show
that the value complexity of ti[b/a] is exactly the value complexity of ti. We proceed by
induction on the size of ti. We can write ti = r σ, where σ is a case-free stack. If r is of
the form λxw, 〈q1, q2〉, ιi(w), x, dw, with d channel variable, then the value complexity
of ti[b/a] is the same as that of ti; note that if r = 〈q1, q2〉, then σ is not empty. If
r = v0[x1.v1, x2.v2], then σ is empty, otherwise s would contain a permutation redex.
Hence, the value complexity of ti[b/a] is the maximum among the value complexities of
v1[b/a] and v2[b/a]. By induction hypothesis, their value complexities are respectively
those of v1 and v2 , hence the value complexity of ti[b/a] is the same as that of ti, which
concludes the proof.

We show a simple property of the value complexity that we will need later.

Lemma 6.2.4 (Why not 0?). Let u be any simply typed λ-term and σ be a non-empty
case-free stack. Then the value complexity of uσ is 0.

162

6.2. The normalization theorem

Proof. By induction on the size of u.

• If u is of the form (λx.w)ρ, ιi(w)ρ, 〈v1, v2〉ρ, aρ or xρ, where ρ is case-free, then
uσ has value complexity 0.

• If u is of the form w efqP , then P is atomic, thus σ must be empty, contrary to the
assumptions.

• If u is of the form v0[z1.v1, z2.v2]ρ, with ρ case-free, then by induction hypothesis
the value complexities of v1ρσ and v2ρσ are 0 and since the value complexity of uσ
is the maximum among them, uσ has value complexity 0.

In order to formally study the effects of reducing a redex, we consider simple substitutions
that just replace some occurrences of a term with another, allowing capture of variables.
In practice, it will always by clear from the context which occurrences are replaced.

Definition 6.2.8 (Simple replacement). By s{t/u} we denote a term obtained from s
by replacing some occurrences of a term u with a term t of the same type of u, possibly
causing capture of variables.

We now show an important property of value complexity: the value complexity of w{v/s}
either remains at most as it was before the substitution or becomes exactly the value
complexity of v.

Lemma 6.2.5 (The change of value). Let w, s, v be simply typed λ-terms with value
complexity respectively θ, τ, τ ′. Then the value complexity of w{v/s} is either at most θ
or equal to τ ′. Moreover, if τ ′ ≤ τ , then the value complexity of w{v/s} is at most θ.

Proof. By induction on the size of w and by cases according to its possible shapes.

• w{v/s} = x {v/s}. We have two cases.

– s = x. Then the value complexity of w{v/s} = v is τ ′. Moreover, if τ ′ ≤ τ ,
since w = x = s, we have θ = τ , thus τ ′ ≤ θ.

– s 6= x. The value complexity of w{v/s} is θ and we are done.

• w{v/s} = λxu {v/s}. We have two cases.

– λxu {v/s} = λx(u{v/s}). Then the value complexity of w{v/s} is θ and we
are done.

– λxu {v/s} = v. Then the value complexity of w{v/s} is τ ′. Moreover, if
τ ′ ≤ τ , since w = λxu = s, we have θ = τ , thus τ ′ ≤ θ.

163

6. A computational interpretation of intermediate logics

• w{v/s} = 〈q1, q2〉 {v/s}. We have two cases.

– 〈q1, q2〉 {v/s} = 〈q1{v/s}, q2{v/s}〉. Then by induction hypothesis the value
complexities of q1{v/s} and q2{v/s} are at most θ or equal to τ ′. Since the
value complexity of w{v/s} is the maximum among the value complexities of
q1{v/s} and q2{v/s}, we are done.

– 〈q1, q2〉 {v/s} = v. Then the value complexity of w{v/s} is τ ′. Moreover, if
τ ′ ≤ τ , since w = 〈q1, q2〉 = s, we have θ = τ , thus τ ′ ≤ θ.

• w{v/s} = ιi(u) {v/s}. We have two cases.

– ιi(u) {v/s} = ιi(u{v/s}). Then the value complexity of w{v/s} is θ and we
are done.

– ιi(u) {v/s} = v. Then the value complexity of w{v/s} is τ ′. Moreover, if
τ ′ ≤ τ , since w = ιi(u) = s, we have θ = τ , thus τ ′ ≤ θ.

• – w{v/s} = (v0[z1.v1, z2.v2])ρ{v/s} =
v0{v/s}[z1.v1{v/s}, z2.v2{v/s}](ρ{v/s}), where ρ is a case-free stack. If ρ is
not empty, then by Lemma 6.2.4, v1{v/s}ρ{v/s} and v2{v/s}ρ{v/s} have
value complexity 0, so w{v/s} has value complexity 0 ≤ θ and we are done. So
assume ρ is empty. By induction hypothesis applied to v1{v/s} and v2{v/s},
the value complexity of w{v/s} is at most θ or equal to τ ′ and we are done.
Moreover, if τ ′ ≤ τ , then by induction hypothesis, the value complexity of
vi{v/s} for i ∈ {1, 2} is at most θ. Hence, the value complexity of
(v0[z1.v1, z2.v2])ρ{v/s} is at most θ and we are done.

– w{v/s} = (v0[z1.v1, z2.v2]ρ){v/s} = vρj{v/s} . . . ρn{v/s}, where ρ = ρ1 . . . ρn
is a case-free stack and 1 ≤ j ≤ n. If ρj . . . ρn is not empty, then by Lemma
6.2.4, the value complexity of w{v/s} is 0 ≤ θ, and we are done. So assume
ρj . . . ρn is empty. Then the value complexity of w{v/s} is τ ′. Moreover, if
τ ′ ≤ τ , since it must be s = v0[z1.v1, z2.v2], we have that the value complexity
of w{v/s} = v is τ ′ ≤ τ = θ.

• In all other cases, w{v/s} = (r ρ){v/s} where ρ is a case-free non-empty stack and
r is of the form λxu, 〈q1, q2〉, ιi(u), x, or au. We distinguish three cases.

– (r ρ){v/s} = r{v/s}ρ{v/s} and r 6= s. Then by Lemma 6.2.4 the value
complexity of w{v/s} is 0 ≤ θ and we are done.

– (r ρ){v/s} = vρj{v/s} . . . ρn{v/s}, with ρ = ρ1 . . . ρn and 1 ≤ j ≤ n. Then by
Lemma 6.2.4 the value complexity of w{v/s} is 0 ≤ θ and we are done.

– rρ{v/s} = v. Then the value complexity of w{v/s} is τ ′. Moreover, if τ ′ ≤ τ ,
since w = rρ = s, we have θ = τ , thus τ ′ ≤ θ.

164

6.2. The normalization theorem

The following lemma studies how the complexity of redexes in a term change after a
simple replacement.

Lemma 6.2.6 (Replace!). Let u be a term in parallel form, v, s be any simply typed
λ-terms, τ be the value complexity of v and τ ′ be the maximum among the complexities
of the channel occurrences in v. Then every redex in u{v/s} it is either (i) already in
v, (ii) of the form r{v/s} and has complexity smaller than or equal to the complexity of
some redex r of u, or (iii) has complexity τ or is a communication redex of complexity at
most τ ′.

Proof. We prove the following stronger statement.

(∗) Every redex and channel occurrence in u{v/s} it is either (i) already in v, (ii) of the
form r{v/s} or aw{v/s} and has complexity smaller than or equal to the complexity
of some redex r or channel occurrence aw of u, or (iii) has complexity τ or τ ′ or is a
communication redex of complexity at most τ ′.

We reason by induction on the size and by cases on the possible shapes of the term u.

• (λx t)σ {v/s}, where σ = σ1 . . . σn is any case-free stack. By induction hypoth-
esis, (∗) holds for t{v/s} and σi{v/s} where 1 ≤ i ≤ n. If (λx t)σ{v/s} =
(λx t{v/s}) (σ{v/s}), all the redexes and channel occurrences that we have to check
are either in t{v/s}, σ{v/s} or possibly the head redex, thus the thesis holds. If
(λx t)σ{v/s} = v (σi{v/s}) . . . (σn{v/s}), then v (σi{v/s}) could be a new intu-
itionistic redex, when v = λy w, v = 〈w1, w2〉, v = ιi(w) or v = w0[y1.w1, y2.w2].
But the complexity of such a redex is equal to τ .

• 〈t1, t2〉σ {v/s}, where σ = σ1 . . . σn is any case-free stack. By induction hypoth-
esis, (∗) holds for ti{v/s} and σi{v/s} where 1 ≤ i ≤ n. If 〈t1, t2〉σ{v/s} =
〈t1{v/s}, t2{v/s}〉 (σ{v/s}), all the redexes and channel occurrences that we have
to check are in ti{v/s}, σ{v/s} or, possibly, the head redex. The former are dealt
with using the inductive hypothesis. As for the latter, by Lemma 6.2.5, the value
complexity of ti{v/s} for i ∈ {1, 2} must be at most the value complexity of ti or
exactly τ , thus either (ii) or (iii) holds. If 〈t1, t2〉σ{v/s} = v (σi{v/s}) . . . (σn{v/s}),
then v (σi{v/s}) could be a new intuitionistic redex, when v = λy w, v = 〈w1, w2〉,
v = ιi(w) or v = w0[y1.w1, y2.w2]. But the complexity of such a redex is equal to τ .

• ιi(t)σ {v/s}, where σ = σ1 . . . σn is any case-free stack. Obviously σ must be
empty since it is case-free. By induction hypothesis, (∗) holds for t′{v/s}. If
ιi(t){v/s} = ιi(t{v/s}), all the redexes and channel occurrences that we have to
check are in t{v/s} and thus the thesis holds. If ιi(t){v/s} = v then (i) holds.

165

6. A computational interpretation of intermediate logics

• w0[z1.w1, z2.w2]σ{v/s}, where σ is any case-free stack. By induction hypothesis,
(∗) holds for w0{v/s}, w1{v/s}, w2{v/s} and σi{v/s} for 1 ≤ i ≤ n. If

w0[z1.w1, z2.w2]σ{v/s} =
w0{v/s}[z1.w1{v/s}, z2.w2{v/s}](ρ{v/s})

we first observe that by Lemma 6.2.5, the value complexity of w0{v/s} is at most
that of w0 or exactly τ , hence the possible injection or case distinction permutation
redex

w0{v/s}[z1.w1{v/s}, z2.w2{v/s}]
satisfies the thesis. Again by Lemma 6.2.5, the value complexities of w1{v/s}
and w2{v/s} are respectively at most that of w1 and w2 or exactly τ . Hence the
complexity of the possible case distinction permutation redex

(w0[z1.w1{v/s}, z2.w2{v/s}])σ1{v/s}

is either τ , and we are done, or at most the value complexity of one among
w1, w2, thus at most the value complexity of the case distinction permutation redex
(w0[z1.w1, z2.w2])σ1 and we are done.
If w0[z1.w1, z2.w2]σ{v/s} = v (σi{v/s}) . . . (σn{v/s}), then there could be a new
intuitionistic redex, when v = λy q, v = 〈q1, q2〉, v = ιi(q) or v = q0[y1.q1, y2.q2].
But the complexity of such a redex is τ .

• xσ{v/s}, where x is any simply typed variable and σ = σ1 . . . σn is any case-
free stack. By induction hypothesis, (∗) holds for σi{v/s} where 1 ≤ i ≤ n. If
xσ{v/s} = x (σ{v/s}), all its redexes and channel occurrences are in σ{v/s},
thus the thesis holds. If xσ{v/s} = v (σi{v/s}) . . . (σn{v/s}), then v (σi{v/s})
could be an intuitionistic redex, when v = λy w, v = 〈w1, w2〉, v = ιi(w) or
v = w0[y1.w1, y2.w2]. But the complexity of such a redex is equal to τ .

• a t σ{v/s}, where a is a channel variable, t a term and σ = σ1 . . . σn is any case-free
stack. By induction hypothesis, (∗) holds for t{v/s}, σi{v/s} where 1 ≤ i ≤ n.
If a t σ{v/s} = v (σi{v/s}) . . . (σn{v/s}), then v (σi{v/s}) could be an intuitionistic
redex, when v = λy w, v = 〈w1, w2〉, v = ιi(w) or v = w0[y1.w1, y2.w2]. But the
complexity of such a redex is equal to τ .
If a t σ{v/s} = a (t{v/s})(σ{v/s}), in order to verify the thesis it is enough to check
the complexity of the channel occurrence a (t{v/s}). By Lemma 6.2.5, the value
complexity of t{v/s} is at most the value complexity of t or exactly τ , thus either
(ii) or (iii) holds.

• a(t1 ‖ . . . ‖ tm){v/s}. By induction hypothesis, (∗) holds for ti{v/s} where
1 ≤ i ≤ m. The only redex in a(t1 ‖ . . . ‖ tm){v/s} and not in some ti{v/s} can
be a(t1{v/s} ‖ . . . ‖ tm{v/s}) itself. But the complexity of such redex equals the
maximal complexity of the channel occurrences of the form aw occurring in some
ti{v/s}, hence it is τ , at most τ ′ or equal to the complexity of a(t1 ‖ . . . ‖ tm).

166

6.2. The normalization theorem

We study now the complexity of the redexes generated by the reduction of an injection
redex.

Lemma 6.2.7 (Eliminate the case!). Let u be a term in parallel form. Then for any
redex r in u{wi[t/xi]/ιi(t)[x1.w1, x2.w2]} of complexity θ, either ιi(t)[x1.w1, x2.w2] has
complexity greater than θ; or there is a redex in u of complexity θ which belongs to the
same group as r or is a case distinction permutation redex.

Proof. Let v = wi[t/xi] and s = ιi(t)[x1.w1, x2.w2]. We prove a stronger statement:

(∗) For any redex r in u{v/s} of complexity θ, either ιi(t)[x1.w1, x2.w2] has complexity
greater than θ; or there is a redex in u of complexity θ which belongs to the same group
as r or is a case distinction permutation redex. Moreover, for any channel occurrence in
u{v/s} with complexity θ′, either ιi(t)[x1.w1, x2.w2] has complexity greater than θ′, or
there is an occurrence of the same channel with complexity greater or equal than θ′.

The proof is by induction on the size of u and by cases according to the possible shapes
of u.

• (λx t′)σ {v/s}, where σ = σ1 . . . σn is any case-free stack. By induction hy-
pothesis, (∗) holds for t′{v/s} and σi{v/s} for 1 ≤ i ≤ n. If (λx t′)σ{v/s} =
(λx t′{v/s}) (σ{v/s}), all the redexes and channel occurrences that we have to
check are in t′{v/s}, σ{v/s} or, possibly, the head redex, thus the thesis holds.
Since s 6= (λx t′)σ1 . . . σj , there is no other possible case.

• 〈t1, t2〉σ {v/s}, where σ = σ1 . . . σn is any case-free stack. By induction hypothesis,
(∗) holds for t1{v/s}, t2{v/s} and σi{v/s} for 1 ≤ i ≤ n.
If 〈t1, t2〉σ{v/s} = 〈t1{v/s}, t2{v/s}〉 (σ{v/s}) all the redexes and channel occur-
rences that we have to check are either in σ{v/s} or, possibly, the head redex.
By Lemma 6.2.5, the value complexity of wi[t/xi] is either at most the value
complexity of wi or the value complexity of t. In the first case, the value complex-
ity of wi[t/xi] is at most the value complexity of wi, which is at most the value
complexity of ιi(t)[x1.w1, x2.w2]. Thus, by Lemma 6.2.5, the value complexities
of t1{v/s}, t2{v/s} are at most the value complexities respectively of t1, t2, thus
the value complexity of 〈t1{v/s}, t2{v/s}〉, and hence that of the possible head
redex, is at most the value complexity of 〈t1, t2〉 and we are done. In the second
case, the value complexity of 〈t1{v/s}, t2{v/s}〉, and hence that of the head redex,
is either at most the value complexity of 〈t1, t2〉, and we are done, or exactly the
value complexity of t, which is smaller than the complexity of the injection redex
ιi(t)[x1.w1, x2.w2] occurring in u, which is what we wanted to show. The case in
which 〈t1, t2〉σ{v/s} = v (σi{v/s}) . . . (σn{v/s}) is impossible due to the form of
s = ιi(t)[x1.w1, x2.w2].

167

6. A computational interpretation of intermediate logics

• ιi(t′)σ {v/s}, where σ = σ1 . . . σn is any case-free stack. Obviously σ must be
empty since it is case-free. By induction hypothesis, (∗) holds for t′{v/s}. If
ιi(t′) = ιi(t′{v/s}), all the redexes and channel occurrences that we have to check
are in t′{v/s} and thus the thesis holds. Indeed, the case in which ιi(t′) = v is
impossible due to the form of s = ιi(t)[x1.w1, x2.w2].

• xσ{v/s}, where x is any simply typed variable and σ = σ1 . . . σn is any case-
free stack. By induction hypothesis, (∗) holds for σi{v/s} for 1 ≤ i ≤ n. If
xσ{v/s} = x (σ{v/s}), all its redexes and channel occurrences are in σ{v/s},
thus the thesis holds. The case in which xσ{v/s} = v (σi{v/s}) . . . (σn{v/s}) is
impossible due to the form of s = ιi(t)[x1.w1, x2.w2].

• v0[z1.v1, z2.v2]σ{v/s}, where σ is any case-free stack. By induction hypothesis, (∗)
holds for v0{v/s}, v1{v/s}, v2{v/s} and σi{v/s} for 1 ≤ i ≤ n. If

v0[z1.v1, z2.v2]σ{v/s} =
v0{v/s}[z1.v1{v/s}, z2.v2{v/s}](ρ{v/s})

By Lemma 6.2.5 the value complexity of wi[t/xi] is either at most the value
complexity of wi or the value complexity of t. In the first case, the value complexity
of wi[t/xi] is at most the value complexity of wi which is at most the value complexity
of ιi(t)[x1.w1, x2.w2]. Thus, by Lemma 6.2.5 the value complexities of v0{v/s},
v1{v/s}, v2{v/s} are at most the value complexity respectively of v0, v1, v2. Hence,
the complexity of the possible case distinction permutation redex

(v0[z1.v1{v/s}, z2.v2{v/s}])σ1{v/s}

is at most the complexity of v0[z1.v1, z2.v2]σ1 and we are done. Moreover, the
possible injection or case distinction permutation redex

v0{v/s}[z1.v1{v/s}, z2.v2{v/s}]

satisfies the thesis. In the second case, the value complexities of v0{v/s}, v1{v/s},
v2{v/s} are at most the value complexities of v0, v1, v2 respectively or exactly
the value complexity of t. Hence the complexity of the possible case distinction
permutation redex (v0[z1.v1{v/s}, z2.v2{v/s}])σ1{v/s} is either at most the value
complexity of v1, v2, and we are done, or exactly the value complexity of t, which
by Proposition 6.2.1 is at most the complexity of the type of t, thus is smaller than
the complexity of the injection redex ιi(t)[x1.w1, x2.w2] occurring in u. Moreover,
the possible injection or case distinction permutation redex

v0{v/s}[z1.v1{v/s}, z2.v2{v/s}]

has complexity equal to the value complexity of v0 or the value complexity of t,
and we are done again.

168

6.2. The normalization theorem

If v0[z1.v1, z2.v2]σ{v/s} = v (σi{v/s}) . . . (σn{v/s}), then there could be a new
intuitionistic redex, when v = λy q, v = 〈q1, q2〉, v = ιi(q) or v = q0[y1.q1, y2.q2]. If
the value complexity of v = wi[t/xi] is at most the value complexity of wi, then
the complexity of wi[t/xi](σi{v/s}) is equal to the complexity of the permutation
redex (ιi(t)[x1.w1, x2.w2])σi. If the value complexity of v = wi[t/xi] is the value
complexity of t, by Proposition 6.2.1 the complexity of wi[t/xi](σi{v/s}) is at most
the complexity of the type of t, thus is smaller than the complexity of the injection
redex ιi(t)[x1.w1, x2.w2] occurring in u and we are done.

• a t′ σ{v/s}, where a is a channel variable, t′ a term and σ = σ1 . . . σn is any case-free
stack. By induction hypothesis, (∗) holds for t′ and σi{v/s} for 1 ≤ i ≤ n. Since
s 6= a t′ σ1 . . . σj , the case a t′ σ{v/s} = v (σi{v/s}) . . . (σn{v/s}) is impossible.
If a t′ σ{v/s} = a (t′{v/s})(σ{v/s}), in order to verify the thesis it is enough to
check the complexity of the channel occurrence a (t′{v/s}). By Lemma 6.2.5,
the value complexity of wi[t/xi] is either at most the value complexity of wi or
exactly the value complexity of t. In the first case, the value complexity of wi[t/xi]
is at most the value complexity of wi which is at most the value complexity of
ιi(t)[x1.w1, x2.w2]. Thus, by Lemma 6.2.5, the value complexity of t′{v/s} is at
most the value complexity of t′ and we are done. In the second case, the value
complexity of t′{v/s} is the value complexity of t, which by Proposition 6.2.1 is
at most the complexity of the type of t, thus smaller than the complexity of the
injection redex ιi(t)[x1.w1, x2.w2] occurring in u, which is what we wanted to show.

• a(t1 ‖ . . . ‖ tm){v/s}. By induction hypothesis, (∗) holds for ti{v/s} for 1 ≤ i ≤ m.
The only redex in a(t1 ‖ . . . ‖ tm){v/s} and not in some ti{v/s} can be a(t1{v/s} ‖
. . . ‖ tm{v/s}){v/s} itself. But the complexity of such redex equals the maximal
complexity of the occurrences of the channel a in the ti{v/s}. Hence the statement
follows.

We analyze now the complexity of the redexes generated by the permutation of a case
distinction.

Lemma 6.2.8 (In the case). Let u be a term in parallel form. Then for any redex r1 of
Group 1 in u{t[x1.v1ξ, x2.v2ξ]/t[x1.v1, x2.v2]ξ}, there is a redex in u with greater or equal
complexity than r1; for any redex r2 of Group 2 in u{t[x1.v1ξ, x2.v2ξ]/t[x1.v1, x2.v2]ξ},
there is a redex of Group 2 in u with greater or equal complexity than r2.

Proof. Let v = t[x1.v1ξ, x2.v2ξ] and s = t[x1.v1, x2.v2]ξ. We prove the following stronger
statement.

(∗) For any redex r1 of Group 1 in u{t[x1.v1ξ, x2.v2ξ]/t[x1.v1, x2.v2]ξ} there is a re-
dex in u with greater or equal complexity than r1; for any redex r2 of Group 2 in

169

6. A computational interpretation of intermediate logics

u{t[x1.v1ξ, x2.v2ξ]/t[x1.v1, x2.v2]ξ} there is a redex of Group 2 in u with greater or equal
complexity than r2. Moreover, for any channel occurrence in u{v/s} with complexity θ′,
there is in u an occurrence of the same channel with complexity greater or equal than θ′.

We first observe that the possible Group 1 redexes v1ξ and v2ξ have at most the complexity
of the case distinction permutation t[x1.v1, x2.v2]ξ. The rest of the proof is by induction
on the shape of u.

• (λx t′)σ {v/s}, where σ = σ1 . . . σn is any case-free stack. By induction hypoth-
esis, (∗) holds for t′{v/s} and σi{v/s} where 1 ≤ i ≤ n. If (λx t′)σ{v/s} =
(λx t′{v/s}) (σ{v/s}), all the redexes and channel occurrences that we have to
check are either in σ{v/s} or, possibly, the head redex, thus the thesis holds. If

(λx t′)σ{v/s} = t[x1.v1ξ, x2.v2ξ] (σi{v/s}) . . . (σn{v/s})

then t[x1.v1ξ, x2.v2ξ](σi{v/s}) can be a new permutation redex. If ξ is case
free, this redex has complexity 0 by Lemma 6.2.4 and we are done. If ξ is not
case free, t[x1.v1ξ, x2.v2ξ](σi{v/s}) has the same complexity as the permutation
(t[x1.v1, x2.v2]ξ)σi.

• 〈t1, t2〉σ {v/s}, where σ = σ1 . . . σn is any case-free stack. By induction hypothesis,
(∗) holds for t1{v/s}, t2{v/s} and σi{v/s} where 1 ≤ i ≤ n. If

〈t1, t2〉σ{v/s} = 〈t1{v/s}, t2{v/s}〉 (σ{v/s})

all the redexes and channel occurrences that we have to check are either in σ{v/s} or,
possibly, the head redex. The former are dealt with using the inductive hypothesis.
As for the latter, it is immediate to see that the value complexity of t[x1.v1ξ, x2.v2ξ]
is equal to the value complexity of t[x1.v1, x2.v2]ξ. By Lemma 6.2.5, the value
complexity of ti{v/s} is at most that of ti, and we are done. If 〈t1, t2〉σ{v/s} =
v (σi{v/s}) . . . (σn{v/s}), then
v (σi{v/s}) = t[x1.v1ξ, x2.v2ξ](σi{v/s}) can be a new permutation redex. If ξ is
case free, this redex has complexity 0 by Lemma 6.2.4 and we are done. Otherwise,

t[x1.v1ξ, x2.v2ξ](σi{v/s})

has the same complexity as (t[x1.v1, x2.v2]ξ)σi.

• ιi(t′)σ {v/s}, where σ = σ1 . . . σn is any case-free stack. Obviously, σ must be
empty since it is case-free. By induction hypothesis, (∗) holds for t′{v/s}. If
ιi(t′) = ιi(t′{v/s}), all the redexes and channel occurrences that we have to check
are in σ{v/s} and thus the thesis holds.

• w0[z1.w1, z2.w2]σ{v/s}, where σ is any case-free stack. By induction hypothesis,
(∗) holds for w0{v/s}, v1{v/s}, v2{v/s} and σi{v/s} for 1 ≤ i ≤ n. If

w0[z1.w1, z2.w2]σ{v/s} =
w0{v/s}[z1.w1{v/s}, z2.w2{v/s}](σ{v/s})

170

6.2. The normalization theorem

Since the value complexity of t[x1.v1ξ, x2.v2ξ] is equal to the value complexity of
t[x1.v1, x2.v2]ξ, by Lemma 6.2.5 the value complexities of w0{v/s}, w1{v/s} and
w2{v/s} are respectively at most that of w0, w1 and w2. The complexity of the pos-
sible case distinction permutation redex (w0{v/s}[z1.w1{v/s}, z2.w2{v/s}])σ1{v/s}
is thus at most the value complexity of w1, w2 respectively, and hence the complexity
of the case permutation redex (w0[z1.w1, z2.w2])σ1. Moreover, the possible injection
or case permutation redex

w0{v/s}[z1.w1{v/s}, z2.w2{v/s}]

has complexity equal to the value complexity of w0 and we are done.
If w0[z1.w1, z2.w2]σ{v/s} = v (σi{v/s}) . . . (σn{v/s}), then there could be a new
case distinction permutation redex because v = t[x1.v1ξ, x2.v2ξ]. If ξ is case free,
by Lemma 6.2.4, this redex has complexity 0 and we are done; if not, it has the
same complexity as t[x1.v1, x2.v2]ξσ1 and we are done again.

• xσ{v/s}, where x is any simply typed variable and σ = σ1 . . . σn is any case-
free stack. By induction hypothesis, (∗) holds for σi{v/s} where 1 ≤ i ≤ n. If
xσ{v/s} = x (σ{v/s}), all its redexes and channel occurrences are in σ{v/s}, thus
the thesis holds. If

xσ{v/s} = t[x1.v1ξ, x2.v2ξ] (σi{v/s}) . . . (σn{v/s})

then v (σi{v/s}) can be a new permutation redex. If ξ is case free, this redex has
complexity 0 and we are done. Otherwise, t[x1.v1ξ, x2.v2ξ](σi{v/s}) has the same
complexity as t[x1.v1, x2.v2]ξσi.

• a t σ{v/s}, where a is a channel variable, t a term and σ = σ1 . . . σn is any case-free
stack. By induction hypothesis, (∗) holds for t and σi{v/s} where 1 ≤ i ≤ n.
If a t σ{v/s} = a (t{v/s})(σ{v/s}), in order to verify the thesis it is enough to check
the complexity of the channel occurrence a (t{v/s}). Since the value complexity of
t[x1.v1ξ, x2.v2ξ] is equal to the value complexity of t[x1.v1, x2.v2]ξ, by Lemma 6.2.5
the value complexity of t{v/s} is at most that of t, and we are done.
If a t σ{v/s} = a t [x1.v1ξ, x2.v2ξ] (σi{v/s}) . . . (σn{v/s}) then v (σi{v/s}) can be
a new permutation redex. If ξ is case free, this redex has complexity 0 and
we are done. Otherwise, t[x1.v1ξ, x2.v2ξ](σi{v/s}) has the same complexity as
(t[x1.v1, x2.v2]ξ)σi.

• a(t1 ‖ . . . ‖ tm){v/s}. By induction hypothesis, (∗) holds for ti{v/s} where
1 ≤ i ≤ m . The only redex in a(t1 ‖ . . . ‖ tm){v/s} and not in some ti{v/s} can
be a(t1{v/s} ‖ . . . ‖ tm{v/s}) itself. But the complexity of such redex equals the
maximal complexity of the occurrences of the channel a in ti{v/s}. Hence the
statement follows.

171

6. A computational interpretation of intermediate logics

The following result is meant to guarantee that there cannot be any loop involving
intuitionistic redexes and communication redexes of non-decreasing complexity. Intuitively,
when Group 1 redexes generate new redexes, the latter have smaller complexity than the
former; when Group 2 redexes generate new redexes, the latter does not have greater
complexity than the former. Hence, during the communication phase the complexity
does not increase and during the intuitionistic phase the complexity strictly decreases.

Proposition 6.2.9 (Decrease!). Let t be a term in parallel form, r be one of its redexes
of complexity τ , and t′ be the term that we obtain from t by reducing r.

1. If r is a redex of the Group 1, then the complexity of each redex in t′ is not greater
than the complexity of a redex of the same group occurring in t; or not greater than the
complexity of a case distinction permutation redex occurring in t; or smaller than τ .

2. If r is a redex of the Group 2 and not an activation redex, then the complexity of any
redex in t′ is either equal to the complexity of a redex of the same group occurring in t or
not greater than τ .

Proof.

1) Suppose that r = (λxA s) v, that s : B and let q be a redex in t′ whose complexity is
different from the complexity of any redex of the same group and any case distinction
permutation occurring in t. We apply Lemma 6.2.6 to the term s[v/xA]. From such
lemma we can infer that if q occurs in s[v/xA], since (i) and (ii) do not apply, it has the
same value complexity as v, which by Proposition 6.2.1 is at most the complexity of A,
and hence strictly smaller than the complexity of A → B and than the complexity τ
of r. Assume hence that q does not occur in s[v/xA]. Since s[v/xA] : B, by applying
Lemma 6.2.6 to the term t′ = t{s[v/xA]/(λxA s) v} we know that either q has the same
complexity as the value complexity of s[v/xA] – which by Proposition 6.2.1 is at most the
complexity of B – or q is a communication redex of complexity equal to the complexity
of some channel occurrence a(w[v/xA]) in s[v/xA], which by Lemma 6.2.5 is either at
most the complexity of A or at most the complexity of aw.

Suppose that r = ιi(s)[xA.u1, y
B.u2]. By applying Lemma 6.2.7 to

t′ = t{ui[s/xAi
i] / ιi(s)[xA1

1 .u1, x
A2
2 .u2]}

we are done.

2) Suppose that r = 〈v0, v1〉πi for i ∈ {0, 1}, that 〈v0, v1〉 : A0 ∧A1 and let q be a redex
in t′ having complexity greater than that of any redex of the same group in t. The the
assumption just made implies that the term q cannot occur in vi, but it must have been
created by the reduction of r. Moreover, by Proposition 6.2.1, the value complexity
of vi cannot be greater than the complexity of Ai. By applying Lemma 6.2.6 to the
term t′ = t{vi/r}, we know that q has complexity equal to the value complexity of vi,
because by the assumption on q the cases (i) and (ii) of Lemma 6.2.6 do not apply. Such
complexity is at most the complexity τ of r. Thus we are done.

172

6.2. The normalization theorem

Suppose that r = s[xA.u, yB.v]ξ is a case distinction permutation redex. By applying
Lemma 6.2.8 we are done.

If t′ is obtained by performing a permutation of a parallelism operator, then obviously
the thesis holds.

If t′ is obtained by a simplification reduction of the form a(u1 ‖ . . . ‖ um) 7→L uj1 ‖ . . . ‖
ujn , for 1 ≤ j1 < . . . < jn ≤ m, then there is nothing to prove: all redexes occurring in t′
also occur in t.

Suppose now that

r = a(C1[aF1→G1 t1] ‖ . . . ‖ Cm[aFm→Gm tm])

ti = 〈ui1, . . . , uipi
〉. Then by cross reduction, r reduces to b(s1 ‖ . . . ‖ sm) where if Gi 6= ⊥:

si = a(C1[aF1→G1 t1] . . . ‖ Ci[t
bBi→Bj 〈yi〉/yj

j] ‖ . . . ‖ Cm[aFm→Gm tm])

and if Gi = ⊥:

si = a(C1[aG1→G1 t1] . . . ‖ Ci[bBi→⊥〈yi〉] ‖ . . . ‖ Cm[aFm→Gm tm])

in which Fj = Gi. and t′ = t{r′/r}. Let now q be a redex in t′ having different complexity
from the one of any redex of the same group in t. We first show that it cannot be an
intuitionistic redex: assume it is. Then it occurs in one of the terms Ci[t

bBi→Bj 〈yi〉/yj

j] or
Ci[bBi→⊥〈yi〉]. By applying Lemma 6.2.6 to them, we obtain that the complexity of q
is the value complexity of tb

Bi→Bj 〈yi〉/yj

j or bBi→⊥〈yi〉, which, by several applications of
Lemma 6.2.5, are at most the value complexity of tj or 0 and thus by definition at most
the complexity of r, which is a contradiction. Assume hence that q = c(p1 ‖ . . . ‖ pz) is a
communication redex. Every channel occurrence of c in the terms Ci[t

bBi→Bj 〈yi〉/yj

j] or

Ci[bBi→⊥〈yi〉] is of the form cw{tb
Bi→Bj 〈yi〉/yj

j /a ti} or cw{bBi→⊥〈yi〉/a ti} where cw is a
channel occurrence in t. By Lemma 6.2.5, each of these occurrences has either at most
the value complexity of cw or has at most the value complexity of r, which is again a
contradiction.

The following result is meant to guarantee that a loop between communication redexes
and activation redexes is impossible: no new activation is generated after a cross reduction
if there is none to start with.

Lemma 6.2.10 (Freeze!). Suppose that s is a term in parallel form that does not contain
projection, case distinction permutation or activation redexes. Let a(q1 ‖ . . . ‖ qm) be some
redex in s of complexity τ . If s′ is obtained from s by performing first a cross reduction
on a(q1 ‖ . . . ‖ qm) and then reducing all projection and case distinction permutation
redexes, then s′ contains no activation redexes.

173

6. A computational interpretation of intermediate logics

Proof. Let a(q1 ‖ . . . ‖ qm) = a(C1[aF1→G1 t1σ1] ‖ . . . ‖ Cm[aFm→Gm tmσm]) where σi for
1 ≤ i ≤ m are the stacks which are applied to a ti, and t be the cross reduction redex
occurring in s that we reduce to obtain s′, or in other terms s′ = s{t′/t}. Then after
performing the cross reduction and reducing all the intuitionistic redexes, t reduces to
b(s1 ‖ . . . ‖ sm) where if Gi 6= ⊥:

si = a(C1[aF1→G1 t1] . . . ‖ Ci[t′j] ‖ . . . ‖ Cm[aFm→Gm tm])

and if Gi = ⊥:

si = a(C1[aG1→G1 t1] . . . ‖ Ci[bBi→⊥〈yi〉] ‖ . . . ‖ Cm[aFm→Gm tm])

in which Fj = Gi and t′j are the terms obtained reducing all projection and case distinction

permutation redexes in tb
Bi→Bj 〈yi〉/yj

j .

We observe that a is active and hence the terms si for 1 ≤ i ≤ m are not activation
redexes. Moreover, since all occurrences of b are of the form b〈yi〉, t′ is not an activation
redex. Now we consider the channel occurrences in any term si. We first show that
there are no activable channels in t′j which are bound in s′. Since for any stack θ of
projections b〈yi〉θ has value complexity 0, for any subterm w of tj we can apply repeatedly
Lemma 6.2.5 to wb

Bi→Bj 〈yi〉/yj and obtain that the value complexity of wb
Bi→Bj 〈yi〉/yj

is exactly the value complexity of w. This implies that there is no activable channel in
t
bBi→Bj 〈yi〉/yj

j because there was none in tj . The following general statement immediately
implies that there is no activable channel in t′j which is bound in s′ either.

(∗) Suppose that r and θ are respectively a simply typed λ-term and a stack contained in
s′ that do not contain projection and permutation redexes, nor activable channels bound
in s′. If r′ is obtained from rθ by performing all possible projection and case distinction
permutation reductions, then there are no activable channels in r′ which are bound in s′.

We prove (∗) by induction on the size of r and proceed by cases according to its shape.

• If r = λxw, r = ιi(w), r = wefqP , r = x or r = aw, for a channel a, then r′ = rθ
and the thesis holds.

• If r = 〈v0, v1〉 the only redex that can occur in rθ is a projection redex, when
θ = πiρ. Hence, rθ 7→L viρ 7→∗L r′. Since vi cannot be a channel because otherwise
〈v0, v1〉 would not be a legal term, we can apply the induction hypothesis on vi and
ρ. Hence, there are no activable channels in r′ which are bound in s′.

• If r = t[x.v0, y.v1], then rθ 7→∗L t[x.v0θ, y.v1θ] 7→∗L t[x.v′0, y.v′1] = r′. By induction
hypothesis applied to v0 and θ and to v1 and θ, there are no activable channels in
v′0 and v′1 and we are done.

• If r = pνξ, with ξ case free, then r′ = pνξ and the thesis holds.

174

6.2. The normalization theorem

Now, let c be any non-active channel bound in s′ occurring in Ci[t′j] or Ci[bBi→⊥〈yi〉] but
not in u′: any of its occurrences is of the form c〈p1, . . . , pl{u′/avρ}, . . . , pn〉, where each
pl is not a pair. We want to show that the value complexity of pl{u′/avρ} is exactly
the value complexity of pl. Indeed, pl = r ν where ν is a case-free stack. If r is of the
form λxw, 〈q1, q2〉, ιi(w), x, dw, with d 6= a, then the value complexity of pl[u′/avρ] is
the same as that of pl; note, indeed, that if r = 〈q1, q1〉, then ν is not empty because
r ν is assumed not to be a pair. If r = v0[x1.v1, x2.v2], then ν is empty, otherwise s
would contain a permutation redex, so c〈p1, . . . , pl, . . . , pn〉 is activable, and there is an
activation redex in s, which is contrary to our assumptions. The case r = av and ν = ρρ′

is also impossible, otherwise c〈p1, . . . , pl, . . . , pn〉 would be activable, and we are done.

Definition 6.2.9. The height of a term t in parallel form is

• 0 if t is a simply typed λ-term

• 1 + max(m,n) if t = u ‖a v and the heights of u and v are m and n respectively.

We show that the communication phase of our reduction strategy is finite.

Lemma 6.2.11 (Communicate!). Let t be any term in parallel form that does not contain
projection, case distinction permutation, or activation redexes. Assume moreover that all
redexes in t have complexity at most τ . Then t reduces to a term containing no redexes,
except Group 1 redexes of complexity at most τ .

Proof. We prove the statement by lexicographic induction on the triple (n, h, g) where

• n is the number of subterms a(u1 ‖ . . . ‖ um) of t such that a(u1 ‖ . . . ‖ um) is an
active, but not uppermost, session.

• h is the function mapping each natural numberm ≥ 2 into the number of uppermost
active sessions in t with height m.

• g is the function mapping each natural number m into the number of uppermost
active sessions a(u1 ‖ . . . ‖ um) in t containing m occurrences of a.

We employ the following lexicographic ordering between functions for the second and
third elements of the triple: f < f ′ if and only if there is some i such that for all j > i,
f(j) = f ′(j) = 0 and f(i) < f ′(i).

If h(j) > 0, for some j ≥ 2, then there is at least an active session a(u1 ‖ . . . ‖ um) in
t that does not contain any active session and such that the height of a(u1 ‖ . . . ‖ um)
is j. Hence ui = b(s1 ‖ . . . ‖ sq) for some 1 ≤ i ≤ i ≤ m. We obtain t′ by applying
inside t the permutation a(u1 ‖ . . . ‖ b(s1 ‖ . . . ‖ sq) . . . ‖ um) 7→L b(a(u1 ‖ . . . ‖
s1 . . . ‖ um) . . . ‖ a(u1 ‖ . . . ‖ sq . . . ‖ um)). We claim that the term t′ thus obtained has
complexity has complexity (n, h′, g′), with h′ < h. Indeed, a(u1 ‖ . . . ‖ um) does not

175

6. A computational interpretation of intermediate logics

contain active sessions, thus b is not active and the number of active sessions which are
not uppermost in t′ is still n. With respect to t, the term t′ contains one less uppermost
active session with height j and q more of height j − 1, and hence h′ < h. Furthermore,
since the permutations do not change at all the purely intuitionistic subterms of t, no new
activation or intuitionistic redex is created. In conclusion, we can apply the induction
hypothesis on t′ and thus obtain the thesis.

If h(m) = 0 for allm ≥ 2, then let us consider an uppermost active session a(u1 ‖ . . . ‖ um)
in t such that the height of a(u1 ‖ . . . ‖ um) is 1; if there is none, we are done. We reason
by cases on the distribution of the occurrences of a. Either (i) some ui for 1 ≤ i ≤ m
does not contain any occurrence of a, or (ii) all ui for 1 ≤ i ≤ m contain some occurrence
of a.

Suppose that (i) is the case and, without loss of generality, that a occurs j times in u
and does not occur in v. We then obtain a term t′ by applying a simplification reduction
a(u1 ‖ . . . ‖ um) 7→L uj1 ‖ . . . ‖ ujp . If there is an active session b(s1 ‖ . . . ‖ sq) in t such
that a(u1 ‖ . . . ‖ um) is the only active session contained in some si for 1 ≤ i ≤ n, then
the term t′ has complexity (n − 1, h′, g′), because b(s1 ‖ . . . ‖ sq) is an active session
which is not uppermost in t, but is uppermost in t′; if not, we claim that the term
t′ has complexity (n, h, g′) where g′ < g. Indeed, first, the number of active sessions
which are not uppermost does not change. Second, the height of all other uppermost
active sessions does not change. Third, g′(j) = g(j)− 1 and, for any i 6= j, g′(i) = g(i)
because, obviously, no channel belonging to any uppermost active session different from
a(u1 ‖ . . . ‖ um) occurs in u. Since the reduction a(u1 ‖ . . . ‖ um) 7→L uj1 ‖ . . . ‖ ujp
does not introduce any new intuitionistic or activation redex, we can apply the induction
hypothesis on t′ and obtain the thesis.

Suppose now that (ii) is the case and that all ui for 1 ≤ i ≤ m together contain j occur-
rences of a. Then a(u1 ‖ . . . ‖ um) is of the form a(C1[aF1→G1 t1] ‖ . . . ‖ Cm[aFm→Gm tm])
where a is active, Cj [aFj→Gj tj] for 1 ≤ j ≤ m are simply typed λ-terms; aFj→Gj is
rightmost in each of them. Then we can apply the cross reduction a(C1[aF1→G1 t1] ‖ . . . ‖
Cm[aFm→Gm tm]) 7→L b(s1 ‖ . . . ‖ sm) in which b is fresh and for 1 ≤ i ≤ m, we define, if
Gi 6= ⊥:

si = a(C1[aF1→G1 t1] . . . ‖ Ci[t
bBi→Bj 〈yi〉/yj

j] ‖ . . . ‖ Cm[aFm→Gm tm])

and if Gi = ⊥:

si = a(C1[aG1→G1 t1] . . . ‖ Ci[bBi→⊥〈yi〉] ‖ . . . ‖ Cm[aFm→Gm tm])

where Fj = Gi; yz for 1 ≤ z ≤ m is the sequence of the free variables of tz bound in
Cz[aFz→Gz tz]; Bz for 1 ≤ z ≤ m is the type of 〈yz〉. By Lemma 6.2.10, after performing
all projections and case permutation reductions in all Ci[t

bBi→Bj 〈yi〉/yj

j] and Ci[bBi→⊥〈yi〉]
for 1 ≤ i ≤ m we obtain a term t′ that contains no activation redexes; moreover, by point
2. of Proposition 6.2.9, t′ contains only redexes having complexity at most τ .

176

6.2. The normalization theorem

We claim that the term t′ thus obtained has complexity 〈n, h, g′〉 where g′ < g. Indeed, the
value n does not change because all newly introduced occurrences of b are not active. The
new active sessions si = a(C1[aF1→G1 t1] . . . ‖ Ci[t

bBi→Bj 〈yi〉/yj

j] ‖ . . . ‖ Cm[aFm→Gm tm])
or si = a(C1[aG1→G1 t1] . . . ‖ Ci[bBi→⊥〈yi〉] ‖ . . . ‖ Cm[aFm→Gm tm]) for 1 ≤ i ≤ m have
all height 1 and contain j − 1 occurrences of a. Since furthermore the reduced term
does not contain channel occurrences of any uppermost active session different from
a(u1 ‖ . . . ‖ um) we can infer that g′(j) = g(j) − 1 and that, for any i such that i > j,
g′(i) = g(i).

We can apply the induction hypothesis on t′ and obtain the thesis.

We now combine together all the main results achieved so far to prove that the normal-
ization procedure, applied to a proof term in parallel form, terminates and yields a proof
term in normal form.

Proposition 6.2.12 (Normalize!). Let t : A be any term in parallel form. Then t 7→∗L t′,
where t′ is in parallel normal form.

Proof. Let τ be the maximum among the complexity of the redexes in t. We prove
the statement by induction on τ . Starting from t, we reduce all intuitionistic redexes
and obtain a term t1 that, by Proposition 6.2.9, does not contain redexes of complexity
greater than τ . By Lemma 6.2.3, t1 7→∗L t2 where t2 does not contain any redex, except
cross reduction redexes of complexity at most τ . By Lemma 6.2.11, t2 7→∗L t3 where t3
contains only Group 1 redexes of complexity at most τ . Suppose t3 7→∗L t4 by reducing all
Group 1 redexes, starting from t3. By Proposition 6.2.9, every Group 1 redex generated
in the process has complexity at most τ , thus every Group 2 redex which is generated
has complexity smaller than τ , thus t4 can only contain redexes with complexity smaller
than τ . By induction hypothesis t4 7→∗L t′, with t′ in parallel normal form.

The normalization of all λ‖L proof terms easily follows.

Theorem 6.2.13 (Normalization theorem). Suppose that t : A is a λ‖L proof term. Then
t 7→∗L t′ : A, where t′ is a normal parallel form.

Proof. By Proposition 6.2.2 and 6.2.12.

Remark 6.4. The normalization procedure presented here would work for any type
system containing rules extracted from axioms of the form∨

i=1,...,k
(

∧
j=1,...,nk

Aji)→ Bi

where Aji and Bi, for i = 1, . . . , k is a propositional variable or > or ⊥, with the additional
restriction that all Aij ’s are distinct and each Aij 6= > is equal to some Bl. Such class is a

177

6. A computational interpretation of intermediate logics

proper generalization of the class considered here, but the normalization procedure and
the normalization proof can be easily adapted to it without any significant change. In
spite of this, the notation of typing rules and reductions would greatly suffer in clarity
from such generalization. Hence we only present the simplified version of the procedure
and the relative proof.

6.3 The subformula property
We show that normal λ‖L-terms satisfy the subformula property: a normal proof does
not contain concepts that do not already appear in the premises or in the conclusion.
This, in turn, implies that our Curry–Howard correspondence for λ‖L is meaningful from
the logical perspective and produces analytic proofs.

We first show that every normal form λ‖L-term is in parallel form.

Proposition 6.3.1 (Parallel normal form property). If t ∈ NFL is a λ‖L-term, then it
is in parallel form.

Proof. By induction on t.

• t is a variable x. Trivial.

• t = λx v. Since t is normal, v cannot be of the form a(u1 ‖ . . . ‖ um), otherwise one
could apply the permutation

t = λxA a(u1 ‖ . . . ‖ um) 7→L a(λxA u1 ‖ . . . ‖ λxA.um)

and t would not be in normal form. Hence, by induction hypothesis v must be a
simply typed λ-term.

• t = 〈v1, v2〉. Since t is normal, neither v1 nor v2 can be of the form a(u1 ‖ . . . ‖ um),
otherwise one could apply one of the permutations

〈a(u1 ‖ . . . ‖ um), w〉 7→L a(〈u1, w〉 ‖ . . . ‖ 〈um, w〉)

〈w, a(u1 ‖ . . . ‖ um)〉 7→L a(〈w, u1〉 ‖ . . . ‖ 〈w, um〉)
and t would not be in normal form. Hence, by induction hypothesis v1 and v2 must
be simply typed λ-terms.

• t = v1 v2. Since t is normal, neither v1 nor v2 can be of the form a(u1 ‖ . . . ‖ um),
otherwise one could apply one of the permutations

a(u1 ‖ . . . ‖ um)w 7→L a(u1w ‖ . . . ‖ umw)

w a(u1 ‖ . . . ‖ um) 7→L a(wu1 ‖ . . . ‖ wum)
and t would not be in normal form. Hence, by induction hypothesis v1 and v2 must
be simply typed λ-terms.

178

6.3. The subformula property

• t = v efqP . Since t is normal, v cannot be of the form a(u1 ‖ . . . ‖ um), otherwise
one could apply the permutation

a(u1 ‖ . . . ‖ um) efqP 7→L a(u1 efqP ‖ . . . ‖ um efqP)

and t would not be in normal form. Hence, by induction hypothesis u1, . . . , um
must be simply typed λ-terms.

• t = uπi. Since t is normal, v can be of the form a(u1 ‖ . . . ‖ um), otherwise one
could apply the permutation

a(u1 ‖ . . . ‖ um)πi 7→L a(u1πi ‖ . . . ‖ umπi)

and t would not be in normal form. Hence, by induction hypothesis u must be a
simply typed λ-term, which is the thesis.

• t = a(u1 ‖ . . . ‖ um). By induction hypothesis the thesis holds for ui where
1 ≤ i ≤ m and hence trivially for t.

We now show that the subformula property holds for normal λ‖L-terms.

Theorem 6.3.2 (Subformula property). Suppose

xA1
1 , . . . , xAn

n , aD1
1 , . . . , aDm

m ` t : A and t ∈ NFL. Then :

1. For each channel variable aB→C occurring bound in t, the prime factors of B,C
are subformulae of A1, . . . , An, A or proper subformulae of D1, . . . , Dm.

2. The type of any subterm of t is either a subformula or a conjunction of subformulae
of A1, . . . , An, A and of proper subformulae of D1, . . . , Dm.

Proof. We proceed by structural induction on t and reason by cases, according to the
form of t.

• t = 〈u, v〉 : F ∧G. Since t ∈ NFL, by Proposition 6.3.1 it is in parallel form, thus is
a simply typed λ-term. Hence no communication variable can be bound inside t,
thus 1. trivially holds. By induction hypothesis, 2. holds for u : F and v : G. Hence,
the type of any subterm of u is either a subformula or a conjunction of subformulae
of A1, . . . , An, of F and of proper subformulae of D1, . . . , Dm and any subterm of
v is either a subformula or a conjunction of subformulae of some A1, . . . , An, of G
and of proper subformulae of D1, . . . , Dm. Moreover, any subformula of F and G
must be a subformula of the type F ∧G of t. Hence the type of any subterm of
〈u, v〉 is either a subformula or a conjunction of subformulae of A1, . . . , An, F ∧G
or a proper subformula of D1, . . . , Dm and the statement holds for t as well.

179

6. A computational interpretation of intermediate logics

• t = λxF u : F → G. Since t ∈ NFL, by Proposition 6.3.1 it is in parallel form, thus
is a simply typed λ-term. Hence no communication variable can be bound inside
t, thus 1. trivially holds. By induction hypothesis, 2. holds for u : G. Hence the
type of any subterm of u is either a subformula or a conjunction of subformulae
of some A1, . . . , An, F , of G and of proper subformulae of D1, . . . , Dm. Since the
type F of x is a subformula of F → G, the type of any subterm of λxF u is either
a subformula or a conjunction of subformulae of A1, . . . , An, F → G or a proper
subformula of D1, . . . , Dm and the statement holds for t as well.

• t = ιi(u) : F ∨G for i ∈ {0, 1}. Without loss of generality assume that i = 1 and
u : G. Since t ∈ NFL, by Proposition 6.3.1 it is in parallel form, thus is a simply
typed λ-term. Hence no communication variable can be bound inside t, thus 1.
trivially holds. By induction hypothesis, 2. holds for u : F . Hence, the type of
any subterm of u is either a subformula or a conjunction of subformulae of some
A1, . . . , An, of F or proper subformulae of D1, . . . , Dm. Moreover, any subformula
of G must be a subformula of the type F ∨G of t. Hence the type of any subterm
of ιi(u) is either a subformula or a conjunction of subformulae of A1, . . . , An, F ∨G
or a proper subformula of D1, . . . , Dm and the statement holds for t as well.

• t = xAi σ : A for some Ai among A1, . . . , An and stack σ. Since t ∈ NFL, it is in
parallel form, thus is a simply typed λ-term and no communication variable can be
bound inside t. By induction hypothesis, for any element σj : Sj of σ, the type of
any subterm of σj is either a subformula or a conjunction of subformulae of some
A1, . . . , An, of the type Sj of σj and of proper subformulae of D1, . . . , Dm.

If σ is case-free, then every Sj is a subformula of Ai, or of A, when σ = σ′efqA.
Hence, the type of any subterm of xAi σ is either a subformula or a conjunction
of subformulae of A1, . . . , An, A or of proper subformulae of D1, . . . , Dm and the
statement holds for t as well.

In case σ is not case-free, then, because of case distinction permutations, σ =
σ′[yG.v1, z

E .v2], with σ′ case-free. By induction hypothesis we know that the type of
any subterm of v1 : A or v2 : A is either a subformula or a conjunction of subformulae
of some A1, . . . , An, of A,G,E and of proper subformulae of D1, . . . , Dm. Moreover,
G and E are subformulae of Ai due to the properties of stacks. Hence, the type
of any subterm of xσ′[yG.v1, z

E .v2] is either a subformula or a conjunction of
subformulae of A1, . . . , An, A and of proper subformulae of D1, . . . , Dm and also in
this case the statement holds for t as well.

• t = aDiuσ : A for some Di among D1, . . . , Dn and stack σ. As in the previous case.

• t = b(u1 ‖ . . . ‖ uk) : A and bGi→Hi occurs in ui. Suppose, for the sake of
contradiction, that the statement does not hold. We know by induction hypothesis
that the statement holds for u1 : A, . . . , uk : A. We first show that it cannot be the
case that

180

6.3. The subformula property

(∗) all prime factors ofG1, H1, . . . , Gk, Hk are subformulae ofA1, . . . , An, A
or proper subformulae of D1, . . . , Dm.

Indeed, assume by contradiction that (∗) holds. Let us consider the type T of any
subterm of t which is not a bound communication variable and the formulae B,C
of any bound communication variable aB→C of t. Let P be any prime factor of
T or B or C. By induction hypothesis applied to u1, . . . , un, we obtain that P is
either subformula or conjunction of subformulae of A1, . . . , An, A and of proper
subformulae of D1, . . . , Dm, G1, H1, . . . , Gk, Hk. Moreover, P is prime and so it
must be subformula of A1, . . . , An, A or a proper subformula of D1, . . . , Dm or
a prime factor of G1, H1, . . . , Gk, Hk. Since (∗) holds, P must be a subformula
of A1, . . . , An, A or proper subformula of D1, . . . , Dm, and this contradicts the
assumption that the subformula property does not hold for t.

We shall say from now on that any bound channel variable aF1→F2 of t violates the
subformula property maximally (due to Q) if (i) some prime factor Q of F1 or F2
is neither a subformula of A1, . . . , An, A nor a proper subformula of D1, . . . , Dm

and (ii) for every other bound channel variable cS1→S2 of t, if some prime factor
Q′ of S1 or S2 is neither a subformula of A1, . . . , An, A nor a proper subformula of
D1, . . . , Dm, then Q′ is complex at most as Q. If Q is a subformula of F1 we say
that aF1→F2 violates the subformula property maximally in the input.

It follows from (∗) that a channel variable maximally violating the subformula
property must exist. We show now that there also exists a subterm cF1→F2w of
t such that c maximally violates the subformula property in the input due to Q,
and w does not contain any channel variable that violates the subformula property
maximally.

In order to prove the existence of such term, we prove

(∗∗) Let t1 be any subterm of t such that t1 contains at least a maximally violating
channel and all maximally violating channel of t that are free in t1 are maximally
violating in the input. Then there is a simply typed subterm s of t1 such that s
contains at least a maximally violating channel, and such that all occurrences of
maximally violating channels occurring in s violate the subformula property in the
input.

We proceed by induction on the number n of ‖ operators that occur in t1. channels.

If n = 0, it is enough to pick s = t1.

If n > 0, let t1 = d(v1 ‖ . . . ‖ vn) and assume dEi→Fi occurs in vi. If no dEi→Fi

maximally violates the subformula property, we obtain the thesis by applying the
induction hypothesis to any vi. Assume hence that some dEi→Fi maximally violates
the subformula property due to Q. Then there is some dEj→Fj such that Q is a
prime factor of Ei or Ej . By induction hypothesis applied to ui or uj , we obtain
the thesis.

181

6. A computational interpretation of intermediate logics

By (∗∗) we can infer that in t there is a simply typed λ-term s that contains at least
one occurrence of a maximally violating channel and only occurrences of maximally
violating channels that are maximally violating in the input. The rightmost of the
maximally violating channel occurrences in s is then of the form cF1→F2w where c
maximally violates the subformula property in the input and w does not contain
any channel variable maximally violating the subformula property.
Consider now the term cF1→F2w. Since Q is a prime factor of F1, it is either an atom
P or a formula of the form Q′ → Q′′ or of the form Q′ ∨Q′′. Let w = 〈w1, . . . , wj〉,
where each wi is not a pair, and let k be such that that Q occurs in the type of wk.
We start by ruling out the case that wk = λy s or wk = ιi(s) for i ∈ {0, 1}, otherwise
it would be possible to perform an activation reduction or a cross reduction to some
subterm c(u′1 ‖ . . . ‖ u′m′), which must exist since c is bound.
Suppose now, by contradiction, that wk = xT σ where σ is a stack. It cannot be
the case that σ = σ′[yE1 .v1, z

E2 .v2] or that σ = σ′efqP , because otherwise we could
apply an activation reduction or a cross reduction. Hence σ is case-free and does
not contain efqP . Moreover, xT cannot be a free variable of t, because then T
would be equal to some Ai for 1 ≤ i ≤ n, and Q would be a subformula of Ai,
which contradicts the assumptions. Suppose hence that xT is a bound intuitionistic
variable of t, such that t has a subterm λxT s : T → Y or, without loss of generality,
s[xT .v1, z

E .v2], with s : T ∨ Y for some formula Y . By induction hypothesis
T → Y and T ∨ Y are subformulae of A1, . . . , An, A or proper subformulae of
D1, . . . , Dm, G→ H. But T → Y and T ∨Y contain Q as a proper subformula and
cF1→F2 w violates maximally the subformula due to Q. Hence T → Y and T ∨ Y
are neither subformulae of A1, . . . , An, A nor proper subformulae of D1, . . . , Dm

and thus must be proper subformulae of G → H. Since cF1→F2 w violates the
subformula property maximally due to Q, T → Y and T ∨ Y must be at most as
complex as Q, which is a contradiction. Suppose now that xT is a bound channel
variable, thus wk = aT r σ, where aT is a bound communication variable of t, with
T = T1 → T2. Since cF1→F2 w is rightmost, a 6= c. Moreover, Q is a subformula of
a prime factor of T2, whereas aT1→T2 occurs in w, which is impossible by choice of
c. This contradicts the assumption that the term is normal and ends the proof.

182

CHAPTER 7
Conclusion and future work

In this dissertation we defined Curry–Howard correspondences for individual logics
and families of intermediate logics, including well-known systems such as classical and
Gödel–Dummett logic. These correspondences give rise to typed concurrent and parallel
λ-calculi which are more expressive than simply typed λ-calculus and exhibit interesting
computational properties. This confirms Avron’s intuitions on the computational content
of the intermediate logics which are naturally formalized as hypersequent calculi [Avr91].

The presented results can be considered satisfactorily conclusive in this respect. Never-
theless, they open new research lines, some of which concern promising ways of extending
the work.

The first future work direction that we discuss is related to the proof-theoretical techniques
employed in Chapter 3 to bridge hypersequents and natural deduction through systems
of rules. The idea at the origin of systems of rules is to use non-local conditions inside
derivations in order to avoid the addition of explicit structural elements for increasing the
expressive power of sequent calculus. This idea and its effectiveness is neither limited to
the intermediate logics studied here, nor to intermediate logics as a whole. The original
version of systems of rules was introduced, for instance, to define calculi based on the
frame semantics of modal logics; and we can formalize these logics by systems of rules in
a purely syntactic way [Pav18]. Non-local conditions can also be used as means to define
analytic calculi for the sub-structural logics that can be formalized as hypersequent calculi.
In each of these cases, a smart use of such conditions could not only lead to the definition
of analytic calculi with interesting properties, but also to the definition of simple natural
deduction calculi. The success in defining suitable analytic natural deduction calculi, in
turn, could lead to new computational interpretations of the corresponding logics.

From the point of view of concurrency theory, it would be interesting to show a formal
result relating the concurrent λ-calculi presented in this dissertation and π-calculus. An
encoding between a typed fragment of π-calculus and one of the λ‖L-calculi would indeed

183

7. Conclusion and future work

enable us to pinpoint the exact relationship between the two kinds of formalisms. The task
seems achievable, for example, by defining more liberal versions of the cross reductions
of λG. A promising way to define more sophisticated calculi for modeling concurrent
systems is to use linear logic instead of intuitionistic logic as the base logic. In particular,
a linear version of the natural deduction calculi presented in this dissertation should
correspond to concurrent λ-calculi in which we can control the number of communications
between processes.

A first step towards the definition of a parallel programming language based on intermedi-
ate logics would be to implement the reduction system of λ‖, as a standalone interpreter
or using the constructs of an existing programming language. The calculus λ‖ could
also constitute a solid base for endeavors using logic for the specification and synthesis
of parallel functional programs. While there are several type systems for concurrent
calculi, none of them is based on a sufficiently expressive logical language, as first-order
arithmetic or second-order logic would be. On the other hand, extending propositional
Curry–Howard correspondences to higher-order logics is not only a possible but also a
natural development of the present work. Nevertheless, there is no obvious way to do
it because the applicability conditions of the usual quantifier rules interfere with the
transformation of proofs into parallel normal forms – see Propositions 4.1.8 and 6.2.2.
This normal form, in turn, is essential to the normalization procedures used in this
dissertation. Thus, new techniques are probably required to define normalizing first-order
or second order calculi based on the ideas employed here.

Finally, a problem of concurrency theory which has remained open for several decades
is the definition of a formalism providing a general foundation for concurrent program
evaluation. For sequential computation, such a foundation is provided by λ-calculus.
According to Milner, the introduction of CCS itself – the forefather of process calculi and,
in particular, of π-calculus – was precisely due to the unsuccessful attempts to define
satisfactory concurrent extensions of λ-calculus [Mil84]. While the definition of such
an untyped concurrent λ-calculus lies outside the scope of this dissertation, the set of
reductions presented for λ‖L might shed some light on possible approaches to the solution
of this problem.

184

Appendix

Here is the unabridged reduction of the three-process λ‖ implementation of the Floyd–
Warshall algorithm discussed in Section 5.6.3.

7→∗p a

((
f(a(f(a(f(aI1(0)))))) ‖ (a((a((a((aI1(0))π1))π1))π1))π0 ‖ (aI1(0))π0

)
‖
(
f(a(f(a(f(a(f(aI2(0)))))))) ‖ (a((a((a((a((aI2(0))π1))π1))π1))π1))π0

‖ (a(f(a(f(aI2(0))))))π0 ‖ (a((aI2(0))π1))π0
)

‖
(
f(a(f(a(f(a(f(aI3(0)))))))) ‖ (a((a((a((aI3(0))π1))π1))π1))π0

‖ (a(f(a(f(a(f(aI3(0))))))))π0 ‖ (a((a((aI3(0))π1))π1))π0
))

7→∗p a

((
f(a(f(a(f(aI1(0)))))) ‖ (a((a((a((aI1(0))π1))π1))π1))π0 ‖ (a(I1(0)))π0

)
‖
(
f(a(f(a(f(a(f〈I2(0), I1(0)〉)))))) ‖ (a((a((a((a(〈I2(0), I1(0)〉π1))π1))π1))π1))π0 ‖

(a(f(a(f〈I2(0), I1(0)〉))))π0 ‖ (a(〈I2(0), I1(0)〉π1))π0
)

‖
(
f(a(f(a(f(a(f(aI3(0)))))))) ‖ (a((a((a((a(〈0, I3(0)〉π1))π1))π1))π1))π0

‖ (a(f(a(f(a(f(aI3(0))))))))π0 ‖ (a((a((a(〈0, I3(0)〉π1))π1))π1))π0
))

7→∗p a

((
f(a(f(a(f(aI1(0)))))) ‖ (a((a((a((aI1(0))π1))π1))π1))π0 ‖ (a(I1(0))

)
)π0

‖
(
f(a(f(a(f(a(f〈I2(0), I1(0)〉)))))) ‖ (a((a((a((aI1(0))π1))π1))π1))π0 ‖ (a(f(a(f〈I2(0), I1(0)〉))))π0 ‖ (aI1(0))π0

)
‖
(
f(a(f(a(f(a(f(aI3(0)))))))) ‖ (a((a((a((aI3(0))π1))π1))π1))π0

‖ (a(f(a(f(a(f(aI3(0))))))))π0 ‖ (a((a((aI3(0))π1))π1))π0
))

7→∗p a

((
f(a(f(a(f(aI1(0)))))) ‖ (a((a((a((aI1(0))π1))π1))π1))π0 ‖ (a(I1(0)))π0

)
‖
(
f(a(f(a(f(a(f〈I2(0), I1(0)〉)))))) ‖ (a((a((a((aI1(0))π1))π1))π1))π0 ‖ (a(f(a(f〈I2(0), I1(0)〉))))π0 ‖ (aI1(0))π0

)
‖
(
f(a(f(a(f(a(f〈I3(0), I1(0)〉))))))) ‖ (a((a((a(〈I3(0), I1(0)〉π1))π1))π1))π0

‖ (a(f(a(f(a(f〈I3(0), I1(0)〉))))))π0 ‖ (a((a(〈I3(0), I1(0)〉π1))π1))π0
))

7→∗p a

((
f(a(f(a(f(aI1(0)))))) ‖ (a((a((a((aI1(0))π1))π1))π1))π0 ‖ (a(I1(0)))π0

)
‖
(
f(a(f(a(f(a(f〈I2(0), I1(0)〉)))))) ‖ (a((a((a((aI1(0))π1))π1))π1))π0 ‖ (a(f(a(f〈I2(0), I1(0)〉))))π0 ‖ (aI1(0))π0

)
‖
(
f(a(f(a(f(a(f〈I3(0), I1(0)〉)))))) ‖ (a((a((a(I1(0)))π1))π1))π0

‖ (a(f(a(f(a(f〈I3(0), I1(0)〉))))))π0 ‖ (a((aI1(0))π1))π0
))

185

7. Conclusion and future work

7→∗p a

((
f(a(f(a(f〈I1(0), I1(0)〉)))) ‖ (a((a((a(〈I1(0), I1(0)〉π1))π1))π1))π0 ‖ 〈I1(0), I1(0)〉π0

)
‖
(
f(a(f(a(f(a(f〈I2(0), I1(0)〉)))))) ‖ (a((a((a((aI1(0))π1))π1))π1))π0 ‖ (a(f(a(f〈I2(0), I1(0)〉))))π0 ‖ (aI1(0))π0

)
‖
(
f(a(f(a(f(a(f〈I3(0), I1(0)〉)))))) ‖ (a((a((a(I1(0)))π1))π1))π0

‖ (a(f(a(f(a(f〈I3(0), I1(0)〉))))))π0 ‖ (a((aI1(0))π1))π0
))

7→∗p a

((
f(a(f(aI1(1)))) ‖ (a((a((aI1(0))π1))π1))π0 ‖ 〈I1(0), I1(0)〉π0

)
‖
(
f(a(f(a(f(aI2(1)))))) ‖ (a((a((a((aI1(0))π1))π1))π1))π0 ‖ (a(f(aI2(1))) ‖ aI1(0))π0

)
‖
(
f(a(f(a(f(aI3(1)))))) ‖ (a((a((a(I1(0)))π1))π1))π0 ‖ (a(f(a(f(aI3(1))))))π0 ‖ (a((aI1(0))π1))π0

))
7→∗p a

((
f(a(f(aI1(1)))) ‖ (a((a((aI1(0))π1))π1))π0 ‖ 〈I1(0), I1(0)〉π0

)
‖
(
f(a(f(a(f〈I2(1), I1(0)〉))))) ‖ (a((a((a(〈I1(0), I1(0)〉π1)π1))π1))π0 ‖ (a(f〈I2(1), I1(0)〉)))π0 ‖ 〈I1(0), I1(0)〉π0

)
‖
(
f(a(f(a(f(aI3(1)))))) ‖ (a((a((a(I1(0)))π1))π1))π0 ‖ (a(f(a(f(aI3(1))))))π0 ‖ (a((aI1(0))π1))π0

))
7→∗p a

((
f(a(f(aI1(1)))) ‖ (a((a((aI1(0))π1))π1))π0 ‖ (〈I1(0), I1(0)〉)π0

)
‖
(
f(a(f(aI2(1)))) ‖ (a((a((aI1(0))π1))π1))π0 ‖ (a(I2(1)))π0 ‖ (〈I1(0), I1(0)〉)π0

)
‖
(
f(a(f(a(f(aI3(1)))))) ‖ (a((a((a(I1(0)))π1))π1))π0 ‖ (a(f(a(f(aI3(1))))))π0 ‖ (a((aI1(0))π1))π0

))
7→∗p a

((
f(a(f(aI1(1)))) ‖ (a((a((aI1(0))π1))π1))π0 ‖ 〈I1(0), I1(0)〉π0

)
‖
(
f(a(f(aI2(1)))) ‖ (a((a((aI1(0))π1))π1))π0 ‖ (a I2(1))π0 ‖ 〈I1(0), I1(0)〉π0

)
‖
(
f(a(f(a(f〈I3(1), I2(1)〉)))) ‖ (a((a(〈I3(1), I2(1)〉π1)π1))π0

‖ (a(f(a(f〈I3(1), I2(1)〉))))π0 ‖ (a(〈I1(0), I2(1)〉π1))π0
))

7→∗p a

((
f(a(f(aI1(1)))) ‖ (a((a((aI1(0))π1))π1))π0 ‖ 〈I1(0), I1(0)〉π0

)
‖
(
f(a(f(aI2(1)))) ‖ (a((a((aI1(0))π1))π1))π0 ‖ (aI2(1))π0 ‖ 〈I1(0), I1(0)〉π0

)
‖
(
f(a(f(a(f〈I3(1), I2(1)〉)))) ‖ (a((aI2(1))π1))π0 ‖ (a(f(aI(f〈I3(1), I2(1)〉))))π0 ‖ (aI2(1))π0

))
7→∗p a

((
f(a(f〈I1(1), I2(1)〉)) ‖ (a((a(〈I1(0), I2(1)〉π1))π1))π0 ‖ 〈I1(0), I1(0)〉π0

)
‖
(
f(a(f(aI2(1)))) ‖ (a((a((aI1(0))π1))π1))π0 ‖ (aI2(1))π0 ‖ 〈I1(0), I1(0)〉π0

)
‖
(
f(a(f(a(f〈I3(1), I2(1)〉)))) ‖ (a((aI2(1))π1))π0 ‖ (a(f(a(f〈I3(1), I2(1)〉))))π0 ‖ (aI2(1))π0

))
7→∗p a

((
f(a(f〈I1(1), I2(1)〉)) ‖ (a((aI2(1))π1))π0 ‖ 〈I1(0), I1(0)〉π0

)
‖
(
f(a(f(aI2(1)))) ‖ (a((a((aI1(0))π1))π1))π0 ‖ (aI2(1))π0 ‖ 〈I1(0), I1(0)〉π0

)
‖
(
f(a(f(a(f〈I3(1), I2(1)〉)))) ‖ (a((aI2(1))π1))π0 ‖ (a(f(a(f〈I3(1), I2(1)〉))))π0 ‖ (aI2(1))π0

))
7→∗p a

((
f(a(f〈I1(1), I2(1)〉)) ‖ (a((aI2(1))π1))π0 ‖ 〈I1(0), I1(0)〉π0

)
‖
(
f(a(f〈I2(1), I2(1)〉)) ‖ (a((a(〈I1(0), I2(1)〉π1))π1))π0 ‖ 〈I2(1), I2(1)〉π0 ‖ 〈I1(0), I1(0)〉π0

)
‖
(
f(a(f(a(f〈I3(1), I2(1)〉)))) ‖ (a((aI2(1))π1))π0 ‖ (a(f(a(f〈I3(1), I2(1)〉))))π0 ‖ (aI2(1))π0

))
7→∗p a

((
f(aI1(2)) ‖ (a((aI2(1))π1))π0 ‖ 〈I1(0), I1(0)〉π0

)
‖
(
f(aI2(2)) ‖ (a((aI2(1))π1))π0 ‖ 〈I2(1), I2(1)〉π0 ‖ 〈I1(0), I1(0)〉π0

)
‖
(
f(a(f(aI3(2)))) ‖ (a((aI2(1))π1))π0 ‖ (a(f(aI3(2))))π0 ‖ (aI2(1))π0

))
186

7→∗p a

((
f(aI1(2)) ‖ (a((aI2(1))π1))π0 ‖ 〈I1(0), I1(0)〉π0

)
‖
(
f(aI2(2)) ‖ (a((aI2(1))π1))π0 ‖ 〈I2(1), I2(1)〉π0 ‖ 〈I1(0), I1(0)〉π0

)
‖
(
f(a(f〈I3(2), I2(1)〉)) ‖ (a(〈I2(1), I2(1)〉π1))π0 ‖ (a(f〈I3(2), I2(1)〉))π0 ‖ 〈I2(1), I2(1)〉π0

))
7→∗p a

((
f(aI1(2)) ‖ (a((aI2(1))π1))π0 ‖ 〈I1(0), I1(0)〉π0

)
‖
(
f(aI2(2)) ‖ (a((aI2(1))π1))π0 ‖ 〈I2(1), I2(1)〉π0 ‖ 〈I1(0), I1(0)〉π0

)
‖
(
f(aI3(2)) ‖ (aI2(1))π0 ‖ (aI3(2))π0 ‖ 〈I2(1), I2(1)〉π0

))
7→∗p a

((
f〈I1(2), I3(2)〉 ‖ (a(〈I2(1), I3(2)〉π1))π0 ‖ 〈I1(0), I1(0)〉π0

)
‖
(
f(aI2(2)) ‖ (a((aI2(1))π1))π0 ‖ 〈I2(1), I2(1)〉π0 ‖ 〈I1(0), I1(0)〉π0

)
‖
(
f(aI3(2)) ‖ (aI2(1))π0 ‖ (aI3(2))π0 ‖ 〈I2(1), I2(1)〉π0

))
7→∗p a

((
f〈I1(2), I3(2)〉 ‖ (aI3(2))π0 ‖ 〈I1(0), I1(0)〉π0

)
‖
(
f(aI2(2)) ‖ (a((aI2(1))π1))π0 ‖ 〈I2(1), I2(1)〉π0 ‖ 〈I1(0), I1(0)〉π0

)
‖
(
f(aI3(2)) ‖ (aI2(1))π0 ‖ (aI3(2))π0 ‖ 〈I2(1), I2(1)〉π0

))
7→∗p a

((
f〈I1(2), I3(2)〉 ‖ (aI3(2))π0 ‖ 〈I1(0), I1(0)〉π0

)
‖
(
f〈I2(2), I3(2)〉 ‖ (a(〈I2(1), I3(2)〉π1))π0 ‖ 〈I2(1), I2(1)〉π0 ‖ 〈I1(0), I1(0)〉π0

)
‖
(
f(aI3(2)) ‖ (aI2(1))π0 ‖ (aI3(2))π0 ‖ 〈I2(1), I2(1)〉π0

))
7→∗p a

((
f〈I1(2), I3(2)〉 ‖ (aI3(2))π0 ‖ 〈I1(0), I1(0)〉π0

)
‖
(
f〈I2(2), I3(2)〉 ‖ (aI3(2))π0 ‖ 〈I2(1), I2(1)〉π0 ‖ 〈I1(0), I1(0)〉π0

)
‖
(
f(aI3(2)) ‖ (aI2(1))π0 ‖ (aI3(2))π0 ‖ 〈I2(1), I2(1)〉π0

))
7→∗p a

((
f〈I1(2), I3(2)〉 ‖ (aI3(2))π0 ‖ 〈I1(0), I1(0)〉π0

)
‖
(
f〈I2(2), I3(2)〉 ‖ (aI3(2))π0 ‖ 〈I2(1), I2(1)〉π0 ‖ 〈I1(0), I1(0)〉π0

)
‖
(
f〈I3(2), I3(2)〉 ‖ 〈I2(1), I3(2)〉π0 ‖ 〈I3(2), I3(2)〉π0 ‖ 〈I2(1), I2(1)〉π0

))
7→∗p a

((
I1(3) ‖ (aI3(2))π0 ‖ 〈I1(0), I1(0)〉π0

)
‖
(
I2(3) ‖ (aI3(2))π0 ‖ 〈I2(1), I2(1)〉π0 ‖ 〈I1(0), I1(0)〉π0

)
‖
(
I3(3) ‖ 〈I2(1), I3(2)〉π0 ‖ 〈I3(2), I3(2)〉π0 ‖ 〈I2(1), I2(1)〉π0

))
7→∗p I1(3) ‖ I2(3) ‖ I3(3)

187

Index

7→, 21–26, 67, 72, 73, 99, 112
7→L, 151–155, 157, 160, 173–179
7→c, 3, 4, 63–74, 78–81, 83–87, 91, 112
7→g, 3, 96–99, 102, 104–108, 111
7→p, 117, 120–123, 125, 126, 128–131, 135–

139, 143, 144, 153, 154, 185–187
λc-calculus, 23
λCl-calculus, 2–5, 25, 26, 60–66, 69, 71–

74, 76, 78, 84–86, 88, 91–94, 96–
98, 101, 108, 112, 113, 115–117,
124, 130, 144, 151, 153

λG-calculus, 2–5, 60, 91–93, 95–97, 99–
101, 107, 108, 111–113, 115–117,
124, 130, 144, 151, 153, 184

λµ-calculus, 24, 85, 86
λ‖L-calculus, 4, 5, 115, 147–152, 155, 156,

177–179, 183, 184
λ‖-calculus, 3–5, 112, 115–124, 127, 129,

130, 135–140, 144, 145, 147, 150,
184, 185

λexn-calculus, 25, 26, 61, 113
BCk logic, 10, 14, 56–58
BWk logic, 10, 14, 57, 58
Ax axiom class, 115–118, 127, 128
HI hypersequent calculus, 12–14, 30–34,

38–41, 44, 47, 49, 52, 55, 56
LI sequent calculus, 11, 12, 16–18, 30–34,

38, 39, 41, 44, 46, 51, 61, 92
NCl natural deduction, 25, 62, 88–91, 108
NG natural deduction, 53, 92, 93, 96, 100,

101, 107–111
NI natural deduction, 18, 19, 21, 29, 51,

53, 55, 56, 59, 61, 62, 88, 92, 93,

108, 147, 148
NI→∧⊥ natural deduction, 20, 21, 62, 63,

65, 78, 93, 119, 120, 147
ff, 85, 86, 107, 137, 138
tt, 85, 86, 107, 137, 138
⇒, 81, 82, 160–162
�L, 157
�c, 79, 80, 82–85
�g, 101–106
�p, 136, 137
k-valued Gödel logic (Gk), 10, 14, 56, 57,

118

Active component, 13, 33, 40, 41, 44, 45,
47, 49, 50

Analiticity, 11, 14, 16, 18, 29, 50, 51, 61,
92, 95, 100, 150, 178

Ancestor, 40–42, 44, 45

Bottom rule, 16, 32, 33, 35–37, 39, 42–46
Brouwer-Heyting-Kolmogorov interpreta-

tion (BHK), 8, 9, 18, 21

Call with current continuation (call/cc),
23, 25

Classical logic (CL), 9, 14, 57, 61, 62, 88
Cyclic logic Ck, 14, 56, 57, 118

Exception handling, 25, 26
Excluded middle law (EM), 9, 50–52, 55,

61–64, 78, 88, 90–92, 117, 118,
137

Frame semantics, 9, 10, 14, 51, 52
Free deduction, 24

189

Full Lambek calculus, 13, 50

Gödel–Dummett logic (GL), 9, 13, 14,
57, 92, 93, 95, 107, 108

Generalised geometric axioms, 15, 16, 50,
51

Hilbert axiom, 8, 13, 30, 50, 51, 148
Hilbert calculus, 62, 92
Hypersequent rule completion, 51

Intuitionistic logic (IL), 7–9, 119, 120

Linearity axiom (Lin), 10, 13, 14, 16, 28,
52, 53, 91–97, 108, 111, 118

Mixed system, 43, 45, 46
Modal logic K), 15

Negative logical connective, 14
Non-deterministic reduction , 130–135
Normal forms of λCl (NFc), 74–78, 83
Normal forms of λG (NFg), 99, 100, 104,

105
Normal forms of λ‖L (NFL), 155, 178–180

Partial derivation, 39, 41–46
Positive logical connective, 14
Positive-Negative hierarchy, 13, 14, 50,

52

Reducibility relation r, 131–134

Simple context, 65, 77, 84, 100, 149, 152
Simple parallel context, 65
Simple parallel term, 64, 65, 71, 77, 79,

83, 84
Stack, 70–72, 99, 149, 152, 162, 164–171,

174, 175, 180, 182
Strongly normalizing terms of λ‖ (SNp),

129, 135
Structured form, 40–42, 44, 47, 49
Subformula property, 11, 60, 61, 66, 71,

72, 74, 76, 78, 80, 93, 94, 100,
148, 150, 151, 153, 178, 179, 181,
182

Top rule, 16, 17, 31–39, 42–46
Translation ∨c, 88–91, 108
Translation ∨g, 108–111
Typed Idealized Scheme (ISt), 23

190

191

Bibliography

[ACG17] Federico Aschieri, Agata Ciabattoni, and Francesco A. Genco. Gödel logic:
from natural deduction to parallel computation. In LICS 2017, pages 1–12,
2017.

[ACG18] Federico Aschieri, Agata Ciabattoni, and Francesco A. Genco. Classical
proofs as parallel programs. In GandALF 2018, pages 43–57, 2018.

[ACG19a] Federico Aschieri, Agata Ciabattoni, and Francesco A. Genco. A concurrent
computational interpretation of intermediate logics. Submitted for publication,
2019.

[ACG19b] Federico Aschieri, Agata Ciabattoni, and Francesco A. Genco. A parallel
λ-calculus for graph-based communication. Submitted for publication, 2019.

[And92] Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic.
Journal of Logic and Computation, 2(3):297–347, 1992.

[Asc16] Federico Aschieri. On natural deduction for herbrand constructive logics i:
Curry–howard correspondence for dummett’s logic lc. Log. Methods Comput.
Sci., 12(13):1–31, 2016.

[Avr87] Arnon Avron. A constructive analysis of RM. The Journal of Symbolic Logic,
52(4):939–951, 1987.

[Avr91] Arnon Avron. Hypersequents, logical consequence and intermediate logics for
concurrency. Annals of Mathematics and Artificial Intelligence, 4(3):225–248,
1991.

[AZ16] Federico Aschieri and Margherita Zorzi. On natural deduction in classical
first-order logic: Curry–howard correspondence, strong normalization and
herbrand’s theorem. Theoretical Computer Science, 625:125–146, 2016.

[Bar84] Hendrik Pieter Barendregt. The Lambda Calculus, its Syntax and Semantics.
Amsterdam: North-Holland, 1984.

193

[BCF00] Matthias Baaz, Agata Ciabattoni, and Christian Fermüller. A natural deduc-
tion system for intuitionistic fuzzy logic. In Lectures on Soft Computing and
Fuzzy Logic, pages 1–18. Physica-Verlag, 2000.

[Bou89] Gérard Boudol. Towards a lambda-calculus for concurrent and communicating
systems. In TAPSOFT 1998, pages 149–161, 1989.

[BP15] Arnold Beckmann and Norbert Preining. Hyper natural deduction. In LICS
2015, pages 547–558. IEEE Computer Society, 2015.

[CG00] Luca Cardelli and Andrew D. Gordon. Mobile ambients. Theoretical Computer
Science, 240(1):177–213, 2000.

[CG16] Agata Ciabattoni and Francesco A. Genco. Embedding formalisms: hyperse-
quents and two-level systems of rules. In Advances in Modal Logic, volume 11,
pages 197–216. College Publications, 2016.

[CG18] Agata Ciabattoni and Francesco A. Genco. Hypersequents and systems of
rules: Embeddings and applications. ACM Transactions on Computational
Logic (TOCL), 19(2):11:1–11:27, 2018.

[CGT08] Agata Ciabattoni, Nikolaos Galatos, and Kazushige Terui. From axioms to
analytic rules in nonclassical logics. In LICS 2008, pages 229–240. IEEE
Computer Society, 2008.

[CMS18] Marco Carbone, Fabrizio Montesi, and Carsten Schürmann. Choreographies,
logically. Distributed Computing, 31(1):51–67, 2018.

[CP10a] Luís Caires and Frank Pfenning. Session types as intuitionistic linear propo-
sitions. In CONCUR 2010, pages 222–236, 2010.

[CP10b] Luís Caires and Frank Pfenning. Session types as intuitionistic linear propo-
sitions. In CONCUR 2010, pages 222–236, 2010.

[CZ97] Alexander Chagrov and Michael Zakharyaschev. Modal Logic, volume 35 of
Oxford Logic Guides. Oxford University Press, 1997.

[dG95] Philippe de Groote. A simple calculus of exception handling. In TLCA 1995,
pages 201–215, 1995.

[DK00] Vincent Danos and Jean-Louis Krivine. Disjunctive tautologies as synchroni-
sation schemes. CSL 2000, 1862:292–301, 2000.

[Dum59] Michael Dummett. A propositional calculus with denumerable matrix. The
Journal of Symbolic Logic, 24(2):97–106, 1959.

[EBPJ11] Jeff Epstein, Andrew P. Black, and Simon L. Peyton Jones. Towards haskell
in the cloud. In ACM Haskell Symposium 2011, pages 118–129, 2011.

194

[FFKD86] Matthias Felleisen, Daniel P Friedman, Eugene E Kohlbecker, and Bruce F
Duba. Reasoning with continuations. In LICS 1986, pages 131–141, 1986.

[FPV98] Alfonso Fuggetta, Gian Pietro Picco, and Giovanni Vigna. Understanding
code mobility. In IEEE Transactions on Software Engineering, volume 24,
pages 342–361, 1998.

[Gen35] Gerhard Gentzen. Untersuchungen über das logische schließen. i. Mathema-
tische Zeitschrift, 39(1):176–210, 1935.

[GLT89] Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types. Cambridge
University Press, 1989.

[Göd32] Kurt Gödel. Zum intuitionistischen Aussagenkalkül. Anzeiger der Akademie
der Wissenschaftischen in Wien, 69:65–66, 1932.

[Gri90] Timothy G. Griffin. A formulae-as-type notion of control. In POPL 1990,
1990.

[Hey30] Arend Heyting. Die formale regeln der intuitionistischen logik. Sitzungs-
berichte der Preussischen Akademie von Wissenschaften, Physikalisch Methe-
matische Klasse, pages 158–169, 1930.

[Hir12] Yoichi Hirai. A lambda calculus for gödel–dummett logic capturing waitfree-
dom. In FLOPS 2012, pages 151–165, 2012.

[HL13] Thomas Horstmeyer and Rita Loogen. Graph-based communication in eden.
Higher-order and symbolic computation, 26(1):3–28, 2013.

[How80] William A. Howard. The formulae-as-types notion of construction. In To H.
B. Curry: Essays on Combinatory Logic, Lambda Calculus, and Formalism,
pages 479–491. Academic Press, 1980.

[HT91] Kohei Honda and Mario Tokoro. An object calculus for asynchronous com-
munication. In ECOOP 1991, pages 133–147, 1991.

[KMP19] Wen Kokke, Fabrizio Montesi, and Marco Peressotti. Better late than never:
a fully-abstract semantics for classical processes. In POPL 2019, pages
24:1–24:29, 2019.

[Kri90] Jean-Louis Krivine. Lambda-calcul types et modèles. In Studies in Logic and
Foundations of Mathematics, pages 1–176. Masson, 1990.

[Kri09] Jean-Louis Krivine. Classical realizability. Interactive models of computation
and program behavior, Panoramas et synthèses, pages 197–229, 2009.

[Lan64] Peter J. Landin. The mechanical evaluation of expressions. The Computer
Journal, 6(4):308–320, 1964.

195

[LE82a] Edgar G.K. López-Escobar. Implicational logics in natural deduction systems.
The Journal of Symbolic Logic, 47:184–186, 1982.

[LE82b] Edgar G.K. López-Escobar. Implicational logics in natural deduction systems.
The Journal of Symbolic Logic, 47(1):184–186, 1982.

[Loo11] Rita Loogen. Eden – parallel functional programming with haskell. In CEFP
2011, pages 142–206, 2011.

[LOP05] Rita Loogen, Yolanda Ortega-Mallén, and Ricardo Peña-Marí. Parallel func-
tional programming in eden. Journal of Functional Programming, 15(3):431–
475, 2005.

[MCHP04] Tom Murphy VII, Karl Crary, Robert Harper, and Frank Pfenning. A
symmetric modal lambda calculus for distributed computing. In LICS 2004,
pages 286–295, 2004.

[Mil84] Robin Milner. Lectures on a calculus for communicating systems. In Seminar
on Concurrency, pages 197–219. Springer, 1984.

[Mil92] Robin Milner. Functions as processes. Mathematical Structures in Computer
Science, 2(2):119–141, 1992.

[Neg05] Sara Negri. Proof analysis in modal logic. Journal of Philosophical Logic,
34:507–544, 2005.

[Neg16] Sara Negri. Proof analysis beyond geometric theories: from rule systems to
systems of rules. Journal of Logic and Computation, 27:513–537, 2016.

[Par92] Michel Parigot. Lambda-mu-calculus: An algorithmic interpretation of
classical natural deduction. In LPAR 1992, pages 190–201, 1992.

[Pav18] Sanja Pavlović. Proof theory for modal logics: Embedding between hyperse-
quent calculi and systems of rules. Master’s thesis, TU Wien, 2018.

[Pra71] Dag Prawitz. Ideas and results in proof theory. In Proceedings of the Second
Scandinavian Logic Symposium, 1971.

[San93] Davide Sangiorgi. Expressing mobility in process algebras: first-order and
higher-order paradigms. PhD thesis, The University of Edinburgh, 1993.

[SH14] Peter Schroeder-Heister. The calculus of higher-level rules, propositional
quantification, and the foundational approach to proof-theoretic harmony.
Studia Logica, 102(6):1185–1216, 2014.

[SU98] Morten Heine Sørensen and Pawel Urzyczyn. Lectures on the Curry-Howard
Isomorphism. Elsevier, 1998.

196

[SW03] Davide Sangiorgi and David Walker. The pi-calculus: a Theory of Mobile
Processes. Cambridge University Press, 2003.

[TCP13] Bernardo Toninho, Luís Caires, and Frank Pfenning. Higher-order processes,
functions, and sessions: A monadic integration. In ESOP 2013, pages 350–369,
2013.

[TS96] Anne Sjerp Troelstra and Helmut Schwichtenberg. Basic Proof Theory.
Cambridge University Press, 1996.

[Wad03] Philip Wadler. Call-by-value is dual to call-by-name. SIGPLAN Notices,
38(9):189–201, 2003.

[Wad12] Philip Wadler. Propositions as sessions. ICFP 2012, 24:384–418, 2012.

[Wad15] Philip Wadler. Propositions as types. Communications of the ACM, 58(12):75–
84, 2015.

197

	Kurzfassung
	Abstract
	Contents
	Introduction
	Outline of the dissertation
	Publications

	Logics, calculi and computations
	Intuitionistic and intermediate logics
	Sequents and hypersequents
	Systems of rules
	Natural deduction and the Curry–Howard correspondence

	From hypersequent calculi to natural deduction
	From 2-systems to hypersequent rules and back
	Embedding the two formalisms
	Applications of the embeddings

	Classical logic and Gödel–Dummett logic
	One-way communication: lambda Cl
	Adding the symmetry: lambda G
	Comparison between lambda CL, lambda G and related calculi

	A typed parallel lambda calculus based on disjunctive tautologies
	The type system of lambda parallel
	Communications in lambda parallel
	Properties of the communication in lambda parallel
	From communication topologies to programs
	The strong normalization theorem
	Computing with lambda parallel
	Related work

	A computational interpretation of intermediate logics
	The type system of lambda parallel i and its reduction rules
	The normalization theorem
	The subformula property

	Conclusion and future work
	Index
	Bibliography

