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Abstract. Modular cut-elimination is a particular notion of ”cut-elimination in
the presence of non-logical axioms” that is preserved underthe addition of suit-
able rules. We introduce syntactic necessary and sufficientconditions for mod-
ular cut-elimination for standard calculi, a wide class of (possibly) multiple-
conclusion sequent calculi with generalized quantifiers. We provide a ”universal”
modular cut-elimination procedure that works uniformly for any standard calcu-
lus satisfying our conditions. The failure of these conditions generates counterex-
amples for modular cut-elimination and, in certain cases, for cut-elimination.

1 Introduction

Cut-elimination is one of the most important techniques in proof theory. The removal of
cuts corresponds to the elimination of intermediate statements (lemmas) from proofs,
resulting in calculi in which proofs areanalytic in the sense that all statements in the
proofs are subformulae of the result.

A great many different cut-elimination proofs for various sequent calculi have been
published since Gentzen’s proofs forLK andLJ (sequent calculi for classical and in-
tuitionistic first-order logic, respectively), most usingheavy syntactic arguments and
based on case distinctions, usually written without fillingin the details1. However since
it is often the case that “the devil is in the details” (this also explains why so many
wrong cut-elimination proofs appear in the literature, e.g. [5]), it is natural to inves-
tigate general criteria that a sequent calculus should satisfy in order to admit cut-
elimination. Such criteria should support amodular viewof cut-elimination in sequent
calculi (i.e. decomposability of the whole calculus into local components when proving
cut-elimination), and also provide useful information in the negative case, where a par-
ticular cut-elimination method cannot be applied or a cut-elimination proof cannot be
found at all.

Necessary and sufficient conditions for cut-elimination were defined in [14] for
canonical calculi, which are sequent calculi containing identity axioms, theusual struc-
tural rules (weakening, exchange and contraction) and possibly ”standard” rules for
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1 Notable exceptions are the cut-elimination proofs for classical and intuitionistic logic of [7].



connectives and quantifiers. Canonical calculi extended with (k, n)-ary connectives
which bindk variables and connectn formulas were investigated in [15] where suf-
ficient conditions for cut-elimination have been introduced in the casek = 0, 1. In the
context of substructural logics, syntactic and semantic criteria for (additive) structural
rules to preserve cut-elimination when added to full Lambekcalculus were introduced
in [12]. Terui’s work was generalized in [3] to provide necessary and sufficient condi-
tions for a large class of propositional single-conclusionsequent calculi to admit reduc-
tive cut-elimination, a naturally strengthened version offree-cut elimination (see [1])
which additionally aims to shift non-eliminable cuts upwards as much as possible. The
proposed criteria have two equivalent forms: syntactic (reductivityandweak substitu-
tivity) and semantic (coherence and propagation). The former arises by weakening the
sufficient conditions in [2] while the latter generalize theresults in [12].

In this paper we focus on the syntactic aspects of cut-elimination. We refine and
extend the (syntactic) results of [3] tostandard calculi, i.e. commutative (not necessar-
ily single-conclusion) sequent calculi possibly containing (fancy) structural rules and
rules for(k, n)-ary connectives, for allk andn. Examples of standard calculi are Mae-
hara’s calculusLJ ’ for intuitionistic predicate logic, the calculusGD for the logic of
constant domains [5], the multiplicative additive fragment of linear logic extended with
any structural rule, or the calculi in [14, 15]. We investigatemodular cut-eliminationin
standard calculi, a particular notion of ”cut-eliminationin the presence of non-logical
axioms,” that is preserved under the addition of suitable rules.Weak substitutivityand
reductivity, the syntactic conditions of [3], are adapted to standard sequent calculi (Sec-
tion 4), and shown to be necessary and sufficient for modular cut-elimination (the for-
mer holds when logical rules satisfy some additional properties, see Section 5). The ne-
cessity result is used forcounterexamples generation: given a standard sequent calculus
for which our criteria fail, counterexamples for modular cut-elimination are automati-
cally generated and, in certain cases, lead to counterexamples for cut-elimination. The
sufficient result is shown by providing a constructive proofof modular cut-elimination,
from which a concrete cut-elimination procedure can be readoff (Section 6). Remark-
ably enough this procedure is ”universal”, in the sense thatwhen a standard sequent
calculus admits modular cut-elimination our procedure always transforms derivations
with cuts into cut-free derivations (Corollary 3).

Our results also support a modular view of cut-elimination.Indeed when adding a
new connective and/or a new structural rule to a standard calculus for which modular
cut-elimination has been already established, it is enoughto show that the newly added
rules are reductive and weakly substitutive. Moreover the task of proving modular cut-
elimination for a standard calculus can be decomposed into the sub-tasks of proving cut-
elimination for appropriate sub-calculi. In particular, in analogy withToyama’s Lemma2

in term rewriting theory, modular cut-elimination is preserved by taking the disjoint
union of two (sets of rules of) standard sequent calculi (Corollary 2).

2 It states that the disjoint union of two confluent term rewriting systems is also confluent.



2 Standard Calculi

We start by formalizing the notion of a standard sequent calculus. In the following we
consider formulas built over avocabularyV consisting of (countably many): (term)
variablesx, y, z, . . ., for eachn ≥ 0, n-ary function and predicate symbols, as well
as (m, n)-ary connectives⋆1, ⋆2, . . . for eachm, n ≥ 0. As usual,termst, u, v, . . .
(in the vocabularyV) are built up from variables using function symbols while atomic
formulae are built up from terms using predicate symbols. Aformula(in the vocabulary
V) is either an atomic formula or a compound formula of the form⋆ix(A) with ⋆i an
(m, n)-ary connective, which bindsx ≡ x1, . . . , xm distinct variables, and connect
formulasA ≡ A1, . . . , An. Given a formula, its free and bound variables are defined in
the standard way. As usual, we identify formulas only differing in the names of bound
variables (i.e. formulas are considered up toα-equivalence).

Example 1.

1. The standard quantifiers∀ and∃ can be seen as(1, 1)-ary connectives, while propo-
sitional connectives as(0, n)-ary connectives, for somen ≥ 1.

2. The Henkin quantifierQH (see e.g. [15]) can be seen as a(4, 1)-ary connective.
3. Bounded quantified formulae∀x ≤ t.A, ∃x ≤ t.A can be built with(1, 2)-ary

connectives∀bx(X, Y ), ∃bx(X, Y ) with the proviso that the meta-variableX is
always instantiated by an inequation of the formx ≤ t.

We indicate withΓ, ∆, Π, Σ, . . . multisets of formulae. Whenλ ≥ 0, Γ λ denotes
Γ, . . . , Γ (λ times). A sequentΓ ⇒ ∆ (Γ said to beantecedentand∆ consequent)
is atomic if all formulae in Γ and∆ are atomic.Γ ⇒ ∆ is single-conclusionif ∆
contains at most one formula, otherwise it ismultiple-conclusion.

To specify inference rules we usemeta-variablesX, Y, Z, X [t/x], . . . (t ≡ t1, . . . , tm
andx ≡ x1, . . . , xm) standing for arbitrary formulae andΘ, Ξ, Φ, Ψ, Υ, . . . for (possi-
bly empty) multisets of meta-variables.

Definition 1. A standardsequent calculusL consists of:

– the identity axiomof the formX ⇒ X
– the multiplicative version of thecut rule, i.e.

Θ⇒ Ξ, X X, Θ′ ⇒ Ξ ′

Θ, Θ′ ⇒ Ξ ′, Ξ
(CUT )

– structural inference rulesof the form (n > 0):

Θ1 ⇒ Ξ1 · · · Θn ⇒ Ξn

Θ ⇒ Ξ
(Ri)

satisfying the conditions
(str0) Θ andΞ are disjoint.
(str1) any meta-variable occurring inΘ1, . . . , Θn occurs inΘ and any meta-

variable occurring inΞ1, . . . , Ξn occurs inΞ.



(Note that sinceΘ, Ξ, . . . are multisets, we implicitly assume that permutation
rule(s) always belong toL)

– left logical rules{(⋆, l, y)i}i∈Λ and right logical rules{(⋆, r, z)j}j∈Λ′ (Λ andΛ′

could be empty) for each(k, l)-ary connective⋆, with k, l, m, n ≥ 0:

Υ1 ⇒ Ψ1 · · · Υn ⇒ Ψn

⋆x(X), Θ ⇒ Ξ
(⋆, l, y)i

Υ ′
1
⇒ Ψ ′

1
· · · Υ ′

m ⇒ Ψ ′
m

Θ ⇒ Ξ, ⋆x(X)
(⋆, r, z)j

wherex ≡ x1, . . . xk, X ≡ X1, . . . , Xl and for eachi = 1, . . . l, Xi[
t/x] (t ≡

t1, . . . , tk, where eachti is a term) may appear inΥj ⇒ Ψj , Υ
′
j′ ⇒ Ψj′ with

j = 1, . . . , n andj′ = 1, . . . , m. y andz are theeigenvariablesof the rules.
(⋆, l, y)i must satisfy the following conditions
(log0) Θ, Ξ and{X} are mutually disjoint.
(log1) Any meta-variable occurring inΥ1, . . . , Υn occurs inΘ or it is of the form

Xi[
t/x] whereXi ∈ X . Any meta-variable occurring inΨ1, . . . , Ψn occurs in

Ξ or it is of the formXi[
t/x] whereXi ∈ X.

The corresponding conditions hold for(⋆, r, z)j .

Remark 1.Conditions(str1) and(log1) ensure that rules satisfy the subformula prop-
erty and do not allow meta-variables inΘ andΞ to move from antecedent to consequent
of sequents and vice versa.

We identify rules up to the renaming of meta-variables and logical rules up to the re-
naming of (term) variables.

Definition 2. Instances(resp.atomic instances) of identity axiom,(CUT ), and struc-
tural rules are obtained by substituting arbitrary formulae (resp. atomic formulae)
for meta-variables. Aninstance(resp.atomic instance) of a logical rule (⋆, l, y)i or
(⋆, r, y)j is obtained

1. by replacing each meta-variableY with a formula (resp. atomic formula)that does
not containy as free variables.

2. when a meta-variableXi (∈ X) in its conclusion is replaced by a formula (resp.
atomic formula)A (that does not containy as free variables), then each meta-
variableXi[

t/x] in its premises is replaced with the formula (resp. atomic formula)
A in which all free occurrences of the variablexj (if any) are replaced by the term
tj , for j = 1, . . . , k.

A derivationin L is obtained by composing instances of axioms and rules ofL.

Condition 1. above ensures that the eigenvariable condition is satisfied.

Definition 3. In logical and structural rules (or their instances) the meta-variables
(formulae) inΘ are calledleft context meta-variables(left context formulae), those inΞ
right context meta-variables(right context formulae), and (in the former rules) the meta-
variables (formulae) of the formXi, Xi[

t/x] active meta-variables(active formulae).
In a logical rule (or its instance) the introduced⋆x(X) (or the formula of the

form ⋆x(A1, . . . , Al)) is calledprincipal formula. Moreover, the two occurrences of
the formula instantiating the meta-variableX in (CUT) are called left and rightcut
formulae(and the corresponding premises of (CUT) are called left andright premises).



Example 2.

1. Simple sequent calculi with permutation (see [3]) are particular standard calculi in
which each sequent is single-conclusion and whose connectives are of type(0, n).

2. The ordinary rules for quantifiers fit into our framework. For instance, the left and
right rules for∀ are represented by the following rules:

X [t/x], Θ ⇒ Ξ

∀x(X), Θ ⇒ Ξ
(∀, l, ∅)

Θ⇒ Ξ, X [y/x]

Θ ⇒ Ξ, ∀x(X)
(∀, r, y)

wheret is an arbitrary term andΘ, Ξ are arbitrary multisets of meta-variables.
3. Canonical calculi with(n, k)-ary connectives (see [15]) are particular standard cal-

culi that contain all the structural rules (weakening, contraction and exchange).

3 Modular Cut-Elimination

Generalizations of cut-elimination with extra (non-logical) axioms have been consid-
ered e.g. in [13, 1, 11]. They play an important role in the proof theory of formalized
mathematical theories such as fragments of arithmetic. Given a deduction inLK of a
sequentS0 from a setS of non-logical axioms closed under substitutions,free-cut elimi-
nationdescribed in [1] aims at finding a deduction ofS0 containing onlyanchored-cuts,
i.e. cuts whose premises (at least one, for cuts with compound cut-formulas) derive
from sequents inS. If S consists only of atomic sequents closed under mix (and sub-
stitutions) then Gentzen’s cut-elimination method generates a cut-freeLK -derivation
of S0, see e.g. [13]. To characterize the ”stepwise process of local transformations to
eliminate cuts” in a large class of propositional single-conclusion sequent calculi we
introduced in [3] reductive cut-elimination, a naturally strengthened version of free-cut
elimination which in addition aims to shift upward anchored-cuts in these calculias
much as possible.

Here below we rework the above notions of cut-elimination inthe presence of ax-
ioms to define a ”modular” cut-elimination for standard calculi, namely if such calculi
enjoy it, they also do when extended by any rule satisfying suitable conditions (weak
substitutivity and reductivity, see Section 4).

Definition 4. A setS of sequents (non-logical axioms) is calledelementaryif

1. all formulae inS are atomic.
2. S is closed under substitutions: wheneverS(x) ∈ S andt is any term, the sequent

S(t), obtained by substituting inS the termt for all free occurrences ofx, is inS.
3. S is closed under cuts: wheneverΓ1 ⇒ ∆1, A andA, Γ2 ⇒ ∆2 belong toS, so

doesΓ1, Γ2 ⇒ ∆1, ∆2.
4. it is not the case that sequents of the formsΓ ⇒ ∆, An andAm, Σ ⇒ Π with

n, m ≥ 2, both belong toS.

Definition 5. A standard sequent calculusL admitsmodular cut-eliminationif when-
ever a sequentS0 is derivable inL from an elementary setS of sequents inL one can
find a cut-free derivation inL of S0 fromS.



Remark 2.Modular cut-elimination implies the ordinary cut-elimination (setS = ∅).

Notice that if we remove condition 4 from Def. 4, the resulting notion of cut-elimination
is not admitted e.g. byLK : indeedS ≡ {A, A⇒ ; ⇒ A, A ; A⇒ A} with A atomic
satisfies the conditions 1-3 of Def. 4. It is easy to check thatthe empty sequent⇒ is
derivable fromS in LK only using (CUT).

4 Syntactic Criteria

In this section we introduce the notions of reductive logical rules and weakly substi-
tutive rules for standard calculi. Intuitively, a logical rule is reductive if it allows the
replacement of cuts by ”smaller” cuts, and a rule is weakly substitutive when any cut
can be permuted upward. Reductivity and weak substitutivity are obtained by suitably
modifying the homonymous conditions of [3] defined for simple calculi (see Ex. 2.1).

Let S be a sequent,A a formula,T1 ≡ A, Σ ⇒ Π andT2 ≡ Σ ⇒ Π, A. We define

[S ←֓r
A T1] = {Γ, Σµ ⇒ ∆, Πµ, Aλ−µ | S ≡ Γ ⇒ ∆, Aλ with λ ≥ 0 andµ ≤ λ}

[S ←֓ l
A T2] = {Γ, Σµ, Aλ−µ ⇒ ∆, Πµ | S ≡ Aλ, Γ ⇒ ∆ with λ ≥ 0 andµ ≤ λ}

Namely, eachU ∈ [S ←֓r
A T1] is obtained by applying (CUT) possibly several times

betweenS and (several copies of)T1 with cut formulaA. [S ←֓ l
A T2] is dually defined.

In caseT does not contain any occurrence ofA in the antecedent (resp. consequent),
we define[S ←֓r

A T ] = {S} (resp.[S ←֓ l
A T ] = {S}).

Definition 6. Let L be a standard sequent calculus. A rule(R) is said to beweakly
substitutivein L if for each instance of(R) with premisesS1, . . . , Sn and conclusion
S0 the following condition holds:

(*) for any c ∈ {r, l}, context formulaA and any sequentT of L (which does not
contain any eigenvariable of(R)), everyU ∈ [S0 ←֓ c

A T ] has a derivation from⋃n
i=1

[Si ←֓ c
A T ] only using structural rules and, when(R) is a left (resp. right)

logical rule with principal formulaB, left (resp. right) logical rules with principal
formulaB.

Remark 3.The above condition was defined (in fact, using ruleschemasinstead of rule
instances) in [3] only for structural rules. Indeed, the logical rulesconsidered there
satisfy a condition stronger than (*), namely: for anyc ∈ {r, l}, context formulaA
(right or left context formula, depending onc) and single-conclusion sequentT , every
U ∈ [S0 ←֓

c
A T ] is derivable from

⋃n
i=1

[Si ←֓
c
A T ] with an application of(R).

Example 3. The rules ofLJ (resp.LK ) are weakly substitutive inLJ (resp.LK ). Con-
sider now:

1. Maehara’s calculusLJ ’ for intuitionistic logic, that is an equivalent version of
Gentzen’sLJ where the intuitionistic restriction (i.e. consequent of sequents con-
tain at most one formula) applies not generally but only in the case of the right rules
for→,¬ and∀, see e.g. [11].



2. The calculusGD for the logic of constant domains3. GD was defined in [5] by
modifying LK as follows: (1) the sequents ofGD have at most two formulas in
their consequents and (2) the rules(→, r, ∅) and (¬, r, ∅) obey the intuitionistic
restriction.

It is easy to see that e.g. the rule(→, r, ∅) is weakly substitutive neither inLJ ’ nor in
GD. Indeed, take any instance of(→, r, ∅), say

S1

S0

≡
Γ, C, A⇒ B

Γ, C ⇒ A→ B
(→, r, ∅)

andT ≡ Σ ⇒ Π, C, whereΠ contains at least one formula. ThenΓ, Σ ⇒ A →
B, Π ∈ [S0 ←֓ l

C T ] is in general not cut-free derivable from[S1 ←֓ l
C T ] in LJ ’ or GD.

Although Definition 6 refers toall instances of any rule, in practice to check that a
particular rule is weakly substitutive it is enough to considercertain atomicinstances.

Definition 7. Let (R0) be any instance of a structural rule. Theassociated atomic in-
stance〈R0〉 is defined by replacing each context formula occurrenceA with a new
atomic formula〈A, c〉 with no free variables (c is eitherl or r according to whether the
formula occurrence appears in the antecedent or consequentof sequents in(R0)).

When(R0) is an instance of a logical rule with the principal formula⋆x(A) with
x ≡ x1, . . . , xk andA ≡ A1, . . . , Al, theassociated atomicinstance〈R0〉 is defined
by replacing

– each context formulaA with 〈A, c〉 as above,
– its principal formula⋆x(A) with ⋆x(〈A1, 1〉(x), . . . 〈Al, l〉(x)), where for each

i = 1, . . . , l 〈Ai, i〉 is a newk-ary predicate symbol
– eachAi[

t/x] with 〈Ai, i〉(t).

Note that〈R0〉 strictly distinguishes active, left and right context formulae.

Lemma 1. (1) If (R0) is an instance of a rule(R), so is〈R0〉. (2) If condition (*) of
Def. 6 holds for〈R0〉 then the same condition holds for(R0).

Proof. (1) Follows by conditions(str0), (str1), (log0)and(log1). (2) Easy.

To introduce reductivity we need some additional notation and terminology. Given a
setS of sequents (resp. a setA of formulae), we denote bySs (resp.As) the least set
containingS (resp.A) and closed under substitutions. We call any instance of(CUT )
with cut-formula inA anA-cut.

Definition 8. LetL be a standard sequent calculus. We call its logical rules{(⋆, r, y)j}j∈Λ

and{(⋆, l, z)k}k∈Λ′ for introducing a(k, l)-ary connective⋆ reductivein L if

1. eitherΛ or Λ′ is empty or

3 A Hilbert calculus for this logic is obtained by adding to that of intuitionistic logic the shifting
law of universal quantifiers w.r.t.∨, i.e. ∀x(A(x) ∨ B) → ∀xA(x) ∨ B, wherex does not
appear free inB.



2. for any pair of instances of left and right logical rules with principal formula
⋆x(A):

S1 . . . Sn

Γ ⇒ ∆, ⋆x(A)

T1 · · · Tm

⋆x(A), Σ ⇒ Π

(⋆) Γ, Σ ⇒ ∆, Π is derivable from{S1, . . . , Sn, T1, . . . , Tm}s only using{A}s-
cuts and structural rules ofL.

Remark 4.The above definition generalizes the reductivity conditionof [3] and the
principal formula condition of [8], both defined for propositional calculi (single-conclusion,
in case of the former). Reductivity is also related to the coherence criterion of [6] or
[14].

Lemma 2. If condition (⋆) of Def. 8 holds for〈R0〉 then it holds for(R0).

Example 4.Consider the(1, 1)-ary logical connectives♭, ♮ defined by the following
rules:

X [t/x], Θ ⇒ Ξ

♭x(X), Θ ⇒ Ξ
(♭, l, ∅)

Θ⇒ Ξ, X [t/x]

Θ ⇒ Ξ, ♭x(X)
(♭, r, ∅)

X [y/x], Θ⇒ Ξ

♮x(X), Θ ⇒ Ξ
(♮, l, y)

Θ⇒ Ξ, X [y/x]

Θ ⇒ Ξ, ♮x(X)
(♮, r, y)

The rules for♮ are reductive inLK while those for♭ are not.

Example 5.Let L1 be the standard calculus that consists of the following rules intro-
ducing the(0, 2)-ary connective⊓ (together with permutation rules and identity axioms)

Θ⇒ X, Ξ Θ ⇒ Y, Ξ

Θ⇒ X ⊓ Y, Ξ
(⊓, r, ∅)

Θ, X, Y ⇒ Ξ

Θ, X ⊓ Y ⇒ Ξ
(⊓, l, ∅)

(⊓, r, ∅) and(⊓, l, ∅) are not reductive inL1.

5 Necessary Conditions

We show that reductivity and weak substitutivity are necessary conditions for modular
cut-elimination in standard sequent calculi whose logicalrules satisfy certain additional
conditions. Specifically, for each logical rule(⋆, l, y)i and(⋆, r, z)j we define the fol-
lowing conditions:

Υ1 ⇒ Ψ1 · · · Υn ⇒ Ψn

⋆x(X), Θ ⇒ Ξ
(⋆, l, y)i

Υ1 ⇒ Ψ1 · · · Υn ⇒ Ψn

Θ⇒ Ξ, ⋆x(X)
(⋆, r, z)j

(log2) if any active meta-variableX [t/x] occurs inΥ1, . . . , Υn, then noX [t
′

/
x

′ ] (for
anyt′, x′) occurs inΨ1, . . . , Ψn, andvice versa.

(log3) each active meta-variableXi (1 ≤ i ≤ l) occurs at most once in each premise
Υj ⇒ Ψj (1 ≤ j ≤ n).



Theorem 1. LetL be a standard sequent calculus. IfL admits modular cut-elimination,
(i) its structural rules are weakly substitutive and (if in addition each logical rule ofL
satisfies(log2)and(log3)) (ii) its logical rules are weakly substitutive.

Proof. We prove (ii) since (i) is similar. Let(R0) be any instance of a logical rule with
principal formulaB. By Lemma 1 it is enough to prove condition (*) of Definition 6 for
the associated atomic instance〈R0〉 with premisesS1, . . . Sn and conclusionS0. Let
c ∈ {l, r}, T be an atomic sequent without free variables andA any atomic formula.
W.l.o.g. we may assume thatT does not share any atomic formula other thanA with S0.
LetS be the least set that contains{S1, . . . , Sn, T } and is closed under substitutions and
cuts. By conditions(log2)and(log3)and the definition of〈R0〉 andT , S is elementary
and is equivalent to

⋃
i=1,...,n[Si ←֓ c

A T ].
Then, anyU ∈ [S0 ←֓ c

A T ] is derivable fromS using〈R0〉 and(CUT ). Hence
by modular cut-elimination,U has a cut-free derivationd from

⋃
i=1,...,n[Si ←֓ c

A T ].
SinceB is the only compound formula inU , d uses only structural rules and logical
rules introducingB.

Theorem 2. LetL be any standard sequent calculus whose logical rules satisfy (log2)
and(log3). If L admits modular cut-elimination, then its logical rules arereductive.

Proof. Let (⋆, r, y)k and(⋆, l, z)j be a pair of instances of right and left logical rules
for ⋆ in L and〈⋆, r, y〉k and〈⋆, l, z〉j be the associated atomic instances (see Def. 7):

S1 . . . Sn

Γ ⇒ ∆, ⋆[x](A)
〈⋆, r, y〉k

T1 · · · Tm

⋆[x](A), Σ ⇒ Π
〈⋆, l, z〉j

Without loss of generality, we may assume that(†) the context formulae of〈⋆, r, y〉k are
distinct from those of〈⋆, l, z〉j . Thus the active formulae (in{A}s) are the only formu-
lae that can occur in the antecedent of a premise and in the consequent of another. Let
S be the least set that contains{S1, . . . , Sn, T1, . . . , Tm} and is closed under substitu-
tions and cuts.S is elementary due to conditions(log2)and(log3)and the definition of
〈⋆, r, y〉k and〈⋆, l, z〉j . By modular cut-eliminationΓ, Σ ⇒ ∆, Π is cut-free derivable
from S. Hence it is derivable from{S1, . . . , Sn, T1, . . . , Tm}s only using{A}s-cuts
and structural rules ofL. The claim follows by Lemma 2.

6 Sufficient Conditions

Weak substitutivity and reductivity are sufficient conditions for a standard sequent cal-
culus to admitmodular cut-elimination(and hence cut-elimination). Here below we
give a constructive proof of this result.

In the sequel,L denotes a standard calculus whose rules are weakly substitutive and
whose logical rules are reductive whileS0 any elementary set of non-logical axioms.

Definition 9. Thelength|d| of a derivationd is the maximal number of inference rules
+ 1 occurring on any branch ofd. Thecomplexity |A| of a formulaA is defined as
the number of occurrences of its(n, k)-ary connectives. Thecut rankρ(d) of d is (the
maximal complexity of the cut-formulae ind) + 1 (ρ(d) = 0 if d has no cuts). Given
a compound formulaB andc ∈ {l, r}, ♯c

B(d) is the maximal number ofc-side (left or
right) logical rules with principal formulaB on any branch ofd.



To prove modular cut-elimination forL, we proceed by removing cuts which are top-
most among all cuts with cut rank equal to the rank of the wholededuction. Let, e.g.

S0
·
·
·
d1

Γ ⇒ ∆, A

S0
·
·
·
d2

A, Σ ⇒ Π
(CUT)

Γ, Σ ⇒ ∆, Π

be a subderivation ending in such a cut. Roughly speaking ourstrategy is as follows:
If the cut-formulaA is a compound formula, using the fact that rules are weakly sub-
stitutive, we shift up this cut overd2 as much as possibleuntil we meet (a) an identity
axiom or (b) a logical rule introducing the cut formulaA (Lemma 5). In the first case
the cut is easily eliminated while in case (b) is replaced by cuts with smaller complexity.
The latter can be done being logical rules reductive (Lemma 4and Lemma 5). IfA is
atomic, the cut is shifted upward overd2 or d1 (according to whether the elementary
setS0 contains a sequent of the formΦ⇒ Ψ, A, A or Φ, A, A⇒ Ψ , respectively) until
we meet (a) an identity axiom or (b) a non-logical axiom inS0 (Lemma 6.(ii)). In both
cases the cut can be easily eliminated (for case (b) see Lemma6.(i)).

Henceforth we writed,S ⊢L S if d is a derivation inL of S from a setS of
sequents.

Lemma 3 (Substitution).LetS be any set of sequents closed under substitutions and
d,S ⊢L S(x). Then for any termt there is a derivationd′ with |d′| = |d| andρ(d′) =
ρ(d) such thatd′,S ⊢L S(t). Moreover, for any compound formulaA which contains
neitherx nor an eigenvariable of a rule ind and for anyc ∈ {l, r}, ♯c

A(d′) = ♯c
A(d).

Proof. By induction on|d|. The crucial case is when the last inference(R) in d is a
logical rule with eigenvariablesy and with premisesS1(x, y), . . . , Sn(x, y). The term
t might contain eigenvariablesy. So, take fresh variablesz. Then eachSi(t, z) (i =
1, . . . , n) has derivations with the required properties. We can now apply (R) and obtain
S(t). SinceA contains neitherx nory, ♯c

A(d) remains unchanged.

The following lemma shows how toreducea cut on a compound formulaB (i.e. replace
it by cuts with cut-formula smaller thanB) in case one of its premises is the conclusion
of a logical rule introducingB on the left hand side and with atomic context formulae.
This lemma is needed when proving the general case: reducingany cut on a compound
formula (Lemma 5).

Lemma 4. Let
T1 . . . Tm

T ≡ B, Σ ⇒ Π

be an instance of a left logical rule with principal formulaB and in which all context
formulae are atomic. Ifd1,S0 ∪ {T1, . . . , Tm}s ⊢L S with ρ(d1) < |B| then each
U ∈ [S ←֓r

B T ] has a derivationd,S0 ∪ {T1, . . . , Tm}
s ⊢L U with ρ(d) < |B| and

♯r
B(d) ≤ ♯r

B(d1).

Of course, one could deriveU by applying(CUT ), but the resulting derivation would
have cut rank|B|+ 1.



Proof. Proceeds by a double induction on(♯r
B(d1), |d1|). Let T = {T1, . . . , Tm}s.

Base case:|d1| = 1. ThenS is either an identity axiom or belongs toS0 ∪ T . In the
former caseU ∈ [S ←֓r

B T ] is S or T , while in the latter caseU is S (sinceS does not
containB). Hence the claim is trivial.

Inductive case:|d1| > 1. If U ≡ S the claim is trivial. Otherwise, suppose thatd1

ends in a rule(R) with premisesS1, . . . , Sn and conclusionS. Two cases can arise:

(Case 1)(R) is not a right logical rule with principal formulaB. Since(R) is weakly sub-
stitutive, (previously applying Lemma 3, if needed)U ∈ [S ←֓r

B T ] has a deriva-
tion d′ from U1, . . . , Uk ∈

⋃n
i=1

[Si ←֓
r
B T ], in which neither(CUT ) nor a rule

introducingB in the consequent is used. By the inductive hypothesis, we can find
derivationsd′i,S0∪T ⊢L Ui with ρ(d′i) < |B| and♯r

B(d′i) ≤ ♯r
B(d1) for 1 ≤ i ≤ k.

Therefore the required derivation forU can be obtained by pluggingd′
1
, . . . , d′k into

d′.
(Case 2) Otherwise,S can be written asΓ ⇒ ∆, B. Let U0 beΓ, Σ ⇒ ∆, Π . Then,

(1) U ∈ [U0 ←֓r
B T ],

(2) U0 has a derivationd′
0

from U1, . . . , Uk ∈ {S1, . . . , Sn, T1, . . . , Tm}
s only

using structural rules and{A}s-cuts, being(R) reductive. In particular, no
rule introducingB in the consequent is used ind′

0
.

By hypothesis, eachSi (i = 1, . . . , n) has a derivationδi from S0 ∪ T with cut-
rank < |B| and and♯r

B(δi) < ♯r
B(d1). By Lemma 3, eachUi has a derivation

d′i,S0 ∪ T ⊢L Ui with ρ(d′i) < |B| and♯r
B(d′i) < ♯r

B(d1) for 1 ≤ i ≤ k. Therefore
by pluggingd′

1
, . . . , d′k into d′

0
, we obtain a derivationd′,S0 ∪ T ⊢L U0 with

ρ(d′) < |B| and♯r
B(d′) < ♯r

B(d1). The required derivation forU can be obtained
by (1) and the inductive hypothesis.

To reduce any cut on a compound formula we use a similar argument as in the previous
lemma. Here we need more care of the parameter on which the induction proceeds. To
this aim we consider themarking(or decoration, see [2]) of some formulae occurring in
a derivation. Let us fix a formulaB ≡ ⋆x(A). A marked sequentis a sequent with some
(possibly zero) underlined occurrences ofB in the antecedent. Amarked derivationd
consists of marked sequents, with the following proviso:

(!) for any instance of a rule (R) used ind and any occurrence ofB in the conclusion
of (R) which instantiates a meta-variableX , if that occurrence is marked, so are all
occurrences ofB in the premises which instantiateX .

Given a not marked sequentS ≡ Γ ⇒ ∆, B and a marked sequentT , [T ←֓ l
B S]

stands for{Γ λ, Σ ⇒ ∆λ, Π | T ≡ Bλ, Σ ⇒ Π with λ ≥ 0}. (Notice thatΣ may
contain other occurrences ofB.) Finally, let ♯l

B(d) be the maximal number of logical
rules introducingmarkedoccurrences ofB on the left side on any branch ofd.

Lemma 5 (Compound formulae).Let B be any compound formula,T be a marked
sequent in which some occurrences ofB in the antecedent are marked andd2,S0 ⊢L
T be a marked derivation. Assumed1,S0 ⊢L S (d1 and S are not marked) where
ρ(d1), ρ(d2) < |B|. Then, eachU ∈ [T ←֓ l

B S] has a marked derivationd,S0 ⊢L U

with ρ(d) < |B| and♯l
B(d) ≤ ♯l

B(d2).



Proof. Proceed by a double induction on(♯l
B(d2), |d2|).

Base case:|d2| = 1. T is either an identity axiom or (B 6∈ T and)T ∈ S0. ThenU
is eitherS or T , and the required derivationd is eitherd1 or just consists ofT . In both
cases, we haveρ(d) < |B| and♯l

B(d1) = 0. Hence our claim holds.
Inductive case:|d2| > 1. If U ≡ T , the claim is trivial. Otherwise, assume thatd2

ends with an instance of a rule(R) with premisesT1, . . . , Tm and conclusionT . Two
cases can arise:

(Case 1)(R) is not a left logical rule introducing a marked occurrence ofB. This case is
similar to (Case 1) in the proof of Lemma 4.

(Case 2) Otherwise, we may assume thatT is of the formB, Σ ⇒ Π andS of the form
Γ ⇒ ∆, B. Let U0 be Γ, Σ ⇒ ∆, Π . Then anyU ∈ [T ←֓ l

B S] other thanT

also belongs to[U0 ←֓ l
B S]. Hence it is enough to find a derivationd,S0 ⊢L U0

with ρ(d) < |B| and♯l
B(d) < ♯l

B(d2). The claim will then be established by the
inductive hypothesis.
Let us replace the principal formulaB by B and each context formulaC(y) (resp.
marked context formulaC(y)) in T, T1, . . . , Tm with free variablesy by a fresh
atomic formula〈C〉(y) (resp.〈C〉(y)) to obtain sequents〈T 〉, 〈T1〉, . . . , 〈Tm〉. In
particular,〈T 〉 is of the formB, 〈Σ〉 ⇒ 〈Π〉 and 〈T1〉, . . . , 〈Tm〉/〈T 〉 is an in-
stance of(R) in which context formulas are atomic. Since〈U0〉 ≡ Γ, 〈Σ〉 ⇒
∆, 〈Π〉 ∈ [S ←֓r

B 〈T 〉], Lemma 4 implies that there is a derivationd0,S0 ∪
{〈T1〉, . . . , 〈Tm〉}s ⊢ 〈U0〉 with ρ(d0) < |B| and♯l

B(d0) = 0 (sinced0 does not
contain anyB). From this, we can easily obtain a derivationd′

0
,S0∪{T1, . . . , Tm}s

⊢L U0 with the same property. On the other hand, by hypothesis and Lemma 3
any U ′ ∈ {T1, . . . , Tm}s has a derivationd′,S0 ⊢L U ′ with ρ(d′) < |B| and
♯l
B(d′) < ♯l

B(d2). Hence by plugging them intod′
0
, we obtain the required deriva-

tion d for U0.

Lemma 6 (Atomic formulae). (i) Suppose that a sequentS has a cut-free derivation
d1 from S0 and T ∈ S0. Then, for any atomic formulaA and anyc ∈ {l, r}, each
U ∈ [S ←֓ c

A T ] has a cut-free derivation fromS0.
(ii) Let d1 andd2 be cut-free derivations ofd1,S0 ⊢L S andd2,S0 ⊢L T andA

be an atomic formula. Then, eachU ∈ [T ←֓ l
A S] (resp. eachU ∈ [S ←֓r

A T ]) has
a cut-free derivationd,S0 ⊢L U provided that no sequent of the formA, A, Σ ⇒ Π
(resp.Γ ⇒ ∆, A, A) belongs toS0.

Proof. (i) Proceeds by induction on|d1|, similarly as (Case 1) in the proof of Lemma
4. (ii) Proceeds by induction on|d2| (resp.|d1|). When|d2| = 1, thenT is an identity
axiom orT ∈ S0. If U ≡ T or U ≡ S the claim is trivial. Otherwise, sinceT does not
contain more than one occurrence ofA in the antecedent,U ∈ [T ←֓ l

A S] also belongs
to [S ←֓r

A T ]. Hence the claim follows by (i). The case|d2| > 1 is as before.

Theorem 3 (Modular Cut-Elimination). Any standard sequent calculusLwhose rules
are weakly substitutive and whose logical rules are reductive admits modular cut-
elimination.

Proof. LetS0 be an elementary set of non-logical axioms inL, d a derivation inL from
S0 with ρ(d) > 0. The proof proceeds by a double induction on(ρ(d), nρ(d)), where



nρ(d) is the number of cuts ind with cut rankρ(d). Let us take ind an uppermost cut
with cut rankρ(d). Let d1,S0 ⊢L Γ ⇒ ∆, A andd2,S0 ⊢L A, Σ ⇒ Π its premises.

WhenA is not atomic, letd′
2

be a marking ofd2 in which the indicatedA is marked,
and apply Lemma 5 tod1 andd′

2
. WhenA is atomic, apply Lemma 6 (ii) tod1 andd2 (by

Definition 4, multiple copies ofA cannot occur both in the antecedent and consequent
positions of any sequent inS0). In any case, eitherρ(d) or nρ(d) decreases.

When a standard sequent calculus satisfies some additional properties, weak substitu-
tivity and reductivitycharacterizemodular cut-elimination:

Corollary 1. LetL be a standard sequent calculus satisfying(log2) and (log3). Then
L admits modular cut-elimination if and only if all rules are weakly substitutive and
logical rules are reductive.

Theorem 3 allows us to prove cut-elimination for a given standard sequent calculus in
an “incremental” way:

Corollary 2 (Modularity). LetL andL′ be standard calculi with disjoint sets of log-
ical connectives (L is single-conclusion if so isL′, and viceversa). Suppose that their
logical rules satisfy(log2)and(log3). If bothL andL′ admit modular cut elimination,
so doesL ∪ L′, obtained by taking the union of logical connectives and rules inL and
L′.

Remark 5.The same result does not hold for cut-elimination. E.g. letL′
1

be the cal-
culus containing exchange and the rules for implication in linear logic.L′

1
admits cut-

elimination and so does (trivially) the calculusL1 of Example 5 (the only sequents
provable inL1 are instances of the identity axiom) whileL1 ∪ L′1 does not anymore.

Our modular cut-elimination procedure is ‘universal’ for standard sequent calculi with
additional conditions in the following sense:

Corollary 3. LetL be a standard sequent calculus satisfying(log2)and(log3). If L ad-
mits modular cut-elimination and⊢L S, the procedure described in this section always
provides a cut-free derivation inL for S.

Remark 6.The same does not hold for cut-elimination and e.g. the procedures of Gentzen
[4] and Schütte-Tait [10, 9]. Indeed, Gentzen’s cut-elimination method can be applied
only when suitable “ad hoc” (derivable) generalizations ofthe cut rule (e.g. Gentzen’s
mix) are found. These generalizations, needed to cope with rules duplicating formulas
(e.g. contraction), are not needed for the Schütte-Tait method whose applicability re-
lies on the inversion of (at least) one of the premises of the cut. This cannot always be
done in calculi that admit cut-elimination. For example letL2 be the single-conclusion
calculus consisting of weakening, exchange and the following rules:

Θ ⇒ X1 Θ′
⇒ X2

Θ, Θ′
⇒ X1 ∧ X2

(∧, r)
Θ, Xi ⇒ Y

Θ, X1 ∧ X2 ⇒ Y
(∧, l)i=1,2

L2 admits cut-elimination (e.g. using our method: it is easy tocheck that these rules
are reductive and weakly substitutive) although neither ofthe premises of a cut with cut
formulaA ∧ B can be inverted in the usual way and hence the Schütte-Tait procedure
does not apply.



7 Counterexamples to (modular) cut-elimination

We have introduced syntactic criteria (weak substitutivity and reductivity) that when
met by a standard sequent calculusL, L admits modular cut-elimination. If the logical
rules ofL satisfy(log2)and(log3)our conditions are also necessary and hence acoun-
terexample for modular cut-elimination(i.e. a derivation inL from an elementary set
of sequents in which cuts cannot be eliminated) can be extracted from their failure.

Now, what can we say about plain cut-elimination? The failure of weak substitu-
tivity or reductivity for a standard calculusL is not enough to conclude thatL does
not admit cut-elimination, being modular cut-eliminationa notion strictly stronger than
cut-elimination (e.g. bothLJ ’ andL1 admit cut-elimination although they do not admit
modular cut-elimination, see Examples 3, 5 and Remark 5).

Our conditions are however useful for pinning down the difficulty of (dis)proving
cut-elimination and reduce the search space when finding counterexamples for cut-
elimination (or cut-admissibility). Indeed

Definition 10. LetL be a standard sequent calculus. The following derivationsd in L
are calledcandidates of counterexamplesfor L.

– Let (R) be an instance of a rule inL which is not weakly substitutive. LetS0 be its
conclusion andS1, . . . , Sn its premises. Take a sequentT , a formulaA, c ∈ {l, r}
and U ∈ [S0 ←֓ c

A T ] which violates condition (*) of Def. 6. Then letd be the
following:

T

S1 · · · Sn

S0

U
(CUT )

– Let⋆ be a connective inLwhose rules are not reductive. Take a pair of instances of
left and right logical rules with conclusionsΓ ⇒ ∆, ⋆x(A) and⋆x(A), Σ ⇒ Π
which violates the condition(⋆) of Def. 8. Then letd be the following:

S1 · · · Sn

Γ ⇒ ∆, ⋆x(A)

T1 · · · Tm

⋆x(A), Σ ⇒ Π

Γ, Σ ⇒ ∆, Π
(CUT )

A candidate of counterexamplesd, U1, . . . , Un ⊢L U0 is resolvableif wheneverU1, . . . ,
Un are provable inL, U0 is cut-free provable inL.

Example 6.The rule(→, r, ∅) is weakly substitutive neither in Maehara’sLJ ’ nor in
GD (see Example 3). A candidate of counterexamples forLJ ’ and GD, that is also a
counterexample for modular cut-elimination is then provided by any cut-free derivable
sequent with one implicative formula on its right end side, e.g.D ⇒ C → D and any
set of non-logical axioms containing the sequentΓ ⇒ D, ∆, for any∆ that contains
at least one formula. This counterexample for modular cut-elimination can be easily
turned into acounterexample for cut-eliminationin GD by suitably choosingΓ , ∆ and
D such that⊢GD Γ ⇒ D, ∆ while ⊢GD Γ ⇒ C → D, ∆ only using(CUT ). E.g.
takeΓ ≡ ∀x(P (x) ∨ B), D ≡ ∀xP (x) and∆ ≡ B, it is easy to see that the sequent
∀x(P (x) ∨ B) ⇒ C → ∀xP (x), B is not cut-free derivable inGD while a derivation
with (CUT) is as follows:



P (a) ⇒ P (a) B ⇒ B
(∨,l)

P (a) ∨ B ⇒ P (a),B
(∀,l)

∀x(P (x)∨ B) ⇒ P (a),B
(∀,r)

∀x(P (x)∨ B) ⇒ ∀xP (x),B

∀xP (x) ⇒ ∀xP (x)
(w,l)

∀xP (x),C ⇒ ∀xP (x)
(→,r)

∀xP (x) ⇒ C → ∀xP (x)
(CUT)

∀x(P (x)∨ B) ⇒ C → ∀xP (x),B

This proves thatGD does not admit cut-elimination (in contrast with the claim in [5]).

Notice that all candidates of counterexamples are resolvable in LJ ’. Indeed, a careful
inspection of the modular cut-elimination proof shows:

Theorem 4. Let L be a standard sequent calculus for which either weak substitutiv-
ity or reductivity fails. ThenL admits cut-elimination if and only if all candidates of
counterexamples forL are resolvable.

To conclude, although our conditions do not directly yield acounterexample for cut-
elimination, they do provide the class of candidates among which, if a standard calculus
does not admit cut-elimination, such a counterexample can be found.

References

1. S. Buss. An Introduction to Proof Theory.Handbook of Proof Theory, Elsevier Science, pp.
1–78, 1998.

2. A. Ciabattoni. Automated Generation of Analytic Calculifor Logics with Linearity. Pro-
ceedings of CSL’04, vol. 3210 LNCS, pp. 503–517, 2004.

3. A. Ciabattoni and K. Terui. Towards a semantic characterization of cut-elimination.Studia
Logica. Vol. 82(1). pp. 95 - 119. 2006.

4. G. Gentzen. Untersuchungen über das logische Schliessen I, II. Mathematische Zeitschrift,
39: 176–210, 405–431. 1934.

5. E. G. K. Lopez-Escobar. On the Interpolation Theorem for the Logic of Constant Domains.
J. Symb. Log.. 46(1). pp. 87-88. 1981.

6. D. Miller and E. Pimentel, Tableaux’02, LNAI, Using Linear Logic to reason about sequent
systems, 2-23, 2002,

7. F. Pfenning. Structural Cut Elimination: I. Intuitionistic and Classical Logic.Inf. Comput.
157. pp. 84-141. 2000.

8. G. Restall.An Introduction to Substructural Logics. Routledge, London, 1999.
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