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Abstract. Modular cut-elimination is a particular notion of "cut-glination in
the presence of non-logical axioms” that is preserved utideaddition of suit-
able rules. We introduce syntactic necessary and sufficiemditions for mod-
ular cut-elimination for standard calculi, a wide class pbgsibly) multiple-
conclusion sequent calculi with generalized quantifiers pévide a "universal”
modular cut-elimination procedure that works uniformly &émy standard calcu-
lus satisfying our conditions. The failure of these cormuli§ generates counterex-
amples for modular cut-elimination and, in certain casas¢éit-elimination.

1 Introduction

Cut-elimination is one of the most important techniquesrooptheory. The removal of
cuts corresponds to the elimination of intermediate statem(lemmas) from proofs,
resulting in calculi in which proofs aranalyticin the sense that all statements in the
proofs are subformulae of the result.

A great many different cut-elimination proofs for varioesisient calculi have been
published since Gentzen's proofs fdk andLJ (sequent calculi for classical and in-
tuitionistic first-order logic, respectively), most usihgavy syntactic arguments and
based on case distinctions, usually written without filinghe detail$. However since
it is often the case that “the devil is in the details” (thisakxplains why so many
wrong cut-elimination proofs appear in the literature,. §5J), it is natural to inves-
tigate general criteriathat a sequent calculus should satisfy in order to admit cut-
elimination. Such criteria should supponreodular viewof cut-elimination in sequent
calculi (i.e. decomposability of the whole calculus intedbcomponents when proving
cut-elimination), and also provide useful informationlire thegative case, where a par-
ticular cut-elimination method cannot be applied or a dinti@ation proof cannot be
found at all.

Necessary and sufficient conditions for cut-eliminatiorrevdefined in [14] for
canonical calculjwhich are sequent calculi containing identity axioms keal struc-
tural rules (weakening, exchange and contraction) andilggsstandard” rules for
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connectives and quantifiers. Canonical calculi extendet (i, n)-ary connectives
which bind & variables and conneet formulas were investigated in [15] where suf-
ficient conditions for cut-elimination have been introddioe the casé: = 0, 1. In the
context of substructural logics, syntactic and semantteria for (additive) structural
rules to preserve cut-elimination when added to full Lambalkulus were introduced
in [12]. Terui’s work was generalized in [3] to provide nesasy and sufficient condi-
tions for a large class of propositional single-conclusiequent calculi to admit reduc-
tive cut-elimination, a naturally strengthened versiorfreé-cut elimination (see [1])
which additionally aims to shift non-eliminable cuts updsas much as possible. The
proposed criteria have two equivalent forms: syntagtdictivityandweak substitu-
tivity) and semantic (coherence and propagation). The formersais weakening the
sufficient conditions in [2] while the latter generalize tiesults in [12].

In this paper we focus on the syntactic aspects of cut-ettion. We refine and
extend the (syntactic) results of [3] standard calculii.e. commutative (not necessar-
ily single-conclusion) sequent calculi possibly contagifancy) structural rules and
rules for(k, n)-ary connectives, for alt andn. Examples of standard calculi are Mae-
hara’s calculug.J’ for intuitionistic predicate logic, the calculuSD for the logic of
constant domains [5], the multiplicative additive fragrmeflinear logic extended with
any structural rule, or the calculi in [14, 15]. We investigaodular cut-eliminatiorin
standard calculi, a particular notion of "cut-eliminationthe presence of non-logical
axioms,” that is preserved under the addition of suitablessWeak substitutivitand
reductivity, the syntactic conditions of [3], are adapted to standagidesat calculi (Sec-
tion 4), and shown to be necessary and sufficient for moduliaelimination (the for-
mer holds when logical rules satisfy some additional priggrsee Section 5). The ne-
cessity result is used faounterexamples generatiagiven a standard sequent calculus
for which our criteria fail, counterexamples for modulat-elimination are automati-
cally generated and, in certain cases, lead to counterdgargy cut-elimination. The
sufficient result is shown by providing a constructive probfodular cut-elimination,
from which a concrete cut-elimination procedure can be o#a(Section 6). Remark-
ably enough this procedure is "universal”, in the sense Wian a standard sequent
calculus admits modular cut-elimination our proceduresgfsvtransforms derivations
with cuts into cut-free derivations (Corollary 3).

Our results also support a modular view of cut-eliminationleed when adding a
new connective and/or a new structural rule to a standamlieed for which modular
cut-elimination has been already established, it is endéaighow that the newly added
rules are reductive and weakly substitutive. Moreover éis& of proving modular cut-
elimination for a standard calculus can be decomposedhatsib-tasks of proving cut-
elimination for appropriate sub-calculi. In particulargnalogy withToyama’s Lemnta
in term rewriting theory, modular cut-elimination is preged by taking the disjoint
union of two (sets of rules of) standard sequent calculi (Cary 2).

2 |t states that the disjoint union of two confluent term reimgtsystems is also confluent.



2 Standard Calculi

We start by formalizing the notion of a standard sequentutadc In the following we
consider formulas built over wocabularyV consisting of (countably many): (term)
variablesz, y, z, .. ., for eachn > 0, n-ary function and predicate symbols, as well
as (m,n)-ary connectives, xo, ... for eachm,n > 0. As usual,termst¢, u, v, ...

(in the vocabulary) are built up from variables using function symbols whileraic
formulae are built up from terms using predicate symbolforula(in the vocabulary
V) is either an atomic formula or a compound formula of the ferm(A) with x; an
(m,n)-ary connective, which binds = z,...,z,, distinct variables, and connect
formulasA = A,,..., A,. Given a formula, its free and bound variables are defined in
the standard way. As usual, we identify formulas only diffgrin the names of bound
variables (i.e. formulas are considered uptequivalence).

Example 1.

1. The standard quantifievsandd can be seen g8, 1)-ary connectives, while propo-
sitional connectives a®), n)-ary connectives, for some > 1.

2. The Henkin quantifie® ;; (see e.g. [15]) can be seen ailal )-ary connective.

3. Bounded quantified formulaeér < ¢.A, 3z < t.A can be built with(1, 2)-ary
connectives®z(X,Y), 32(X,Y) with the proviso that the meta-variablé is
always instantiated by an inequation of the farmn ¢.

We indicate withI", A, I1, X, ... multisets of formulae. When > 0, I'* denotes
I,..., I (\times). Asequentl’ = A (I" said to beantecedenaind A consequent
is atomicif all formulae inI" and A are atomic.” = A is single-conclusionf A
contains at most one formula, otherwise imisiltiple-conclusion

To specify inference rules we useeta-variables\, Y, Z, X[t /,],... (¢ = t1,...,tm
andx = x4, ..., z,,) standing for arbitrary formulae artd, =, &, ¥, 7, . . . for (possi-
bly empty) multisets of meta-variables.

Definition 1. A standardequent calculug consists of:

— theidentity axiomof the formX = X
— the multiplicative version of theut rulg i.e.

O=5X X0=72

cuT
0,0/ = =" = ( )

— structural inference rulesf the form ¢ > 0):
== - O0,=5, (Rl)

6==

satisfying the conditions

(str0) © and = are disjoint.

(strl) any meta-variable occurring i®4,...,©,, occurs in© and any meta-
variable occurring in=y, ..., =, occurs in=.



(Note that since9, =, ... are multisets, we implicitly assume that permutation
rule(s) always belong t@’)

— left logical rules{(x,{, y): }:c4 andright logical rules{(x,, z); };ea (A and A’
could be empty) for eadtk, 1)-ary connectiver, with k, I, m,n > 0:

Y =9 - T =0
0= 5 xx(X)

T1:>!I/1 Tn:>!l7n
*xx(X),0=5

(*alay)i (*? T"Z)j

wherex = xq,...7,, X = X1,...,X; and foreachi = 1,...1, X;[t/.] (t =

ti,...,tx, where each; is a term) may appear if; = !I/J»,TJQ = ¥, with

j=1,...,nandj’ =1,...,m.y andz are theeigenvariablesf the rules.

(*,1,y); must satisfy the following conditions

(log0) ©, = and{ X} are mutually disjoint.

(logl) Any meta-variable occurring iffy, ..., 7, occurs in© or it is of the form
X;[t/=] whereX; € X. Any meta-variable occurring i, . .., %, occurs in
Z oritis of the formX;[t/,] whereX; € X.

The corresponding conditions hold o, r, 2) ;.

Remark 1.Conditions(strl) and(logl) ensure that rules satisfy the subformula prop-
erty and do not allow meta-variableséhand= to move from antecedent to consequent
of sequents and vice versa.

We identify rules up to the renaming of meta-variables amgickl rules up to the re-
naming of (term) variables.

Definition 2. Instancegresp.atomic instanceof identity axiom(CUT), and struc-
tural rules are obtained by substituting arbitrary formeldresp. atomic formulae)
for meta-variables. Annstance(resp.atomic instanceof a logical rule (x,1,y),; or
(%,7,9), is obtained

1. by replacing each meta-variabléwith a formula (resp. atomic formulahat does
not containy as free variables

2. when a meta-variabl&’, (¢ X) in its conclusion is replaced by a formula (resp.
atomic formula)A (that does not containy as free variables), then each meta-
variable X;[t/.] in its premises is replaced with the formula (resp. atomimiala)
A in which all free occurrences of the variabie (if any) are replaced by the term
tj,forj=1,... k.

A derivationin £ is obtained by composing instances of axioms and rulés of
Condition 1. above ensures that the eigenvariable comdgieatisfied.

Definition 3. In logical and structural rules (or their instances) the meftariables
(formulae) in@ are calledleft context meta-variablggeft context formulag those in='
right context meta-variabl€gght context formulag and (in the former rules) the meta-
variables (formulae) of the fornX;, X;[t/..] active meta-variable@ctive formulag

In a logical rule (or its instance) the introducegr(X) (or the formula of the
form xx (A, ..., A;)) is called principal formula Moreover, the two occurrences of
the formula instantiating the meta-variablé in (CUT) are called left and rightut
formulae(and the corresponding premises of (CUT) are called left agldt premises).



Example 2.

1. Simple sequent calculi with permutation (see [3]) argipalar standard calculi in
which each sequent is single-conclusion and whose conmscire of typ€0, n).

2. The ordinary rules for quantifiers fit into our frameworkrhstance, the left and
right rules forv are represented by the following rules:

X[t/.],© =
Ve (X),0 =

0= =X/

N E A7)

(Y7, y)

1] [

wheret is an arbitrary term ané, = are arbitrary multisets of meta-variables.
3. Canonical calculi witlfn, k)-ary connectives (see [15]) are particular standard cal-
culi that contain all the structural rules (weakening, caction and exchange).

3 Modular Cut-Elimination

Generalizations of cut-elimination with extra (non-logficaxioms have been consid-
ered e.g. in [13,1, 11]. They play an important role in thegbtheory of formalized
mathematical theories such as fragments of arithmeticersa&sdeduction iK of a
sequenb, from a setS of non-logical axioms closed under substitutidinse-cut elimi-
nationdescribed in [1] aims at finding a deductionSfcontaining onlyanchored-cuts
i.e. cuts whose premises (at least one, for cuts with comgeut-formulas) derive
from sequents irf. If S consists only of atomic sequents closed under mix (and sub-
stitutions) then Gentzen’s cut-elimination method getesra cut-fred K -derivation
of Sy, see e.g. [13]. To characterize the "stepwise process af toansformations to
eliminate cuts” in a large class of propositional singledasion sequent calculi we
introduced in [3] reductive cut-elimination, a naturaltyengthened version of free-cut
elimination which in addition aims to shift upward anchomds in these calcuks
much as possible

Here below we rework the above notions of cut-eliminatiothia presence of ax-
ioms to define a "modular” cut-elimination for standard cdilcnamely if such calculi
enjoy it, they also do when extended by any rule satisfyiritable conditions (weak
substitutivity and reductivity, see Section 4).

Definition 4. A setS of sequentsr{on-logical axiomyis calledelementaryf

1. all formulae inS are atomic.

2. S is closed under substitutionwheneverS(z) € S andt is any term, the sequent
S(t), obtained by substituting iff the termt for all free occurrences af, isin S.

3. S is closed under cutsvheneverl; = A;, Aand A, I, = A, belong toS, so
dOQSFl, I = Al, AQ.

4. it is not the case that sequents of the forfhs> A, A™ and A™, X' = II with
n, m > 2, both belong taS.

Definition 5. A standard sequent calculusadmitsmodular cut-eliminatiorif when-
ever a sequent is derivable in from an elementary s& of sequents ir one can
find a cut-free derivation i of Sy from S.



Remark 2.Modular cut-elimination implies the ordinary cut-elimtien (setS = 0).

Notice that if we remove condition 4 from Def. 4, the resudtimotion of cut-elimination
is not admitted e.g. bikK : indeedS = {4, A =; = A, A; A= A} with A atomic
satisfies the conditions 1-3 of Def. 4. It is easy to check thatempty sequent>- is

derivable fromS in LK only using (CUT).

4 Syntactic Criteria

In this section we introduce the notions of reductive lobicdes and weakly substi-
tutive rules for standard calculi. Intuitively, a logicalle is reductive if it allows the
replacement of cuts by "smaller” cuts, and a rule is weaklyssitutive when any cut
can be permuted upward. Reductivity and weak substitytarié obtained by suitably
modifying the homonymous conditions of [3] defined for simphlculi (see Ex. 2.1).
Let S be asequentd a formula, 7} = A, Y = IT andT, = X = II, A. We define

[S N T ={[, X' = A I" A" | S=T = A, A with A > 0andu < A}
[S <l Ty ={I, X" A" = AT | S = A, "= Awith A > 0andu < A}

Namely, eactU € [S <7, Ty] is obtained by applying (CUT) possibly several times
betweenS and (several copies of), with cut formulaA. [S <!, T»] is dually defined.

In caseT’ does not contain any occurrence4fin the antecedent (resp. consequent),
we definglS <7, T] = {S} (resp.[S <4 T] = {S}).

Definition 6. Let £ be a standard sequent calculus. A r{lR) is said to beweakly
substitutivein £ if for each instance of R) with premisesSs, .. ., .S, and conclusion
Sp the following condition holds:

(*) for any ¢ € {r,1}, context formulad and any sequerf of £ (which does not
contain any eigenvariable diR)), everyU < [S, < T has a derivation from
U, [Si <=4 T only using structural rules and, wheiR) is a left (resp. right)
logical rule with principal formulaB, left (resp. right) logical rules with principal
formula B.

Remark 3.The above condition was defined (in fact, using sdhemanstead of rule
instance} in [3] only for structural rules. Indeed, the logical rulesnsidered there
satisfy a condition stronger than (*), namely: for anye {r,{}, context formulad
(right or left context formula, depending @ and single-conclusion sequéhit every
U €[Sy <4 T]is derivable fromJ!"_, [S; <=4 T with an application of R).

Example 3. The rules olLJ (resp.LK ) are weakly substitutive ihJ (resp.LK ). Con-
sider now:

1. Maehara’s calculutJ’ for intuitionistic logic, that is an equivalent version of
Gentzen’d.J where the intuitionistic restriction (i.e. consequent efigents con-
tain at most one formula) applies not generally but only endtase of the right rules
for —, — andv, see e.g. [11].



2. The calculusGD for the logic of constant domaifisGD was defined in [5] by
modifying LK as follows: (1) the sequents &D have at most two formulas in
their consequents and (2) the rules, r, ) and (-, r, () obey the intuitionistic
restriction.

It is easy to see that e.g. the rule>, r, ) is weakly substitutive neither ihJ’ nor in
GD. Indeed, take any instance @, r, ), say

S,_ INC,A=B ( 0)
—_— == |

Sy ILC=A—B"' "

andT = XY = II,C, wherell contains at least one formula. ThéhY = A —
B, II €[Sy <=}, T is in general not cut-free derivable fraish <., 7inLJ" or GD.

Although Definition 6 refers tall instances of any rule, in practice to check that a
particular rule is weakly substitutive it is enough to calesicertain atomidnstances.

Definition 7. Let (Ry) be any instance of a structural rule. Thssociated atomic in-
stance(Ry) is defined by replacing each context formula occurredcwith a new
atomic formula{ A4, ¢) with no free variablesd(is either! or r according to whether the
formula occurrence appears in the antecedent or conseqfesgiquents ifRy)).

When(Ry) is an instance of a logical rule with the principal formula:(A) with
x =um,...,xpand A = Ay, ..., A, theassociated atomioistance(Ry) is defined
by replacing

— each context formula with (A, ¢) as above,

— its principal formulaxaz(A) with xz((A41,1)(x),...(4;,1)(x)), where for each
1=1,...,1(A;,1) is a newk-ary predicate symbol

— eachA;[t/x] with (A;,4)(¢t).

Note that{Ry) strictly distinguishes active, left and right context farae.

Lemma 1. (1) If (Rp) is an instance of a rul€¢R), so is(Ry). (2) If condition (*) of
Def. 6 holds for{ Ry) then the same condition holds faRy).

Proof. (1) Follows by conditiongstr0), (strl), (log0)and(logl). (2) Easy.

To introduce reductivity we need some additional notatind germinology. Given a
setS of sequents (resp. a sdtof formulae), we denote b$® (resp.A°) the least set
containingsS (resp.A) and closed under substitutions. We call any instanq€éfT’)
with cut-formula inA an.A-cut

Definition 8. LetL be a standard sequent calculus. We call its logical ryles r, y); } je 4
and{(,, z)x }re for introducing a(k, I)-ary connective- reductivein L if

1. eitherA or A’ is empty or

3 A Hilbert calculus for this logic is obtained by adding to tle@intuitionistic logic the shifting
law of universal quantifiers w.r.t/, i.e.Vz(A(x) V B) — VzA(z) V B, wherex does not
appear free irB.



2. for any pair of instances of left and right logical rulestliprincipal formula
*x(A):
S1o... Sn T - Ty
I'= A xx(A) *xr(A), X =11

() I, X = A, I is derivable from{ Sy, ..., S,,T1, ..., T }° only using{ A}*-
cuts and structural rules of.

Remark 4.The above definition generalizes the reductivity conditiérj3] and the
principal formula condition of [8], both defined for proptishal calculi (single-conclusion,
in case of the former). Reductivity is also related to theerehce criterion of [6] or

[14].
Lemma 2. If condition () of Def. 8 holds fok Ry) then it holds for(Ry).

Example 4.Consider the(1, 1)-ary logical connectives, i defined by the following
rules:

X[/:0= =2 0= =, X['/.]
bx(X),0 = = (v,1,0) CESERTE0) (b,7,0)
XY/, 0= %= 0= Z2,X["/,]
12(X),0 = = (6,0y) 0= = (X) (I, ry)

The rules for are reductive inLK while those fob are not.

Example 5.Let £, be the standard calculus that consists of the followingsrui&o-
ducing theg(0, 2)-ary connectivel (together with permutation rules and identity axioms)

O=X,Z 6=V 5
= XNY =

0,X,Y = =
0.XNY = =

(M, 7, 0) (M, 1,0)

(M, r,0) and(M, 1, ) are not reductive i’ .

5 Necessary Conditions

We show that reductivity and weak substitutivity are neagssonditions for modular
cut-elimination in standard sequent calculi whose logictgs satisfy certain additional
conditions. Specifically, for each logical rule, I, y); and(x, r, z),; we define the fol-
lowing conditions:

Hh=v% --- 1=V, =% -+ T,=Y,

l i s Ty j
wX) 6=z mhY 6= rax)  nE
(log2) if any active meta-variablé&( [*/..] occurs inT7y, ..., 7, then noX[t'/w/] (for
anyt’, x’) occurs ind, ..., ¥,, andvice versa

(log3) each active meta-variablg; (1 < i < [) occurs at most once in each premise
T =¥ (1<j<n).



Theorem 1. Let £ be a standard sequent calculusCladmits modular cut-elimination,
(i) its structural rules are weakly substitutive and (if iddition each logical rule of
satisfieglog2)and(log3)) (ii) its logical rules are weakly substitutive.

Proof. We prove (ii) since (i) is similar. LetR,) be any instance of a logical rule with
principal formulaB. By Lemma 1 it is enough to prove condition (*) of Definitiond f
the associated atomic instan¢®,) with premisesSy, ... .S,, and conclusiort,. Let

¢ € {l,r}, T be an atomic sequent without free variables @ndny atomic formula.
W.l.0.g. we may assume th&tdoes not share any atomic formula other thiawith .Sy.
LetS be the least set that contaifiS,, . . ., S,,, T} and is closed under substitutions and
cuts. By conditionglog2) and(log3) and the definition of Ry) andT’, S is elementary
and is equivalenttq),_, [S; <% T1.

Then, anyU € [S, <4 T is derivable fromS using (Ry) and(CUT). Hence
by modular cut-elimination]/ has a cut-free derivatios from | J,_, . [Si <% T1.
Since B is the only compound formula i, d uses only structural rules and logical
rules introducingB. ]

Theorem 2. Let £ be any standard sequent calculus whose logical rules g4tsf2)
and(log3). If £ admits modular cut-elimination, then its logical rules aegluctive.

Proof. Let (x,7,y); and(x,l, z); be a pair of instances of right and left logical rules
for xin £ and{x, r, y), and(x,, z); be the associated atomic instances (see Def. 7):

S1o... Sy T, - T
- ) <*7T7y>k !

I = A +z)(A NPT VRS TIRE

Without loss of generality, we may assume thiatthe context formulae of, r, y), are
distinct from those ofx, [, z) ;. Thus the active formulae (ihA}°) are the only formu-
lae that can occur in the antecedent of a premise and in tteeqaent of another. Let
S be the least set that contaifiS, ..., S,,T1,. .., T} and is closed under substitu-
tions and cutsS is elementary due to conditiofi®g2) and(log3) and the definition of
(x,7,y)r and(x, 1, z),;. By modular cut-eliminatiod”, ¥ = A, IT is cut-free derivable
from S. Hence it is derivable from{ .Sy, ..., S,,T1,...,Tm}* only using{ A}*-cuts
and structural rules of. The claim follows by Lemma 2. [ ]

6 Sufficient Conditions

Weak substitutivity and reductivity are sufficient conalits for a standard sequent cal-
culus to admitmodular cut-eliminationland hence cut-elimination). Here below we
give a constructive proof of this result.

In the sequelf denotes a standard calculus whose rules are weakly suivsténd
whose logical rules are reductive whifg any elementary set of non-logical axioms.

Definition 9. Thelength|d| of a derivationd is the maximal number of inference rules
+ 1 occurring on any branch ofi. Thecomplexity |A| of a formula A is defined as
the number of occurrences of s, k)-ary connectives. Theut rankp(d) of d is (the
maximal complexity of the cut-formulaedy + 1 (p(d) = 0 if d has no cuts). Given
a compound formuld andc € {I,r}, 1%(d) is the maximal number afside (left or
right) logical rules with principal formulaB on any branch ofl.



To prove modular cut-elimination fof, we proceed by removing cuts which are top-
most among all cuts with cut rank equal to the rank of the wielguction. Let, e.g.

So So
da 2 da
I'=s>AA AXY=1
(CuT)
Y= A1

be a subderivation ending in such a cut. Roughly speakingtoategy is as follows:
If the cut-formulaA is a compound formula, using the fact that rules are weakby su
stitutive, we shift up this cut ovei, as much as possiblentil we meet (a) an identity
axiom or (b) a logical rule introducing the cut formufa(Lemma 5). In the first case
the cut is easily eliminated while in case (b) is replaceduiy with smaller complexity.
The latter can be done being logical rules reductive (LemraadiLemma 5). IfA is
atomic, the cut is shifted upward oveés or d; (according to whether the elementary
setS, contains a sequent of the forn= ¥, A, Aord, A, A = ¥, respectively) until
we meet (a) an identity axiom or (b) a non-logical axion&in(Lemma 6.(ii)). In both
cases the cut can be easily eliminated (for case (b) see Ldh{ij)a

Henceforth we writed,S . S if d is a derivation in{ of S from a setS of
sequents.

Lemma 3 (Substitution).LetS be any set of sequents closed under substitutions and
d,S . S(z). Then for any ternt there is a derivationl’ with |d’| = |d| andp(d’') =

p(d) such thatd’, S k. S(t). Moreover, for any compound formul&which contains
neitherz nor an eigenvariable of a rule id and for anyc € {I,r}, §(d") = 45(d).

Proof. By induction on|d|. The crucial case is when the last infereiéd in d is a
logical rule with eigenvariableg and with premises$’ (x,vy), ..., S,(z,y). The term
t might contain eigenvariablag So, take fresh variables. Then eachS; (¢, z) (i =
1,...,n) has derivations with the required properties. We can nquiyg) and obtain
S(t). SinceA contains neithet nory, 4 (d) remains unchanged. [ |

The following lemma shows how teducea cut on a compound formula (i.e. replace

it by cuts with cut-formula smaller thaR) in case one of its premises is the conclusion
of a logical rule introducing3 on the left hand side and with atomic context formulae.
This lemma is needed when proving the general case: redaningut on a compound
formula (Lemma 5).

Lemma 4. Let
T ... T,

T =BY=1I

be an instance of a left logical rule with principal formula and in which all context
formulae are atomic. Ifl;, Sy U {T1,..., T} Fz S with p(d;) < |B| then each
U € [S <% T] has a derivatiord, So U {T1,...,Tn}° Fz U with p(d) < |B| and

tp(d) < p(dy).

Of course, one could deriv€ by applying(CUT), but the resulting derivation would
have cut rankB| + 1.



Proof. Proceeds by a double induction ¢ (d1), |d1]). LetT = {T1,..., T }".
Base casdd;| = 1. ThenS is either an identity axiom or belongs& U 7. In the
former casd/ € [S <« T]is S or T, while in the latter cas# is S (sinceS does not
containB). Hence the claim is trivial.
Inductive caseld;| > 1. If U = S the claim is trivial. Otherwise, suppose thht
ends in a rulé R) with premisesSy, . . ., S, and conclusiorf. Two cases can arise:

(Case 1)(R) is not a right logical rule with principal formul®. Since(R) is weakly sub-
stitutive, (previously applying Lemma 3, if needdd)c [S <7 T has a deriva-
tiond' from Uy,..., U, € U, [S; <’z T}, in which neithe CUT') nor a rule
introducingB in the consequent is used. By the inductive hypothesis, weind
derivationsi;, SoUT . U; with p(d};) < |B|andt’z(d}) < %5 (d1) forl <i <k.
Therefore the required derivation forcan be obtained by plugging, . . ., d}, into
d.

(Case 2) Otherwise§ can be written ag” = A, B. LetUy bel, ¥ = A, II. Then,

(1) U € [Ug <% T,

(2) Uy has a derivationif, from Uy,..., Uy € {S1,...,5n,T1,..., T }® oOnly
using structural rules anflA}*-cuts, being(R) reductive. In particular, no
rule introducingB in the consequent is useddy.

By hypothesis, eacls; (: = 1,...,n) has a derivation; from Sy U 7 with cut-

rank < |B| and andf;(6;) < t#5(d1). By Lemma 3, eacly; has a derivation

d;,SoUT . U; with p(d}) < |B|andi; (d}) < t5(d1) for 1 < ¢ < k. Therefore
by pluggingdy, ..., dj, into dj, we obtain a derivatiod’, Sy U 7 . Uy with

p(d") < |B| and’z(d') < #%;(d1). The required derivation fa’ can be obtained

by (1) and the inductive hypothesis. [ ]

To reduce any cut on a compound formula we use a similar arguasdn the previous
lemma. Here we need more care of the parameter on which thetiod proceeds. To
this aim we consider thearking(or decoration see [2]) of some formulae occurring in
aderivation. Let us fix a formulB = xx(A). A marked sequens a sequent with some
(possibly zero) underlined occurrencesiin the antecedent. Anarked derivationl
consists of marked sequents, with the following proviso:

(1) for any instance of a rule (R) used inand any occurrence @ in the conclusion
of (R) which instantiates a meta-variab¥g if that occurrence is marked, so are all
occurrences oB in the premises which instantiafé.

Given a not marked sequefit= I" = A, B and a marked sequeft, [T <—vl§ S]
stands for{I™, X = AN IT | T = B*, ¥ = IT with A > 0}. (Notice that> may
contain other occurrences &.) Finally, let4;(d) be the maximal number of logical
rules introducingnarkedoccurrences oB on the left side on any branch df

Lemma5 (Compound formulae).Let B be any compound formuld, be a marked
sequent in which some occurrencegbin the antecedent are marked atgl Sy F.
T be a marked derivation. Assurmde, Sp . S (d; and S are not marked) where
p(dy), p(d2) < |B|. Then, eacl/ € [T «% S] has a marked derivatiod, Sy . U
with p(d) < | B| andly (d) < #l(da).



Proof. Proceed by a double induction 6fl; (d2), |dz|).

Base cas€ldy| = 1. T is either an identity axiom ot ¢ T'and)T € Sy. ThenU
is eitherS or T', and the required derivatiahis eitherd; or just consists of . In both
cases, we have(d) < | B| andtk(d;) = 0. Hence our claim holds.

Inductive caselds| > 1. If U = T, the claim is trivial. Otherwise, assume thit
ends with an instance of a ru{&?) with premiseslt, ..., T,, and conclusio’. Two
cases can arise:

(Case 1)(R) is not a left logical rule introducing a marked occurrence3ofThis case is
similar to (Case 1) in the proof of Lemma 4.

(Case 2) Otherwise, we may assume thdas of the formB, Y = II andS of the form
I' = A,B.LetUy bel, X = A,II. Then anyU € [T <%, S] other thanT
also belongs téU, % S]. Hence it is enough to find a derivatiahS, -, Uy
with p(d) < |B| andtl(d) < t5(d2). The claim will then be established by the
inductive hypothesis. o
Let us replace the principal formula by B and each context formuld(y) (resp.
marked context formul&(y)) in T, T3, ..., T,, with free variableg by a fresh
atomic formula(C)(y) (resp.(C)(y)) to obtain sequent&l’), (T1), ..., {Twm). In
particular,(T') is of the form B, (X) = (II) and(T1),...,(T,)/{T) is an in-
stance of(R) in which context formulas are atomic. Sin¢gy) = I, (X) =
A (IT) € [S <% (T)], Lemma 4 implies that there is a derivatidp, Sy U
{Ty), ... (Tm) ¥ = (Uo) with p(do) < |B| andtl(do) = 0 (sinced, does not
contain anyB). From this, we can easily obtain a derivatién SoU{T1, ..., Tm }*
F. Uy with the same property. On the other hand, by hypothesis @minha 3
anyU’' € {Th,...,T»}* has a derivationl’, Sy +, U’ with p(d’) < |B| and
th(d') < t%5(ds). Hence by plugging them intdf,, we obtain the required deriva-
tion d for U. [ |

Lemma 6 (Atomic formulae). (i) Suppose that a sequefithas a cut-free derivation
dy from Sy andT € Sy. Then, for any atomic formula and anyec € {i,r}, each
U €[S <4 T] has a cut-free derivation frofy.

(ii) Let d; andds be cut-free derivations af;, Sy . S andds, Sp F. T and A
be an atomic formula. Then, eaéh € [T <, S] (resp. eachl/ € [S <", T)]) has
a cut-free derivationl, Sy . U provided that no sequent of the form A, X' = IT
(resp.I" = A, A, A) belongs taS,.

Proof. (i) Proceeds by induction ofd; |, similarly as (Case 1) in the proof of Lemma
4. (i) Proceeds by induction ojds| (resp.|d:|). When|dz| = 1, thenT is an identity
axiomorT € Sy. If U = T orU = S the claim is trivial. Otherwise, sincgE does not
contain more than one occurrencedin the antecedent/ € [T <!, S] also belongs
to [S <7, T]. Hence the claim follows by (i). The cag&| > 1 is as before. [ |

Theorem 3 (Modular Cut-Elimination). Any standard sequent calculdsvhose rules
are weakly substitutive and whose logical rules are redwctidmits modular cut-
elimination.

Proof. LetSy be an elementary set of non-logical axiomgind a derivation inZ from
Sp with p(d) > 0. The proof proceeds by a double induction(@fd), np(d)), where



np(d) is the number of cuts id with cut rankp(d). Let us take ind an uppermost cut

with cut rankp(d). Letdy, So e I' = A, Aandds, Sy - A, X = II its premises.
WhenA is not atomic, letl;, be a marking ofl; in which the indicated! is marked,

and apply Lemma5 td, andd,,. WhenA is atomic, apply Lemma 6 (ii) td, andd, (by

Definition 4, multiple copies ofi cannot occur both in the antecedent and consequent

positions of any sequent ify). In any case, eithex(d) or np(d) decreases. ]

When a standard sequent calculus satisfies some additimnties, weak substitu-
tivity and reductivitycharacterizemodular cut-elimination:

Corollary 1. Let L be a standard sequent calculus satisfy{tag2) and (log3). Then
L admits modular cut-elimination if and only if all rules aresekly substitutive and
logical rules are reductive.

Theorem 3 allows us to prove cut-elimination for a given d&d sequent calculus in
an “incremental” way:

Corollary 2 (Modularity). Let £ and £’ be standard calculi with disjoint sets of log-
ical connectives/ is single-conclusion if so i£’, and viceversa). Suppose that their
logical rules satisfy(log2) and(log3). If both £ and £’ admit modular cut elimination,
so doesC U L', obtained by taking the union of logical connectives anéstih £ and
L.

Remark 5.The same result does not hold for cut-elimination. E.gJgtbe the cal-
culus containing exchange and the rules for implicatioririedr logic.£ admits cut-
elimination and so does (trivially) the calculds of Example 5 (the only sequents
provable inC; are instances of the identity axiom) whifg U £} does not anymore.

Our modular cut-elimination procedure is ‘universal’ fearsdard sequent calculi with
additional conditions in the following sense:

Corollary 3. LetL be a standard sequent calculus satisfyflog2)and(log3). If £ ad-
mits modular cut-elimination anid, S, the procedure described in this section always
provides a cut-free derivation ig for S.

Remark 6.The same does not hold for cut-elimination and e.g. the phaes of Gentzen
[4] and Schitte-Tait [10, 9]. Indeed, Gentzen'’s cut-etiation method can be applied
only when suitable “ad hoc” (derivable) generalizationshaf cut rule (e.g. Gentzen's
mix) are found. These generalizations, needed to cope wigis duplicating formulas
(e.g. contraction), are not needed for the Schitte-Tathatkwhose applicability re-
lies on the inversion of (at least) one of the premises of thteThis cannot always be
done in calculi that admit cut-elimination. For exampledgtbe the single-conclusion
calculus consisting of weakening, exchange and the foligwiles:

e =X 9,:>X2
@7@/:>X1/\X2

Q,Xi:>Y
@7X1 NXs =Y (

(A7) A Di=1,2

Lo admits cut-elimination (e.g. using our method: it is easgheck that these rules
are reductive and weakly substitutive) although neitheéhefpremises of a cut with cut
formula A A B can be inverted in the usual way and hence the Schitte+Taegure
does not apply.



7 Counterexamples to (modular) cut-elimination

We have introduced syntactic criteria (weak substitutigind reductivity) that when
met by a standard sequent calcullisC admits modular cut-elimination. If the logical
rules of £ satisfy(log2) and(log3) our conditions are also necessary and hersua-
terexample for modular cut-eliminatigie. a derivation inl from an elementary set
of sequents in which cuts cannot be eliminated) can be drttdicom their failure.

Now, what can we say about plain cut-elimination? The failof weak substitu-
tivity or reductivity for a standard calculus is not enough to conclude that does
not admit cut-elimination, being modular cut-eliminat@mnotion strictly stronger than
cut-elimination (e.g. bothJ’ and £, admit cut-elimination although they do not admit
modular cut-elimination, see Examples 3, 5 and Remark 5).

Our conditions are however useful for pinning down the difiig of (dis)proving
cut-elimination and reduce the search space when findingtemxamples for cut-
elimination (or cut-admissibility). Indeed

Definition 10. Let £ be a standard sequent calculus. The following derivatidirs £
are calledcandidates of counterexampfes L.

— Let(R) be an instance of a rule if which is not weakly substitutive. L&§ be its

conclusion anddy, . . ., S, its premises. Take a sequénta formula4, ¢ € {l,r}
andU € [Sy <4 T] which violates condition (*) of Def. 6. Then ldtbe the
following:
Sy - S,
T So
—— (cuD)

— Letx be a connective i whose rules are not reductive. Take a pair of instances of
left and right logical rules with conclusion8 = A, xx(A) and*xz(A), X = II
which violates the conditiofx) of Def. 8. Then let be the following:

Sy - S, T, - Tn
I'=s Axx(A) *x(A), XY =11
XY= A1I (cUT)
A candidate of counterexampléd/, . .., U, t. Uy isresolvabléf whenevel/,, ...,

U,, are provable inZ, Uy is cut-free provable irC.

Example 6.The rule(—, r,0) is weakly substitutive neither in Maehara'd’ nor in
GD (see Example 3). A candidate of counterexampled fdrand GD, that is also a
counterexample for modular cut-elimination is then preddy any cut-free derivable
sequent with one implicative formula on its right end sidg, ® = C — D and any
set of non-logical axioms containing the sequént- D, A, for any A that contains
at least one formula. This counterexample for modular dotkeation can be easily
turned into acounterexample for cut-elimination GD by suitably choosind’, A and
D suchthatgp I' = D,Awhilergp I' = C — D, A only using(CUT). E.g.
takel’ = Va(P(z) V B), D = VaP(z) andA = B, itis easy to see that the sequent
Vz(P(z) vV B) = C — VYzP(z), B is not cut-free derivable iGD while a derivation
with (CUT) is as follows:



P(a)= P(a) B=1B

(v,1)

P(a)VB= P(a),B VzP(z) = VzP(z)
V2(P(2)V B) = P(a), B V2P (2),C = VaP(z)
V2(P(x)V B) = VaP(@), B VaP(z) = C —VaP@)

(cuT)

Vz(P(z) vV B) = C — VzP(z),B
This proves thaGD does not admit cut-elimination (in contrast with the clainj3]).

Notice that all candidates of counterexamples are restdvali J'. Indeed, a careful
inspection of the modular cut-elimination proof shows:

Theorem 4. Let £ be a standard sequent calculus for which either weak suibistit
ity or reductivity fails. ThenZ admits cut-elimination if and only if all candidates of
counterexamples fof are resolvable.

To conclude, although our conditions do not directly yieldoainterexample for cut-
elimination, they do provide the class of candidates amdmiglhwyif a standard calculus
does not admit cut-elimination, such a counterexample egoind.
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