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Abstract. We introduce a natural sequent calculus for preferential con-
ditional logic PCL via embeddings into provability logic GL, achieving
optimal complexity and enabling countermodel extraction. Extending
the method to PCL with reflexivity and absoluteness — corresponding
to Aqvist’s deontic system F with cautious monotony — we employ hy-
persequents to capture the S5 modality; the resulting calculus subsumes
the known calculi for the weaker systems E and F within Aqvist family.

1 Introduction

Conditional logics aim to capture forms of implication, A ~» B, that departs from
classical implication. These logics support a range of interpretations, including
the prototypical (“Typically, if A, then B”), the counterfactual (“If A were the
case, then B would be”), and the deontic interpretation (“B is obligatory under
condition A,” usually written as O(B/A)).

The most prominent systems for the prototypical interpretation are the so-
called KLM logics [18]. Within this framework, the logic P of preferential rea-
soning has been particularly influential. P (and KLM logics generally) permits
only shallow conditionals. An extension of P that accommodates nested con-
ditionals is PCL (Preferential Conditional Logic), a foundational system for
the counterfactual interpretation of conditionals. Despite its simple axiomati-
zation, known since the work of Burgess [7], PCL lacks an analytic sequent
calculus that balances proof-theoretic clarity with optimal complexity. Analytic
calculi are characterized by the step-wise decomposition of the formula to be
proved, which makes them well-suited for establishing meta-logical properties of
the formalized logics and enabling automation. To our knowledge, the only an-
alytic sequent calculus for PCL is in [25], which, although complexity-optimal,
employs highly combinatorial rules that hinder readability and countermodel
construction. Other proposals rely on the more expressive framework of labeled
calculi [23,16,15], which can handle extensions of PCL, through neighbourhood
semantics, at the cost of suboptimal computational behavior. Tableaux and res-
olution calculi have been proposed in [13,22], but present significant complica-
tions: [13] requires intricate blocking conditions to ensure termination, and [22]
relies on a non-trivial pre-processing phase.

In this paper, we define a simple and complexity-optimal sequent calculus for
PCL by establishing and exploiting a connection between PCL and Godel-Lob
logic (GL)[26] — the normal modal logic of arithmetic provability. The calculus
enables countermodel extraction, producing the small models described in [11],



for which the original paper provided only a non-constructive existence proof.
The method extends to PCLTA, i.e, PCL with reflexivity and absoluteness, for
which we introduce a new analytic calculus. PCLTA is known in the context
of the deontic interpretation of conditionals as F+(CM), that is Aqvist’s dyadic
deontic system F [1] augmented with the cautious monotonicity axiom (CM) [24].

Our calculi are based on an embedding of PCL into normal modal logics,
extending that of its shallow counterpart, the KLM logic P. The well-known em-
bedding proposed in [6], which maps P into S4, is not suitable for our purposes,
as it gives rise to a different logic of nested conditionals, CT4.! Here we (simplify
and) extend the correspondence identified in [12] between the conditional opera-
tor of P and the modality of GL, enabling the treatment of nested conditionals
via bi-modal logics. We show that PCL naturally embeds into a combination of
GL and K, while F+(CM) corresponds to a combination of GL and S5. These
embeddings are foundational to our calculi and are formally verified within them.
Similarly to previous work on modal interpretation of conditionals, e.g., [12,5],
we encode maximality by a unary modal operator Bet, which represents the
“better” (or preferable) worlds, and is interpreted as the GL modality. The re-
sulting sequent calculus for PCL is analytic and complexity-optimal. Due to
the presence of the S5 modality,? the calculus for F+(CM) is formulated within
the hypersequent framework, a natural generalization of the sequent format that
enables parallel manipulation of multiple sequents [3]. The calculus for F+(CM)
presented here provides an alternative to the one in [10], which was based on a
different semantic interpretation of the logic. Notably, our rules for the dyadic
obligation coincide with those of the calculi for the weaker logics E and F in the
Aquist family [8,9], differing only in the rule for the Bet modality. This align-
ment reflects the modularity of the Hilbert systems E, F, and F+(CM), where
F extends E with one additional axiom, and F+(CM) further adds (CM).

2 Preliminaries: PCL and F+(CM)

Let P be the set of propositional atoms. The language of PCL is generated by
the grammar: A :=p€P|-A|A— A| A~ A, with A, V, < defined as usual.
An axiomatization of PCL consists of the axioms for classical propositional logic
extended with the following axioms and rules:

(CSO) (A~ B)A (B~ A) = (A~ C) & (B~ C)) Ao B o
(OR) (A~ C)A (B~ C) = ((AVB) ~ C) (A~ C) & (B~0)
(ID) A ~ A Bin A B = C (RCK)

(A~ Bi)A---AN(A~ B) = (A~ C)

(CSO) expresses that conditionally equivalent formulas have the same (condi-
tional) consequences. It is equivalent to the pair of well-known axioms of cautious
monotony (CM) (A ~» B)A(A ~ C) — (AA B ~ () and restricted transitivity

! For example, =(T ~ L) is valid in CT4 but not in PCL.
2 No cut-free sequent calculus is known for modal S5.



(RT) (AAB ~ C)AN (A~ B) = (A~ (). (Id) and (OR) are the conditional
versions of identity, and of the principle governing disjunctive premises. The
rule (RCEA) allows substitution of equivalents in the antecedent, and (RCK)
distributes conditionals over classical implication. The semantics of PCL is given
by the following notion of preference models [7]. 3

Definition 1. A PCL preference model is a tuple (W, {Wy bwew, {=w fwew, V)
where W is a (non-empty) finite set of worlds, W,, € W is a set of worlds
accessible from w, =, is a reflexive and transitive binary relation on Wy, and
VP — P(W) is a valuation function. We write v >, u to denote v =, u and
U % v. The satisfaction w.r.t. such models is defined as follows:

- M,w) EzifweV(x)

— (M,w) E AAB if (M,w) = A and (M,w) = B.

- (M,w) |=-A if(M,w)%A.

(M w) = A~ B if for every v € Best,(||4]]), (M,v) = B,.

where ||A]| = {w | (M,w) E A} and Best,(X) ={u e X |Vv € X,v #y,u}.

We consider a variant of the language extended with the unary operator Bet. In
the extended language, formulas are evaluated relative to a twice-pointed model
(M, u,w), where u is “the point of view” (POV), whose preference relation is
used and w € W, is the world of evaluation (boolean cases are omitted):

- (M,u,w) ExifweV(z).
— (M, u,w) [= BetA if for every v € Wy, s.t. v =, w, (M,u,v) = A.
— (M,u,w) = A~ B if for every v € Best,(||4||,), (M, u,v) = B.

where ||4]], = {w|(M,u,w) = A}. Notice that for formulas without Bet the
evaluation does not depend on the POV, and for such formulas satisfiability w.r.t.
two-pointed models is equivalent to satisfiability w.r.t. usual pointed models
(since for (M,w) = A, M can be transformed into M’ by adding the world u
with W, = {w}, ensuring (M', u,w) | A).

The logic F+(CM) is the extension of PCL with reflexivity (i.e. w € W,,) and
absoluteness (i.e. W, = Wy, and >, ==, for any wy,wy € W), which arises
in the context of normative reasoning [1,24]. Accordingly, an axiomatization of
F+(CM) can be obtained by extending PCL with the following axioms (when
referring to F+(CM), we use the notation (O(B/A) in place of A ~» B):

(T) A= -0 (L/4)
(A1) O(B/A) = O(O(B/A)/C)  (A2) ~O(B/A) = OCO (B/A)/C)
The semantics of F+(CM) simplifies that of PCL by avoiding accessible
worlds and indexed preference relations, thanks to reflexivity and absoluteness.

As a result, the satisfability in the extended language does not require POV and
can be defined w.r.t. the usual pointed models.

3 Since PCL enjoys the Finite Model Property [7], we limit our analysis to finite
models, enabling a simpler truth condition for conditionals [21].



Definition 2. An F+(CM) preference model is a tuple (W, =, V), where W is
a (non-empty) finite set of worlds, = is a reflexive and transitive binary relation
on W, and V: P — P(W) is a valuation function. The satisfaction w.r.t. such
models is defined as follows (boolean cases are omitted):

— (M, w) = BetA if for everyv e W s.t. v = w, (M,v) E A.
— (M,w) = O(B/A) if for every v € Best(||A]]), (M,v) = B.

While F+(CM) typically includes an explicit S5 modality, we omit it here as it
can be defined via the conditional as: JA := OQ(L/—A).

3 A Sequent Calculus for PCL Grounded in GL

We uncover and exploit a novel connection between PCL and the provability
logic GL to define ScPCL, an analytic sequent calculus for PCL which is
both simple and complexity-optimal. ScPCL extends Gentzen’s LK calculus for
classical logic with the rules for Bet and for the conditional operator. The axioms
and rules of ScPCL are displayed in Fig. 1. The intuition behind the modal and
conditional rules is as follows:

Rule Bet: Due to the finiteness of the models, the Bet modality can be naturally
interpreted as the GL modality. Indeed, GL is sound and complete w.r.t.
finite, transitive and irreflexive Kripke frames. Due to transitivity, the truth
condition for the Bet modality can be equivalently stated as:

(M,u,w) = BetA if Vv € Wy s.t. v =, w and (M, u,v) |= BetA, (M,u,v) E A

This rewriting brings to the fore the fixed point property of Bet and leads
to the sequent rule below (BetA is the diagonal formula):

BetA = A
= BetA
By adding contexts to the rule, we recover the familiar rule for the GL
calculus from [27], which we denote as Bet in Fig. 1.

Rule ~»: In [12], a correspondence was established between the conditional op-
erator in P and the modality Bet of GL. The conditional A ~ B in P was
expressed as (A A Bet—A — B) A Bet(A A Bet—A — B) (denoting the GL
modality with Bet). Here, we simplify this translation —by removing the first
conjunct—, and extend it to the nested case. The extension to PCL, relies
on the small models of [I1]. There, a model satisfying any given formula is
constructed as a tree-like structure consisting of separate clusters of worlds
with a certain ordering, each child-cluster is intended to ensure the required
evaluation of conditionals in some world of the parent-cluster. Since clusters
are finite submodels with a transitive ordering inside, they can be seen as
separate GL-models, while the tree structure on them can be captured by an
independent accessibility relation, which suggests the following translation
of the conditional into the bi-modal logic K+GL, leading to the ~~ rule in
Fig. 1: trpcn(A ~ B) = OgBet(A A Bet—wA — B). The adequacy of the
new embedding is proven at the end of the section.



Ezample 1. A derivation of cautious monotonicity (CM) in ScPCL is:

<. (AABet~A) — B, ~(A A B), Bei~A, A =
" Bet((A A Bet—A) — B), A, B, Bet—~(A A B) = C, Bel-A
" Bet((A A Bet—A) = B),(AABet—A) - C, A, B, Bei~(AAB) = C
- Bel(ANBet-A) > B). (ANBet-A) = C = (ANBABel-(ANB) +C "
Bet((A A Bei=A) — B), Bet((A A Bei=A) — C) = Bet((AA B A Bel~(A A B)) = C)
AwB,AwC=ANB~C -

Bet, R~

R—, LA

Trivially derivable premises in branching rules are omitted. The topmost sequent
is derivable by logical rules. Decomposing a conjunction on the left can also be
done using logical rules since A A B abbreviates (A — —B).

Remark 1. ScPCL does not strictly satisfy the subformula property. Neverthe-
less, there is a finitary restriction on the formulas occurring in derivations. In
particular, if = F' is the root sequent, then all formulas appearing in the deriva-
tion are either subformulas of F' or subformulas of Bet(AABet—A — B) for some
conditional A ~ B inside F'. We call this property weak subformula property.

The weak subformula property, together with the specific formulation of the
Bet rule, enables to define a notion of complexity for sequents that strictly
decreases during bottom-up proof construction.

Definition 3. The complexity of a sequent I' = A is a triple (d, b, c), where d
is the maximal depth of nesting of conditionals in the sequent, b is a number of
Bet-formulas that appear as subformulas in I'UA but do not appear as formulas
in I', and c the total number of propositional connectives in the sequent.

Defining a lexicographic ordering on such triples, the complexity of the
premises is strictly smaller than the complexity of the conclusion for any rule
application.* More precisely, in ~» parameter d decreases, in Bet parameter b
decreases (if the rule application is not redundant) while parameter d decreases
or remains the same, and in every logical rule parameter ¢ decreases while both
d and b either decrease or remain the same. Each parameter is polynomially
bounded w.r.t. the size of the sequent. Moreover, due to the weak subformula
property, the size of any sequent in a derivation is polynomially bounded by the
size of the root sequent. Hence the length of any derivation branch —assuming
there is no redundant rule applications— is also polynomially bounded in the size
of the root sequent. Thus proof search in ScPCL attempting all non-redundant
rule applications in any arbitrary order can be performed in polynomial space,
matching the complexity of PCL.

Proposition 1. Proof search in SCPCL can be performed in PSPACE.

We now establish soundness and completeness of ScPCL w.r.t. preference

semantics of PCL. As usual, we can interpret a sequent as a formula: we say
that I' = A is valid in PCL when (AI") — (\ 4) is valid in PCL.

4 Apart from a redundant application of (Bet), which contain BetA on both sides in
the conclusion, and therefore can be closed immediately with the axiom.



AXIOMS: p, "= Ap forpeP

LOGICAL RULES:
AT = A I'=AA A= AB I'sAA IB=A

R— L— L— R—

I'=A-A -AT'=> A I'=AA—B INA—B=A
MODAL RULES:
{Bet(A; N\ Bet—A; — B;)}i = Bet(A N Bet—A — B) I I BetA = A
I {A; = Bi}i = A— B, A - I = BetA, A

Bet

Fig.1. The calculus ScPCL. I'* := {BetA|BetA € I'} and '™ := {A|BetA € T'}.

Proposition 2. If I' = A is derivable in ScPCL, then it is valid in PCL.

Proof. For each rule the validity of premise implies the validity of the conclusion.
We only consider the cases of the rules (Bet) and (~), other cases being trivial.

Rule (Bet): Suppose towards a contradiction that the conclusion is not valid.
Then there is a twice-pointed model (M, u,w) s.t. all the formulas in I" are
true at (M, u,w) while all formulas in A and BetA are false at (M, u,w). The
latter implies that the set X = {v € W, | u =, w and (M,u,v) = A} is not
empty. Then there is some v € Best, (X), since -, is a strict preorder on a finite
set. (M,u,v) satisfies all formulas in ' and I'® due to transitivity of »=,, it
also falsifies A by definition of X and satisfies BetA since v € Best, (X). Thus,
(M, u,v) falsifies the premise, leading to a contradiction.

Rule (~): Suppose towards a contradiction that the conclusion is not valid.
Then there are a model M = (W, {Wy}wew, {<wlwew,V) and u,v € W
st. (M,u,v) E A; ~ B; and (M,u,v) %= A ~ B. The latter implies that
there is v’ € Best,(||A||M) s.t. v’ ¢ ||B||M. Let us consider an extended model
M = (WU {v'}H AW, Ywew:, {0, bwew, V') that only adds a new world v” in
M with v’ =, v" and does not change any other preference relation or valuation:

- W, =W, u{v'}, W, =0, W, =W, for any w € W\ {u},
— =l=ry for w € W\ {u}, =/, is empty and = > y if either z >, y or
z=y=v"ory=10"and z =, v.

[|[Cl|M" = ||C||M for any & € W since v” is never accessible during the evaluation,
so v ¢ ||B||M". We observe that (M’,u,v") = Bet(A; A Bet—A; — B;) for any
1 <i < nsince (M’ u,v) | A; ~ B;. Therefore, by the validity of the premise,
we get that v” satisfies (M, u,v") = Bet(A A Bet=A — B). Since v’ >!, v we
get v’ € ||B||™ and thus a contradiction.

The completeness of ScPCL is shown by exhibiting a countermodel for any
non-derivable sequent. The proof is constructive.

Proposition 3. If I' = A is valid in PCL, then it is derivable in ScPCL.

Proof. The proof is by induction on the complexity of I' = A. If there is a
negated formula or implication in I" U A, then a logical rule can be applied to
it. At least one of the premises is a non-derivable sequent of smaller complexity,



so by the inductive hypothesis there will be a countermodel falsifying it, which
will also falsify the conclusion.

Now let all formulas in I"UA be either a propositional variable, a conditional,
or a Bet-formula. The premise of each application of (~) or (Bet) is an under-
ivable sequent of smaller complexity, so by inductive hypothesis, there exists a
twice-pointed model falsifying it. Suppose (M+1 u™t vF1) ... (MF™ utm vt
are all such models for all possible applications of (Bet), and (M ~1, u=t v=1) ...,
(M~™ u~™ v~"™) are all such models for all possible applications of (~~). Denote
I={+1,...,4m,—1,...,—m}. Let M* = (W AW} ewi, {=Z% bwew:, V) for
i € I. We will construct our countermodel for I" = A as the disjoint union of all
these countermodels obtained inductively, adding one special world wg to them.
We will not modify the sets of visible worlds Wi and orderings <¢, for any world
of any submodel M?, and select it only for the additional world wy. Specifically,
we consider the model M = (W, {Wytwewis {=wtwewi, V):

- W={weUWy...uwuyw-ty...uw-m

= Wy =Uicicmiw € W w *;L i}

— Wy = WE for any w € Wk for k € T

— & =y, ¥ in either of the following three cases: (1) x = y = wo; (2) = = wo,
y € WH and vt <4 y; (3) 2,y € WF for some k € I and z <x y.

— jw:jfv for any w € WF for ke I

V) = {wo} UVF )L LV () UV (p)U--- UV ™(p), ifpel
pr= Vi p)u---u VT (p)uV-i(p)u---uV-"(p), otherwise

First, notice that W is finite and all relations <,, are reflexive, antisymmet-
ric, and transitive (if the same is assumed for all submodels M¥). Also, it is
straightforward to show that for every u,w € WF¥ for k € I (M,u,w) = ¢
iff (M* u,w) = ¢ (since relations and valuation within submodels did not
change and the evaluation of the formula in a submodel does not move out-
side this submodel). Moreover, for every w € W for k € I (M, wo,w) | ¢ iff
(M*,u*, w) |= ¢ (since <, and =¥, coincide on W*).

We show that (M, wq,wo) satisfies (resp. falsifies) all formulas in I" (resp A):

— for atoms due to the definition of V' and the fact that the sequent can not
be closed by the axiom;

— for BetA on the left due to presence of both A and BetA on the left in the
premise of any Bet application, which makes A true in v and all y such
that vt <, y (i.e. all w € WT s.t. wy < w, due to antisymmetry);

— for BetA on the right due to possible application of Bet to this formula with
A on the right in this premise, implying that A is false in some v1?;

— for A ~» B on the left due to presence Bet(A A BetwA — B) on the
left in the premise of any ~» application, which ensures that for every set
Uy ={w e W™ | w =" v;} composing W, Bestu,(||A||})NU; =
Best,~i(||A|[}L:) N U; € [|BI[JE" € ||BI[0;

— for A ~» B on the right due to possible application of ~+ to this formula with
Bet(A A Bet—A — B) on the right in this premise, implying there is some




world v’ such that v~* <;L v’ (so v € Wy,) and v/ € Best,—i( |A||Mfi) \

IBIIM™ € Bestu, (I|A]1M) \ || BI[M.

Remark 2. The countermodel constructed in the above proof has the same struc-
ture as the small model construction for PCL in [11]: starting with a formula
that has no Bet-modalities, the resulting model will consist of separate chains of
worlds, each chain falsifies one conditional in some world of a later chain. While
Friedman-Halpern small models are obtained non-constructively via selecting a
finite subset of worlds from an arbitrary existing model, our calculus provides a
constructive way of obtaining such small models by analyzing failed derivations.

Ezample 2. Consider the instance of Rational Monotony (a ~» ¢) = ((a A
b) ~ ¢),(a ~ —b). The countermodel provided by the proof above is W =
{wo,vg vt vg v %052}, Vi) = {oy or 2052}, VI(0) = o o), Vi) =
{v7 1, v %}, where Wy, = {v; !, v, v5°} includes a singleton chain of vy ! fal-
sifying (a ~ —b) and a chain v} ? =<, v, > falsifying (a A b~ c).

We use ScPCL to show the adequacy of translating PCL into K+GL, prov-

ing that its rules are sound and complete for the K+GL semantics of the trans-
lated formulas. We recall the bi-relational Kripke model semantics for K+GL.

Definition 4. A K+GL-model is a tuple M = (W, Rk, Rgw, V), where W is
a finite set of worlds, Rk is arbitrary binary relation on W, Rgy, is transitive
binary relation on W, and V is valuation on W. Ok and Ogr modalities are
evaluated in such models w.r.t. the corresponding relations:

(M,w) EOxA  iff Yw' € WywRkw' = (M,w') F A
(M,w) EOgrLA iff Yw' € W,wRgrw' = (M,w') E A

Definition 5. The translation trpcy, from PCL into K+GL is as follows:

trecL(p) =p

tTPCL(—‘A) = —‘tT'pCL (A)

trpcL (A — B) = trpcL (A) — tTPCL(B)

trpcL (A ~ B) = UOk0OeaL (tTPCL(A) AOgLtrpcL (A) — trpcL (B))

Lemma 1. A is valid in PCL iff trpcL(A) is valid in K+GL.

Proof. («<): if A valid in PCL, by Prop.3 there exists a derivation for = A
in ScPCL, and we can easily show that if we apply translation trpcy, to ev-
ery formula in this derivation, each rule application will preserve validity w.r.t.
K+GL-models (since the rule (~) after translation of conditionals in the con-
clusion behaves exactly like the standard sequent rule for Og-modality).

(=): if A is not valid, then = A is underivable and we can take a preference
countermodel M for A from the proof of Lemma 3 and transform® it into a

® This transformation applies only to preference models in which the relations >,
and >, of different worlds coincide on Wy, N W, (which permits the use of >, in
the definition of RgL); hence we must rely on a specific kind of countermodel from
the completeness proof, rather than an arbitrary one.



K+GL-countermodel for ¢trpcr(A) by defining Rk (w) = W, and Rgr(w) =
{u € W | u >, w} for each world in M.

As the KLM logic P coincides with the Horn fragment of PCL the adequacy
of trpcL also justifies the simplification of the translation from P into GL in [12]:
the entailment {A; ~ B;}; - (A ~» B) holds in P (and, so, in PCL) iff

holds in K+GL, which in turn holds iff

{Bet(Ai A Bet—A; — Bl>}l H (Bet(A A Bet—A — B))

or, equivalently, it holds in GL (since there are no nested conditionals in P).

4 Adding absoluteness: from GL to Aqvist’s F+(CM)

We introduce the calculus HFem for F+(CM), a deontic extension of PCL
incorporating reflexivity and absoluteness. The rules of HFcm are derived by
adapting the embedding of PCL into GL (see Lemma 3). We establish soundness
and completeness of the system, with completeness shown relative to derivations
that may include cuts. Rather than following the standard approach via cut-
elimination (which could be proved similarly to [9]), in Sect. 4.1 we reformulate
HFcm into a proof-search-oriented calculus. This transformation enables a cut-
free completeness result via countermodel extraction from failed proof searches.
Incorporating absoluteness into PCL requires a generalization of the stan-
dard sequent framework, as no cut-free sequent calculus exists for S5. We use
hypersequents, arguably the simplest generalization of sequents [2,4,3].

Definition 6. A hypersequent is a multiset I = I | ... | I, = II, where,
foralli=1,...,n, I, = II; is an ordinary sequent, called component.

A hypersequent version of a sequent rule is obtained by adding a context G,
representing a possibly empty hypersequent, to its premises and conclusion. The
hypersequent calculus HFem for F+(CM) consists of the (group of) rules (I)-
(V) described below. HFem includes (I) the hypersequent version of the classical
sequent calculus LK as in Fig. 1, including the rules of internal weakening and
contraction:
G|AAT = A G|I'= A A A GII= A G|II'= A
G|AT = A G|IT = A A G|AT = A G|IT = A A

RW

(I1) the hypersequent version of the Bet rule (for the GL modality) from Fig. 1.
To manipulate the hypersequent structure, HFcm includes the standard external
structural rules (III) known as ext. weakening (EW) and ext. contraction (EC)
below. These behave like weakening and contraction over whole hypersequent
components. To capture the S5 modality, we use (IV) the rule s5' below right —
a notational variant of the rule for S5 in [19]:



G w GII'=H|I=1 GO, r'=1r

GII'=1I G|II'=1I " Girs s
I'O abbreviates {O(B/A)| O (B/A) € I'}. (V) The deontic rules of HFcm are:
G|I'©, A Bet-A= B GII'=s AA G|I'= A, Bet-A G|B,I'= A LO
G|I' = O(B/A) G| O(B/A),I'= A
Remark 3. The rules (RQ) and (LQ) are as in the calculi [3,9] for Aqvist’s

systems E and F. The former calculus replaces the GL rule for Bet with a K
rule; the latter uses a rule with no counterpart in normal modal logics. Remark 4
presents equivalent rules for F+(CM) derived starting from the rules of ScPCL.

In HFcm hypersequents are interpreted as follows: It = Ay | ... |, = A,
is valid if and only if \/, .., O(A I =V 4;) is valid.

Lemma 2. The calculus HFem is sound for F+(CM).

Proof. We prove, by induction on the height of derivations, that HFcm is sound
with respect to the semantics in Definition 2. As an illustrative example, we
consider the case of the rule RQ). Assume towards a contradiction that G | I" =
(O(B/A) is not valid. Then there is a world w s.t. w satisfies the formulas in I"
and w falsifies O)(B/A). Hence, there is a world u, with u F A, u F Bet—A and
u ¥ B. Since formulas I'© are satisfied in w, they are also satisfied in u (due to
absoluteness), contradicting the validity of the premise G | I'©, A, Bet~A = B.

Proposition 4. The calculus HFem is complete for F+(CM) with the cut rule:

G|I'=s A A H|ALND=X
G| H|INIT=A,%X

Cut

Proof. The axioms for F+(CM) are provable in HFecm and the rules can be
simulated, using the cut rule for Modus Ponens. As an example we prove axiom
(A7) in HFem:

G|A,Bet-A= B,A  G|A Bet-A= B, Bet-A G| A Bet~A,B= B
C,Bet-C' = | O (B/A),A,Bet-A = B
O(BJA) = | C,Bet~C = | A, Bet—A = B
O(B/A) = | C, Bet-C = O(B/A)
O(B/4) = O(O(B/4)/C)
= O(B/A) - O(O(B/A)/C)

where G abridges C, Bet—=C =-.

LO

85’
EC, RO, RW
EC, RO, RW

R—

We show that replacing Ok with (gs and removing the outermost Bet in the
embedding trpcy, yields an embedding of F+(CM) into S5+GL. The semantic
definition of S5+GL is identical to that of K+GL (see Def. 4), except that Rk
is replaced with a universal relation Rgs.

Definition 7. The translation trg.cmy from the language of F+(CM) into the
language of S5+GL is defined as trpcy, apart from the conditional case:

trF+(CM)(O(B/A)) = Ds5 (tTF+(CM)(A) A Bet—'tTF+(CM)(A) — tTF-f(CM)(B))



We chose the current translation over the trpcy-like alternative that retains
the outermost Bet in trg.cnm)(O(B/A)), as it simplifies the conditional rule in
HFcm (see Remark 4). Both translations are sound and faithful.

Lemma 3. A is valid in F+(CM) iff trg.cm)(A) is valid in S5+GL.

Proof. The structure of the proof is similar to the one of Lem. 1. (=) We need to
verify that application of trg,cm) to every rule of HFem provides a rule sound
w.r.t. S5+GL. This verification coincides with the soundness proof in Lem. 2.
(<) We argue by contraposition and we transform an arbitrary® F+(CM)-
countermodel into a S5+GL-countermodel by keeping the set of worlds and
the valuation and choosing Rgr(w) = {u € W | u = w} and universal Rgs(w).

4.1 A Proof-search oriented calculus for F+(CM)

The calculus HFcm ?° for F+(CM), in which all rules are invertible, contains the
usual rules for boolean connectives in a cumulative form, i.e. in which formulas
in the conclusion are copied in the premises, see [17], together with the following
rules for the modal and conditional operator:

G|I'= A,O(B/A)| A, Bet~A = B o G|I'= A BetA| I, '™, BetA = A
G|I'= O(B/A) G| = A,BetA

Bet

G| O(B/A), T =AA G| O(BJA),T = A,Bet-A G| O (BJ/A),B,T = A
G| O (B/A), T = A

LOL

G| O(B/A)T=A|T=XA G|QBJA),T= A= 5,Bet~-A G| Q(B/A), = A|BII=5
GO B/AT=AT=%

LOz

The rules for the conditional operator absorb the special structural rule s5’
(for an overview of the methodology to obtain a proof search oriented calculus -
there called Kleene variant - the reader is referred to [20]).

Lemma 4. Every rule in HcFCMP® is height-preserving invertible and the
rules of weakening and contraction (internal and external) are height-preserving
admissible. The rule s5' is admissible.

Proof. By induction on the height of the derivation. We present the case of the
rule s5'. If G| 'O, I" = II' is an axiom, so is G |I" = |I" = II'. If the last
rule applied is any rule different from LO¢ or LO$§, we invoke the induction
hypothesis and reapply the rule. If the last rule is LO{, as in

GO, OB/A), " =1',A  G|IC ,O(BJA),I" = II',Bet-A  G|I'°',O(B/A), B, I" = IT'

. LOS
GO, O(B/A), T = IT'

We proceed as follows:

5 In F+(CM), absoluteness ensures consistency between preference relations across
worlds, so — unlike in PCL— no special form of countermodel is required.



G| IO, O(B/A), " = ', A G| IO, O(B/A), I = I, Bet~A G|, O(B/A), B, I" = I’
n 1H n TH n H
G| I, O(B/A) = |T" = IT',A GO, O(B/A) = | I = IT', Bet-A G| I, O(B/A) = |B,I" = IT' o
G|, O(B/A) = |I"=1I'

The case of L(§ is similar.

We now show that the calculi HCFCMP® and HFcm are equivalent.
Lemma 5. G is derivable in HFem iff G is derivable in HcFCMPS.

Proof. From right to left, we proceed by induction on the height of the derivation
observing that the rules of HcFCMP® can be simulated in HFcm using the
structural rules and s5’. For example, we have:

G|I'= A,O(B/A)| A, Bet-A = B
G|I'= A,O(B/A)| A, Bet-A = B RO* G|I'= A,O(B/A)| = O(B/A)
G|I'= A,O(B/A) G|I'=A,O(B/A)|I' = A,O(B/A)
G|I' = A,O(B/A)

LW, RW

From left to right, we argue by induction on the height of the derivation in
HFcm using Lemma 4 to simulate the rules of the calculus HFcm.

Lemma 6. If G is derivable in HcFCMPS | there is a derivation of the same
height in which the rule RO* is applied only once to the same formula.

Proof. If the derivation contains more than one application of rule (R(¢) to the
same formula, we have:
H|Ty = Ay O(BJA)| A, Bet-A,0 = B, A| ... |II,I; = A;, 2,O(B/A) | A, Bet=A = B
HI|I; = A, O(BJA) | A, Bet-A4,0 = B, A| ... |II,1; = A;, &, O(B/A)

‘D
HI|I = A, O(B/A) | ... |1 = 4;,O(B/A)

RO*

The topmost redundant application of rule (R(Q)¢) can be replaced by (height-
preserving admissible) contraction and weakening:

HI|T = Ay, O(BJA)| A, Bet=A4,0 = B, A| ... |II,Tj = A;, £,0(B/A) | A, Bet~A = B
HI[T; = A, Q(B/A)| A Bet=A,0 = B, A| ... I, T; = A;, 5, O(B/A)| A, Bet—=4,0 = B, A
H|T; = A, O(BJA) | A, Bet=A,0 = B, A| ... |II,.I; = A;, £, O(B/A)

LW,RW

EC

‘D
H|Ii= A, O(B/A)| A, BetaA = B| ... | I; = 4, 0(B/4) |
H|T; = 4;,0(B/A)] ... | T = 4;,0(B/A)

To prove completeness of HFem”® (and thus also HFcm) we reconstruct a
countermodel from a failed derivation using the notion of saturated hypersequent.

Definition 8. A hypersequent H is saturated w.r.t. the system HcFCMPS® if
it is not an initial sequent and for every component I' = A in H, whenever
I' = A contains the principal formulas in the conclusion of a rule (r), then H

also contains the formulas introduced by one of the premisses of (r) for every
rule (1):



(R—)IfI'=AA— BeH, then Ac T and B € A.

- (L—)IfA—-B,I'=AcH,then Ac AorBel.

(LO1) If O(BJA), I’ = Ac H, then A€ A or BetmAe AorBel.

— (LO2) If O(B/A),I' = Ac H and Il = X € H, then A € X or Bet—A €
YorBel.

(RO) If I = A,O(B/A) € H, then II, A,Bet~A = X, B € H for some
,>.

(Bet) If I' = A,BetA € H, then II,I'°, " BetA = X, A € H for some
,x.

Theorem 1. If = A is valid in F+(CM) then it is derivable HCFCMPS,

Proof. Assume that = A is not derivable. The proof is in two steps. (I) We prove
that the search for a proof terminates and that there is a saturated hypersequent.
We observe that the number of components generated in any derivation D of
= A can be bounded. By Lem. 6 and the weak subformula property, the number
of components introduced by (R()¢) is bounded by the number of conditionals
in A and thus is finite. By the weak subformula property, if there is an infinite
bottom-up introduction of components, these are introduced by the rule Bet.
Hence, since the number of possible sequents occurring in a derivation is finite,
there has to be a repetition. In this case, we have met the saturation condition
for the rule Bet. Thus the number of components is finite. Since we can rule out
rule applications for which the saturation condition has already been met (due
to the admissibility of contraction), the length of every branch of a putative
derivation of = A is bounded and the derivation is finite. Hence if A is not
derivable, there is a saturated hypersequent G*% = It = Ay | ... |}, = A,.
(IT) We construct a countermodel for A on the basis of G***. We assign
labels to the components i : I; = A; (i € {1,...,n}) and consider the model:
M={1,...,n}, X, V) withi e V(p)iff pe I and i < jiff i =j or

i:Ty= Ay, j: Iy = A, TP, 1Y C Iy, and BetA € I\ T;.

We have to check that the model is finite, reflexive and transitive. Finiteness
and reflexivity are immediate. Assume that i < j < u for ¢ # j # u, we need to
prove that i < u. By definition, we get: I"?, Fibi - F;’, FJI.’i C I',. By hypothesis
we know that there is BetB € I, \ I';, therefore BetB ¢ I;, otherwise we would
get BetB € I, hence a contradiction which yields the desired conclusion.

To complete the proof, we need to establish that:

- For every i, if B € I;, then i = B
- For every i, if B € A;, then i £ B

This is done by induction on the complexity of B. If B is an atomic formula,
the claim stems from the definition of V. If B is a compound formula, the proof
follows from the use of the induction hypothesis. We deal with the case in which
B is Bet('; the other cases are handled similarly. If BetC' € I, suppose i < j,
then I’ ibi C Ij. So we get C' € I'; and by induction hypothesis we have j = C,
hence the desired conclusion. If Bet € A;, by definition of saturation w.r.t. the



rule Bet, there is I'; = A;, C with P, ro c I';. Furthermore, BetC € I , but
BetC ¢ I, otherwise the hypersequent would be derivable and therefore not
saturated. So, by definition, ¢ < j and j }~= C by induction hypothesis, which
entails i [~ BetC.

As = A is the root of the putative derivation, in the saturated hypersequent
there is j s.t. A € A; and so j = A which yields the desired conclusion.

Remark 4. trg.cwm) could equivalently be defined like trpcy, (Def. 5), preserving
the outermost Bet modality in the clause for the dyadic operator. This yields
the alternative version of the rules (L)) and (R(Q)), closer to those of ScPCL:
G|ANBet-A— B,I'= A Lo G| I'© = Bet(A A Bet—A — B) RO
G| O(B/A),I'= A G|I'= O(B/A), A
The calculus HFem™ obtained from HFem by replacing (LQ) and (RQ) with
their starred versions, is sound and complete w.r.t. F+(CM): soundness can be
checked directly analogously the (~) case in Prop. 2, and completeness holds
since (LQO) and (RQ) can be simulated in HFem™ using (LO*) and (RO*).

Concluding remark

We have introduced analytic calculi for conditional logics based on the corre-
spondence between the KLM logic P and the provability logic GL. Specifically,
we have considered two extensions of P: PCL, for counterfactual reasoning, and
F+(CM), for deontic reasoning. The approach in this paper could be applied
to obtain modular calculi for other extensions of PCL [14]. Our calculi are rel-
atively simple and have good meta-logical properties. In particular, we believe
that cut-elimination can be proved by adapting Valentini’s strategy for GL [27]
(see also [9]). We leave the investigation of these questions to future work.
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